Package ‘staRgate’

January 24, 2026

Title Automated gating pipeline for flow cytometry analysis to
characterize the lineage, differentiation, and functional
states of T-cells

Version 0.99.5

Description An R-based automated gating pipeline for flow cytometry data designed
to mimic the manual gating strategy of defining flow biomarker positive populations
relative to a unimodal background population to include cells with varying
intensities of marker expression. The pipeline’s main feature is a flexible
density-based gating strategy capable of capturing varying scenarios based on
marker expression patterns to analyze a 29-marker flow panel that characterizes
T-cell lineage, differentiation, and functional states.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

biocViews FlowCytometry, Preprocessing, InmunoOncology
Depends R (>=4.5.0)

Imports dplyr, janitor, purrr, rlang, stringr, tidyr, flowCore,
flowWorkspace, glue, tibble

Suggests flowAl, ggplot2, gt, knitr, openCyto, ggcyto, rmarkdown,
data.table, here, testthat (>= 3.0.0), BiocStyle

VignetteBuilder knitr
BugReports https://github.com/leejasme/staRgate/issues

URL https://bioconductor.org/packages/staRgate,
https://leejasme.github.io/staRgate

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/staRgate

git_branch devel

git_last_commit 1030343

git_last_commit_date 2026-01-22

https://github.com/leejasme/staRgate/issues
https://bioconductor.org/packages/staRgate
https://leejasme.github.io/staRgate

2 staRgate-package

Repository Bioconductor 3.23
Date/Publication 2026-01-23

Author Jasme Lee [aut, cre] (ORCID: <https://orcid.org/0009-0006-4492-4872>),
Matthew Adamow [aut],
Colleen Mabher [aut],

Xiyu Peng [aut],

Phillip Wong [aut],

Fiona Ehrich [aut],
Michael A Postow [aut],
Margaret K Callahan [aut],
Ronglai Shen [aut],
Katherine S Panageas [aut],
V foundation [fnd],
MSK-MIND [fnd],

NIH RO1CA276286 [fnd],
NIH P30CA008748 [fnd]

Maintainer Jasme Lee <leej22@mskcc.org>

Contents
staRgate-package 2
getBiexpTransformGS 3
getCompGS e e e 4
getDensityDerivs L. e 6
getDensityGates e e e e 6
getDensityMats L e 8
getDensityPeakCutoff oL o 9
getGatedDat e e e 10
getPerc e 11
Index 14
staRgate-package staRgate: Automated gating pipeline for flow cytometry analysis to
characterize the lineage, differentiation, and functional states of T-
cells
Description

An R-based automated gating pipeline for flow cytometry data designed to mimic the manual gating
strategy of defining flow biomarker positive populations relative to a unimodal background popula-
tion to include cells with varying intensities of marker expression. The pipeline’s main feature is a
flexible density-based gating strategy capable of capturing varying scenarios based on marker ex-
pression patterns to analyze a 29-marker flow panel that characterizes T-cell lineage, differentiation,
and functional states.

https://orcid.org/0009-0006-4492-4872

getBiexpTransformGS 3

Author(s)

Maintainer: Jasme Lee <leej22@mskcc.org> (ORCID)
Authors:

* Matthew Adamow

* Colleen Maher

* Xiyu Peng

* Phillip Wong

* Fiona Ehrich

* Michael A Postow

* Margaret K Callahan
* Ronglai Shen

» Katherine S Panageas
Other contributors:

¢ V foundation [funder]
¢ MSK-MIND ([funder]
* NIH RO1CA276286 [funder]
* NIH P30CA008748 [funder]

See Also
Useful links:
e https://bioconductor.org/packages/staRgate

* https://leejasme.github.io/staRgate
* Report bugs at https://github.com/leejasme/staRgate/issues

getBiexpTransformGS Applies Biexpeonential Transformation using specifications in csv file
provided at path_biexp_params

Description

The csv file at path_biexp_params should specify the channels to apply the transformation to
and the parameters (negative decades, width basis and positive decades). The default is negative
decades=0.5, width basis=-30 and positive decades=4.5. The Transformation can be applied to only
a subset of the channels included in the GatingSet.

Usage

getBiexpTransformGS(gs, path_biexp_params)

https://orcid.org/0009-0006-4492-4872
https://bioconductor.org/packages/staRgate
https://leejasme.github.io/staRgate
https://github.com/leejasme/staRgate/issues

4 getCompGS

Arguments

gs GatingSet to apply Biexponential Transformation to
path_biexp_params
file path for .csv file that specifies the Biexponential Transformation

Details

An example table is provided in the extdata/biexp_transf_parameters_x50.csv

Value

GatingSet with Biexponentially Transformed data

Examples

This example does not contain all the pre-processing steps required in
getting the GatingSet (gs) ready for Biexp transformation.

To see the steps that are required to creating the (gs),

please see the vignette for a full tutorial

* oH R

To make this a runnable example, read in the FCS file to create gs and
directly apply

File path to the FCS file
path_fcs <- system.file("extdata”,
"example_fcs.fcs",
package="staRgate",
mustWork=TRUE)
path_biexp_params <- system.file("extdata”,
"biexp_transf_parameters_x50.csv",
package="staRgate",
mustWork=TRUE)

Create a cytoset then convert to gs
cs <- flowWorkspace::load_cytoset_from_fcs(path_fcs)
gs <- flowWorkspace::GatingSet(cs)

gs must be a GatingSet object
gs <- getBiexpTransformGS(gs, path_biexp_params=path_biexp_params)

To check the transformation parameters applied
flowWorkspace: :gh_get_transformations(gs)

getCompGS Applies Compensation using specifications in csv file provided at
path_comp_mat

getCompGS

Description

The csv file at path_comp_mat should specify the channels to apply the compensation to.

format is a matrix where the col and row names correspond to the channel names

Usage

getCompGS(gs, path_comp_mat)

Arguments

gs GatingSet to apply Biexponential Transformation to

path_comp_mat file path for .csv file that specifies the Compensation Matrix

Details

An example matrix is provided in the extdata/comp_mat_example_fcs.csv

Value

GatingSet with compensated data

Examples

This example does not contain all the pre-processing steps required in
getting the GatingSet (gs) ready for compensation step

To see the steps that are required to creating the (gs),

please see the vignette for a full tutorial

o o R

H+

To make this a runnable example, read in the FCS file to create gs and
directly apply

File path to the FCS file

path_fcs <- system.file("extdata”,
"example_fcs.fcs”,
package="staRgate",
mustWork=TRUE)

path_biexp_params <- system.file("extdata”,
"biexp_transf_parameters_x50.csv",
package="staRgate",
mustWork=TRUE)

Create a cytoset then convert to gs
cs <- flowWorkspace::load_cytoset_from_fcs(path_fcs)
gs <- flowWorkspace::GatingSet(cs)

path_comp_mat <- system.file("extdata", "comp_mat_example_fcs.csv"”,
package="staRgate"”, mustWork=TRUE)

gs is a GatingSet object
gs <- getCompGS(gs, path_comp_mat=path_comp_mat)

The

6 getDensityGates

Checks the comp mat was successfully applied
flowWorkspace: :gh_get_compensations(gs)

getDensityDerivs Internal function: Estimate derivatives for density of marker for each
unique subset of subset_col

Description

Internal function for get_density_gates For each unique value in subset_col, estimate the
derivatives for marker (intensity values)

Usage

getDensityDerivs(dens)

Arguments

dens density object from the density

Value

list of dataframe with density estimation and corresponding 1st-4th derivatives, indicators of local
peaks, plateau_pre

each element corresponds to each unique value of subset_col

for each dataframe: rows correspond to each of the bins

getDensityGates Density gating of intensity values in marker for each unique subset of
subset_col

Description

For each unique value in subset_col, gate using density and estimated derivatives to identify cutoff
at shoulder (i.e., point of tapering off) relative to the peak for marker (intensity values). The strategy
of cutting at the shoulder mimics the strategy to gate relative to a unimodal background negative
subpopulation, which is capable of capturing dim subpopulations.

getDensityGates

Usage

getDensityGates(

intens_d
marker,

at,

subset_col,

bin_n =

512,

peak_detect_ratio = 10,
pos_peak_threshold = 1800,
neg_intensity_threshold = -1000

Arguments

intens_dat

marker

subset_col

bin_n

dataframe of pre-gated (compensated, biexp. transf, openCyto steps) intensity
values where cols=intensity value per marker, rows=each sample

string for the marker(s) to gate on the names need to match exactly the column
name in intens_dat

string for the column name to indicate the subsets to apply density gating on will
perform operation on subsets corresponding to each unique value in column

numeric to be passed to n parameter of density(n=bin_n) for number of equally
spaced points at which the density is to be estimated
Default is 512, which is the default of density(n=512)

peak_detect_ratio

numeric threshold for eliminating small peaks where a peak that is < than the
highest peak by peak_detect_ratio times will be ignored
Default=10

pos_peak_threshold

either:

* numeric for threshold to identify a positive peak for all or

* a dataframe if supplying multiple marker to gate. The dataframe needs to
be supplied with 2 columns named marker and pos_peak_threshold and
rows for the marker to gate

Default is 1800 (note this is on the biexponential scale) for all marker

neg_intensity_threshold

numeric for threshold to filter out any "very negatively" expressed cells in the
density estimation to avoid over-compression and difficulty in distinguishing
peaks and the gates

This is only applied as a filter for the density estimation, the cells <neg_intensity_threshold
are retained in the intensity matrix for other steps

Expects the neg_intensity_threshold is on the same scale as the transformed
data in intens_dat

Default is NULL: no filters applied and density estimation based on all cells in
corresponding subsets.

Suggested for biexp. transformed data is -1000 which corresponds to ~-3300 on
the original intensity scale)

8 getDensityMats

Value
tibble of gates/cutoffs for marker for each unique subset found in subset_col where

* rows correspond to unique values in subset_col

e , columns correspond tomarker

Examples

Create a fake dataset

set.seed(100)

intens_dat<-tibble::tibble(
CD3_pos=rep(c(@, 1), each=50),
CD4=rnorm(100, 100, 10),
CD8=rnorm(100, 100, 10)

)

Run density gating, leaving other params at suggested defaults

number of bins suggested is 40 but default is at “bin_n=512",

which is the default for the R base density() function
getDensityGates(intens_dat, marker="CD4", subset_col="CD3_pos"”, bin_n=40)

getDensityMats Internal function: Matrix of calculations for density gating of intensity
values in marker for each unique subset of subset_col

Description

Internal function for getDensityGates For each unique value in subset_col, there is a matrix for
storing calculations for density gating contains: first to fourth derivatives of density, indicators for
local peaks, "real peaks", plateau_pre and cutoff

Usage

getDensityMats(
intens_dat,
marker,
subset_col,
bin_n = 512,
peak_detect_ratio = 10,
pos_peak_threshold = 1800

)
Arguments
intens_dat dataframe of pre-gated (compensated, biexp. transf, gated CD4/CDS8) intensity
values where cols = intensity value per marker, rows = each sample
marker string for the marker to gate on the name needs to match exactly the column

name in intens_dat

getDensityPeakCutoff 9

subset_col string for the column name to indicate the subsets to apply density gating on will
perform operation on subsets corresponding to each unique value in column

bin_n numeric to be passed to n parameter of density(n=bin_n) for number of
equally spaced points at which the density is to be estimated default is 512,
which is the default of density(n =512)

peak_detect_ratio
numeric threshold for eliminating small peaks where a peak that is < than the
highest peak by peak_detect_ratio times will be ignored default = 10

pos_peak_threshold
numeric for threshold to identify a positive peak * default is 1800, which is on
the biexponential scale

Value

tibble of matrices for marker containing calculations for density gating for each unique subset found
in subset_col

rows correspond to unique values in subset_col,

cols correspond to the information for density gating

getDensityPeakCutoff Internal function: Determine the "real peaks" and cutoff based on the
density estimation and its derivs

Description

Internal function for getDensityGates

Usage

getDensityPeakCutoff(
dens_binned_dat,

marker,
subset_col,
bin_n = 512,

peak_detect_ratio = 10,
pos_peak_threshold = 1800,
dens_flip = FALSE

Arguments
dens_binned_dat
list of dataframe output from the getDensityDerivs

marker string for the marker to gate on the name needs to match exactly the column
name in dens_binned_dat

subset_col string for the column name to indicate the subsets to apply density gating on will
perform operation on subsets corresponding to each unique value in column

10 getGatedDat

bin_n numeric to be passed to n parameter of density(n=bin_n) for number of
equally spaced points at which the density is to be estimated default is 512,
which is the default of density(n=512)

peak_detect_ratio
numeric threshold for eliminating small peaks where a peak that is < than the
highest peak by peak_detect_ratio times will be ignored default = 10

pos_peak_threshold
numeric for threshold to identify a positive peak default is 1800, which is on the
biexponential scale

dens_flip logical for whether the gating should be applied "backwards" where the peak is
a positive peak and want to gate to the left of peak instead of right

Value

list of dataframe dens_binned_dat with additional columns added for peak(s) identified and the
cutoff each element corresponds to each unique value of subset_col for each dataframe: rows
correspond to each of the bins

getGatedDat Attach indicator columns to intens_dat based on gates provided in
cutoffs

Description

Adds an indicator column (0/1) to intens_dat for each marker in cutoffs as indicated by the
columns in cutoffs

Usage

getGatedDat(intens_dat, cutoffs, subset_col)

Arguments
intens_dat dataframe of pre-gated (compensated, biexp. transf, openCyto steps) intensity
values where rows=each cell and cols are the intensity values for each marker
cutoffs tibble of gates/cutoffs for all markers to gate
Expects cutoffs to match format of output from getDensityGates() with col-
umn corresponding to a marker, and rows to the subsets defined in the subset_col
subset_col string for the column name to indicate the subsets to apply density gating on will
perform operation on subsets corresponding to each unique value in column
Details

The naming convention for the tagged on indicator columns will be tolower (<marker_name>_pos)
where 0 indicates negativity or intensity < gate provided 1 indicates positivity or intensity > gate
provided

getPerc 11

Value

intens_dat with additional columns attached for each marker in cutoffs

Examples

Create a fake dataset

set.seed(100)

intens_dat <- tibble::tibble(
CD3_pos=rep(c(@, 1), each=50),
CD4=rnorm(100, 100, 10),
CD8=rnorm(100, 100, 10)

Run getDensityGates to obtain the gates
gates <- getDensityGates(intens_dat, marker="CD4", subset_col="CD3_pos", bin_n=40)

Tag on the @/1 on intens_dat
intens_dat_2 <- getGatedDat(intens_dat, cutoffs=gates, subset_col="CD3_pos")

intens_dat_2 now has the cd4_pos tagged on
head(intens_dat_2)

getPerc Calculate the percentage of positive cells for specific subpopulations

Description

Expects data input same as the output from get_gated_dat with indicator columns of specific
naming convention (see below).

Usage

getPerc(
intens_dat,
num_marker,
denom_marker,
expand_num = FALSE,
expand_denom = FALSE,
keep_indicators = TRUE

)
Arguments
intens_dat dataframe of gated data with indicator columns per marker of interest (specify
in num_marker and denom_marker) with naming convention marker_pos per
marker with values of 0 to indicate negative-, 1 to indicate positive-expressing
num_marker string for the marker(s) to specify the numerator for subpopulations of interest

See expand_num argument and examples for how to specify

12 getPerc

denom_marker string for the marker(s) to specify the denominator for subpopulations of interest
See expand_denom argument and examples for how to specify.

expand_num logical, only accepts TRUE or FALSE with default of FALSE
if expand_num=TRUE, currently only considers up to pairs of markers specified
in num_marker in the numerator of subpopulation calculations (e.g., CD4+ &
CD8- of CD3+)
if expand_num=FALSE, only considers each marker specified in num_marker in-
dividually in the numerator of subpopulation calculations (e.g., CD4+ of CD3+)

expand_denom logical, only accepts TRUE or FALSE with default of FALSE
if expand_denom=TRUE, currently considers up to 1 marker from the num_marker
and the unique combinations of denom_marker to generate list of subpopulations
e.g.,if denom_marker=c("CD8"), num_marker=c("LAG3", "KI67"), and expand_denom=TRUE,
the subpopulations will include:
1. LAG3+ of CD8+, LAG3- of CD8+, LAG3+ of CD8-, LAG3- of CD8-,
2. KI67+ of CD8+, KI67- of CD8+, KI67+ of CD8-, KI67- of CDS-,
3. KI67+ of (LAG3+ & CD8+), KI67- of (LAG3+ & CD8+), KI67+ of (LAG3+
& CD8-), KI67- of (LAG3+ & CD8-)...etc.,
4. LAG3+ of (KI67+ & CD8+), LAG3- of (KI67+ & CD8+), LAG3+ of (KI67+
& CD8-), LAG3- of (KI67+ & CD8-)...etc.,
if expand_denom=FALSE, only generates the list of subpopulations based on
unique combinations of the denom_marker (e.g., denom_marker=c("CD4") and
expand_denom=FALSE only considers subpopulations with denominator CD4+
and CD4- whereas denom_marker=c("”"CD4", "CD8" and expand_denom=FALSE
will consider subpopulations with denominators (CD4- & CDS8-), (CD4+ &
CD8-), (CD4- & CD8+) and (CD4+ & CD8+))

keep_indicators
logical, only accepts TRUE or FALSE with default of TRUE
if keep_indicators=TRUE, will return indicator columns of 0/1 to specify which
markers are considered in the numerator and denominators of the subpopula-
tions.
Naming convention for the numerator cols are <marker>_P0S and for denomi-
nator cols are <marker>_POS_D.
For both sets of columns, @ indicates considered the negative cells, 1 indicates
considered the positive cells and NA_real_ indicates not in consideration for the
subpopulation.
This is useful for matching to percentage data with potentially different naming
conventions to avoid not having exact string matches for the same subpopulation
Take note that the order also matters when matching strings: "CD4+ & CD8- of
CD3+" is different from "CD8- & CD4+ of CD3+"

Details
The subpopulations are defined as (num marker(s)) out of (denom marker(s)) where num denotes
numerator, and denom denotes denominator (these shorthands are used in the function arguments)
Value

tibble containing the percentage of cells where

getPerc

* rows correspond to each subpopulation specified in the subpopulation,
¢ n_num indicates the number of cells that satisifies the numerator conditions,
¢ n_denom indicates the number of cells that satisifies the denominator conditions,

* perc=n_num divided by n_denom unless n_denom=0, then perc=NA_real_

Examples

library(dplyr)

Create a fake dataset

set.seed(100)

intens_dat <- tibble::tibble(
CD3_pos=rep(c(@, 1), each=50),
CD4=rnorm(100, 100, 10),
CD8=rnorm(100, 100, 10)

Run getDensityGates to obtain the gates
gates <- getDensityGates(intens_dat, marker="CD4", subset_col="CD3_pos", bin_n=40)

Tag on the @/1 on intens_dat
intens_dat_2 <- getGatedDat(intens_dat, cutoffs=gates, subset_col="CD3_pos")

Get percentage for CD4 based on gating
getPerc(intens_dat_2, num_marker=c("CD4"), denom_marker="CD3")

13

Index

* internal
getDensityDerivs, 6
getDensityMats, 8
getDensityPeakCutoff, 9
staRgate-package, 2

density, 6

getBiexpTransformGs, 3
getCompGSs, 4
getDensityDerivs, 6
getDensityGates, 6
getDensityGates(), 10
getDensityMats, 8
getDensityPeakCutoff, 9
getGatedDat, 10
getPerc, 11

staRgate (staRgate-package), 2
staRgate-package, 2

14

	staRgate-package
	getBiexpTransformGS
	getCompGS
	getDensityDerivs
	getDensityGates
	getDensityMats
	getDensityPeakCutoff
	getGatedDat
	getPerc
	Index

