Package ‘simona’

January 24, 2026
Type Package

Title Semantic Similarity on Bio-Ontologies
Version 1.9.0

Date 2025-06-11

Depends R (>=4.1.0)

Imports methods, Repp, matrixStats, GetoptLong, grid, GlobalOptions,
igraph, Polychrome, S4Vectors, xml2 (>= 1.3.3), circlize,
ComplexHeatmap, grDevices, stats, utils, shiny, fastmatch

Suggests knitr, testthat, BiocManager, GO.db, org.Hs.eg.db, proxyC,
AnnotationDbi, Matrix, DiagrammeR, ragg, png,
InteractiveComplexHeatmap, UniProtKeywords, simplifyEnrichment,
AnnotationHub, jsonlite

LinkingTo Rcpp
VignetteBuilder knitr

Description This package implements infrastructures for ontology analysis by offering
efficient data structures, fast ontology traversal methods, and elegant visualizations.
It provides a robust toolbox supporting over 70 methods for semantic similarity analysis.

biocViews Software, Annotation, GO, Biomedicallnformatics
URL https://github.com/jokergoo/simona

BugReports https://github.com/jokergoo/simona/issues
SystemRequirements Perl, Java

License MIT + file LICENSE

RoxygenNote 7.3.2

Encoding UTF-8

Roxygen list(markdown = TRUE)

git_url https://git.bioconductor.org/packages/simona
git_branch devel

git_last_commit 799cc83

git_last_commit_date 2025-10-29

https://github.com/jokergoo/simona
https://github.com/jokergoo/simona/issues

2 Contents

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Zuguang Gu [aut, cre] (ORCID: <https://orcid.org/0000-0002-7395-8709>)
Maintainer Zuguang Gu <z.gu@dkfz.de>

Contents
add_annotation L e e e e 3
all_term_IC_methods e 3
create_ontology_DAG e 4
create_ontology_DAG_from_GO_db. 6
create_ontology_DAG_from_igraph 7
dag_all_terms e e 8
dag_as_igraph e e e 9
dag_circular_viz L e e e 9
dag_depth e e 12
dag_distinct_ancestors i e e e e e e e e e e e 13
dag_enrich_on_items L e 14
dag_enrich_on_offsprings 15
dag_enrich_on_offsprings_by_permutation 17
dag _filter e 18
dag_has_terms L. e e 19
dag_longest_dist_to_offspring 20
dag_parents e e e 21
dag_random_tree L. e e e e 22
dag_reorder e 23
dag rooto e 24
dag_shiny e 25
dag_treelize 26
GrOUP_SIM .« . . . o v ot e e e e e e e e e 27
IMPOrt_obo e e e 33
mcols,ontology DAG-method o oL oo 36
method_param L. e e 37
MICA_term e e 37
N_annotatioNS v v v e e e e e e e e e e e 40
n_offspring e 41
ontology_ DAG-class e 42
ontology_Kw . . . L. e 43
partition_by_level 45
Print.print_SOUICE o v ittt i e e e e e e 46
random_terms e e e e e e e e e e 47
shortest_distances_via_ NCA 48
show,ontology_ DAG-method 49
SIMONA_OPE . . o . o v v i e e e e e 49
term_annotationsS e e e e e e e 51
term_IC e e 52

EIM_SIM . . . o o o o o e e e e e e 56

https://orcid.org/0000-0002-7395-8709

add_annotation 3

[L,ontology_DAG,ANY,ANY,missing-method 66
Index 68
add_annotation Add annotations to the DAG object
Description

Add annotations to the DAG object

Usage

add_annotation(dag, annotation)

Arguments
dag An ontology_DAG object.
annotation A list of character vectors which contain items annotated to the terms. Names
of the list should be the term names. In the DAG, items annotated to a term will
also be annotated to its parents. Such merging is applied automatically in the
package.
Value

An ontology_DAG object.

all_term_IC_methods Supported methods

Description

Supported methods

Usage

all_term_IC_methods(require_anno = NULL)
all_term_sim_methods(require_anno = NULL)

all_group_sim_methods(require_anno = NULL)

Arguments

require_anno Ifitis set to TRUE, methods that require external annotations are only returned.
If it is set to FALSE, methods that do not require annotations are returned. A
value of NULL returns both.

4 create_ontology_DAG

Details

e all_term_IC_methods(): A vector of all supported IC methods.
e all_term_sim_methods(): A vector of all supported term similarity methods.

e all_group_sim_methods(): A vector of all supported group similarity methods.

Value

A character vector of all supported methods.

Examples

all_term_IC_methods()
all_term_sim_methods()
all_group_sim_methods()

create_ontology_DAG Create the ontology_DAG object

Description

Create the ontology_DAG object

Usage

create_ontology_DAG(
parents,
children,
relations = NULL,
relations_DAG = NULL,
source = "Ontology”,
annotation = NULL,
remove_cyclic_paths = FALSE,
remove_rings = FALSE,
alternative_terms = list(),
verbose = simona_opt$verbose

)
Arguments
parents A character vector of parent terms. You can also construct the ontology_DAG
object by a list of parent-child links. See Examples.
children A character vector of child terms.
relations A character vector of parent-child relations, e.g. "is_a", "part_of", or self-

defined semantic relations. If it is set, it should have the same length as parents
and children.

create_ontology_DAG

relations_DAG

source

annotation

If the relation types have hierarchical relations, it can also be constructed by
create_ontology_DAG() first. See Examples. When the DAG for relation
types is provided, the ancestor/offspring relationship of relation types will be
taken into consideration automatically.

Source of the ontology. It is only used as a label of the object.

A list of character vectors which contain items annotated to the terms. Names
of the list should be the term names. In the DAG, items annotated to a term will
also be annotated to its parents. Such merging is applied automatically in the
package.

remove_cyclic_paths

remove_rings

Whether to remove cyclic paths If a cyclic path is represented as [a, b, ..., z,
the last link (i.e. z->a) is simply removed. If the value is set to FALSE and if
there are cyclic paths, there will be an error that lists all cyclic paths.

There might be rings that are isolated to the main DAG where there are no roots
on the rings, thus they cannot be attached to the main DAG. If the value of
remove_rings is set to TRUE, such rings are removed.

alternative_terms

verbose
Value

An ontology_DAG
Examples

parents = c("a",

children = c("b",

A named list or vector that contains mappings from alternative term IDs to terms
used in the DAG. In an ontology, there might be old terms IDs marked as "re-
placed_by", "consider" or "alt_id" in ".obo" file. You can provide mappings
from old term iDs to current term IDs with this argument. If it is a one-to-one
mapping, the mapping can be a named vector where alternative term IDs are
names and DAG term IDs are values. It it is a one-to-many mapping, the vari-
able should be a named list where each member vector will first be matched to
the DAG terms. If the mapping is still one-to-many, the first one is selected.

Whether to print messages.

object.

wan mpn mpn wonm
a”, "b", "b", "c", "d")
b . mgn wn wen
c”, "c”, "d", "e", "f")

dag = create_ontology_DAG(parents, children)

with annotations
annotation = list(

"a" = c("t1",
"b" = c("t3",
"eh = "t5",
"d" o= "7,
"e" = c("t4",
"= Tt8”

)

”t2”, ”t3”),
”t4”),

”t5”, ”t6“, “t7“),

dag = create_ontology_DAG(parents, children, annotation = annotation)

with relations

6 create_ontology_DAG_from_GO_db

dag = create_ontology_DAG(parents, children,
relations = c("is_a", "part_of"”, "is_a", "part_of",

"z n

is_a", "part_of"))

with relations_DAG
relations_DAG = create_ontology_DAG(c("r2", "r2"), c("r3", "r4"))
dag = create_ontology_DAG(parents, children,
relations = c("r1", "r2", "r1”, "r3", "r1", "r4"),
relations_DAG = relations_DAG)

with a list of parent-child relations
dag = create_ontology_DAG(c("a-b", "a-c", "b-c", "b-d", "c-e", "e-f"))

create_ontology_DAG_from_GO_db
Create the ontology_DAG object from the GO.db package

Description

Create the ontology_DAG object from the GO.db package

Mappings between alternative GO terms to official GO terms

Usage

create_ontology_DAG_from_GO_db(
namespace = "BP",
relations = "part of",
org_db = NULL,
evidence_code = NULL,
retrieve_alternative = FALSE,
verbose = simona_opt$verbose

alternative_GO_terms(
tag = c("replaced_by"”, "alt_id"”, "consider"),
version = NULL,
verbose = TRUE

)
Arguments
namespace One of "BP", "CC" and "MF".
relations Types of the GO term relations. In the GO.db package, the GO term rela-

tions can be "is_a", "part_of", "regulates", "negatively regulates", "positively
regulates”. Note since "regulates” is a parent relation of "negatively regulates",
"positively regulates", if "regulates" is selected, "negatively regulates" and "pos-
itively regulates” are also selected. Note "is_a" is always included.

create_ontology_DAG_from_igraph 7

org_db The name of the organism package or the corresponding database object, e.g.
"org.Hs.eg.db" or directly the org.Hs.eg.db: :org.Hs.eg.db object for hu-
man, then the gene annotation to GO terms will be added to the object. For other
non-model organisms, consider to use the AnnotationHub package to find one.

evidence_code A vector of evidence codes for gene annotation to GO terms. See https://
geneontology.org/docs/guide-go-evidence-codes/.

retrieve_alternative
Whether to retrieve alternative/obsolete GO terms from geneontology.org?
verbose Whether to print messages.

tag In the go-basic. obo file, there are three tags which define alternative GO terms:

replaced_by, alt_id and consider. See https://owlcollab.github.io/oboformat/doc/GO.format.obo-

1_4.html#S.2.2.1

version Version of the go-basic.obo file. By default it is the version for building
GO.db package. The value is a string in the format of "2024-01-17".

Value

An ontology_DAG object.

A list of named vectors where names are alternative GO IDs and value vectors are current GO IDs
in use.

Examples

dag = create_ontology_DAG_from_GO_db()
dag

create_ontology_DAG_from_igraph
Create the ontology_DAG object from the igraph object

Description

Create the ontology_DAG object from the igraph object

Usage

create_ontology_DAG_from_igraph(
g,
relations = NULL,
verbose = simona_opt$verbose

)
Arguments
g An igraph: :igraph object.
relations A vector of relation types. The length of the vector should be the same as the

number of edges in g.
verbose Whether to print messages.

https://geneontology.org/docs/guide-go-evidence-codes/
https://geneontology.org/docs/guide-go-evidence-codes/

8 dag_all_terms

Value

An ontology_DAG object.

dag_all_terms Names of all terms

Description

Names of all terms

Usage
dag_all_terms(dag)
dag_n_terms(dag)
dag_n_relations(dag)

dag_n_leaves(dag)

Arguments

dag An ontology_DAG object.

Value

dag_all_terms() returns a vector of term names. dag_n_terms() returns a single iteger.

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
dag_all_terms(dag)

dag_n_terms(dag)

dag_as_igraph 9

dag_as_igraph Convert to an igraph object

Description

Convert to an igraph object

Usage

dag_as_igraph(dag)

Arguments

dag An ontology_DAG object.

Details

If relations is already set in create_ontology_DAG(), relations are also set as an edge attribute
in the igraph: : igraph object.

Value

An igraph: :igraph object.

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c¢", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
dag_as_igraph(dag)

dag_circular_viz Visualize the DAG

Description

Visualize the DAG

10 dag_circular_viz

Usage
dag_circular_viz(
dag,
highlight = NULL,
start = 0,
end = 360,

partition_by_level = 1,
partition_by_size = NULL,
node_col = NULL,
node_transparency
node_size = NULL,
edge_col = NULL,
edge_transparency = default_edge_transparency(dag),
legend_labels_from = NULL,

legend_labels_max_width = 50,

other_legends = list(),

use_raster = dag_n_terms(dag) > 10000,

newpage = TRUE,

verbose = simona_opt$verbose

)

0.4,

dag_as_DOT(
dag,
node_param = default_node_param,
edge_param = default_edge_param,
rankdir = c("TB”, "LR", "BT", "RL")
)

dag_graphviz(
dag,
node_param = default_node_param,
edge_param = default_edge_param,
rankdir = "TB",

Arguments
dag An ontology_Dag object.
highlight A vector of terms to be highlighted on the DAG.
start Start of the circle, measured in degree.
end End of the circle, measured in degree.

partition_by_level
If node_col is not set, users can cut the DAG into clusters with different node
colors. The partitioning is applied by partition_by_level().
partition_by_size
Similar as partition_by_level, but the partitioning is applied by partition_by_size().

dag_circular_viz 11

node_col Colors of nodes. If the value is a vector, the order should correspond to terms in
dag_all_terms().

node_transparency
Transparency of nodes. The same format as node_col.

node_size Size of nodes. The same format as node_col.

edge_col A named vector where names correspond to relation types.
edge_transparency
A named vector where names correspond to relation types.
legend_labels_from
If partitioning is applied on the DAG, a legend is generated showing different
top terms. By default, the legend labels are the term IDs. If there are additionally
column stored in the meta data frame of the DAG object, the column name can
be set here to replace the term IDs as legend labels.
legend_labels_max_width
Maximal width of legend labels measured by the number of characters per line.
Labels are wrapped into multiple lines if the widths exceed it.

other_legends A list of legends generated by ComplexHeatmap: :Legend().

use_raster Whether to first write the circular image into a temporary png file, then add to
the plot as a raster object?

newpage Whether call grid: :grid.newpage() to create a new plot?

verbose Whether to print messages.

node_param A list of parameters. Each parameter has the same format. The value can be a

single scalar, a full length vector with the same order as in dag_all_terms(), or
a named vector that contains a subset of terms that need to be customized. The
full set of parameters can be found at https://graphviz.org/docs/nodes/.

edge_param A list of parameters. Each parameter has the same format. The value can be
a single scalar, or a named vector that contains a subset of terms that need to
be customized. The full set of parameters can be found at https://graphviz.
org/docs/edges/. If the parameter is set to a named vector, it can be named by
relation types c("is_a" = ...), or directly relations c("a ->b" = ...). Please
see the vignette for details.

rankdir The direction of the layout. Only four values are allowed: "TB"”, "LR", "BT" and
n RL n .

Pass to DiagrammeR: :grViz().

Details

dag_circular_viz() uses a circular layout for visualizing large DAGs. dag_graphviz() uses a
hierarchical layout for visualizing small DAGs.

dag_as_DOT() generates the DOT code of the DAG.
dag_graphviz() visualizes the DAG with the DiagrammeR package.

Value

dag_as_DOT() returns a vector of DOT code.

https://graphviz.org/docs/nodes/
https://graphviz.org/docs/edges/
https://graphviz.org/docs/edges/

12

See Also

http://magjac.com/graphviz-visual-editor/ is nice place to try the DOT code.

Examples

dag = create_ontology_DAG_from_GO_db()
dag_circular_viz(dag)

1

if(interactive()) {

dag = create_ontology_DAG_from_GO_db()
dag_graphviz(dagl[, "G0:0010228"])
dag_graphviz(dag[, "G0:0010228"],

edge_param = list(color = c("is_a" = "purple”, "part_of"” = "darkgreen"),

style = c("is_a"
width = 800, height = 800)

the DOT code for graphviz
dag_as_DOT(dag[, "G0:0010228"1)
3

"solid”, "part_of” = "dashed")),

dag_depth

dag_depth Depth and height in the DAG

Description

Depth and height in the DAG

Usage
dag_depth(dag, terms = NULL, use_cache = TRUE)
dag_height(dag, terms = NULL, use_cache = TRUE)

dag_shortest_dist_from_root(dag, terms = NULL, use_cache

dag_shortest_dist_to_leaves(dag, terms = NULL, use_cache

Arguments

dag An ontology_DAG object.

TRUE)

TRUE)

terms A vector of term names. If it is set, the returned vector will be subsetted to the

terms that have been set here.

use_cache Internally used.

http://magjac.com/graphviz-visual-editor/

dag_distinct_ancestors 13

Details

The depth of a term in the DAG is defined as the maximal distance from the root. The height of a
term in the DAG is the maximal finite distance to all leaf terms.

dag_shortest_dist_from_root() and dag_shortest_dist_to_leaves() calculate the minimal
distance from the root or to the leaves. The word "from" and "to" emphasize the distancer is directi-
noal.

Value

An integer vector with length the same as the number of total terms in the DAG.

Examples

non n_n

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
dag_depth(dag)

dag_height(dag)
dag_shortest_dist_from_root(dag)
dag_shortest_dist_to_leaves(dag)

dag_distinct_ancestors
Distinct ancestors of a list of terms

Description

For a given list of terms, it returns a subset of terms which have no ancestor relations to each other.

Usage

dag_distinct_ancestors(
dag,
terms,
in_labels = TRUE,
verbose = simona_opt$verbose

)
Arguments
dag An ontology_DAG object.
terms A vector of term names.
in_labels Whether the terms are represented in their names or as integer indices?
verbose Whether to print messages.

Consider a subgraph that contains terms and their offspring terms, induced from
the complete DAG. the returned subset of terms are those with zero in-degree,
or have no finite directional distance from others in the subgraph.

14 dag_enrich_on_items

Value

An integer vector or a character vector depending on the value of in_labels.

Examples

non n_n

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")

dag = create_ontology_DAG(parents, children)
dag_distinct_ancestors(dag, c("c", "d", "e", "f"))

dag_enrich_on_items Enrichment analysis on the number of annotated items

Description

The analysis task is to evaluate which terms the given items are enriched to.

Usage

dag_enrich_on_items(dag, items, min_hits = 5, min_items = 10)

dag_enrich_on_genes(dag, genes, min_hits = 5, min_genes = 10)

Arguments
dag An ontology_DAG object.
items A vector of item names.
min_hits Minimal number of items in the term set.
min_items Minimal size of the term set.
genes A vector of gene IDs. The gene ID type can be found by directly printing the
ontology_DAG object.
min_genes Minimal number of genes.
Details

The function tests whether the list of items are enriched in terms on the DAG. The test is based on
the hypergeometric distribution. In the following 2x2 contigency table, S is the set of items, for a
term t in the DAG, T is the set of items annotated to t (by automatically merging from its offspring
terms), the aim is to test whether S is over-represented in T.

The universal set all correspond to the full set of items annotated to the DAG.

dag_enrich_on_offsprings 15

dag_enrich_on_genes() is the same as dag_enrich_on_items() which only changes the argu-
ment item to gene.

Value
A data frame with the following columns:

* term: Term names.
* n_hits: Number of items in items intersecting to t’s annotated items.

* n_anno: Number of annotated items of t. Specifically for dag_enrich_on_genes(), this
column is renamed to n_gs.

* n_items: Number of items in items intersecting to all annotated items in the DAG. Specifi-
cally for dag_enrich_on_genes(), this column is renamed to n_genes.

e n_all: Number of all annotated items in the DAG.

* log2_fold_enrichment: Defined as log2(observation/expected).
e z_score: Defined as (observed-expected)/sd.

* p_value: P-values from hypergeometric test.

* p_adjust: Adjusted p-values from the BH method.

The number of rows in the data frame is the same as the number of terms in the DAG.

Examples

Not run:

dag = create_ontology_DAG_from_GO_db(org_db = "org.Hs.eg.db")
items = random_items(dag, 1000)

df = dag_enrich_on_items(dag, items)

End(Not run)
1

dag_enrich_on_offsprings
Enrichment analysis on offspring terms

Description

The analysis task is to evaluate how significant a term includes terms.

Usage

dag_enrich_on_offsprings(dag, terms, min_hits = 3, min_offspring = 10)

16 dag_enrich_on_offsprings

Arguments
dag An ontology_DAG object.
terms A vector of term names.
min_hits Minimal number of terms in an offspring set.

min_offspring Minimal size of the offspring set.

Details

Given a list of terms in terms, the function tests whether they are enriched in a term’s offspring
terms. The test is based on the hypergeometric distribution. In the following 2x2 contigency table,
S is the set of terms, for a term t in the DAG, T is the set of its offspring plus the t itself, the aim
is to test whether S is over-represented in T.

If there is a significant p-value, we can say the term t preferably includes terms in term.

Fommm to———— B it +-———= +
| | in' S | not in S | all |
Fomm e Fo———— R T R +
| in T | x11 | x12 | x10 |
| not in T | x21 | x22 | x20 |
Fmmm R e - +
| all | x01 | X02 | x|
B ettt Fo————— R et T R +

Value

A data frame with the following columns:

e term: Term names.

* n_hits: Number of terms in terms intersecting to t’s offspring terms.

* n_offspring: Number of offspring terms of t (including t itself).

* n_terms: Number of terms in term intersecting to all terms in the DAG.
e n_all: Number of all terms in the DAG.

* log2_fold_enrichment: Defined as log2(observation/expected).

* z_score: Defined as (observed-expected)/sd.

* p_value: P-values from hypergeometric test.

* p_adjust: Adjusted p-values from the BH method.

The number of rows in the data frame is the same as the number of terms in the DAG.

Examples

Not run:

dag = create_ontology_DAG_from_GO_db()
terms = random_terms(dag, 100)

df = dag_enrich_on_offsprings(dag, terms)

End(Not run)
1

dag_enrich_on_offsprings_by_permutation 17

dag_enrich_on_offsprings_by_permutation
Enrichment analysis on offspring terms by permutation test

Description

Enrichment analysis on offspring terms by permutation test

Usage
dag_enrich_on_offsprings_by_permutation(
dag,
value,
perm = 1000,

min_offspring = 10,
verbose = simona_opt$verbose

)
Arguments
dag An ontology_DAG object.
value A numeric value. The value should correspond to terms in dag@terms.
perm Number of permutations.

min_offspring Minimal size of the offspring set.

verbose Whether to print messages.

Details

In the function dag_enrich_on_offsprings(), the statistic for testing is the number of terms in
each category. Here this funtion makes the testing procedure more general

The function tests whether a term t’s offspring terms have an over-represented pattern on values in
value. Denote T as the set of t’s offspring terms plus t itself, and v as the numeric vector of value,
we first calculate a score s based on values in T:

s = mean_{terms in T}(v)

To construct a random version of s, we randomly sample n_T terms from the DAG where n_T is the
size of set T:

sr_i = mean_{n_T randomly sampled terms}(v)
where index i represents the i*th sampling. If we sample k times, the p-value is calculated as:

p = sum_{i in 1..k}(I(sr_i > s))/k

18 dag_filter

Value

A data frame with the following columns:

e term: Term names.
* stats: The statistics of terms.
* n_offspring: Number of offspring terms of t (including t itself).

e log2_fold_enrichment: defined as log2(s/mean) where mean is calculated from random
permutation.

* z_score: Defined as (s - mean)/sd where mean and sd are calculated from random permu-
tation.

* p_value: P-values from permutation test.

* p_adjust: Adjusted p-values from the BH method.

The number of rows in the data frame is the same as the number of terms in the DAG.

Examples

Not run:

dag = create_ontology_DAG_from_GO_db()

value = runif(dag_n_terms(dag)) # a set of random values
df = dag_enrich_on_offsprings_by_permutation(dag, value)

End(Not run)
1

dag_filter Filter the DAG

Description

Filter the DAG

Usage

dag_filter(
dag,
terms = NULL,
relations = NULL,
root = NULL,
leaves = NULL,
mcols_filter = NULL,
namespace = NULL

dag_has_terms

Arguments

dag
terms

relations

root

leaves
mcols_filter

namespace

Details

19

An ontology_DAG object.
A vector of term names. The sub-DAG will only contain these terms.

A vector of relations. The sub-DAG will only contain these relations. Valid
values of "relations" should correspond to the values set in the relations argu-
ment in the create_ontology_DAG(). If relations_DAG is already provided,
offspring relation types will all be selected. Note "is_a" is always included.

A vector of term names which will be used as roots of the sub-DAG. Only these
with their offspring terms will be kept. If there are multiple root terms, a super
root will be automatically added.

A vector of leaf terms. Only these with their ancestor terms will be kept.
Filtering on columns in the meta data frame.

The prefix before ":" of the term IDs.

If the DAG is reduced into several disconnected parts after the filtering, a super root is automatically

added.

Value

An ontology_DAG object.

Examples

parents = c("a",

nan’ "b”, ”b“, ”C”, ndn)

children = c("b", "c", "c”, "d", "e", "f")
dag = create_ontology_DAG(parents, children)

dag_filter(dag,
dag_filter(dag,
dag_filter(dag,
dag_filter(dag,

terms = C("b”, "d“’ Ilfn))

root = "b")
leaves = c("c", "b"))
root = "b", leaves = "e")

dag = create_ontology_DAG_from_GO_db()

dag_filter(dag,

relations = "is_a")

dag_has_terms

Whether the terms exist in the DAG

Description

Whether the terms exist in the DAG

20 dag_longest_dist_to_offspring

Usage

dag_has_terms(dag, terms)

Arguments
dag An ontology_DAG object.
terms A vector of term IDs.
Value

A logical vector.

dag_longest_dist_to_offspring
Distance from all ancestors/to all offspring in the DAG

Description

Distance from all ancestors/to all offspring in the DAG

Usage
dag_longest_dist_to_offspring(dag, from, terms = NULL, background = NULL)

dag_shortest_dist_to_offspring(dag, from, terms = NULL, background = NULL)
dag_longest_dist_from_ancestors(dag, to, terms = NULL, background = NULL)

dag_shortest_dist_from_ancestors(dag, to, terms = NULL, background = NULL)

Arguments
dag An ontology_DAG object.
from A single term name or a vector of term names.
terms A vector of term names. If it is set, the returned vector will be subsetted to the
terms that have been set here.
background A vector of terms. Then the lookup will only be applied in this set of terms.
to Same format as the from argument.
Details

If from or to is a vector, for a specific, the longest/shortest distance among all from/to terms is
taken.

As a special case, when fromis the root term, dag_longest_dist_to_offspring() is the same as
dag_depth(), and when to are all leaf terms, dag_longest_dist_to_offspring() is the same as
dag_height().

dag_parents

Value

21

An integer vector having length the same as the number of terms in the DAG. If terms are not
reachable to the from or to terms, the corresponding value is -1.

Examples

parents = c("a",
children = c("b",

n n n n n n n n n n
a”, "b", "b", "c", "d")
won wnm mqn wn wpw
c”, "c", "d", "e", "f")

dag = create_ontology_DAG(parents, children)
dag_longest_dist_from_ancestors(dag, "e")
dag_shortest_dist_from_ancestors(dag, "e")
dag_longest_dist_to_offspring(dag, "b")

dag_parents

Parent/child/ancestor/offspring terms

Description

Parent/child/ancestor/offspring terms

Usage

dag_parents(dag, term, in_labels = TRUE)

dag_children(dag, term, in_labels = TRUE)

dag_siblings(dag, term, in_labels

= TRUE)
dag_ancestors(dag, term, in_labels = TRUE, include_self = FALSE)
= TRUE, include_self = FALSE)

dag_offspring(dag, term, in_labels

Arguments

dag

term

in_labels

include_self

Value

An ontology_DAG object.

The value can be a vector of multiple term names. If it is a vector, it re-
turns union of the upstream/downstream terms of the selected set of terms. For
dag_siblings(), the value can only be a single term.

Whether the terms are represented in their names or as integer indices?

For dag_offspring() and dag_ancestors(), this controls whether to also in-
clude the query term itself.

An integer vector or a character vector depending on the value of in_labels.

22 dag_random_tree

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
dag_parents(dag, "b")

dag_parents(dag, "c", in_labels = FALSE)
dag_children(dag, "b")

dag_siblings(dag, "c")

dag_ancestors(dag, "e")

dag_ancestors(dag, "b")

dag_random_tree Generate a random DAG

Description

Generate a random DAG

Usage

dag_random_tree(
n_children = 2,
p_stop = 0,
max = 2”10 - 1,
verbose = simona_opt$verbose

)
dag_add_random_children(
dag,
p_add = 0.1,

new_children = c(1, 4),
add_random_children_fun = NULL,
verbose = simona_opt$verbose

dag_random(
n_children = 2,

p_stop = 0,
max = 2”10 - 1,
p_add = 0.1,

new_children = c(1, 4),
verbose = simona_opt$verbose

Arguments

n_children Number of children of a term. The value can also be a vector of length two
representing the range of the number of child terms.

dag_reorder 23

p_stop The probability of a term to stop growing.
max Maximal number of terms.

verbose Whether to print messages.

dag An ontology_DAG object.

p_add The probability to add children on each term.

new_children The number or range of numbers of new children if a term is selected to add
more children.
add_random_children_fun

A function to randomly add children from the DAG.

Details

dag_random_tree() generates a random DAG tree from the root term. In a certain step of the grow-

ing, let’s denote the set of all leaf terms as L, then in the next round of growing, floor (length(L)*p_stop)
leaf terms stop growing, and for the remaining leaf terms that continue to grow, each term will add

child terms with number in uniformly sampled within [n_children[1], n_children[2] 1]. The
growing stops when the total number of terms in the DAG exceeds max.

dag_add_random_children() adds more links in a DAG. Each term is associated with a proba-
bility p_add to add new links where the term, if it is selected, is as a parent term, linking to other
terms in the DAG. The number of new child terms is controlled by new_children which can be a
single number of a range. By default, new child terms of a term t are randomly selected from other
terms that are lower than the term t (check the function simona: : :add_random_children). The
way how to randomly select new child terms for t can be controlled by a self-defined function for
the add_random_children_fun argument.

dag_random(): it simply wraps dag_random_tree() and dag_add_random_children().

Value

An ontology_DAG object.

Examples

tree = dag_random_tree()
dag = dag_random()

dag_reorder Reorder the DAG

Description

Reorder the DAG

Usage

dag_reorder(dag, value, verbose = simona_opt$verbose)

dag_permutate_children(dag, verbose = simona_opt$verbose)

dag_root

Arguments
dag An ontology_Dag object.
value A vector of numeric values. See the Details section.
verbose Whether to print messages.

Details

In dag_reorder (), there are two ways to set the value argument. It can be a vector corresponding
to all terms (in the same order as in dag_all_terms()) or a vector corresponding to all leaf terms
(in the same order as in dag_leaves()). If value corresponds to all terms, the score associates to
each term is the average value of all its offspring terms. And if value corresponds to all leaf terms,
the score for each term is the average of all its connectable leaves.

The reordering is simply applied on each term to reorder its child terms.

dag_permutate_children() randomly permute child terms under a term.

Value

An ontology_DAG object.

Examples

parents c("a", "a", "b", "b", "c", "d")

children = c("b", "c", "c", "d", "e", "f")

by default, c and e locate on the left side, d and f locate on the right side
dag = create_ontology_DAG(parents, children)

dag_children(dag, "b")

move c and e to the right side of the diagram
dag2 = dag_reorder(dag, value = c(1, 1, 10, 1, 10, 1))
dag_children(dag2, "b")

we can also only set values for leaf terms

there are two leaf terms c and e

we let v(c) > v(e) to move c to the right side of the diagram
dag3 = dag_reorder(dag, value = c(10, 1))

dag_children(dag3, "b")

dag_root Root or leaves of the DAG

Description

Root or leaves of the DAG

dag_shiny 25

Usage
dag_root(dag, in_labels = TRUE)

dag_leaves(dag, in_labels = TRUE)

dag_is_leaf(dag, terms)

Arguments
dag An ontology_DAG object.
in_labels Whether the terms are represented in their names or as integer indices?
terms A vector of term names.

Value

A character or an integer vector.

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
dag_root(dag)

dag_leaves(dag)

dag_shiny A shiny app for the DAG

Description

A shiny app for the DAG

Usage
dag_shiny(dag)

Arguments

dag An ontology_DAG object.

Examples

if (FALSE) {
dag = create_ontology_DAG_from_GO_db()
dag_shiny(dag)

26

dag_treelize

dag_treelize Reduce the DAG to a tree

Description

Reduce the DAG to a tree

Usage
dag_treelize(dag, verbose = simona_opt$verbose)
dag_as_dendrogram(dag)

S3 method for class 'ontology_tree'
print(x, ...)

Arguments
dag An ontology_DAG object.
verbose Whether to print messages.
X An ontology_DAG object.
Ignored.
Details

A tree is a reduced DAG where a child only has one parent. The reducing is applied by a breadth-

first searching

Starting from the root and on a certain depth (the depth is the maximal distance to root), for every
term t on this depth, its child term c and parent-child relation are kept only when depth(c) ==

depth(t) + 1. If c is selected, it is marked as visited and will not be checked again.

In this way, depths of all terms in the orignal DAG are still identical to the depths in the tree (see

the Examples section).

dag_as_dendrogram() coverts the tree to a dendrogram object.

Value

A tree is also an ontology_DAG object.

Examples

parents = c("a”, "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
tree = dag_treelize(dag)

d1 = dag_depth(dag)

d2 = dag_depth(tree)

group_sim

27

identical(d1, d2)

dend = dag_as_dendrogram(tree)

dend

group_sim

Semantic similarity between two groups of terms

Description

Semantic similarity between two groups of terms

Usage
group_sim(
dag,
group1,
group2,
method,
control = list(),
verbose = simona_opt$verbose
)
Arguments
dag An ontology_DAG object.
group1 A vector of term names or a list of term vectors.
group?2 A vector of term names or a list of term vectors..
method A group similarity method. All available methods are in all_group_sim_methods().
control A list of parameters passing to individual methods. The term similarity method
is controlled by term_sim_method and the IC method is controlled by IC_method.
Other term similarity related parameters can also be specified in control. See
the subsections.
verbose Whether to print messages.
Details

If annotation is set in create_ontology_DAG() and you want to directly calculate semantic sim-
ilarity between two annotated items, you can first get the associated terms of the two items by
annotated_terms():

group1
group2

annotated_terms(dag, item1)[[1]]
annotated_terms(dag, item2)[[11]

group_sim(dag, groupl, group2, ...)

28 group_sim

Value

A numeric scalar, a numeric vector or a matrix depending on the dat type of groupl and group2.

Methods

GroupSim_pairwise_avg:

Denote S(a, b) as the semantic similarity between terms a and b where a is from group1 and b
is from group2, The similarity between group1 and group? is the average similarity of every pair
of individual terms in the two groups:

group_sim = mean_{a in groupl, b in group2}(S(a, b))
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_avg"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.
Pape link: doi:10.1093/bioinformatics/btg153.

GroupSim_pairwise_max:
This is the maximal S(a, b) among all pairs of terms in group1 and group2:

group_sim = max_{a in groupl, b in group2}(S(a, b))
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_max"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)"

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1109/TCBB.2005.50.

GroupSim_pairwise_ BMA:
BMA stands for "best-match average". First define similarity of a term to a group of terms as

S(x, group) = max_{y in group}(x, y)

which is the most similar terms in group to x.

Then the BMA similarity is calculated as:

group_sim = @.5*%(mean_{a in group1}(S(a, group2)) + mean_{b in group2}(S(b, groupl)))

So it is the average of the similarity of every term in group1 to the whole group2 and every term
in group?2 to the whole group1.

The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_BMA"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation")".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1155/2012/975783.

https://doi.org/10.1093/bioinformatics/btg153
https://doi.org/10.1109/TCBB.2005.50
https://doi.org/10.1155/2012/975783

group_sim 29
GroupSim_pairwise_ BMM:
BMM stands for "best-match max". It is defined as:
group_sim = max(mean_{a in group1}(S(a, group2)), mean_{b in group2}(S(b, group1)))
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_BMM"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation")".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1186/147121057302.

GroupSim_pairwise_ ABM:
ABM stands for "average best-match". It is defined as:

group_sim = (sum_{a in group1}(S(a, group2)) + sum_{b in group2}(S(b, group1)))/(n1 + n2)

where n1 and n2 are the number of terms in group1 and group2.
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_ABM"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1186/1471210514284.

GroupSim_pairwise_HDF:
First define the distance of a term to a group of terms:

D(x, group) = 1 - S(x, group)

Then the Hausdorff distance between two groups are:

HDF = max(max_{a in group1}(D(a, group2)), max_{b in group2}(D(b, groupl)))
This final similarity is:

group_sim = 1 - HDF

The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_HDF"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.

GroupSim_pairwise. MHDF:
Instead of using the maximal distance from a group to the other group, MHDF uses mean distance:

MHDF = max(mean_{a in group1}(D(a, group2)), mean_{b in group2}(D(b, groupl)))
This final similarity is:

group_sim = 1 - MHDF

https://doi.org/10.1186/1471-2105-7-302
https://doi.org/10.1186/1471-2105-14-284

30

group_sim

The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_MHDF"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1109/ICPR.1994.576361.

GroupSim_pairwise_ VHDEF:
It is defined as:

VHDF = @.5*(sqrt(mean_{a in group1}(D(a, group2)”*2)) + sqrt(mean_{b in group2}(D(b, group1)*2)))
group_sim = 1 - VHDF

The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_VHDF"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1073/pnas.0702965104.

GroupSim_pairwise_Froehlich_2007:
The similarity is:

group_sim = exp(-HDF(group1, group2))
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_Froehlich_2007"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation”)".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1186/147121058166.

GroupSim_pairwise_Joeng_2014:
Similar to VHDF, but it directly uses the similarity:

group_sim = 0.5*%(sqrt(mean_{a in group1}(S(a, group2)*2)) + sqrt(mean_{b in group2}(S(b, group1)*2)))
The term semantic similarity method and the IC method can be set via control argument:

group_sim(dag, groupl, group2, method = "GroupSim_pairwise_Joeng_2014"
control = list(term_sim_method = "Sim_Lin_1998", IC_method = "IC_annotation")".

Other parameters for the term_sim_method can also be set in the control list.
Paper link: doi:10.1109/TCBB.2014.2343963.

GroupSim_SimALN:
It is based on the average distances between every pair of terms in the two groups:

exp(-mean_{a in groupl, b in group2}(d(a, b)))

https://doi.org/10.1109/ICPR.1994.576361
https://doi.org/10.1073/pnas.0702965104
https://doi.org/10.1186/1471-2105-8-166
https://doi.org/10.1109/TCBB.2014.2343963

group_sim 31

d(a, b) is the distance between a and b, which can be the shortest distance between the two terms
or the longest distnace via LCA.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via_ NCA":

group_sim(dag, groupl, group2, method = "GroupSim_SimALN",
control = list(distance = "shortest_distances_via_NCA"))

Paper link: doi:10.1109/ISCC.2008.4625763.

GroupSim_SimGIC:

Denote A and B as the two sets of ancestors terms of terms in group1 and group?2 respectively, the
SimGIC is:

group_sim = sum_{x in intersect(A, B)}(IC(x))/sum_{x in union(A, B)}(IC(x))
IC method can be set via control = 1ist(IC_method=...).

GroupSim_SimDIC:
Similar as GroupSim_SimGIC, it calculates the Dice coeffcient:

group_sim = 2xsum_{x in intersect (A, B)}(IC(x))/(sum_{x in A}(IC(x)) + sum_{x in B}(IC(x)))
IC method can be set via control = 1ist(IC_method =...).

GroupSim_SimUIC:
Similar as GroupSim_SimGIC, it is calculated as:

group_sim = sum_{x in intersect(A, B)}(IC(x))/max(sum_{x in A}(IC(x)), sum_{x in B}(IC(x)))
IC method can be set via control = 1ist(IC_method =...).

GroupSim_SimUI:
It is only based on the number of terms. A is the set of all ancestors of groupl terms and B is the
set of all ancestors of group2 terms.

group_sim = length(intersect(A, B))/length(union(A, B))

GroupSim_SimDB:
It is:

group_sim = 2xlength(intersect(A, B))/(length(A) + length(B))

GroupSim_SimUB:
It is:

group_sim = length(intersect(A, B))/max(length(A), length(B))

GroupSim_SimNTO:
It is:

group_sim = length(intersect(A, B))/min(length(A), length(B))

https://doi.org/10.1109/ISCC.2008.4625763

32

group_sim

GroupSim_SimCOU:

It is based on the dot product of two vectors p and g which correspond to terms in groupl and
group2. p and g have the same length as the total number of terms. Value of positioniin p or q
corresponds to term t. The value takes IC(t) if t is an ancestor of any term in p or ¢, and the
value takes zero if t is not. The similarity betweem group1 terms and group2 terms is calculated
as:

<p,a>/lpll/]1all

where <p, g> is the dot product between the two, and | |p|| or | |q|| is the norm of the vector.
The equation can be written as:

group_sim = sum_{x in intersect(A, B)}(IC(x)*2) /
sqrt(sum_{x in A}(IC(x)"2)) /
sqrt(sum_{x in B}(IC(x)*2))

IC method can be set via control = 1ist(IC_method = ...).

GroupSim_SimCOT:
Similar as GroupSim_SimCOU, the similarity is:

<p,a>/(llpll*2 + [lal "2 - <p,q>)
And it can be rewritten as:

group_sim = sum_{x in intersect(A, B)}(IC(x)*2) /
(sum_{x in A}(IC(x)*2) + sum_{x in B}(IC(x)*2) - sum_{x in intersect(A, B)}(IC(x)"2))

IC method can be set via control = 1ist(IC_method =...).

GroupSim_SimLP:
It is the longest depth for the terms in intersect (A, B).

group_sim = max(depth(intersect(A, B)))

GroupSim_Ye_2005:
It is a normalized version of GroupSim_SimLP:

group_sim = max(depth(intersect(A, B)))/max_depth

Since the minimal depth is zero for root.

GroupSim_SimCHO:
It is based on the annotated items. Denote sigma(t) as the total annotated items of t. The
similarity is calculated as

group_sim = log(C/sigma_max)/log(sigma_min/sigma_max)

where Cismin(sigma_{x in intersect(A, B)3}(x)),i.e., the minimal sigma in the intersection
of groupl and group2. Note Now A and B are just two sets of terms in groupl and group2.
sigma_max is the total number of items annotated to the DAG, sig_min is the minimal number of
items annotated to a term, which is mostly 1.

import_obo 33

GroupSim_SimALD:

A and B are just two sets of terms in group1 and group2. The similarity is calculated as:
group_sim = max_{t in intersect(A, B)}(1 - sigma(t)/N)

GroupSim_Jaccard:

Say A is the set of items annotated to terms in group1 and B is the set of items annotated to group2.
This is the Jaccard coeffcient between two sets.

The universe/background can be set via control = list(universe

1l
~

GroupSim_Dice:
It is the Dice coeffcient between A and B.

The universe/background can be set via control = list(universe

1
~—

GroupSim_Overlap:
It is the Overlap coeffcient between A and B.

The universe/background can be set via control = list(universe = ...

|
~—

GroupSim_Kappa:

The universe/background can be set via control = list(universe = ...).

Examples

non n_n

parents = c(”a”, "a", "b", "b", "c", "d")
Children = C(”b", IICIV’ "C”, Ildlly Ilell, II_FII)
annotation = list(

nar = c("t1”, "t2", "t3"),

IVbVI = C("t3", "t4"),

"t = "t5",
"dr o= 7,
"e" = c("t4", "t5", "t6", "t7"),
"= g

)
dag = create_ontology_DAG(parents, children, annotation = annotation)
group_sim(dag, c("c”, "e"y, c("d", "f"),

method = "GroupSim_pairwise_avg",

control = list(term_sim_method = "Sim_Lin_1998")

import_obo Import ontology file to an ontology_DAG object

Description

Import ontology file to an ontology_DAG object

34 import_obo
Usage
import_obo(
file,
relation_type = character (@),
inherit_relations = TRUE,
verbose = simona_opt$verbose,
)
import_owl(
file,
relation_type = character(Q),
inherit_relations = TRUE,
verbose = simona_opt$verbose,
)
import_ontology(
file,
robot_jar = simona_opt$robot_jar,
JAVA_ARGS = "",
verbose = simona_opt$verbose,
)
import_ttl(file, relation_type = "part_of", verbose = simona_opt$verbose, ...)
Arguments
file Path of the ontology file or an URL.

relation_type

Semantic relation types to include. Note is_a relation is always included.

inherit_relations

verbose

robot_jar

JAVA_ARGS

Details

Relations may also be structured as a DAG. It controls whether to merge with a
relations’s offspring relations.

Whether to print messages.
Pass to create_ontology_DAG().

The path of the robot. jar file. It can be downloaded from https://github.com/ontodev/robot/releases.
Internally, the file is converted to the obo format and parsed by import_obo().
The value of robot_jar can be set as a global option simona_opt$robot_jar

Options for java. For example you can set -Xmx20G if you want to increase the
memory to 20G for java.

Public bio-ontologies can be obtained from Ontology Foundry or BioPortal.

http://obofoundry.org/
https://bioportal.bioontology.org/

import_obo 35

The import_obo() function parses the ontology file in . obo format. To parse other formats, exter-
nal tool robot. jar is required.

import_owl() only recognizes <owl:Class> and <owl:ObjectProperty>. If the .owl file does
not contain these tags, please use import_ontology() directly.

robot. jar can automatically recognize the following formats:

* json: OBO Graphs JSON
* obo: OBO Format

* ofn: OWL Functional

e omn: Manchester

* owl: RDF/XML

* owx: OWL/XML

e ttl: Turtle

The description of the ROBOT tool is at http://robot.obolibrary.org/convert.

import_ttl() is a simple parser for the .ttl format files. It only recognizes terms that have
the owl:Class object. The "is_a" relation is recognized by the predicate rdfs:subClassOf or
an ontology-specific predicate that contains .*/isa. Other relation types are defined with the
predicate owl:0ObjectProperty. The format is parsed by a Perl script system.file("scripts”,
"parse_ttl.pl", package = "simona").

Value

An ontology_DAG object.

Examples

The plant ontology: http://obofoundry.org/ontology/po.html
import_obo("https://raw.githubusercontent.com/Planteome/plant-ontology/master/po.obo")

import_owl("http://purl.obolibrary.org/obo/po.owl")

Not run:
The plant ontology: http://obofoundry.org/ontology/po.html
dag = import_ontology("http://purl.obolibrary.org/obo/po.owl”, robot_jar = ...)

End(Not run)

file is from https://bioportal.bioontology.org/ontologies/MSTDE
import_ttl("https://jokergoo.github.io/simona/MSTDE. tt1l")

http://robot.obolibrary.org/convert

36 mcols,ontology_DAG-method

mcols,ontology_DAG-method
Get or set meta columns on DAG

Description

Get or set meta columns on DAG

Usage

S4 method for signature 'ontology_DAG'
mcols(x, use.names = TRUE, ...)

S4 replacement method for signature 'ontology_DAG'

mcols(x, ...) <- value

Arguments
X An ontology_DAG object.
use.names Please ignore.

Other argument. For mcols(), it can be a vector of column names in the meta
data frame.

value A data frame or a matrix where rows should correspond to terms in x@terms.

Value

A data frame.

Examples

non non

parents = c("a”, "a", "b", "b", "c", "d")

children = c("b", "c", "c", "d", "e", "f")

dag = create_ontology_DAG(parents, children)
mcols(dag) = data.frame(id = letters[1:6], v = 1:6)
mcols(dag)

mcols(dag, "id")

dag

method_param 37

method_param All Papameters of a given method

Description

All Papameters of a given method

Usage

method_param(IC_method = NULL, term_sim_method = NULL, group_sim_method = NULL)

Arguments

IC_method A single IC method name.
term_sim_method
A single term similarity method name.

group_sim_method
A single group similarity method name.

Value

A vector of parameter names.

Examples

method_param(IC_method = "IC_annotation”)
method_param(term_sim_method = "Sim_Wang_2007")

MICA_term Various types of common ancestors

Description

Various types of common ancestors

Usage

MICA_term(
dag,
terms,
IC_method,
in_labels = TRUE,
distance = "longest",
verbose = simona_opt$verbose

(should have the same length as the number of terms in the DAG).

38 MICA_term
MICA_IC(dag, terms, IC_method, verbose = simona_opt$verbose)
LCA_term(
dag,
terms,
in_labels = TRUE,
distance = "longest",
verbose = simona_opt$verbose
)
LCA_depth(dag, terms, verbose = simona_opt$verbose)
NCA_term(dag, terms, in_labels = TRUE, verbose = simona_opt$verbose)
max_ancestor_v(dag, terms, value, verbose = simona_opt$verbose)
max_ancestor_id(
dag,
terms,
value,
in_labels = FALSE,
distance = "longest”,
verbose = simona_opt$verbose
)
max_ancestor_path_sum(
dag,
terms,
value,
add_v,
distance = "longest”,
verbose = simona_opt$verbose
)
CA_terms(dag, terml, term2, in_labels = TRUE)
Arguments
dag An ontology_DAG object.
terms A vector of term names.
IC_method An IC method. Valid values are in all_term_IC_methods().
in_labels Whether the terms are represented in their names or as integer indices?
distance If there are multiple LCA or MICA of two terms, whether to take the one with
the longest distance of shortest distance to the two terms. Possible values are
"longest" and "shortest".
verbose Whether to print messages.
value A numeric vector. The elements should corrrespond to terms in dag_all_terms()

MICA_term 39

add_v Values to be added along the path to the MICA or LCA. The same format as
value.
terml A single term ID.
term2 A single term ID.
Details

There are the following three types of common ancestors:

* MICA (most informative common ancestor): The common ancestor with the highest IC value.

* LCA (lowest common ancestor): The common ancestor with the largest depth (The depth of
a term is the maximal distance from the root term). If there are multiple ancestors having the
same max depth, the ancestor with the smallest distance to the two terms is used.

¢ NCA (nearest common ancestor): The common ancestor with the smallest distance to the two
terms. If there are multiple ancestors with the same smallest distance, the ancestor with the
largest depth is used.

max_ancestor_v() and max_ancestor_id() are more general functions which return common
ancestors with the highest value in value.

Given a path connecting two terms and their MICA/LCA, max_ancestor_path_sum() calculates
the sum of terms along the path. The values to be added in specified in add_v argument.

Value

e MICA_term() returns an integer or a character matrix of the MICA terms depending on the
value of in_labels.

e MICA_IC() returns a numeric matrix of the IC of the MICA terms.

e LCA_term() returns an integer or a character matrix of the LCA term depending on the value
of in_labels.

* LCA_depth() returns an integer matrix of the depth of the LCA terms.

* NCA_term() returns an integer or a character matrix of the NCA term depending on the value
of in_labels. The shortest distance from NCA terms can be calculated by shortest_distances_via_NCA().

e max_ancestor_v() returns a numeric matrix.
* max_ancestor_id() returns an integer or a character matrix.

e CA_terms() returns a vector of term IDs.

Examples

non n_n

parents = c("a”, "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
MICA_term(dag, letters[1:6], "IC_universal”)
MICA_IC(dag, letters[1:6], "IC_universal")
LCA_term(dag, letters[1:6])

LCA_depth(dag, letters[1:6])

NCA_term(dag, letters[1:6])

CA_terms(dag, "c", "d")

40 n_annotations

n_annotations Number of annotated items

Description

Number of annotated items

Usage
n_annotations(
dag,
terms = NULL,

uniquify = simona_opt$anno_uniquify,
use_cache = simona_opt$use_cache

has_annotation(dag)

Arguments
dag An ontology_DAG object.
terms A vector of term names. If it is set, the returned vector will be subsetted to the
terms that have been set here.
uniquify Whether to uniquify items that are annotated to the term? See Details. It is
suggested to always be TRUE.
use_cache Internally used.
Details

Due to the nature of the DAG, a parent term includes all annotated items of its child terms, and an
ancestor term includes all annotated items from its offspring recursively. In current tools, there are
two different implementations to deal with such recursive merging.

For aterm t, denote S_1, S_2, ... as the sets of annotated items for its child 1, 2, ..., also denote S_t
as the set of items that are directly annotated to t. The first method takes the union of annotated
items on t and all its child terms:

n = length(union(S_t, S_1, S_2, ...))
And the second method takes the sum of numbers of items on t and on all its child terms:
n = sum(length(s_t) + length(S_1) + length(S_2) + ...)

In n_annotations(), when uniquify = TRUE, the first method is used; and when uniquify =
FALSE, the second method is used.

For some annotation sources, it is possible that an item is annotated to multiple terms, thus, the
second method which simply adds numbers of all its child terms may not be proper because an item

n_offspring 41

may be counted duplicatedly, thus over-estimating n. The two methods are identical only if an item
is annotated to a unique term in the DAG.

We suggest to always set uniquify = TRUE (the default), and the scenario of uniquify = FALSE is
only for the testing or benchmarking purpose.

Value

n_annotations() returns an integer vector.

has_annotation() returns a logical scalar.

Examples

parents = c(”a”, "a", "b", "b", "c", "d")
children = c("b”, "c", "c”, "d", "e", "f")
annotation = list(

nan = c("t1", "t2", "t3"),

"ot o= c("t3", "t4"),

et = "5,
"dr = 7,
"e” = c("t4”, "t5", "t6”, "t7"),
"= g

)
dag = create_ontology_DAG(parents, children, annotation = annotation)
n_annotations(dag)

n_offspring Number of parent/child/ancestor/offspring/leaf terms

Description

Number of parent/child/ancestor/offspring/leaf terms

Usage
n_offspring(dag, terms = NULL, use_cache = TRUE, include_self = FALSE)
n_ancestors(dag, terms = NULL, use_cache = TRUE, include_self = FALSE)

n_connected_leaves(dag, terms = NULL, use_cache = TRUE)
n_parents(dag, terms = NULL)

n_children(dag, terms = NULL)

avg_parents(dag)

avg_children(dag)

42 ontology_DAG-class

Arguments
dag An ontology_DAG object.
terms A vector of term names. If the value is NULL, it returns for all terms in the DAG.
use_cache Internally used.

include_self For n_offspring() and n_ancestors(), this controls whether to also include
the query term itself.

Details

For n_connected_leaves(), leaf nodes have value of 1.
In avg_parents(), root term is removed.

In avg_children(), leaf term is removed.

Value

An integer vector.

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
n_parents(dag)

n_children(dag)

n_offspring(dag)

n_ancestors(dag)

n_connected_leaves(dag)

ontology_DAG-class The ontology_DAG class

Description

This class defines the DAG structure of an ontology.

Value

An ontology_DAG object.

Slots

terms A character vector of length n of all term names. Other slots that store term-level information
use the integer indices of terms.

n_terms An integer scalar of the total number of terms in the DAG.

n_relations An integer scalar of the total number of relations in the DAG.

ontology_kw 43

1t_parents A list of length n. Each element in the list is an integer index vector of the parent
terms of the i*th term.

1t_children A list of length n. Each element in the list is an integer index vector of the child
terms of the i*th term.

1t_children_relations A list of length n. Each element is a vector of the semantic relations be-
tween the i”th term and its child terms, e.g. a child "is_a" parent. The relations are represented
as integers. The character name of the relations is in attr(dag@lt_children_relations,
"levels").

relations_DAG A simple ontology_DAG object but constructed for relation types.

source The source of the ontology. A character scalar only used as a mark of the returned object.
root An integer scalar of the root term.

leaves An integer vector of the indicies of leaf terms.

alternative_terms A named character vector of mappings between alternative terms to DAG
terms.

tpl_sorted An integer vector of reordered term indices which has been topologically sorted in the
DAG. Terms are sorted first by the depth (maximal distance from root), then the number of
child terms, then the number of parent terms, and last the term names.

tpl_pos The position of the original term in the topologically sorted path (similar as the rank), e.g.
the value of the first element in the vector is the position of term 1 in the topologically sorted
path.

annotation A list of two elements: 1ist and names. The dag@annotation$list element con-
tains a list of length n and each element is a vector of integer indices of annotated items. The
full list of annotated items is in dag@annotation$names.

term_env An environment which contains various term-level statistics. It is mainly for cache pur-
pose.

aspect_ratio A numeric vector of length two. The aspect ratio is calculated as w/h. For each
term, there is a distance to root, h is the maximal distance of all terms, w is the maximal number
of items with the same distance. The two values in the aspect_ratio slot use maximal
distance to root (the height) and the shortest distance to root as the distance measure.

elementMetadata An additional data frame with the same number of rows as the number of terms
in DAG. Order of rows should be the same as order of terms in dag@terms.

Examples

1
This function should not be used directly.

ontology_kw Import ontologies already having gene annotations

Description

Import ontologies already having gene annotations

44 ontology_kw

Usage

ontology_kw(
organism = "human”,
gene_annotation = TRUE,
verbose = simona_opt$verbose,

ontology_chebi(
organism = c("human”, "mouse", "rat", "pig", "dog"),
gene_annotation = TRUE,
verbose = simona_opt$verbose,

ontology_hp(
organism = c("human"”, "mouse"),
gene_annotation = TRUE,
verbose = simona_opt$verbose,

ontology_pw(
organism = c("human”, "mouse",
gene_annotation = TRUE,
verbose = simona_opt$verbose,

n

rat”, "pig", "dog", "chimpanzee"),

ontology_rdo(
organism = c("human”, "mouse", "rat"”, "pig", "dog", "chimpanzee"),
gene_annotation = TRUE,
verbose = simona_opt$verbose,

ontology_vt(
organism = c("human”, "mouse",
gene_annotation = TRUE,
verbose = simona_opt$verbose,

n

rat”, "pig", "dog"”, "chimpanzee"),

ontology_go(...)

ontology_reactome(
organism = "HSA",
gene_annotation = TRUE,

partition_by_level 45

verbose = simona_opt$verbose,

Arguments

organism Organism.
gene_annotation
Whether to add gene annotations to the DAG.

verbose Whether to print messages?

Pass to create_ontology_DAG().

Details

There are the following ontologies:

* ontology_kw(): UniProt Keywords. The list of supported organisms can be found in UniProtKeywords: : load_keywo
* ontology_chebi(): Chemical Entities of Biological Interest.

* ontology_hp(): The Human Phenotype Ontology.

* ontology_pw(): Pathway Ontology.

* ontology_rdo(): RGD Disease Ontology.

* ontology_vt(): Vertebrate Trait Ontology.

The source of the original files can be found with simona: : :RGD_TB.
ontology_go() is an alias of create_ontology_DAG_from_GO_db(). All arguments go there.

Valid values for organism argument in ontology_reactome() are

C(”BTA”, “CEL”, “CFA”, "DRE", “DDI“, ”DME”, "GGA", ”HSA”, “MMU”,
“MTU”, ”PFA”, "RNO", "SCE", ”SPO”, ”SSC”, HXTRH)

partition_by_level Partition the DAG

Description

Partition the DAG

Usage

partition_by_level(dag, level = 1, from = NULL, term_pos = NULL)

partition_by_size(dag, size = round(dag_n_terms(dag)/5))

46 print.print_source

Arguments
dag An ontology_DAG object.
level Depth in the DAG to cut. The DAG is cut below terms (or cut the links to their
child terms) with depth == level.
from A list of terms to cut. If it is set, level is ignored.
term_pos Internally used.
size Number of terms in a cluster. The splitting stops on a term if all its child-trees
are smaller than size.
Details

Let’s call the terms below the from term as "top terms" because they will be on top of the sub-DAGs
after the partitioning. It is possible that a term in the middle of the DAG can be traced back to more
than one top terms. To partition all terms exclusively, a term partitioned to the sub-DAG from the
top term with the largest distance to the term. If a term has the same largest distances to several top
terms, a random top term is selected.

In partition_by_size(), the DAG is first reduced to a tree where a child term only has one
parent. The partition is done recursively by cutting into its child-trees. The splitting stops when all
the child-trees have size less than size.

NA is assigned to the from terms, their ancestor terms, and terms having infinite directed distance to
from terms.
Value

A character vector of top terms in each partition.

Examples

dag = create_ontology_DAG_from_GO_db()
pa = partition_by_level(dag)

table(pa)
pa = partition_by_size(dag, size = 1000)
table(pa)
1
print.print_source Print the source
Description

Print the source

Usage

S3 method for class 'print_source'
print(x, ...)

random_terms

Arguments
X An object in the print_source class.
Other arguments.
Details

Internally used.

random_terms Randomly sample terms/items

Description

Randomly sample terms/items

Usage

random_terms(dag, n)

random_items(dag, n)

Arguments
dag An ontology_DAG object.
n Number of terms or items.
Value

A character vector of terms or items.

Examples

non n_n

parents = c(”a”, "a", "b", "b", "c", "d")
children = C(”b”, IICII’ Ilcll’ lldll, Ilell’ Hf‘”)
annotation = list(

nar = c("t1”, "t2", "t3"),

Hbll = C(”t3”, ”t4“>,

et = "5,
"dr o= "7,
"e" = c("t4", "t5", "t6", "t7"),
"fr o= neg”

)

dag = create_ontology_DAG(parents, children, annotation = annotation)
random_terms(dag, 3)

random_items(dag, 3)

48

shortest_distances_via NCA

shortest_distances_via_NCA

Distance on the DAG

Description

Distance on the DAG

Usage

shortest_distances_via_NCA(dag, terms, verbose = simona_opt$verbose)

longest_distances_via_LCA(dag, terms, verbose = simona_opt$verbose)

shortest_distances_directed(dag, terms, verbose = simona_opt$verbose)

longest_distances_directed(dag, terms, verbose = simona_opt$verbose)

Arguments
dag An ontology_DAG object.
terms A vector of term names.
verbose Whether to print messages.
Details

Denote two terms as a and b, a common ancestor as c, and the distance function d() calculates the
longest distance or the shortest distance depending on the function.

Value

shortest_distances_via_NCA(): It calculates the smallest d(c, a) + d(c, b) where d()
calculates the shortest distance between two terms. In this case, c is the NCA (nearest common
ancestor) of a and b.

longest_distances_via_LCA(): It calculates the largest d(c, a) + d(c, b) where d() cal-
culates the longest distance between two terms via the LCA (lowest common ancestor) term.
In this case, c is the LCA of a and b.

shortest_distances_directed(): It calculates d(a, b) where d() calculates the shortest
distance between two terms. The distance is only calculated when a is an ancestor of b,
otherwise the distance value is -1.

longest_distances_directed(): It calculates d(a, b) where d() calculates the longest
distance between two terms. The distance is only calculated when a is an ancestor of b,
otherwise the distance value is -1.

A numeric distance matrix.

show,ontology DAG-method 49

Examples

parents = c("a", "a", "b", "b", "c", "d")
children = c("b", "c", "c", "d", "e", "f")
dag = create_ontology_DAG(parents, children)
shortest_distances_via_NCA(dag, letters[1:6])
longest_distances_via_LCA(dag, letters[1:6])
shortest_distances_directed(dag, letters[1:6])
longest_distances_directed(dag, letters[1:6])

show, ontology_DAG-method
Print the ontology_DAG object

Description

Print the ontology_DAG object

Usage
S4 method for signature 'ontology_DAG'
show(object)

Arguments

object An ontology_DAG object.

Value

No value is returned.

simona_opt Global options

Description

Global options

Usage

simona_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)

50 simona_opt

Arguments
Name-value pairs for options.
RESET Reset to default option values.
READ.ONLY Only return read only options.
LOCAL Only return local options.
ADD Add new options.
Details

There are the following global options:

* use_cache: By default, information content of all terms is cached and reused. If use_cache
is set to FALSE, IC will be re-calculated.

* verbose: Whether to print messages?

e anno_uniquify: In the annotation-based IC method, the union of items annotated to the term
as well as all its offspring terms is used, which means the set of annotated items for the term
is uniquified. If anno_uniquify is set to FALSE, the uniquification is not applied, we simply
add the number of items annotated to the term and the numbers of items annotated to each of
its offspring terms.

* robot_jar: Path of the robot. jar file. The file can be found from https://github.com/
ontodev/robot/releases.

To set an option, you can use $:

simona_opt$verbose = FALSE

or use it as a function:

simona_opt(verbose = FALSE)

Value

A single option value.

Examples

simona_opt

https://github.com/ontodev/robot/releases
https://github.com/ontodev/robot/releases

term_annotations

51

term_annotations

Term-item associations

Description

Term-item associations

Usage
term_annotations(dag, terms, return = "list")
annotated_terms(dag, anno, return = "list")

Arguments
dag An ontology_DAG object.
terms A vector of term names.
return Whether the returned object is a list or a matrix?
anno A vector of annotated item names.

Details

If an item is annotated to a term, all this term’s ancestor terms are also annotated.

Value

A list or a binary matrix showing annotation relations between terms and items.

Examples

non

parents = c("a", "a

annotation = list(

nan

b, b, e, "d™)
children = c("b", "c",

n_n

c”, "d”, "e”, n.Fn)

a” = c("t1", "t2", "t3"),

" = c("t3", "t4"),

ncn - ”t5“,
ngr = ”t7”,

ne" = c("t4", "t5", "t6", "t7"),

nen = ut8u
)

dag = create_ontology_DAG(parents, children, annotation = annotation)
term_annotations(dag, letters[1:6])

term_annotations(dag, letters[1:6], return = "matrix”)
annotated_terms(dag, c("t1", "t2", "t3"))

annotated_terms(dag, c("t1"”, "t2", "t3"), return = "matrix")

52 term_IC

term_IC Information content

Description

Information content

Usage

term_IC(
dag,
method,
terms = NULL,
control = list(),
verbose = simona_opt$verbose

)
Arguments
dag An ontology_DAG object.
method An IC method. All available methods are in all_term_IC_methods().
terms A vector of term names. If it is set, the returned vector will be subsetted to the
terms that have been set here.
control A list of parameters passing to individual methods. See the subsections.
verbose Whether to print messages.
Value

A numeric vector.

Methods

IC_offspring:

Denote k as the number of offspring terms plus the term itself and N is such value for root (or the
total number of terms in the DAG), the information content is calculated as:

IC = -log(k/N)
IC_height:
For a term t in the DAG, denote d as the maximal distance from root (i.e. the depth) and h as the

maximal distance to leaves (i.e. the height), the relative position p on the longest path from root
to leaves via term t is calculated as:

p=(Cth+1)/Cth+d+1)

In the formula where 1 is added gets rid of p = @. Then the information content is:

term_IC 53

IC

-log(p)
-log((h+1)/(h+d+1))

IC_annotation:

Denote k as the number of items annotated to a term t, and N is the number of items annotated to
the root (which is the total number of items annotated to the DAG), IC for term t is calculated as:

IC = -log(k/N)

In current implementations in other tools, there is an inconsistency of defining k and N. Please see
n_annotations() for explanation.

NA is assigned to terms with no item annotated.

IC_universal:

It measures the probability of a term getting full transmission from the root. Each term is associ-
ated with a p-value and the root has the p-value of 1.

For example, an intermediate term t has two parent terms parent1 and parent2, also assume
parentl has k1 children and parent2 has k2 children, assume a parent transmits information
equally to all its children, then respectively parent1 only transmits 1/k1 and parent2 only trans-
mits 1/k2 of its content to term t, or the probability of a parent to reach t is 1/k1 or 1/k2. Let’s
say p1 and p2 are the accumulated contents from the root to parnet1 and parent2 respectively
(or the probability of the two parent terms getting full transmission from root), then the proba-
bility of reaching t via a full transmission graph from parent1 is the multiplication of p1 and
1/k1, which is p1/k1, and same for p2/k2. Then, for term t, if getting transmitted from parent1
and parent?2 are independent, the probability of t (denoted as p_t) to get transmitted from both
parents is:

p_t = (p1/k1) * (p2/k2)

Since the two parents are the full set of t’s parents, p_t is the probability of t getting full trans-
mission from root. And the final information content is:

IC = -log(p_t)
Paper link: doi:10.1155/2012/975783.

IC_Zhang_2006:
It measures the number of ways from a term to reach leaf terms. E.g. in the following DAG:

a upstream
/1\
b | c
|/
d downstream

term a has three ways to reach leaf, which are a->b, a->d and a->c->d.

Let’s denote k as the number of ways for term t to reach leaves and N as the maximal value of k
which is associated to the root term, the information content is calculated as

IC = -log(k/N)

Log(N) - log(k)

https://doi.org/10.1155/2012/975783

54

term_IC

Paper link: doi:10.1186/147121057135.

IC_Seco_2004:
It is based on the number of offspring terms of term t. The information content is calculated as:

IC =1 - log(k+1)/log(N)

where k is the number of offspring terms of t, or you can think k+1 is the number of t’s offspring
terms plus itself. N is the total number of terms on the DAG.

Paper link: doi:10.5555/3000001.3000272.

IC_Zhou_2008:

It is a correction of IC_Seco_2004 which considers the depth of a term in the DAG. The informa-
tion content is calculated as:

IC = 0.5*%IC_Seco + 0.5*log(depth)/log(max_depth)

where depth is the depth of term t in the DAG, defined as the maximal distance from root.
max_depth is the largest depth in the DAG. So IC is composed with two parts: the numbers of
offspring terms and positions in the DAG.

Paper link: doi:10.1109/FGCNS.2008.16.

IC_Seddiqui_2010:

It is also a correction to IC_Seco_2004, but considers number of relations connecting a term (i.e.
number of parent terms and child terms). The information content is defined as:

(1-sigma)*IC_Seco + sigma*log((n_parents + n_children + 1)/log((total_edges + 1))

where n_parents and n_children are the numbers of parents and children of term t. The tuning
factor sigma is defined as

sigma = log(total_edges+1)/(log(total_edges) + log(total_terms))

where total_edges is the number of all relations (all parent-child relations) and total_terms is
the number of all terms in the DAG.

Paper link: doi:10.5555/1862330.1862343.

IC_Sanchez_2011:

It measures the average contribution of term t on leaf terms. First denote zeta as the number
of leaf terms that can be reached from term t (or t’s offspring that are leaves.). Since all t’s
ancestors can also reach t’s leaves, the contribution of t on leaf terms is scaled by n_ancestors
which is the number of t’s ancestor terms. The final information content is normalized by the
total number of leaves in the DAG, which is the possible maximal value of zeta. The complete
definition of information content is:

IC = -log((zeta/n_ancestor) / n_all_leaves)

Paper link: doi:10.1016/j.knosys.2010.10.001.

IC_Meng_2012:

It has a complex form which takes account of the term depth and the downstream of the term. The
first factor is calculated as:

https://doi.org/10.1186/1471-2105-7-135
https://doi.org/10.5555/3000001.3000272
https://doi.org/10.1109/FGCNS.2008.16
https://doi.org/10.5555/1862330.1862343
https://doi.org/10.1016/j.knosys.2010.10.001

term_IC 55

f1 = log(depth)/long(max_depth)
The second factor is calculated as:
f1 =1 - log(1 + sum_{x => t's offspring}(1/depth_x))/log(total_terms)

In the equation, the summation goes over t’s offspring terms.
The final information content is the multiplication of f1 and f2:

IC = f1 * f2

Paper link: http://article.nadiapub.com/IJGDC/vol5_no3/6.pdf.
There is one parameter correct. If it is set to TRUE, the first factor f1 is calculated as:

f1 = log(depth + 1)/long(max_depth + 1)
correct can be set as:

term_IC(dag, method = "IC_Meng_2012", control = list(correct = TRUE))

IC_Wang_2007:

Each relation is weighted by a value less than 1 based on the semantic relation, i.e. 0.8 for "is_a"
and 0.6 for "part_of". For a term t and one of its ancestor term a, it first calculates an "S-value"
which corresponds to a path from a to t where the accumulated multiplication of weights along
the path reaches maximal:

S(a->t) = max_{path}(prod_{node on the paty}(w))

Here max goes over all possible paths from a to t, and prod() multiplies edge weights in a certain
path.
The formula can be transformed as (we simply rewrite S(a->t) to S):

1/S = min(prod(1/w))
log(1/S) = log(min(prod(1/w)))
= min(sum(log(1/w)))

Since w< 1, log(1/w) is positive. According to the equation, the path (a—>...->t) is actually
the shortest path from a to t by taking log(1/w) as the weight, and 1og(1/S) is the weighted
shortest distance.

If S(a->t) can be thought as the maximal semantic contribution from a to t, the information
content is calculated as the sum from all t’s ancestors (including t itself):

IC = sum_{a in t's ancestors + t}(S(a->t))

Paper link: doi:10.1093/bioinformatics/btm087.

The contribution of different semantic relations can be set with the contribution_factor pa-
rameter. The value should be a named numeric vector where names should cover the relations
defined in relations set in create_ontology_DAG(). For example, if there are two relations
"relation_a" and "relation_b" set in the DAG, the value for contribution_factor can be set as:

term_IC(dag, method = "IC_Wang",
control = list(contribution_factor = c("relation_a"”" = 0.8, "relation_b"” =0.6)))

Note the IC_Wang_2007 method is normally used within the Sim_Wang_2007 semantic simi-
larity method.

http://article.nadiapub.com/IJGDC/vol5_no3/6.pdf
https://doi.org/10.1093/bioinformatics/btm087

56

Examples

parents

children

term_sim

- C(”a”, ”a”, ”b”, ”b", "C”, ndn)
- C(”b”, ”C”, "C”, ”d“, uen’ n,Fn)

annotation = list(

nan

a
np
nen
nqn
nan
nEn

)

= c("t1", "t2", "t3"),

= c("t3", "t4"),

= "t5",

= "t7",

= c("t4", "t5", "t6", "t7"),
= "t8"

dag = create_ontology_DAG(parents, children, annotation = annotation)
term_IC(dag, "IC_annotation”)

term_sim

Semantic similarity

Description

Semantic similarity

Usage

term_sim(dag, terms, method, control = list(), verbose = simona_opt$verbose)

Arguments
dag
terms
method
control

verbose

Value

An ontology_DAG object.

A vector of term names.

A term similarity method. All available methods are in all_term_sim_methods().
A list of parameters passing to individual methods. See the subsections.

Whether to print messages.

A numeric symmetric matrix.

Methods

Sim_Lin_1998:

The similarity between two terms a and b is calculated as the IC of their MICA term c¢ normalized
by the average of the IC of the two terms:

sim

IC(c)/((IC(a) + IC(b))/2)
2%IC(c)/(IC(a) + IC(b))

term_sim 57

Although any IC method can be used here, in more applications, it is normally used together with
the IC_annotation method.

Paper link: doi:10.5555/645527.657297.

Sim_Resnik_1999:
The IC method is fixed to IC_annotation.

The original Resnik similarity is the IC of the MICA term. There are three ways to normalize the
Resnik similarity into the scale of [0, 11:

1. Nunif
sim = IC(c)/log(N)

where N is the total number of items annotated to the whole DAG, i.e. number of items annotated
to the root. Then the IC of a term with only one item annotated is ~1og(1/N) = log(N)‘ which is
the maximal IC value in the DAG.

1. Nmax

IC_max is the maximal IC of all terms. If there is a term with only one item annotated, Nmax is
identical to the ‘Nunif* method.

sim = IC(c)/IC_max

1. Nunivers
The IC is normalized by the maximal IC of term a and b.
sim = IC(c)/max(IC(a), IC(b))

Paper link: doi:10.1613/jair.514, doi:10.1186/147121059S554, doi:10.1186/1471210511562, doi:10.1155/
2013/292063.

The normalization method can be set with the norm_method parameter:
term_sim(dag, terms, control = list(norm_method = "Nmax"))

Possible values for the norm_method parameter are "Nunif", "Nmax", "Nunivers" and "none".

Sim_FalTH_2010:
It is calculated as:

sim = IC(c)/(IC(a) + IC(b) - IC(c))

The relation between FalTH_2010 similarity and Lin_1998 similarity is:
sim_FalITH = sim_Lin/(2 - sim_Lin)

Paper link: doi:10.1007/9783642177460_39.

Sim_Relevance_2006:

The IC method is fixed to IC_annotation.

If thinking Lin_1998 is a measure of how close term a and b to their MICA term c, the relevance
method corrects it by multiplying a factor which considers the specificity of how c brings the
information. The factor is calculated as 1-p(c) where p(c) is the annotation-based probability
p(c) =k/N where k is the number of items annotated to ¢ and N is the total number of items
annotated to the DAG. Then the Relevance semantic similarity is calculated as:

https://doi.org/10.5555/645527.657297
https://doi.org/10.1613/jair.514
https://doi.org/10.1186/1471-2105-9-S5-S4
https://doi.org/10.1186/1471-2105-11-562
https://doi.org/10.1155/2013/292063
https://doi.org/10.1155/2013/292063
https://doi.org/10.1007/978-3-642-17746-0_39

58

term_sim

sim (1 - p(c)) * IC_Lin

= (1 - p(c)) * 2*IC(c)/(IC(a) + IC(b))
Paper link: doi:10.1186/147121057302.

Sim_SimIC_2010:
The IC method is fixed to IC_annotation.

The SimIC method is an improved correction method of the Relevance method because the latter
works bad when p(c) is very small. The SimIC correction factor for MICA term c is:

1 -1/(1 + IC(c))

Then the similarity is:

sim (1 -1/(1 + IC(c))) * IC_Lin

(1 -1/ + IC(c))) * 2xIC(c)/(IC(a) + IC(b))

Paper link: doi:10.48550/arXiv.1001.0958.

Sim_XGraSM_2013:
The IC method is fixed to IC_annotation.

Being different from the "Relevance” and "SimIC_2010" methods that only use the IC of the
MICA term, the XGraSM_2013 uses IC of all common ancestor terms of a and b. First it calculates
the mean IC of all common ancestor terms with positive IC values:

IC_mean = mean_t(IC(t)) where t is an ancestor of both a and b, and IC(t) > 0
then similar to the Lin_1998 method, normalize to the average IC of a and b:

sim = IC_mean*2/(IC(a) + IC(b))

Paper link: doi:10.1186/1471210514284.

Sim_EISI_2015:
The IC method is fixed to IC_annotation.

It also selects a subset of common ancestors of terms a and b. It only selects common ancestors
which can reach a or b via one of its child terms that does not belong to the common ancestors.
In other words, from the common ancestor, there exist a path where the information is uniquely
transmitted to a or b, not passing the other.

Then the mean IC of the subset common ancestors is calculated and normalized by the Lin_1998
method.

Paper link: doi:10.1016/j.gene.2014.12.062.

Sim_AIC_2014:

It uses the aggregate information content from ancestors. First define the semantic weight (Sw) of
aterm t in the DAG:

Sw = 1/(1 + exp(-1/IC(t)))

Then calculate the aggregation only in the common ancestors and the aggregationn in the ancestors
of the two terms a and b separatedly:

https://doi.org/10.1186/1471-2105-7-302
https://doi.org/10.48550/arXiv.1001.0958
https://doi.org/10.1186/1471-2105-14-284
https://doi.org/10.1016/j.gene.2014.12.062

term_sim 59

SV_{common ancestors} = sum_{t in common ancestors}(Sw(t))
SV_a = sum{a' in a's ancestors}(Sw(a'))
SV_b = sum{b' in b's ancestors}(Sw(b'))

The similarity is calculated as the ratio between the aggregation on the common ancestors and the
average on a’s ancestors and b’s ancestors separatedly.

sim = 2xSV_{common_ancestors}/(SV_a + SV_b)

Paper link: doi:10.1109/tcbb.2013.176.

Sim_Zhang_2006:
It uses the IC_Zhang_2006 1C method and the Lin_1998 method to calculate similarities:

sim = 2xIC_zhang(c)/(IC_zhang(a) + IC_zhang(b))

Sim_universal:
It uses the IC_universal IC method and the Nunivers method to calculate similarities:

sim = IC_universal(c)/max(IC_universal(a), IC_universal(b))

Sim_Wang_2007:

First, S-value of an ancestor term c on a term a (S(c->a)) is calculated (the definition of the
S-value can be found in the help page of term_IC()). Similar to the Sim_AIC_2014, aggregation
only to common ancestors, to a’s ancestors and to b’s ancestors are calculated.

SV_{common ancestors} = sum_{c in common ancestors}(S(c->a) + S(c->b))
SV_a = sum{a' in a's ancestors}(S(a'->a))
SV_b = sum{b' in b's ancestors}(S(b'->b))

Then the similarity is calculated as:
sim = SV_{common_ancestors}*2/(SV_a + SV_b)

Paper link: doi:10.1093/bioinformatics/btm087.

The contribution of different semantic relations can be set with the contribution_factor pa-
rameter. The value should be a named numeric vector where names should cover the relations
defined in relations set in create_ontology_DAG(). For example, if there are two relations
"relation_a" and "relation_b" set in the DAG, the value for contribution_factor can be set as:

term_sim(dag, terms, method = "Sim_Wang_2007",
control = list(contribution_factor = c("relation_a"”" = 0.8, "relation_b"” =0.6)))

Sim_GOGO_2018:

It is very similar as Sim_Wang_2007, but with a corrected contribution factor when calculating
the S-value. From a parent term to a child term, Sim_Wang_2007 directly uses a weight for the
relation between the parent and the child, e.g. 0.8 for "is_a" relation type and 0.6 for "part_of"
relation type. In Sim_GOGO_2018, the weight is also scaled by the total number of children of
that parent:

w=1/(c + nc) + w_0

https://doi.org/10.1109/tcbb.2013.176
https://doi.org/10.1093/bioinformatics/btm087

60

term_sim

where w_0 is the original contribution factor, nc is the number of child terms of the parent,
c is calculated to ensure that maximal value of w is no larger than 1, i.e. ¢ =max(w_0)/(1 -
max(w_@)), assuming minimal value of nc is 1. By default Sim_GOGO_2018 sets contribution
factor of 0.4 for "is_a" and 0.3 for "part_of", thenw =1/(2/3 + nc) + w_0.

Paper link: doi:10.1038/s4159801833219y.

The contribution of different semantic relations can be set with the contribution_factor pa-
rameter. The value should be a named numeric vector where names should cover the relations
defined in relations set in create_ontology_DAG(). For example, if there are two relations
"relation_a" and "relation_b" set in the DAG, the value for contribution_factor can be set as:

term_sim(dag, terms, method = "Sim_G0OG0O_2018",
control = list(contribution_factor = c("relation_a"” = 0.4, "relation_b"” =0.3)))

Sim_Rada_1989:
It is based on the distance between term a and b. It is defined as:

sim = 1/(1 + d(a, b))

The distance can be the shortest distance between a and b or the longest distance via the LCA
term.
Paper link: doi:10.1109/21.24528.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via NCA":

term_sim(dag, terms, method = "Sim_Rada_1989",
control = list(distance = "shortest_distances_via_NCA"))

Sim_Resnik_edge_2005:
It is also based on the distance between term a and b:

sim = 1 - d(a, b)/2/max_depth

where max_depth is the maximal depth (maximal distance from root) in the DAG. Similarly, d(a,
b) can be the shortest distance or the longest distance via LCA.

Paper link: doi:10.1145/1097047.1097051.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via_ NCA":

term_sim(dag, terms, method = "Sim_Resnik_edge_2005",
control = list(distance = "shortest_distances_via_NCA"))

Sim_Leocock_1998:

It is similar as the Sim_Resnik_edge_2005 method, but it applies log-transformation on the dis-
tance and the depth:

sim = 1 - log(d(a, b) + 1)/log(2*max_depth + 1)

Paper link: doi:10.1186/1471210513261.

There is a parameter distance which takes value of "longest_distances_via_LLCA" (the default)
or "shortest_distances_via_ NCA":

https://doi.org/10.1038/s41598-018-33219-y
https://doi.org/10.1109/21.24528
https://doi.org/10.1145/1097047.1097051
https://doi.org/10.1186/1471-2105-13-261

term_sim 61

term_sim(dag, terms, method = "Sim_Leocock_1998",
control = list(distance = "shortest_distances_via_NCA"))

Sim_WP_1994:
It is based on the depth of the LCA term c and the longest distance between term a and b:

sim = 2xdepth(c)/(len_c(a, b) + 2xdepth(c))

where len_c(a, b) is the longest distance between a and b via LCA c. The denominator in the
equation can also be written as:

len_c(a, b) + 2*depth(c) depth(c) + len(c, a) + depth(c) + len(c, b)

depth_c(a) + depth_c(b)

where depth_c(a) is the longest distance from root to a passing through c.
Paper link: doi:10.3115/981732.981751.

Sim_Slimani_2006:

It is a correction of the Sim_WP_1994 method. The correction factor for term a and b regarding
to their LCA t is:

CF(a, b) = (1-lambda)*(min(depth(a), depth(b)) - depth(c)) +
lambda/ (1 + abs(depth(a) - depth(b)))

lambda takes value of 1 if a and b are in ancestor-offspring relation, or else it takes 0.
Paper link: https://zenodo.org/record/1075130.

Sim_Shenoy_2012:
It is a correction of the Sim_WP_1994 method. The correction factor for term a and b is:

CF(a, b) = exp(-lambda*d(a, b)/max_depth)

lambda takes value of 1 if a and b are in ancestor-offspring relation, or else it takes 0. ‘d(a, b)
Paper link: doi:10.48550/arXiv.1211.4709.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via_NCA":

term_sim(dag, terms, method = "Sim_Leocock_1998",
control = list(distance = "shortest_distances_via_NCA"))

Sim_Pekar 2002:
It is very similar to the Sim_WP_1994 method:

sim = depth(c)/(len_c(a, b) + depth(c))

d(root, c)/(d(c, a) + d(c, b) + d(root, c))

where d(a, b) is the longest distance between a and b.
Paper link: https://aclanthology.org/C02-1090/.

Sim_Stojanovic_2001:
It is purely based on the depth of term a, b and their LCA c.

https://doi.org/10.3115/981732.981751
https://zenodo.org/record/1075130
https://doi.org/10.48550/arXiv.1211.4709
https://aclanthology.org/C02-1090/

62

term_sim

sim = depth(c)/(depth(a) + depth(b) - depth(c))

The similarity value might be negative because there is no restrction that the path from root to a
or b must pass c.

Paper link: doi:10.1145/500737.500762.

Sim_Wang_edge_2012:
It is calculated as:

sim = depth(c)*2/depth_c(a)/depth_c(b)

where depth_c(a) is the longest distance between root to a passing through c.
Paper link: doi:10.1186/1477595610s1s18.

Sim_Zhong_2002:
For a term x, it first calculates a "mile-stone" value as

m(x) = 0.5/2*depth(x)
The the distance bewteen term a and b via LCA term c is:

m(c) - m(a) + m(c) - m(b)
2xm(c) - m(a) - m(b)
1/2*depth(c) - 0.5/2*depth(a) - 0.5/2*depth(b)

D(c, a) + D(c, b)

We change the original depth(a) to let it go through LCA term ¢ when calculating the depth:

1/2*depth(c) - ©.5/2*depth(a) - 0.5/2*depth(b)
= 1/2*depth(c)- 0.5/2*(depth(c) + len(c, a)) - 0.5/2*(depth(c) + len(c, b))
= 1/2*depth(c) * (1 - 1/2*(len(c, a) + 1) - 1/2*(len(c, b) + 1))
= 2*-depth(c) * (1 - 2*-(len(c, a) + 1) - 2*-(len(c, b) + 1))

And the final similarity is 1 - distance:
sim = 1 - 2*-depth(c) * (1 - 2*-(len(c, a) + 1) - 2*-(len(c, b) + 1))

Paper link: doi:10.1007/3540454837_8.

There is a parameter depth_via_LCA that can be set to TRUE or FALSE. IF it is set to TRUE,
depth(a) is re-defined as should pass the LCA term c. If it is FALSE, it goes to the original
similarity definition in the paper and note the similarity might be negative.

term_sim(dag, terms, method = "Sim_Zhong_2002",
control = list(depth_via_LCA = FALSE))

Sim_AlMubaid_2006:

It also takes accout of the distance between term a and b, and the depth of the LCA term c in the
DAG. The distance is calculated as:

D(a, b) = log(1 + d(a, b)*x(max_depth - depth(c)))

Here d(a, b) can be the shortest distance between a and b or the longst distance via LCA c.

Then the distance is transformed into the similarity value scaled by the possible maximal and
minimal values of D(a, b) from the DAG:

https://doi.org/10.1145/500737.500762
https://doi.org/10.1186/1477-5956-10-s1-s18
https://doi.org/10.1007/3-540-45483-7_8

term_sim 63

D_max = log(1 + 2xmax_depth * max_depth)

And the minimal value of D(a, b) is zero when a is identical to b. Then the similarity value is
scaled as:

sim = 1 - D(a, b)/D_max

Paper link: doi:10.1109/IEMBS.2006.259235.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via NCA":

term_sim(dag, terms, method = "Sim_AlMubaid_2006",
control = list(distance = "shortest_distances_via_NCA"))

Sim_Li 2003:
It is similar to the Sim_AIMubaid_2006 method, but uses a non-linear form:

sim = exp(0.2*d(a, b)) * atan(@.6*depth(c))

where d(a, b) can be the shortest distance or the longest distance via LCA.
Paper link: doi:10.1109/TKDE.2003.1209005.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via_ NCA":

term_sim(dag, terms, method "Sim_Li_2003",
control = list(distance = "shortest_distances_via_NCA"))

Sim_RSS_2013:
The similarity is adjusted by the positions of term a, b and the LCA term c in the DAG. The
similarity is defined as:

sim = max_depth/(max_depth + d(a, b)) * alpha/(alpha + beta)

where d(a, b) is the distance between a and b which can be the shortest distance or the longest
distance via LCA.

In the tuning factor, alpha is the distance of LCA to root, which is depth(c). beta is the distance
to leaves, which is the minimal distance (or the minimal height) of term a and b:

alpha/(alpha + beta) = depth(c)/(depth(c) + minCheight(a), height(b)))

Paper link: doi:10.1371/journal.pone.0066745.

There is a parameter distance which takes value of "longest_distances_via_LCA" (the default)
or "shortest_distances_via_ NCA":

term_sim(dag, terms, method "Sim_RSS_2013",
control = list(distance = "shortest_distances_via_NCA"))

Sim_HRSS_2013:
It is similar as the Sim_RSS_2013 method, but it uses information content instead of the distance
to adjust the similarity.

It first defines the semantic distance between term a and b as the sum of the distance to their
MICA term c:

https://doi.org/10.1109/IEMBS.2006.259235
https://doi.org/10.1109/TKDE.2003.1209005
https://doi.org/10.1371/journal.pone.0066745

64

term_sim

D(a, b) = D(c, a) + D(c, b)
And the distance between an ancestor to a term is:

D(c, a) = IC(a) - IC(c) # if c is an ancestor of a
D(a, b) =D(c, a) + D(c, b) =1IC(a) + IC(b) - 2xIC(c) # if c is the MICA of a and b

Similarly, the similarity is also corrected by the position of MICA term and a and b in the DAG:
1/(1 + D(a, b)) * alpha/(alph + beta)

Now alpha is the IC of the MICA term:

alpha = IC(c)

And beta is the average of the maximal semantic distance of a and b to leaves.

beta = 0.5%x(IC(1_a) - IC(a) + IC(1_b) - IC(b))

where 1_a is the leaf that a can reach with the highest IC (i.e. most informative leaf), and so is
1 b.
Paper link: doi:10.1371/journal.pone.0066745.

Sim_Shen_2010:

It is based on the information content of terms on the path connecting term a and b via their MICA
term c.

Denote a list of terms a, ..., c, ..., b which are composed by the shortest path from a to c
and from b to c, the difference between a and b is the sum of 1/IC of the terms on the path:

sum_{x in the path}(1/IC(x))

Then the distance is scaled into [@, 1] by an arctangent tarnsformation:
atan(sum_{x in the path}(1/IC(x)))/(pi/2)

And finally the similarity is:

sim = 1 - atan(sum_{x in the path}(1/IC(x)))/(pi/2)

Paper link: doi:10.1109/BIBM.2010.5706623.

Sim_SSDD_2013:

It is similar as the Sim_Shen_2010 which also sums content along the path passing through LCA
term. Instead of summing the information content, the Sim_SSDD_2013 sums up a so-called
"T-value":

sim = 1 - atan(sum_{x in the path}(T(x)))/(pi/2)

Each term has a T-value and it measures the semantic content a term averagely inherited from its
parents and distributed to its offsprings. The T-value of root is 1. Assume a term t has two parents
p1 and p1, The T-value for term t is averaged from its

W1xT(p1) + w2*T(p2))/2

https://doi.org/10.1371/journal.pone.0066745
https://doi.org/10.1109/BIBM.2010.5706623

term_sim 65

Since the parent may have other child terms, a factor w1 or w2 is multiplied to T(p1) and T(p2).
Taking p1 as an example, it has n_p offsprings (including itself) and t has n_t offsprings (includ-
ing itself), this means n_t/n_p of information is transmitted from p1 to downstream via t, thus
w1 is defined as n_t/n_p.

Paper link: doi:10.1016/j.ygeno.2013.04.010.

Sim_Jiang_1997:
First semantic distance between term a and b via MICA term c is defined as:

D(a, b) = IC(a) + IC(b) - 2*xIC(c)

Then there are several normalization method to change the distance to similarity and to scale it
into the range of [0, 1].

* max: 1 -D(a, b)/2/IC_max

* Couto: min(1, D(a, b)/IC_max)

e Lin: 1 -D(a, b)/(IC(a) + IC(b)) which is the same as the Sim_Lin_1998 method

e Garla: 1 - log(D(a, b) +1)/1log(2*xIC_max + 1)

* log-Lin: 1 - log(D(a, b) + 1)/1log(IC(a) + IC(b) + 1)

e Rada: 1/(1 +D(a, b))
Paper link: https://aclanthology.org/097-1002/.
There is a parameter norm_method which takes value in "max", "Couto", "Lin", "Carla", "log-
Lin", "Rada":

term_sim(dag, terms, method = "Sim_Jiang_1997",
control = list(norm_method = "Lin"))

Sim_Kappa:

Denote two sets A and B as the items annotated to term a and b. The similarity value is the kappa
coeffcient of the two sets.

The universe or the background can be set via parameter anno_universe:

term_sim(dag, terms, method = "Sim_kappa”,
control = list(anno_universe = ...))

Sim_Jaccard:
Denote two sets A and B as the items annotated to term a and b. The similarity value is the Jaccard
coeffcient of the two sets, defined as length(intersect(A, B))/length(union(A, B)).

The universe or the background can be set via parameter anno_universe:

term_sim(dag, terms, method = "Sim_Jaccard”,
control = list(anno_universe = ...))
Sim_Dice:

Denote two sets A and B as the items annotated to term a and b. The similarity value is the Dice
coeffcient of the two sets, defined as 2xlength(intersect(A, B))/(length(A) + length(B)).

The universe or the background can be set via parameter anno_universe:

term_sim(dag, terms, method = "Sim_Dice"”,
control = list(anno_universe = ...))

https://doi.org/10.1016/j.ygeno.2013.04.010
https://aclanthology.org/O97-1002/
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Cohen%27s_kappa

66

[,ontology_DAG,ANY,ANY,missing-method

Sim_Overlap:
Denote two sets A and B as the items annotated to term a and b. The similarity value is the overlap
coeffcient of the two sets, defined as length(intersect(A, B))/min(length(A), length(B)).

The universe or the background can be set via parameter anno_universe:

term_sim(dag, terms, method = "Sim_Overlap”,
control = list(anno_universe = ...))

Sim_Ancestor:
Denote S_a and S_b are two sets of ancestor terms of term a and b (including a and b), the
semantic similarity is defined as:

length(intersect(S_a, S_b))/length(union(S_a, S_b))

term_sim(dag, terms, method = "Sim_Ancestor")

Examples

parents = c(”a”, "a", "b", "b", "c", "d")
Children = C(”b”, ”C”, ”C”, Hd", Ile”’ ”.F”)
annotation = list(

"a" = 1:3,
"o = 3:4,
"c" =5,
"dr =7,
e = 4:7,
"Fro= 8

)

dag = create_ontology_DAG(parents, children, annotation = annotation)
term_sim(dag, dag_all_terms(dag), method = "Sim_Lin_1998")

[,ontology_DAG,ANY,ANY,missing-method

Create sub-DAGs

Description

Create sub-DAGs

Usage

S4 method for signature 'ontology_DAG,ANY,ANY,missing'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ontology_DAG,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ontology_DAG,ANY,missing,missing'’
x[i, j, ..., drop = FALSE]

S4 method
x[i, 3, ...,

S4 method
x[i, 3, ...,

S4 method
x[i, 3, ...,

S4 method
x[i, 3, ...,

S4 method
x[i, 3, ...,

S4 method

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature

x[[i, 3, ...]1]

Arguments

X

i

drop

Details

[;ontology_DAG,ANY,ANY,missing-method

'ontology_DAG,ANY,missing, ANY'

'ontology_DAG,missing,ANY,missing'

'ontology_DAG,missing,ANY,ANY'

'ontology_DAG,missing,missing,missing'’

'ontology_DAG,missing,missing, ANY'

'ontology_DAG, character,missing'

An ontology_DAG object.

67

A single term name. The value should be a character vector. It corresponds to

the roots.

A single term name. The value should be a character vector. It corresponds to

the leaves.
Ignored.
Ignored.

It returns a sub-DAG taking node i as the root and j as the leaves. If i is a vector, a super root will

be added.

Value

An ontology_DAG object.

Examples

parents = c(”a”, "a", "b", "b", "c", "d")
children = C(“b”, IICH’ IVCII, Vldll’ Ilell’ Ilf‘”)
dag = create_ontology_DAG(parents, children)

dag["b"]
dag[[llbll]]
dag[”b", "f"]
dagl[, "f"]

Index

[,ontology_DAG, ANY,ANY, ANY-method annotated_terms(), 27

([,ontology_DAG,ANY,ANY,missing-methodyg_children (n_offspring), 41

66 avg_parents (n_offspring), 41
[,ontology_DAG,ANY,ANY,missing-method,

66 CA_terms (MICA_term), 37
[,ontology_DAG,ANY,missing, ANY-method ComplexHeatmap: :Legend(), 11

([,ontology_DAG,ANY,ANY,missing-methodheate_ontology_DAG, 4

66 create_ontology_DAG(), 9, 19, 34, 45, 55,
[,ontology_DAG,ANY,missing,missing-method 59, 60

([’O”tOIOgY—DAG’ANY’ANY’missi”g_methog%eate_ontology_DAG_From_GO_db,6

66 create_ontology_DAG_from_GO_db(), 45

[,ontology_DAG,missing, ANY,ANY-method create_ontology_DAG_from_igraph, 7
([,ontology_DAG,ANY,ANY,missing-method),
66
[,ontology_DAG,missing,ANY,missing-method
([,ontology_DAG,ANY,ANY,missing-metho
66

dag_add_random_children
(dag_random_tree), 22
%ég_all_terms,S

.. .. dag_all_terms(), 11,24
tol DAG ANY-method
[,ontology_DAG,missing,missing, metho ¢ ancestors (dag._parents), 21

,ontology_DAG, ANY,ANY,missing-method), .
g% 8y g ag_as_dendrogram (dag_treelize), 26
[,ontology_DAG,missing,missing,missing-methoddag‘as‘POT(dag‘CNCUIar‘VlZ)’9
g_as_igraph, 9

([,ontology_DAG,ANY,ANY,missing—methog, -
66 ag_children (dag_parents), 21

[[,ontology_DAG,character,missing-method dag_circular_viz, 9

([,ontology_DAG,ANY,ANY,missing—me’cho&l,g—depth’12
66 ag_distinct_ancestors, 13
dag_enrich_on_genes

add_annotation, 3 (dag_enrich_on_items), 14
all_group_sim_methods dag_enr‘ich_on_items, 14

(all_term_IC_methods), 3 dag_enrich_on_offsprings, 15
all_group_sim_methods(), 27 dag_enrich_on_offsprings(), 17
all_term_IC_methods, 3 dag_enrich_on_offsprings_by_permutation,
all_term_IC_methods(), 38, 52 17
all_term_sim_methods dag_filter, 18

(all_term_IC_methods), 3 dag_graphviz (dag_circular_viz), 9
all_term_sim_methods(), 56 dag_has_terms, 19
alternative_GO_terms dag_height (dag_depth), 12

(create_ontology_DAG_from_GO_db), dag_is_leaf (dag_root), 24

6 dag_leaves (dag_root), 24
annotated_terms (term_annotations), 51 dag_leaves(), 24

68

INDEX

dag_longest_dist_from_ancestors

(dag_longest_dist_to_offspring),

20
dag_longest_dist_to_offspring, 20
dag_n_leaves (dag_all_terms), 8
dag_n_relations (dag_all_terms), 8
dag_n_terms (dag_all_terms), 8
dag_offspring (dag_parents), 21
dag_parents, 21
dag_permutate_children (dag_reorder), 23
dag_random (dag_random_tree), 22
dag_random_tree, 22
dag_reorder, 23
dag_root, 24
dag_shiny, 25
dag_shortest_dist_from_ancestors

(dag_longest_dist_to_offspring),

20
dag_shortest_dist_from_root

(dag_depth), 12
dag_shortest_dist_to_leaves

(dag_depth), 12
dag_shortest_dist_to_offspring

(dag_longest_dist_to_offspring),

20
dag_siblings (dag_parents), 21
dag_treelize, 26
DiagrammeR: :grviz(), 11

grid::grid.newpage(), 11
group_sim, 27

has_annotation (n_annotations), 40

igraph::igraph, 7,9
import_obo, 33

import_ontology (import_obo), 33
import_owl (import_obo), 33
import_ttl (import_obo), 33

LCA_depth (MICA_term), 37

LCA_term (MICA_term), 37

longest_distances_directed
(shortest_distances_via_NCA),
48

longest_distances_via_LCA
(shortest_distances_via_NCA),
48

max_ancestor_id (MICA_term), 37

69

max_ancestor_path_sum (MICA_term), 37

max_ancestor_v (MICA_term), 37

mcols,ontology_DAG-method, 36

mcols<-,ontology_DAG-method
(mcols,ontology_DAG-method), 36

method_param, 37

MICA_IC (MICA_term), 37

MICA_term, 37

n_ancestors (n_offspring), 41
n_annotations, 40
n_annotations(), 53

n_children (n_offspring), 41
n_connected_leaves (n_offspring), 41
n_offspring, 41

n_parents (n_offspring), 41

NCA_term (MICA_term), 37

ontology_chebi (ontology_kw), 43
ontology_DAG (ontology_DAG-class), 42
ontology_DAG-class, 42
ontology_go (ontology_kw), 43
ontology_hp (ontology_kw), 43
ontology_kw, 43

ontology_pw (ontology_kw), 43
ontology_rdo (ontology_kw), 43
ontology_reactome (ontology_kw), 43
ontology_vt (ontology_kw), 43
org.Hs.eg.db::org.Hs.eg.db, 7

partition_by_level, 45

partition_by_level(), 10

partition_by_size (partition_by_level),
45

partition_by_size(), 10

print.ontology_tree (dag_treelize), 26

print.print_source, 46

random_items (random_terms), 47
random_terms, 47

shortest_distances_directed
(shortest_distances_via_NCA),
48
shortest_distances_via_NCA, 48
shortest_distances_via_NCA(), 39
show,ontology_DAG-method, 49
simona_opt, 49

term_annotations, 51

. INDEX

term_IC, 52
term_IC(), 59
term_sim, 56

UniProtKeywords: :load_keyword_genesets(),
45

	add_annotation
	all_term_IC_methods
	create_ontology_DAG
	create_ontology_DAG_from_GO_db
	create_ontology_DAG_from_igraph
	dag_all_terms
	dag_as_igraph
	dag_circular_viz
	dag_depth
	dag_distinct_ancestors
	dag_enrich_on_items
	dag_enrich_on_offsprings
	dag_enrich_on_offsprings_by_permutation
	dag_filter
	dag_has_terms
	dag_longest_dist_to_offspring
	dag_parents
	dag_random_tree
	dag_reorder
	dag_root
	dag_shiny
	dag_treelize
	group_sim
	import_obo
	mcols,ontology_DAG-method
	method_param
	MICA_term
	n_annotations
	n_offspring
	ontology_DAG-class
	ontology_kw
	partition_by_level
	print.print_source
	random_terms
	shortest_distances_via_NCA
	show,ontology_DAG-method
	simona_opt
	term_annotations
	term_IC
	term_sim
	[,ontology_DAG,ANY,ANY,missing-method
	Index

