
Package ‘smoothclust’
January 24, 2026

Version 1.7.0

Title smoothclust

Description Method for identification of spatial domains and spatially-aware
clustering in spatial transcriptomics data. The method generates spatial
domains with smooth boundaries by smoothing gene expression profiles across
neighboring spatial locations, followed by unsupervised clustering. Spatial
domains consisting of consistent mixtures of cell types may then be further
investigated by applying cell type compositional analyses or differential
analyses.

URL https://github.com/lmweber/smoothclust

BugReports https://github.com/lmweber/smoothclust/issues

License MIT + file LICENSE

Encoding UTF-8

biocViews Spatial, SingleCell, Transcriptomics, GeneExpression,
Clustering

Depends R (>= 4.4.0)

Imports SpatialExperiment, SummarizedExperiment, BiocNeighbors,
Matrix, methods, utils

VignetteBuilder knitr

Suggests BiocStyle, knitr, STexampleData, scuttle, scran, scater,
ggspavis, testthat

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/smoothclust

git_branch devel

git_last_commit 1246c80

git_last_commit_date 2025-10-31

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Lukas M. Weber [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3282-1730>)

Maintainer Lukas M. Weber <lmweb012@gmail.com>

1

https://github.com/lmweber/smoothclust
https://github.com/lmweber/smoothclust/issues
https://orcid.org/0000-0002-3282-1730

2 smoothclust

Contents
smoothclust . 2
smoothness_metric . 4

Index 6

smoothclust smoothclust

Description

Method for identification of spatial domains and spatially-aware clustering.

Usage

smoothclust(
input,
assay_name = "counts",
spatial_coords = NULL,
method = c("uniform", "kernel", "knn"),
bandwidth = 0.05,
k = 18,
truncate = 0.05

)

Arguments

input Input data, which can be provided as either a SpatialExperiment object or a
numeric matrix. If this is a SpatialExperiment object, it is assumed to contain
either raw expression counts or logcounts in the assay slots and spatial coordi-
nates in the spatialCoords slot. If this is a numeric matrix, it is assumed to
contain either raw expression counts or logcounts, and spatial coordinates need
to be provided separately with the spatial_coords argument.

assay_name For a SpatialExperiment input object, this argument specifies the name of the
assay containing the expression values to be smoothed. In most cases, this will
be counts, which contains raw expression counts. Alternatively, logcounts
may also be used. Note that if logcounts are used, the smoothed values repre-
sent geometric averages. This argument is only used if the input is a SpatialExperiment
object. Default = counts.

spatial_coords Numeric matrix of spatial coordinates, assumed to contain x coordinates in first
column and y coordinates in second column. This argument is only used if the
input is a numeric matrix.

method Method used for smoothing. Options are uniform, kernel, and knn. The
uniform method calculates unweighted averages across spatial locations within
a circular window with radius bandwidth at each spatial location, which smooths
out spatial variability as well as sparsity due to sampling variability. The kernel

smoothclust 3

method calculates a weighted average using a truncated exponential kernel ap-
plied to Euclidean distances with a length scale parameter equal to bandwidth,
which provides a more sophisticated approach to smoothing out spatial vari-
ability but may be affected by sparsity due to sampling variability (especially
sparsity at the index point), and is computationally slower. The knn method cal-
culates an unweighted average across the index point and its k nearest neighbors,
and is the fastest method. Default = uniform.

bandwidth Bandwidth parameter for smoothing, expressed as proportion of width or height
(whichever is greater) of tissue area. Only used for method = "uniform" or
method = "kernel". For method = "uniform", the bandwidth represents the
radius of a circle, and unweighted averages are calculated across neighboring
points within this circle. For method = "kernel", the averaging is weighted by
distances scaled using a truncated exponential kernel applied to Euclidean dis-
tances. For example, a bandwidth of 0.05 will smooth values across neighbors
weighted by distances scaled using a truncated exponential kernel with length
scale equal to 5 area. Weights for method = "kernel" are truncated at small
values for computational efficiency. Default = 0.05.

k Number of nearest neighbors parameter for method = "knn". Only used for
method == "knn". Unweighted averages are calculated across the index point
and its k nearest neighbors. Default = 18 (based on two layers in honeycomb
pattern for 10x Genomics Visium platform).

truncate Truncation threshold parameter if method = "kernel". Kernel weights below
this value are set to zero for computational efficiency. Only used for method =
"kernel". Default = 0.05.

Details

Method for identification of spatial domains and spatially-aware clustering in spatial transcriptomics
data.

Method for identification of spatial domains and spatially-aware clustering in spatial transcriptomics
data. The method generates spatial domains with smooth boundaries by smoothing gene expression
profiles across neighboring spatial locations, followed by unsupervised clustering. Spatial domains
consisting of consistent mixtures of cell types may then be further investigated by applying cell type
compositional analyses or differential analyses.

Value

Returns spatially smoothed expression values, which can then be used as the input for further down-
stream analyses. Results are returned either as a SpatialExperiment object containing a new
assay named <assay_name>_smooth (e.g. counts_smooth or logcounts_smooth), or as a nu-
meric matrix, depending on the input type.

Examples

library(STexampleData)

load data
spe <- Visium_humanDLPFC()

4 smoothness_metric

keep spots over tissue
spe <- spe[, colData(spe)$in_tissue == 1]

run smoothclust using default parameters
spe <- smoothclust(spe)

see vignette for extended example

smoothness_metric Function for smoothness metric

Description

Function for clustering smoothness evaluation metric

Usage

smoothness_metric(spatial_coords, labels, k = 6)

Arguments

spatial_coords Numeric matrix containing spatial coordinates of points, formatted as nrow =
number of points, ncol = 2 (assuming x and y dimensions). For example, ‘spa-
tial_coords = spatialCoords(spe)‘ if using a SpatialExperiment object.

labels Numeric vector of cluster labels for each point. For example, ‘labels <- as.numeric(colData(spe)$label)‘
if using a SpatialExperiment object.

k Number of k nearest neighbors to use in calculation. Default = 6 (e.g. for
hexagonal arrangement in 10x Genomics Visium platform).

Details

Function to calculate clustering smoothness evaluation metric, defined as the average number of
nearest neighbors per point that are from a different cluster. This metric can be used to quantify and
compare the relative smoothness of the boundaries of clusters or spatial domains.

Value

Returns a list containing (i) a vector of values at each point (i.e. the number of nearest neighbors
that are from a different cluster at each point) and (ii) the average value across all points.

Examples

library(STexampleData)
library(scran)
library(scater)

load data

smoothness_metric 5

spe <- Visium_humanDLPFC()
keep spots over tissue
spe <- spe[, colData(spe)$in_tissue == 1]

run smoothclust using default parameters
spe <- smoothclust(spe)

calculate logcounts
spe <- logNormCounts(spe, assay.type = "counts_smooth")

preprocessing steps for clustering
remove mitochondrial genes
is_mito <- grepl("(^mt-)", rowData(spe)$gene_name, ignore.case = TRUE)
spe <- spe[!is_mito,]
select top highly variable genes (HVGs)
dec <- modelGeneVar(spe)
top_hvgs <- getTopHVGs(dec, prop = 0.1)
spe <- spe[top_hvgs,]

dimensionality reduction
set.seed(123)
spe <- runPCA(spe)

run k-means clustering
set.seed(123)
k <- 5
clus <- kmeans(reducedDim(spe, "PCA"), centers = k)$cluster
colLabels(spe) <- factor(clus)

calculate smoothness metric
res <- smoothness_metric(spatialCoords(spe), as.numeric(colData(spe)$label))

results
str(res)
head(res$n_discordant)
res$mean_discordant

Index

smoothclust, 2
smoothness_metric, 4

6

	smoothclust
	smoothness_metric
	Index

