
The Biostrings 2 classes (work in progress)

Hervé Pagès

January 7, 2026

Contents

1 Introduction 1

2 The XString class and its subsetting operator [2

3 The == binary operator for XString objects 3

4 The XStringViews class and its subsetting operators [and [[4

5 A few more XStringViews objects 5

6 The == binary operator for XStringViews objects 6

7 The start, end and width methods 6

1 Introduction

This document briefly presents the new set of classes implemented in the Biostrings 2 pack-
age. Like the Biostrings 1 classes (found in Biostrings v 1.4.x), they were designed to make
manipulation of big strings (like DNA or RNA sequences) easy and fast. This is achieved by
keeping the 3 following ideas from the Biostrings 1 package: (1) use R external pointers to
store the string data, (2) use bit patterns to encode the string data, (3) provide the user with a
convenient class of objects where each instance can store a set of views on the same big string
(these views being typically the matches returned by a search algorithm).

However, there is a flaw in the BioString class design that prevents the search algorithms
to return correct information about the matches (i.e. the views) that they found. The new
classes address this issue by replacing the BioString class (implemented in Biostrings 1) by 2
new classes: (1) the XString class used to represent a single string, and (2) the XStringViews
class used to represent a set of views on the same XString object, and by introducing new
implementations and new interfaces for these 2 classes.

1

2 The XString class and its subsetting operator [

The XString is in fact a virtual class and therefore cannot be instanciated. Only subclasses
(or subtypes) BString , DNAString , RNAString and AAString can. These classes are direct
extensions of the XString class (no additional slot).

A first BString object:

> library(Biostrings)
> b <- BString("I am a BString object")
> b

21-letter BString object
seq: I am a BString object

> length(b)

[1] 21

A DNAString object:

> d <- DNAString("TTGAAAA-CTC-N")
> d

13-letter DNAString object
seq: TTGAAAA-CTC-N

> length(d)

[1] 13

The differences with a BString object are: (1) only letters from the IUPAC extended genetic
alphabet + the gap letter (-) are allowed and (2) each letter in the argument passed to the
DNAString function is encoded in a special way before it’s stored in the DNAString object.

Access to the individual letters:

> d[3]

1-letter DNAString object
seq: G

> d[7:12]

6-letter DNAString object
seq: A-CTC-

> d[]

13-letter DNAString object
seq: TTGAAAA-CTC-N

2

> b[length(b):1]

21-letter BString object
seq: tcejbo gnirtSB a ma I

Only in bounds positive numeric subscripts are supported.
In fact the subsetting operator for XString objects is not efficient and one should always

use the subseq method to extract a substring from a big string:

> bb <- subseq(b, 3, 6)
> dd1 <- subseq(d, end=7)
> dd2 <- subseq(d, start=8)

To dump an XString object as a character vector (of length 1), use the toString method:

> toString(dd2)

[1] "-CTC-N"

Note that length(dd2) is equivalent to nchar(toString(dd2)) but the latter would be
very inefficient on a big DNAString object.

[TODO: Make a generic of the substr() function to work with XString objects. It will be
essentially doing toString(subseq()).]

3 The == binary operator for XString objects

The 2 following comparisons are TRUE:

> bb == "am a"
> dd2 != DNAString("TG")

When the 2 sides of == don’t belong to the same class then the side belonging to the “lowest”
class is first converted to an object belonging to the class of the other side (the “highest” class).
The class (pseudo-)order is character < BString < DNAString . When both sides are XString
objects of the same subtype (e.g. both are DNAString objects) then the comparison is very
fast because it only has to call the C standard function memcmp() and no memory allocation
or string encoding/decoding is required.

The 2 following expressions provoke an error because the right member can’t be “upgraded”
(converted) to an object of the same class than the left member:

> bb == ""

> d == bb

When comparing an RNAString object with a DNAString object, U and T are considered
equals:

> r <- RNAString(d)
> r

3

13-letter RNAString object
seq: UUGAAAA-CUC-N

> r == d

[1] TRUE

4 The XStringViews class and its subsetting operators [and [[

An XStringViews object contains a set of views on the same XString object called the subject
string. Here is an XStringViews object with 4 views:

> v4 <- Views(dd2, start=3:0, end=5:8)
> v4

Views on a 6-letter DNAString subject
subject: -CTC-N
views:

start end width
[1] 3 5 3 [TC-]
[2] 2 6 5 [CTC-N]
[3] 1 7 7 [-CTC-N]
[4] 0 8 9 [-CTC-N]

> length(v4)

[1] 4

Note that the 2 last views are out of limits.
You can select a subset of views from an XStringViews object:

> v4[4:2]

Views on a 6-letter DNAString subject
subject: -CTC-N
views:

start end width
[1] 0 8 9 [-CTC-N]
[2] 1 7 7 [-CTC-N]
[3] 2 6 5 [CTC-N]

The returned object is still an XStringViews object, even if we select only one element. You
need to use double-brackets to extract a given view as an XString object:

> v4[[2]]

5-letter DNAString object
seq: CTC-N

4

You can’t extract a view that is out of limits:

> v4[[3]]

Error in getListElement(x, i, ...) : view is out of limits

Note that, when start and end are numeric vectors and i is a single integer, Views(b,
start, end)[[i]] is equivalent to subseq(b, start[i], end[i]).

Subsetting also works with negative or logical values with the expected semantic (the same
as for R built-in vectors):

> v4[-3]

Views on a 6-letter DNAString subject
subject: -CTC-N
views:

start end width
[1] 3 5 3 [TC-]
[2] 2 6 5 [CTC-N]
[3] 0 8 9 [-CTC-N]

> v4[c(TRUE, FALSE)]

Views on a 6-letter DNAString subject
subject: -CTC-N
views:

start end width
[1] 3 5 3 [TC-]
[2] 1 7 7 [-CTC-N]

Note that the logical vector is recycled to the length of v4.

5 A few more XStringViews objects

12 views (all of the same width):

> v12 <- Views(DNAString("TAATAATG"), start=-2:9, end=0:11)

This is the same as doing Views(d, start=1, end=length(d)):

> as(d, "Views")

Hence the following will always return the d object itself:

> as(d, "Views")[[1]]

3 XStringViews objects with no view:

> v12[0]
> v12[FALSE]
> Views(d)

5

6 The == binary operator for XStringViews objects

This operator is the vectorized version of the == operator defined previously for XString objects:

> v12 == DNAString("TAA")

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

To display all the views in v12 that are equals to a given view, you can type R cuties like:

> v12[v12 == v12[4]]

Views on a 8-letter DNAString subject
subject: TAATAATG
views:

start end width
[1] 1 3 3 [TAA]
[2] 4 6 3 [TAA]

> v12[v12 == v12[1]]

Views on a 8-letter DNAString subject
subject: TAATAATG
views:

start end width
[1] -2 0 3 []
[2] 9 11 3 []

This is TRUE:

> v12[3] == Views(RNAString("AU"), start=0, end=2)

7 The start, end and width methods

> start(v4)

[1] 3 2 1 0

> end(v4)

[1] 5 6 7 8

> width(v4)

[1] 3 5 7 9

Note that start(v4)[i] is equivalent to start(v4[i]), except that the former will not
issue an error if i is out of bounds (same for end and width methods).

Also, when i is a single integer, width(v4)[i] is equivalent to length(v4[[i]]) except
that the former will not issue an error if i is out of bounds or if view v4[i] is out of limits.

6

