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addPerCellQCMetrics Add QC metrics to a SummarizedExperiment

Description

Convenient utilities to compute QC metrics and add them to a SummarizedExperiment’s row or
column metadata.

Usage
addPerCellQCMetrics(x, subsets = NULL, ..., subset.prefix = "subsets_")
addPerFeatureQCMetrics(x, ...)
addPerCellQC(x, subsets = NULL, ..., subset.prefix = "subsets_")
addPerFeatureQC(x, ...)

Arguments
X A SummarizedExperiment object or one of its subclasses.
subsets A named list containing one or more vectors (a character vector of feature

names, a logical vector, or a numeric vector of indices), used to identify interest-
ing feature subsets such as ERCC spike-in transcripts or mitochondrial genes.

For addPerCellQCMetrics, further arguments to pass to perCellQCMetrics.
For addPerFeatureQCMetrics, further arguments to pass to perFeatureQCMetrics.

subset.prefix String containing the prefix for the names of the columns of rowData that spec-
ify which genes belong to each subset. If NULL, these subset identity columns
are not added to the rowData.

Details

These functions are simply wrappers around perCellQCMetrics and perFeatureQCMetrics, re-
spectively. The computed QC metrics are automatically appended onto the existing colData or
rowData. No protection is provided against duplicated column names.

addPerCellQC and addPerFeatureQC are exactly the same functions, sans the Metrics at the end
of their names. They were added in the tempestuous youth of this package when naming was fast
and loose. These can be considered to be soft-deprecated in favor of the longer forms.

Value

x is returned with the QC metrics added to the row or column metadata.

Author(s)

Aaron Lun, Lluis Revilla Sancho



See Also

perCellQCMetrics and perFeatureQCMetrics, which do the actual work.

Examples

example_sce <- mockSCE()

example_sce <- addPerCellQCMetrics(

)

example_sce,

aggregateAcrossCells

subsets = list(groupl = 1:5, group2 = c("Gene_0001", "Gene_2000"))

colData(example_sce)
rowData(example_sce)

example_sce <- addPerFeatureQCMetrics(example_sce)

rowData(example_sce)

aggregateAcrossCells

Aggregate data across groups of cells

Description

Sum counts or average expression values for each feature across groups of cells, while also aggre-

gating values in the colData and other fields in a SummarizedExperiment.

Usage

aggregateAcrossCells(x,

## S4 method for signature 'SummarizedExperiment'

aggregateAcrossCells(

X,

ids,

statistics = NULL,
average = NULL,

suffix = FALSE,
subset.row = NULL,
subset.col = NULL,
store.number = "ncells”,
coldata.merge = NULL,

use.assay.type = "counts'’

subset_row = NULL,
subset_col = NULL,
store_number = "ncells”,
coldata_merge = NULL,
use_exprs_values = NULL

)

"
’
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## S4 method for signature 'SingleCellExperiment'’

aggregateAcrossCells(
X,
ids,
subset.row = NULL,
subset.col = NULL,
use.altexps = FALSE,
use.dimred = TRUE,
dimred.stats = NULL,
suffix = FALSE,
subset_row = NULL,
subset_col = NULL,
use_altexps = NULL,
use_dimred = NULL

)
Arguments

X A SingleCellExperiment or SummarizedExperiment containing one or more ma-
trices of expression values to be aggregated; possibly along with colData, reducedDims
and altExps elements.
For the generic, further arguments to be passed to specific methods.
For the SummarizedExperiment method, further arguments to be passed to summarizeAssayByGroup.
For the SingleCellExperiment method, arguments to be passed to the Summa-
rizedExperiment method.

ids A factor (or vector coercible into a factor) specifying the group to which each
cell in x belongs. Alternatively, a DataFrame of such vectors or factors, in which
case each unique combination of levels defines a group.

statistics Character vector specifying the type of statistics to be computed, see ?summarizeAssayByGroup.
If not specified, defaults to "sum".

average Deprecated, specifies whether to compute the average - use statistics="mean"
instead. Only used if statistics=NULL.

suffix Logical scalar indicating whether to always suffix the assay name with the statis-
tic type.

subset.row An integer, logical or character vector specifying the features to use. If NULL,
defaults to all features.

subset.col An integer, logical or character vector specifying the cells to use. Defaults to all

cells with non-NA entries of ids.

store.number String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.

coldata.merge A named list of functions specifying how each column metadata field should
be aggregated. Each function should be named according to the name of the
column in colData to which it applies. Alternatively, a single function can be
supplied, see below for more details.
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use.assay.type A character or integer vector specifying the assay(s) of x containing count ma-
trices.

subset_row, subset_col, store_number, use_exprs_values, use_altexps,

use_dimred, coldata_merge
Soft deprecated equivalents to the arguments described above.

use.altexps Deprecated, use applySCE instead.

use.dimred Logical scalar indicating whether aggregation should be performed for dimen-
sionality reduction results. Alternatively, a character or integer vector specifying
the dimensionality reduction results to be aggregated.

dimred.stats A character vector specifying how the reduced dimensions should be aggregated
by group. This can be one or more of "mean” and "median”.

Details

This function summarizes the assay values in x for each group in ids using summarizeAssayByGroup

while also aggregating metadata across cells in a “sensible” manner. This makes it useful for obtain-

ing an aggregated SummarizedExperiment during an analysis session; in contrast, summarizeAssayByGroup
is more lightweight and is better for use inside other functions.

Aggregation of the colData is controlled using functions in coldata.merge. This can either be:

* A function that takes a subset of entries for any given column metadata field and returns a
single value. This can be set to, e.g., sum or median for numeric covariates, or a function that
takes the most abundant level for categorical factors.

* A named list of such functions, where each function is applied to the column metadata field
after which it is named. Any field that does not have an entry in coldata.merge is “unspec-
ified” and handled as described below. A list element can also be set to FALSE, in which case
no aggregation is performed for the corresponding field.

* NULL, in which case all fields are considered to be unspecified.

* FALSE, in which case no aggregation of column metadata is performed.

For any unspecified field, we check if all cells of a group have the same value. If so, that value is
reported, otherwise a NA is reported for the offending group.

By default, each matrix values is returned with the same name as the original per-cell matrix from
which it was derived. If statistics is of length greater than 1 or suffix=TRUE, the names of all
aggregated matrices are suffixed with their type of aggregate statistic.

If ids is a DataFrame, the combination of levels corresponding to each column is also reported in
the column metadata. Otherwise, the level corresponding to each column is reported in the ids
column metadata field as well as in the column names.

If x is a SingleCellExperiment, entries of reducedDims specified by use.dimred are averaged
across cells. This assumes that the average of low-dimensional coordinates has some meaning
for a group of cells but the sum does not. We can explicitly specify computation of the "mean” or
"median” (or both) with dimred. stats. If dimred. stats is of length greater than 1 or suffix=TRUE,
the name of each matrix in the output reducedDims is suffixed with the type of average.

If x is a SingleCellExperiment, any alternative Experiments are removed from the output object.
Users should call applySCE to repeat the same aggregation on the alternative Experiments if this is
desired - see Examples.
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Value

A SummarizedExperiment of the same class of x is returned containing summed/averaged matrices
generated by summarizeAssayByGroup on all assays in use.assay.type. Column metadata are
also aggregated according to the rules in coldata.merge, see Details.

Author(s)

Aaron Lun

See Also

summarizeAssayByGroup, which does the heavy lifting at the assay level.

Examples

example_sce <- mockSCE()

ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)
out <- aggregateAcrossCells(example_sce, ids)

out

batches <- sample(1:3, ncol(example_sce), replace=TRUE)

out2 <- aggregateAcrossCells(example_sce,
DataFrame(label=ids, batch=batches))

out2

# Using another column metadata merge strategy.

example_sce$stuff <- runif(ncol(example_sce))

out3 <- aggregateAcrossCells(example_sce, ids,
coldata_merge=list(stuff=sum))

# Aggregating across the alternative Experiments as well.
out4 <- applySCE(example_sce, aggregateAcrossCells, ids=ids)
assay(altExp(out4))[1:10,]

aggregateAcrossFeatures
Aggregate feature sets in a SummarizedExperiment

Description

Sum together expression values (by default, counts) for each feature set in each cell of a Summa-
rizedExperiment object.

Usage

aggregateAcrossFeatures(
X)
ids,
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use.assay.type = "counts”,
use_exprs_values = NULL

)

Arguments

X A SummarizedExperiment containing an expression matrix.

ids A factor of length nrow(x), specifying the set to which each feature in x belongs.

Alternatively, a list of integer or character vectors, where each vector specifies
the indices or names of features in a set. Logical vectors are also supported.

Further arguments to be passed to sumCountsAcrossFeatures.

use.assay.type A character or integer vector specifying the assay(s) of x containing expression
matrices.

use_exprs_values
Soft-deprecated equivalent of use.assay. type.

Value

A SummarizedExperiment of the same class as x is returned, containing summed matrices generated
by sumCountsAcrossFeatures on all assays in use.assay. type.

If ids is a factor, row metadata is retained for the first instance of a feature from each set in ids.
This behavior assumes that ids specifies duplicates of the same gene, such that the first instance is
a reasonable choice.

If ids is a list, row metadata is simply discarded. This behavior assumes that ids specifies gene
sets such that any existing gene-level metadata is meaningless.

Author(s)

Aaron Lun

See Also

sumCountsAcrossFeatures, which does the heavy lifting.

Examples

example_sce <- mockSCE()

ids <- sample(LETTERS, nrow(example_sce), replace=TRUE)
aggr <- aggregateAcrossFeatures(example_sce, ids)

aggr
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calculateAverage

Calculate per-feature average counts

Description

Calculate the average count for each feature after normalizing observations using per-cell size fac-

tors.

Usage

calculateAverage(x, ...)

## S4 method for signature 'ANY'
calculateAverage(

X,
size.factors
subset.row =

= NULL,
NULL,

BPPARAM = SerialParam(),

size_factors
subset_row =

= NULL,
NULL

## S4 method for signature 'SummarizedExperiment'’
calculateAverage(x, ..., assay.type = "counts”, exprs_values = NULL)

## S4 method for signature 'SingleCellExperiment’
calculateAverage(x, size.factors = NULL, ...)

Arguments

X

size.factors

subset.row

BPPARAM

A numeric matrix of counts where features are rows and columns are cells.
Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

For the generic, arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

A numeric vector containing size factors. If NULL, these are calculated or ex-
tracted from x.

A vector specifying the subset of rows of object for which to return a result.

A BiocParallelParam object specifying whether the calculations should be par-
allelized. Only relevant for parallelized rowSums(x), e.g., for DelayedMatrix
inputs.
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size_factors, subset_row, exprs_values
Soft-deprecated counterparts to the arguments above.

assay.type A string specifying the assay of x containing the count matrix.

Details

The size factor-adjusted average count is defined by dividing each count by the size factor and
taking the average across cells. All size factors are scaled so that the mean is 1 across all cells, to
ensure that the averages are interpretable on the same scale of the raw counts.

If no size factors are supplied, they are determined automatically:

* For count matrices and SummarizedExperiment inputs, the sum of counts for each cell is used
to compute a size factor via the librarySizeFactors function.

* For SingleCellExperiment instances, the function searches for sizeFactors from x. If none
are available, it defaults to library size-derived size factors.

If size_factors are supplied, they will override any size factors present in x.

Value
A numeric vector of average count values with same length as number of features (or the number
of features in subset_row if supplied).

Author(s)

Aaron Lun

See Also

librarySizeFactors, for the default calculation of size factors.

logNormCounts, for the calculation of normalized expression values.

Examples

example_sce <- mockSCE()
ave_counts <- calculateAverage(example_sce)
summary (ave_counts)

calculateCPM Calculate CPMs

Description

Calculate counts-per-million (CPM) values from the count data.
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Usage

calculateCPM(x, ...)

## S4 method for signature 'ANY'
calculateCPM(
X,
size.factors = NULL,
subset.row = NULL,
size_factors = NULL,
subset_row = NULL

## S4 method for signature 'SummarizedExperiment'’
calculateCPM(x, ..., assay.type = "counts”, exprs_values = NULL)

## S4 method for signature 'SingleCellExperiment'’

calculateCPM(x, size.factors = NULL, ...)
Arguments
X A numeric matrix of counts where features are rows and cells are columns.

Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

For the generic, arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size.factors A numeric vector containing size factors to adjust the library sizes. If NULL, the
library sizes are used directly.

subset.row A vector specifying the subset of rows of x for which to return a result.

size_factors, subset_row, exprs_values
Soft-deprecated counterparts to the arguments above.

assay.type A string or integer scalar specifying the assay of x containing the count matrix.

Details

If size.factors are provided or available in x, they are used to define the effective library sizes.
This is done by scaling all size factors such that the mean factor is equal to the mean sum of
counts across all features. The effective library sizes are then used as the denominator of the CPM
calculation.

Value

A numeric matrix of CPM values with the same dimensions as x (unless subset. row is specified).
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Author(s)

Aaron Lun

See Also

normalizeCounts, on which this function is based.

Examples

example_sce <- mockSCE()
cpm(example_sce) <- calculateCPM(example_sce)
str(cpm(example_sce))

calculateFPKM Calculate FPKMs

Description

Calculate fragments per kilobase of exon per million reads mapped (FPKM) values from the feature-
level counts.

Usage
calculateFPKM(x, lengths, ..., subset.row = NULL, subset_row = NULL)
Arguments
X A numeric matrix of counts where features are rows and cells are columns.
Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.
lengths Numeric vector providing the effective length for each feature in x.
Further arguments to pass to calculateCPM.
subset.row A vector specifying the subset of rows of x for which to return a result.
subset_row Soft-deprecated equivalent to the argument above.
Details

FPKMs are computed by dividing the CPMs by the effective length of each gene in kilobases. For
RNA-seq datasets, the effective length is best set to the sum of lengths of all exons; for nucleus
sequencing datasets, the effective length may instead be the entire width of the gene body.

Value

A numeric matrix of FPKM values with the same dimensions as x (unless subset. row is specified).
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Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

calculateCPM, for the initial calculation of CPM values.

Examples

example_sce <- mockSCE()

eff_len <- runif(nrow(example_sce), 500, 2000)
fout <- calculateFPKM(example_sce, eff_len)
str(fout)

calculateTPM Calculate TPMs

Description

Calculate transcripts-per-million (TPM) values for expression from feature-level counts.

Usage
calculateTPM(x, ...)

## S4 method for signature 'ANY'
calculateTPM(x, lengths = NULL, ...)

## S4 method for signature 'SummarizedExperiment'’
calculateTPM(x, ..., assay.type = "counts”, exprs_values = NULL)

## S4 method for signature 'SingleCellExperiment'’

calculateTPM(x, lengths = NULL, size.factors = NULL, ...)
Arguments
X A numeric matrix of counts where features are rows and cells are columns.

Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

For the generic, arguments to pass to specific methods.

For the ANY method, further arguments to pass to calculateCPM.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

lengths Numeric vector providing the effective length for each feature in x. Alternatively
NULL, see Details.
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assay.type A string specifying the assay of x containing the count matrix.
exprs_values Soft-deprecated equivalents to the arguments above.

size.factors A numeric vector containing size factors to adjust the library sizes. If NULL, the
library sizes are used directly.

Details

For read count data, this function assumes uniform coverage along the (effective) length of the
transcript. Thus, the number of transcripts for a gene is proportional to the read count divided by
the transcript length. Here, the division is done before calculation of the library size to compute per-
million values, where calculateFPKM will only divide by the length after library size normalization.

For UMI count data, this function should be run with lengths=NULL, i.e., no division by the effec-
tive length. This is because the number of UMIs is a direct (albeit biased) estimate of the number
of transcripts.

Value

A numeric matrix of TPM values with the same dimensions as x (unless subset. row is specified).

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

calculateCPM, on which this function is based.

Examples

example_sce <- mockSCE()

eff_len <- runif(nrow(example_sce), 500, 2000)

tout <- calculateTPM(example_sce, lengths = eff_len)
str(tout)

cleanSizeFactors Clean out non-positive size factors

Description

Coerce non-positive size factors (occasionally generated by pooledSizeFactors) to positive values
based on the number of detected features.
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Usage

cleanSizeFactors(
size.factors,
num.detected,
control = nls.control(warnOnly = TRUE),
iterations = 3,
nmads = 3,

Arguments

size.factors A numeric vector containing size factors for all libraries.

num.detected A numeric vector of the same length as size.factors, containing the number
of features detected in each library.

control Argument passed to nls to control the fitting, see ?nls.control for details.
iterations Integer scalar specifying the number of robustness iterations.
nmads Numeric scalar specifying the multiple of MADs to use for the tricube band-

width in robustness iterations.

Further arguments to pass to nls.

Details

This function will first fit a non-linear curve of the form
_aw
T 1+bx

Y

where y is num.detected and x is size. factors for all positive size factors. This is a purely em-
pirical expression, chosen because it is passes through the origin, is linear near zero and asymptotes
at large x. The fitting is done robustly with iterations of tricube weighting to eliminate outliers.

We then consider the number of detected features for all samples with non-positive size factors. This
is treated as y and used to solve for x based on the curve fitted above. The result is the “cleaned” size
factor, which must always be positive for y < a/b. For y > a/b, there is no solution so the cleaned
size factor is defined as the largest positive value in size.factors.

Negative size factors can occasionally be generated by pooledSizeFactors, see the documenta-
tion there for more details. By coercing them to positive values, we can proceed to normalization
and downstream analyses. Here, we use the number of detected features as this is more robust to
differential expression that would cause biases in the library size. Of course, it is not theoretically
guaranteed to yield the correct size factor, but a rough guess is better than a negative value.

Value

A numeric vector identical to size.factors but with all non-positive size factors replaced with
fitted values from the curve.

Author(s)

Aaron Lun
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See Also

computePooledFactors

pooledSizeFactors, which can occasionally generate negative size factors.

nls, which performs the curve fitting.

Examples

set.seed(100)
counts <- matrix(rpois(20000, lambda=1), ncol=100)

library(scuttle)
sf <- librarySizeFactors(counts)
ngenes <- colSums(counts > 0)

# Adding negative size factor values to be cleaned.

out <- cleanSizeFactors(c(-1,

head(out)

-1, sf), c(100, 50, ngenes))

computePooledFactors  Normalization by deconvolution

Description

Scaling normalization of single-cell RNA-seq data by deconvolving size factors from cell pools.

Usage

pooledSizeFactors(x, ...)

## S4 method for signature 'ANY'
pooledSizeFactors(

)

## S4 method for signature 'SummarizedExperiment

X,

sizes = seq(21, 101, 5),
clusters = NULL,
ref.clust = NULL,
max.cluster.size = 3000,
positive = TRUE,

scaling = NULL,

min.mean = NULL,
subset.row = NULL,
BPPARAM = SerialParam()

pooledSizeFactors(x, ..., assay.type = "counts")

computePooledFactors(x,

., assay.type = "counts")
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Arguments

X For pooledSizeFactors, a numeric matrix-like object of counts, where rows
are genes and columns are cells. Alternatively, a SummarizedExperiment object
containing such a matrix.

For computePooledFactors, a SingleCellExperiment object containing a count
matrix.

For the pooledSizeFactors generic, additional arguments to pass to each method.
For the SummarizedExperiment method, additional methods to pass to the ANY
method.

For the computePooledFactors function, additional arguments to pass to pooledSizeFactors.
sizes A numeric vector of pool sizes, i.e., number of cells per pool.
clusters An optional factor specifying which cells belong to which cluster, for deconvo-

lution within clusters.

ref.clust A level of clusters to be used as the reference cluster for inter-cluster normal-
ization.

max.cluster.size
An integer scalar specifying the maximum number of cells in each cluster.

positive A logical scalar indicating whether linear inverse models should be used to en-
force positive estimates.

scaling A numeric scalar containing scaling factors to adjust the counts prior to comput-
ing size factors.

min.mean A numeric scalar specifying the minimum (library size-adjusted) average count
of genes to be used for normalization.

subset.row An integer, logical or character vector specifying the features to use.

BPPARAM A BiocParallelParam object specifying whether and how clusters should be pro-

cessed in parallel.

assay.type A string specifying which assay values to use when x is a SummarizedExperi-
ment or SingleCellExperiment.

Value

For pooledSizeFactors, a numeric vector of size factors for all cells in x is returned.

For computePooledFactors, an object of class x is returned containing the vector of size factors
in sizeFactors(x).

Overview of the deconvolution method

The pooledSizeFactors function implements the deconvolution strategy of Lun et al. (2016) for
scaling normalization of sparse count data. Briefly, a pool of cells is selected and the expression
profiles for those cells are summed together. The pooled expression profile is normalized against an
average reference pseudo-cell, constructed by averaging the counts across all cells. This defines a
size factor for the pool as the median ratio between the count sums and the average across all genes.

The scaling bias for the pool is equal to the sum of the biases for the constituent cells. The same
applies for the size factors, as these are effectively estimates of the bias for each cell. This means
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that the size factor for the pool can be written as a linear equation of the size factors for the cells.
Repeating this process for multiple pools will yield a linear system that can be solved to obtain the
size factors for the individual cells.

In this manner, pool-based factors are deconvolved to yield the relevant cell-based factors. The
advantage is that the pool-based estimates are more accurate, as summation reduces the number of
stochastic zeroes and the associated bias of the size factor estimate. This accuracy feeds back into
the deconvolution process, thus improving the accuracy of the cell-based size factors.

Pooling with a sliding window

Within each cluster (if not specified, all cells are put into a single cluster), cells are sorted by
increasing library size and a sliding window is applied to this ordering. Each location of the window
defines a pool of cells with similar library sizes. This avoids inflated estimation errors for very
small cells when they are pooled with very large cells. Sliding the window will construct an over-
determined linear system that can be solved by least-squares methods to obtain cell-specific size
factors.

Window sliding is repeated with different window sizes to construct the linear system, as specified
by sizes. By default, the number of cells in each window ranges from 21 to 101. Using a range of
window sizes improves the precision of the estimates, at the cost of increased computational work.
The defaults were chosen to provide a reasonable compromise between these two considerations.
The default set of sizes also avoids rare cases of linear dependencies and unstable estimates when
all pool sizes are not co-prime with the number of cells.

The smallest window should be large enough so that the pool-based size factors are, on average,
non-zero. We recommend window sizes no lower than 20 for UMI data, though smaller windows
may be possible for read count data. The total number of cells should also be at least 100 for
effective pooling. (If cluster is specified, we would want at least 100 cells per cluster.)

If there are fewer cells than the smallest window size, the function will naturally degrade to per-
forming library size normalization. This yields results that are the same as librarySizeFactors.

Prescaling of the counts

The simplest approach to pooling is to simply add the counts together for all cells in each pool.
However, this is suboptimal as any errors in the estimation of the pooled size factor will propagate
to all component cell-specific size factors upon solving the linear system. If the error is distributed
evenly across all cell-specific size factors, the small size factors will have larger relative errors
compared to the large size factors.

To avoid this, we perform “prescaling” where we divide the counts by a cell-specific factor prior to
pooling. Ideally, the prescaling factor should be close to the true size factor for each cell. Solving
the linear system constructed with prescaled values should yield estimates that are more-or-less
equal across all cells. Thus, given similar absolute errors, the relative errors for all cells will also be
similar.

Obviously, the true size factor is unknown (otherwise why bother running this function?) so we use
the library size for each cell as a proxy instead. This may perform poorly in pathological scenarios
involving extreme differential expression and strong composition biases. In cases where a more
appropriate initial estimate is available, this can be used as the prescaling factor by setting the
scaling argument.
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One potential approach is to run computePooledFactors twice to improve accuracy. The first run is
done as usual and will yield an initial estimate of the size factor for each cell. In the second run, we
supply our initial estimates in the scaling argument to serve as better prescaling factors. Obviously,
this involves twice as much computational work so we would only recommend attempting this in
extreme circumstances.

Solving the linear system

The linear system is solved using the sparse QR decomposition from the Matrix package. However,
this has known problems when the linear system becomes too large (see https://stat.ethz.ch/
pipermail/r-help/2011-August/285855.html). In such cases, we set clusters to break up the
linear system into smaller, more manageable components that can be solved separately. The default
max.cluster.size will arbitrarily break up the cell population (within each cluster, if specified)
so that we never pool more than 3000 cells. Note that this involves appending a suffix like "-1" to
the end of each cluster’s name; this may appear on occasion in warnings or error messages.

Normalization within and between clusters

In general, it is more appropriate to pool more similar cells to avoid violating the assumption of a
non-DE majority of genes. This can be done by specifying the clusters argument where cells in
each cluster have similar expression profiles. Deconvolution is subsequently applied on the cells
within each cluster, where there should be fewer DE genes between cells. Any clustering can be
used, and only a rough clustering is required; computePooledFactors is robust to a moderate level
of DE within each cluster. The quickCluster function from the scran package is particularly
convenient for this purpose.

Size factors computed within each cluster must be rescaled for comparison between clusters. To do
so, we choose one cluster as a “reference” to which all others are normalized. Ideally, the reference
cluster should have a stable expression profile and not be extremely different from all other clusters.
The assumption here is that there is a non-DE majority between the reference and each other cluster
(which is still a weaker assumption than that required without clustering). The rescaling factor is
then defined by computing the ratios in averaged expression between each cluster’s pseudo-cell and
that of the reference, and taking the median of these ratios across all genes.

By default, the cluster with the most non-zero counts is used as the reference. This reduces the risk
of obtaining undefined rescaling factors for the other clusters, while improving the precision (and
also accuracy) of the median-based factor estimate. Alternatively, the reference can be manually
specified using ref.clust if there is prior knowledge about which cluster is most suitable, e.g.,
from PCA or t-SNE plots.

Each cluster should ideally be large enough to contain a sufficient number of cells for pooling.
Otherwise, computePooledFactors will fall back to library size normalization for small clusters.

If the estimated rescaling factor is not positive, a warning is emitted and the function falls back to
the ratio of sums between pseudo-cells (in effect, library size normalization). This can occasionally
happen when a cluster’s cells expresses a small subset of genes - this is not problematic for within-
cluster normalization, as non-expressed genes are simply ignored, but violates the assumption of a
non-DE majority when performing inter-cluster comparisons.


https://stat.ethz.ch/pipermail/r-help/2011-August/285855.html
https://stat.ethz.ch/pipermail/r-help/2011-August/285855.html
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Dealing with non-positive size factors

It is possible for the deconvolution algorithm to yield negative or zero estimates for the size factors.
These values are obviously nonsensical and computePooledFactors will raise a warning if they
are encountered. Negative estimates are mostly commonly generated from low quality cells with
few expressed features, such that most genes still have zero counts even after pooling. They may
also occur if insufficient filtering of low-abundance genes was performed.

To avoid these problematic size factors, the best solution is to increase the stringency of the filtering.

* If only a few negative/zero size factors are present, they are likely to correspond to a few low-
quality cells with few expressed features. Such cells are difficult to normalize reliably under
any approach, and can be removed by increasing the stringency of the quality control.

 If many negative/zero size factors are present, it is probably due to insufficient filtering of
low-abundance genes. This results in many zero counts and pooled size factors of zero, and
can be fixed by filtering out more genes with a higher min.mean - see “Gene selection” below.

Another approach is to increase in the number of sizes to improve the precision of the estimates.
This reduces the chance of obtaining negative/zero size factors due to estimation error, for cells
where the true size factors are very small.

As a last resort, positive=TRUE is set by default, which uses cleanSizeFactors to coerce any
non-positive estimates to positive values. This ensures that, at the very least, downstream analysis
is possible even if the size factors for affected cells are not accurate. Users can skip this step by
setting positive=FALSE to perform their own diagnostics or coercions.

Gene selection

If too many genes have consistently low counts across all cells, even the pool-based size factors
will be zero. This results in zero or negative size factor estimates for many cells. We avoid this
by filtering out low-abundance genes using the min.mean argument. This represents a minimum
threshold min.mean on the library size-adjusted average counts from calculateAverage.

By default, we set min.mean to 1 for read count data and 0.1 for UMI data. The exact values of
these defaults are more-or-less arbitrary and are retained for historical reasons. The lower threshold
for UMIs is motivated by (i) their lower count sizes, which would result in the removal of too many
genes with a higher threshold; and (ii) the lower variability of UMI counts, which results in a lower
frequency of zeroes compared to read count data at the same mean. We use the median library
size to detect whether the counts are those of reads (above 100,000) or UMIs (below 50,000) to
automatically set min.mean. Mean library sizes in between these two limits will trigger a warning
and revert to using min.mean=0.1.

If clusters is specified, filtering by min.mean is performed on the per-cluster average during
within-cluster normalization, and then on the (library size-adjusted) average of the per-cluster aver-
ages during between-cluster normalization.

Performance can generally be improved by removing genes that are known to be strongly DE be-
tween cells. This weakens the assumption of a non-DE majority and avoids the error associated with
DE genes. For example, we might remove viral genes when our population contains both infected
and non-infected cells. Of course, computePooledFactors is robust to some level of DE genes -
that is, after all, its raison d’etre - so one should only explicitly remove DE genes if it is convenient
to do so.
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Obtaining standard errors

Previous versions of computePooledFactors would return the standard error for each size factor
when errors=TRUE. This argument is no longer available as we have realized that standard error
estimation from the linear model is not reliable. Errors are likely underestimated due to correlations
between pool-based size factors when they are computed from a shared set of underlying counts.
Users wishing to obtain a measure of uncertainty are advised to perform simulations instead, using
the original size factor estimates to scale the mean counts for each cell. Standard errors can then be
calculated as the standard deviation of the size factor estimates across simulation iterations.

Author(s)

Aaron Lun and Karsten Bach

References

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

logNormCounts, which uses the computed size factors to compute normalized expression values.
librarySizeFactors and medianSizeFactors, for simpler approaches to computing size factors.

quickCluster from the scran package, to obtain a rough clustering for use in clusters.

Examples

library(scuttle)
sce <- mockSCE(ncells=500)

# Computing the size factors.

sce <- computePooledFactors(sce)

head(sizeFactors(sce))

plot(librarySizeFactors(sce), sizeFactors(sce), log="xy")

# Using pre-clustering.
library(scran)

preclusters <- quickCluster(sce)
table(preclusters)

sce2 <- computePooledFactors(sce, clusters=preclusters)
head(sizeFactors(sce2))
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computeSpikeFactors Normalization with spike-in counts

Description

Compute size factors based on the coverage of spike-in transcripts.

Usage
computeSpikeFactors(x, spikes, assay.type = "counts")
Arguments
X A SingleCellExperiment object containing spike-in transcripts in an altExps
entry.
Support for spike-in transcripts in the rows of x itself is deprecated.
spikes String or integer scalar specifying the alternative experiment containing the
spike-in transcripts.
assay. type A string indicating which assay contains the counts.
Details

The spike-in size factor for each cell is computed from the sum of all spike-in counts in each cell.
This aims to scale the counts to equalize spike-in coverage between cells, thus removing differences
in coverage due to technical effects like capture or amplification efficiency.

Spike-in normalization can be helpful for preserving changes in total RNA content between cells,
if this is of interest. Such changes would otherwise be lost when normalizing with methods that as-
sume a non-DE majority. Indeed, spike-in normalization is the only available approach if a majority
of genes are DE between two cell types or states.

Size factors are computed by applying librarySizeFactors to the spike-in count matrix. This
ensures that the mean of all size factors is unity for standardization purposes, if one were to compare
expression values normalized with sets of size factors (e.g., in modelGeneVarWithSpikes).

Users who want the spike-in size factors without returning a SingleCellExperiment object can sim-
ply call librarySizeFactors(altExp(x, spikes)), which gives the same result.
Value

A modified x is returned, containing spike-in-derived size factors for all cells in sizeFactors.

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122
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See Also

altExps, for the concept of alternative experiments.

librarySizeFactors, for how size factors are derived from library sizes.

Examples

library(scuttle)

sce <- mockSCE()

sce <- computeSpikeFactors(sce, "Spikes")
summary (sizeFactors(sce))

correctGroupSummary Correct group-level summaries

Description

Correct the summary statistic for each group for unwanted variation by fitting a linear model and
extracting the coefficients.

Usage
correctGroupSummary (
X’
group,
block,
transform = c("raw”, "log", "logit"),

offset = NULL,
weights = NULL,
subset.row = NULL

)
Arguments

X A numeric matrix containing summary statistics for each gene (row) and combi-
nation of group and block (column), computed by functions such as summarizeAssayByGroup
- see Examples.

group A factor or vector specifying the group identity for each column of x, usually
clusters or cell types.

block A factor or vector specifying the blocking level for each column of x, e.g., batch
of origin.

transform String indicating how the differences between groups should be computed, for
the batch adjustment.

offset Numeric scalar specifying the offset to use when difference="1log" (default

1) or difference="1ogit" (default 0.01).
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weights A numeric vector containing the weight of each combination, e.g., due to dif-
ferences in the number of cells used to compute each summary. If NULL, all
combinations have equal weight.

subset.row Logical, integer or character vector specifying the rows in x to use to compute
statistics.

Details

Here, we consider group-level summary statistics such as the average expression of all cells or the
proportion with detectable expression. These are easy to intepret and helpful for any visualizations
that operate on individual groups, e.g., heatmaps.

However, in the presence of unwanted factors of variation (e.g., batch effects), some adjustment is
required to ensure these group-level statistics are comparable. We cannot directly average group-
level statistics across batches as some groups may not exist in particular batches, e.g., due to the
presence of unique cell types in different samples. A direct average would be biased by variable
contributions of the batch effect for each group.

To overcome this, we use groups that are present across multiple levels of the unwanted factor in
multiple batches to correct for the batch effect. (That is, any level of groups that occurs for multiple
levels of block.) For each gene, we fit a linear model to the (transformed) values containing both
the group and block factors. We then report the coefficient for each group as the batch-adjusted
average for that group; this is possible as the fitted model has no intercept.

The default of transform="raw” will not transform the values, and is generally suitable for log-
expression values. Setting transform="1og" will perform a log-transformation after adding of fset
(default of 1), and is suitable for normalized counts. Setting transform="1logit" will perform a
logit transformation after adding offset (default of 0.01) - to the numerator and twice to the de-
nominator, to shrink to 0.5 - and is suitable for proportional data such as the proportion of detected
cells.

After the model is fitted to the transformed values, the reverse transformation is applied to the
coefficients to obtain a corrected summary statistic on the original scale. For transform="1log",
any negative values are coerced to zero, while for transform="1ogit", any values outside of [0,
1] are coerced to the closest boundary.

Value

A numeric matrix with number of columns equal to the number of unique levels in group. Each
column corresponds to a group and contains the averaged statistic across batches. Each row corre-
sponds to a gene in x (or that specified by subset. row if not NULL).

Author(s)

Aaron Lun

See Also

summarizeAssayByGroup, to generate the group-level summaries for this function.

regressBatches from the batchelor package, to remove the batch effect from per-cell expression
values.
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Examples

y <- matrix(rnorm(10000), ncol=1000)
group <- sample(10, ncol(y), replace=TRUE)
block <- sample(5, ncol(y), replace=TRUE)

summaries <- summarizeAssayByGroup(y, DataFrame(group=group, block=block),
statistics=c("mean"”, "prop.detected"))

# Computing batch-aware averages:
averaged <- correctGroupSummary(assay(summaries, "mean"),
group=summaries$group, block=summaries$block)

num <- correctGroupSummary(assay(summaries, "prop.detected”),
group=summaries$group, block=summaries$block, transform="logit")

downsampleBatches Downsample batches to equal coverage

Description

A convenience function to downsample all batches so that the average per-cell total count is the
same across batches. This mimics the downsampling functionality of cellranger aggr.

Usage
downsampleBatches(
batch = NULL,
block = NULL,
method = c("median”, "mean"”, "geomean"),
bycol = TRUE,
assay.type = 1
)
Arguments

Two or more count matrices, where each matrix has the same set of genes (rows)
and contains cells (columns) from a separate batch.

Alternatively, one or more entries may be a SummarizedExperiment, in which
case the count matrix is extracted from the assays according to assay. type.

A list containing two or more of these matrices or SummarizedExperiments can
also be supplied.

Alternatively, a single count matrix or SummarizedExperiment can be supplied.

This is assumed to contain cells from all batches, in which case batch should
also be specified.
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batch A factor of length equal to the number of columns in the sole entry of ...,
specifying the batch of origin for each column of the matrix. Ignored if there
are multiple entries in . . ..

block If ... contains multiple matrices or SummarizedExperiments, this should be a
character vector of length equal to the number of objects in . . ., specifying the
blocking level for each object (see Details).

Alternatively, if ... contains a single object, this should be a character vector
or factor of length specifing the blocking level for each cell in that object.

method String indicating how the average total should be computed. The geometric
mean is computed with a pseudo-count of 1.

bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis, see ?downsampleMatrix for more details.

assay. type String or integer scalar specifying the assay of the SummarizedExperiment con-
taining the count matrix, if any SummarizedExperiments are presentin . . ..

Details

Downsampling batches with strong differences in sequencing coverage can make it easier to com-
pare them to each other, reducing the burden on the normalization and batch correction steps. This
is especially true when the number of cells cannot be easily controlled across batches, resulting in
large differences in per-cell coverage even when the total sequencing depth is the same.

Generally speaking, the matrices in ... should be filtered so that only libraries with cells are
present. This is most relevant to high-throughput scRNA-seq experiments (e.g., using droplet-
based protocols) where the majority of libaries do not actually contain cells. If these are not filtered
out, downsampling will equalize coverage among the majority of empty libraries rather than among
cell-containing libraries.

In more complex experiments, batches can be organized into blocks where downsampling is per-
formed to the lowest-coverage batch within each block. This is most useful for larger datasets
involving technical replicates for the same biological sample. By setting block= to the biological
sample, we can equalize coverage across replicates within each sample without forcing all samples
to have the same coverage (e.g., to avoid loss of information if they are to be analyzed separately
anyway).

Value

If ... contains two or more matrices, a List of downsampled matrices is returned.

Otherwise, if . .. contains only one matrix, the downsampled matrix is returned directly.

Author(s)

Aaron Lun

See Also

downsampleMatrix, which is called by this function under the hood.
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Examples

scel <- mockSCE()
sce2 <- mockSCE()

# Downsampling for multiple batches in a single matrix:

combined <- cbind(scel, sce2)

batches <- rep(1:2, c(ncol(scel), ncol(sce2)))

downsampled <- downsampleBatches(counts(combined), batch=batches)
downsampled[1:10,1:10]

# Downsampling for multiple matrices:
downsampled2 <- downsampleBatches(counts(scel), counts(sce2))
downsampled?2

downsampleMatrix Downsample a count matrix

Description

Downsample a count matrix to a desired proportion, either on a whole-matrix or per-cell basis.

Usage
downsampleMatrix(x, prop, bycol = TRUE, sink = NULL)

Arguments
X An integer or numeric matrix-like object containing counts.
prop A numeric scalar or, if bycol=TRUE, a vector of length ncol(x). All values
should lie in [0, 1] specifying the downsampling proportion for the matrix or for
each cell.
bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis.
sink A RealizationSink object specifying the format of the downsampled matrix should
be returned.
Details

Given multiple batches of very different sequencing depths, it can be beneficial to downsample
the deepest batches to match the coverage of the shallowest batches. This avoids differences in
technical noise that can drive clustering by batch.

If bycol=TRUE, sampling without replacement is performed on the count vector for each cell. This
yields a new count vector where the total is equal to prop times the original total count. Each count
in the returned matrix is guaranteed to be smaller than the original value in x. Different proportions
can be specified for different cells by setting prop to a vector; in this manner, downsampling can be
used as an alternative to scaling for per-cell normalization.
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If bycol=FALSE, downsampling without replacement is performed on the entire matrix. This yields
a new matrix where the total count across all cells is equal to prop times the original total. The new
total count for each cell may not be exactly equal to prop times the original value, which may or
may not be more appropriate than bycol=TRUE for particular applications.

By default, the output format will be a dense matrix for an ordinary matrix x, and a sparse matrix for
any sparse format (i.e., if is_sparse(x) returns TRUE). This can be overridden to specify custom
formats with sink, e.g., for HDF5-backed matrices, which may be helpful for dealing with large
matrices where the downsampled result may not fit in memory.

Note that this function was originally implemented in the scater package as downsampleCounts,
was moved to the DropletUtils package as downsampleMatrix, and finally found a home here.

Value

An numeric matrix-like object of downsampled counts. This is a dgCMatrix unless sink is set, in
which case it is a DelayedMatrix.

Author(s)

Aaron Lun

See Also

downsampleReads in the DropletUtils package, which downsamples reads rather than observed
counts.

normalizeCounts, where downsampling can be used as an alternative to scaling normalization.

Examples

sce <- mockSCE()
sum(counts(sce))

downsampled <- downsampleMatrix(counts(sce), prop = 0.5, bycol=FALSE)
sum(downsampled)

downsampled2 <- downsampleMatrix(counts(sce), prop = 0.5, bycol=TRUE)
sum(downsampled?2)

fitLinearModel Fit a linear model

Description

No-frills fitting of a linear model to the rows of any matrix-like object with numeric values.
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Usage

fitLinearModel(
X,
design,
get.coefs = TRUE,
subset.row = NULL,
BPPARAM = SerialParam(),
rank.error = TRUE

)
Arguments
X A numeric matrix-like object where columns are samples (e.g., cells) and rows
are usually features (e.g., genes).
design A numeric design matrix with number of rows equal to ncol(x). This should
be of full column rank.
get.coefs A logical scalar indicating whether the coefficients should be returned.
subset.row An integer, character or logical vector indicating the rows of x to use for model
fitting.
BPPARAM A BiocParallelParam object specifying the parallelization backend to use.
rank.error Logical scalar indicating whether to throw an error when design is not of full
rank.
Details

This function is basically a stripped-down version of 1m. fit, made to operate on any matrix rep-
resentation (ordinary, sparse, whatever). It is generally intended for use inside other functions that
require robust and efficient linear model fitting.

If design is not of full rank and rank.error=TRUE, an error is raised. If rank.error=FALSE, NA
values are returned for all entries of the output list.

Value

If get.coefs=TRUE, a list is returned containing:

» coefficents, a numeric matrix of coefficient estimates, with one row per row of x (or a subset
thereof specified by subset. row) and one column per column of design.

* mean, a numeric vector of row means of x. Computed as a courtesy to avoid iterating over the
matrix twice.

* variance, a numeric vector of residual variances per row of x. Computed by summing the
residual effects from the fitted model.

* residual.df, an integer scalar containing the residual degrees of freedom for design.

Otherwise, if get.coefs=FALSE, the same list is returned without coefficients.

Author(s)

Aaron Lun



30

Examples

geometricSizeFactors

y <- Matrix::rsparsematrix(1000, 1000, 0.1)
design <- model.matrix(~runif(1000))

output <- fitlLinearModel(y, design)
head(output$coefficients)
head(output$variance)

geometricSizeFactors  Compute geometric size factors

Description

Define per-cell size factors from the geometric mean of counts per cell.

Usage

geometricSizeFactors(x, ...)

## S4 method for signature 'ANY'
geometricSizeFactors(

X’

subset.row

NULL,

pseudo.count = 1,
BPPARAM = SerialParam()

)
## S4 method for signature 'SummarizedExperiment'’
geometricSizeFactors(x, ..., assay.type = "counts")
computeGeometricFactors(x, ...)
Arguments
X For geometricSizeFactors, a numeric matrix of counts with one row per fea-

subset.row

ture and column per cell. Alternatively, a SummarizedExperiment or Single-
CellExperiment containing such counts.

For computeGeometricFactors, only a SingleCellExperiment containing a count
matrix is accepted.

For the geometricSizeFactors generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For computeGeometricFactors, further arguments to pass to geometricSizeFactors.

A vector specifying whether the size factors should be computed from a subset
of rows of x.
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pseudo.count Numeric scalar specifying the pseudo-count to add during log-transformation.

BPPARAM A BiocParallelParam object indicating how calculations are to be parallelized.
Only relevant when x is a DelayedArray object.

assay. type String or integer scalar indicating the assay of x containing the counts.

Details

The geometric mean provides an alternative measure of the average coverage per cell, in contrast
to the library size factors (i.e., the arithmetic mean) computed by librarySizeFactors. The main
advantage of the geometric mean is that it is more robust to large outliers, due to the slowly in-
creasing nature of the log-transform at large values; in the normalization context, this translates to
greater resistance to coposition biases from a few strongly upregulated genes.

On the other hand, the geometric mean is a poor estimator of the relative bias at low or zero counts.
This is because the scaling of the coverage applies to the expectation of the raw counts, so the
geometric mean only becomes an accurate estimator if the mean of the logs approaches the log of
the mean (usually at high counts). The arbitrary pseudo-count also has a bigger influence at low
counts.

As such, the geometric mean is only well-suited for deeply sequenced features, e.g., antibody-
derived tags.

Value

For geometricSizeFactors, a numeric vector of size factors is returned for all methods.

For computeGeometricFactors, x is returned containing the size factors in sizeFactors(x).

Author(s)

Aaron Lun

See Also

normalizeCounts and logNormCounts, where these size factors are used by default.

geometricSizeFactors and medianSizeFactors, for two other simple methods of computing
size factors.

Examples

example_sce <- mockSCE()
summary (geometricSizeFactors(example_sce))
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isOutlier Identify outlier values

Description

Convenience function to determine which values in a numeric vector are outliers based on the
median absolute deviation (MAD).

Usage
isOutlier(
metric,
nmads = 3,
type = c("both”, "lower"”, "higher"),
log = FALSE,
subset = NULL,
batch = NULL,

share.medians = FALSE,
share.mads = FALSE,
share.missing = TRUE,
min.diff = NA,
share_medians = NULL,
share_mads = NULL,
share_missing = NULL,
min_diff = NULL

)
Arguments

metric Numeric vector of values.

nmads A numeric scalar, specifying the minimum number of MADs away from median
required for a value to be called an outlier.

type String indicating whether outliers should be looked for at both tails ("both"),
only at the lower tail ("lower") or the upper tail ("higher").

log Logical scalar, should the values of the metric be transformed to the log2 scale
before computing MADs?

subset Logical or integer vector, which subset of values should be used to calculate the
median/MAD? If NULL, all values are used.

batch Factor of length equal to metric, specifying the batch to which each observation

belongs. A median/MAD is calculated for each batch, and outliers are then
identified within each batch.

share.medians Logical scalar indicating whether the median calculation should be shared across
batches. Only used if batch is specified.

share.mads Logical scalar indicating whether the MAD calculation should be shared across
batches. Only used if batch is specified.
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share.missing Logical scalar indicating whether a common MAD/median should be used for
any batch that has no values left after subsetting. Only relevant when both batch
and subset are specified.

min.diff A numeric scalar indicating the minimum difference from the median to con-
sider as an outlier. Ignored if NA.

share_medians, share_mads, share_missing, min_diff
Soft-deprecated equivalents of the arguments above.

Details

Lower and upper thresholds are stored in the "thresholds” attribute of the returned vector. By
default, this is a numeric vector of length 2 for the threshold on each side. If type="1lower", the
higher limit is Inf, while if type="higher", the lower limit is -Inf.

If min.diff is not NA, the minimum distance from the median required to define an outlier is set as
the larger of nmads MADs and min.diff. This aims to avoid calling many outliers when the MAD
is very small, e.g., due to discreteness of the metric. If 1og=TRUE, this difference is defined on the
log2 scale.

If subset is specified, the median and MAD are computed from a subset of cells and the values are
used to define the outlier threshold that is applied to all cells. In a quality control context, this can
be handy for excluding groups of cells that are known to be low quality (e.g., failed plates) so that
they do not distort the outlier definitions for the rest of the dataset.

Missing values trigger a warning and are automatically ignored during estimation of the median and
MAD. The corresponding entries of the output vector are also set to NA values.

The outlier.filter class is derived from an ordinary logical vector. The only difference is that any
subsetting will not discard the "thresholds"”, which avoids unnecessary loss of information. Users
can simply call as.logical to convert this into a logical vector.

Value

An outlier.filter object of the same length as the metric argument. This is effectively a logical
vector specifying the observations that are considered as outliers. The chosen thresholds are stored
in the "thresholds” attribute.

Handling batches

If batch is specified, outliers are defined within each batch separately using batch-specific median
and MAD values. This gives the same results as if the input metrics were subsetted by batch and
isOutlier was run on each subset, and is often useful when batches are known a priori to have
technical differences (e.g., in sequencing depth).

If share.medians=TRUE, a shared median is computed across all cells. If share.mads=TRUE, a
shared MAD is computed using all cells (based on either a batch-specific or shared median, de-
pending on share.medians). These settings are useful to enforce a common location or spread
across batches, e.g., we might set share.mads=TRUE for log-library sizes if coverage varies across
batches but the variance across cells is expected to be consistent across batches.

If a batch does not have sufficient cells to compute the median or MAD (e.g., after applying
subset), the default setting of share.missing=TRUE will set these values to the shared median
and MAD. This allows us to define thresholds for low-quality batches based on information in the
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rest of the dataset. (Note that the use of shared values only affects this batch and not others unless
share.medians and share.mads are also set.) Otherwise, if share.missing=FALSE, all cells in
that batch will have NA in the output.

If batch is specified, the "threshold” attribute in the returned vector is a matrix with one named
column per level of batch and two rows (one per threshold).

Author(s)

Aaron Lun

See Also

quickPerCellQC, a convenience wrapper to perform outlier-based quality control.

perCellQCMetrics, to compute potential QC metrics.

Examples

example_sce <- mockSCE()
stats <- perCellQCMetrics(example_sce)

str(isOutlier(stats$sum))
str(isOutlier(stats$sum, type="lower"))
str(isOutlier(stats$sum, type="higher"))

str(isOutlier(stats$sum, log=TRUE))

b <- sample(LETTERS[1:3], ncol(example_sce), replace=TRUE)
str(isOutlier(stats$sum, log=TRUE, batch=b))

librarySizeFactors Compute library size factors

Description

Define per-cell size factors from the library sizes (i.e., total sum of counts per cell).

Usage

librarySizeFactors(x, ...)

## S4 method for signature 'ANY'
librarySizeFactors(
X,
subset.row = NULL,
geometric = FALSE,
BPPARAM = SerialParam(),
subset_row = NULL,



librarySizeFactors 35

pseudo_count = 1

)
## S4 method for signature 'SummarizedExperiment'’
librarySizeFactors(x, ..., assay.type = "counts"”, exprs_values = NULL)
computeLibraryFactors(x, ...)
Arguments
X For librarySizeFactors, a numeric matrix of counts with one row per feature

and column per cell. Alternatively, a SummarizedExperiment or SingleCellEx-
periment containing such counts.

For computeLibraryFactors, only a SingleCellExperiment containing a count
matrix is accepted.

For the librarySizeFactors generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For computeLibraryFactors, further arguments to pass to librarySizeFactors.

subset.row A vector specifying whether the size factors should be computed from a subset
of rows of x.
geometric Deprecated, logical scalar indicating whether the size factor should be defined

using the geometric mean.

BPPARAM A BiocParallelParam object indicating how calculations are to be parallelized.
Only relevant when x is a DelayedArray object.

subset_row, exprs_values
Soft-deprecated equivalents to the arguments above.

pseudo_count  Deprecated, numeric scalar specifying the pseudo-count to add when geometric=TRUE.

assay.type String or integer scalar indicating the assay of x containing the counts.

Details

Library sizes are converted into size factors by scaling them so that their mean across cells is unity.
This ensures that the normalized values are still on the same scale as the raw counts. Preserv-
ing the scale is useful for interpretation of operations on the normalized values, e.g., the pseudo-
count used in logNormCounts can actually be considered an additional read/UMI. This is important
for ensuring that the effect of the pseudo-count decreases with increasing sequencing depth, see
?normalizeCounts for a discussion of this effect.

With library size-derived size factors, we implicitly assume that sequencing coverage is the only
difference between cells. This is reasonable for homogeneous cell populations but is compromised
by composition biases from DE between cell types. In such cases, the library size factors will
not be correct though any effects on downstream conclusions will vary, e.g., clustering is usually
unaffected by composition biases but log-fold change estimates will be less accurate.
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Value

For librarySizeFactors, a numeric vector of size factors is returned for all methods.

For computeLibraryFactors, x is returned containing the size factors in sizeFactors(x).

Author(s)

Aaron Lun

See Also

normalizeCounts and logNormCounts, where these size factors are used by default.

geometricSizeFactors and medianSizeFactors, for two other simple methods of computing
size factors.

Examples

example_sce <- mockSCE()
summary (librarySizeFactors(example_sce))

logNormCounts Compute log-normalized expression values

Description

Compute log-transformed normalized expression values from a count matrix in a SingleCellExper-
iment object.

Usage

logNormCounts(x, ...)

## S4 method for signature 'SummarizedExperiment'’

logNormCounts(
X,
size.factors = NULL,
log = NULL,
transform = c("log”, "none”, "asinh"),

pseudo.count = 1,
center.size.factors = TRUE,
subset.row = NULL,
normalize.all = FALSE,
assay.type = "counts”,

name = NULL,

BPPARAM = SerialParam(),
size_factors = NULL,
pseudo_count = NULL,



## S4 method for signature 'SingleCellExperiment

logNormCounts

center_size_factors = NULL,
exprs_values = NULL

logNormCounts(
X,
size.factors = sizeFactors(x),
log = NULL,
transform = c("log”, "none”, "asinh"),

pseudo.count = 1,
center.size.factors = TRUE,
subset.row = NULL,
normalize.all = FALSE,

assay.type = "counts”,
use.altexps = FALSE,
name = NULL,

BPPARAM = SerialParam(),
size_factors = NULL,
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pseudo_count

= NULL,

center_size_factors = NULL,

exprs_values

= NULL,

use_altexps = NULL

Arguments

X

size.factors

log

transform

pseudo.count

A SingleCellExperiment or SummarizedExperiment object containing a count
matrix.

For the generic, additional arguments passed to specific methods.

For the methods, additional arguments passed to normalizeCounts.

A numeric vector of cell-specific size factors. Alternatively NULL, in which case
the size factors are computed from x.

Logical scalar indicating whether normalized values should be log2-transformed.
This is retained for back-compatibility and will override any setting of transform.
Users should generally use transform instead to specify the transformation.

String specifying the transformation (if any) to apply to the normalized expres-
sion values.

Numeric scalar specifying the pseudo-count to add when transform="1og".

center.size.factors

subset.row

Logical scalar indicating whether size factors should be centered at unity before
being used.

A vector specifying the subset of rows of x for which to return normalized val-
ues. If size.factors=NULL, the size factors are also computed from this subset.
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normalize.all Logical scalar indicating whether to return normalized values for all genes. If
TRUE, any non-NULL value for subset.row is only used to compute the size
factors. Ignored if subset.row=NULL or size.factors is supplied.

assay.type A string or integer scalar specifying the assay of x containing the count matrix.

name String containing an assay name for storing the output normalized values. De-

non

faults to "logcounts” when transform="1og", "ashcounts" when transform="asinh",
and "normcounts” otherwise.

BPPARAM A BiocParallelParam object specifying how library size factor calculations should
be parallelized. Only used if size.factors is not specified.

size_factors, pseudo_count, center_size_factors, exprs_values
Deprecated.

use.altexps, use_altexps
Deprecated, use applySCE instead (see Examples).

Details

This function is a convenience wrapper around normalizeCounts. It returns a SingleCellExperi-
ment or SummarizedExperiment containing the normalized values in a separate assay. This makes
it easier to perform normalization by avoiding book-keeping errors during a long analysis workflow.

If NULL, size factors are determined as described in normalizeCounts. subset.rowand normalize.all
have the same interpretation as for normalizeCounts.

If x is a SingleCellExperiment, normalization is not applied to any alternative Experiments. Users
can call applySCE to perform the normalization on each alternative Experiment - see Examples.
Any Experiment-specific size factors will be automatically used, otherwise library size-based fac-
tors will be derived from the column sums.

Value

x is returned containing the (log-)normalized expression values in an additional assay named as
name.

If x is a SingleCellExperiment, the size factors used for normalization are stored in sizeFactors.
These are centered if center.size.factors=TRUE.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

normalizeCounts, which is used to compute the normalized expression values.

Examples
example_sce <- mockSCE()
# Standard library size normalization:

example_sce2 <- logNormCounts(example_sce)
assayNames(example_sce2)
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logcounts(example_sce2)[1:5,1:5]

# Without logging, the assay is 'normcounts':
example_sce2 <- logNormCounts(example_sce, log=FALSE)
assayNames (example_sce?)
normcounts(example_sce2)[1:5,1:5]

# Pre-loading with size factors:

example_sce2 <- computeMedianFactors(example_sce)
example_sce2 <- logNormCounts(example_sce2)
logcounts(example_sce2)[1:5,1:5]

# Also normalizing the alternative experiments:
example_sce2 <- applySCE(example_sce, logNormCounts)
logcounts(altExp(example_sce2))[1:5,1:5]

makePerCellDF Create a per-cell data.frame

Description

Create a per-cell data.frame (i.e., where each row represents a cell) from a SingleCellExperiment,
most typically for creating custom ggplot2 plots.

Usage
makePerCellDF(
X,
features = NULL,
assay.type = "logcounts”,

use.coldata = TRUE,
use.dimred = TRUE,
use.altexps = TRUE,
prefix.altexps = FALSE,
check.names = FALSE,
swap.rownames = NULL,
exprs_values = NULL,
use_dimred = NULL,
use_altexps = NULL,
prefix_altexps = NULL,
check_names = NULL

Arguments

X A SingleCellExperiment object. This is expected to have non-NULL row names.
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features Character vector specifying the features for which to extract expression profiles
across cells. May also include features in alternative Experiments if permitted
by use.altexps.

assay. type String or integer scalar indicating the assay to use to obtain expression values.
Must refer to a matrix-like object with integer or numeric values.

use.coldata Logical scalar indicating whether column metadata of x should be included.
Alternatively, a character or integer vector specifying the column metadata fields
to use.

use.dimred Logical scalar indicating whether data should be extracted for dimensionality

reduction results in x. Alternatively, a character or integer vector specifying the
dimensionality reduction results to use.

use.altexps Logical scalar indicating whether (meta)data should be extracted for alternative
experiments in x. Alternatively, a character or integer vector specifying the
alternative experiments to use.

prefix.altexps Logical scalar indicating whether al tExp-derived fields should be prefixed with
the name of the alternative Experiment.

check.names Logical scalar indicating whether column names of the output should be made
syntactically valid and unique.

swap.rownames  String specifying the rowData column containing the features. If NULL, rownames(x)
is used.
exprs_values, use_dimred, use_altexps, prefix_altexps, check_names

Soft-deprecated equivalents of the arguments described above.

Details

This function enables us to conveniently create a per-feature data.frame from a SingleCellExperi-
ment. Each row of the returned data.frame corresponds to a column in x, while each column of the
data.frame corresponds to one aspect of the (meta)data in x.

Columns are provided in the following order:

1. Columns named according to the entries of features represent the expression values across
cells for the specified feature in the assay. type assay.

2. Columns named according to the columns of colData(x) represent column metadata vari-
ables. This consists of all variables if use. coldata=TRUE, no variables if use.coldata=FALSE,
and only the specified variables if use.coldata is set to an integer or character vector.

3. Columns named in the format of <DIM>.<NUM> represent the <NUM>th dimension of the dimen-
sionality reduction result <DIM>. This is generated for all dimensionality reduction results if
use.dimred=TRUE, none if use.dimred=FALSE, and only the specified results if use.dimredis
set to an integer or character vector.

4. Columns named according to the row names of successive alternative Experiments, represent-
ing the assay data in these objects. These columns are only included if they are specified
in features and if use.altexps is set. Column names are prefixed with the name of the
alternative Experiment if prefix.altexps=TRUE.

By default, nothing is done to resolve syntactically invalid or duplicated column names. check_names=TRUE,
this is resolved by passing the column names through make.names. Of course, as a result, some
columns may not have the same names as the original fields in x.
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Value
A data.frame containing one field per aspect of data in x - see Details. Each row corresponds to a
cell (i.e., column) of x.

Author(s)

Aaron Lun

See Also

makePerFeatureDF, for the feature-level equivalent.

Examples

sce <- mockSCE()
sce <- logNormCounts(sce)
reducedDim(sce, "PCA") <- matrix(rnorm(ncol(sce)*10), ncol=10) # made-up PCA.

df <- makePerCellDF(sce, features="Gene_0001")
head(df)

makePerFeatureDF Create a per-feature data.frame

Description

Create a per-feature data.frame (i.e., where each row represents a feature) from a SingleCellExper-
iment, most typically for creating custom ggplot2 plots.

Usage
makePerFeatureDF (
X)
cells = NULL,
assay.type = "logcounts”,

use.rowdata = TRUE,
check.names = FALSE,
exprs_values = NULL,
check_names = NULL

)

Arguments
X A SingleCellExperiment object. This is expected to have non-NULL row names.
cells Character vector specifying the features for which to extract expression profiles

across cells.
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assay.type String or integer scalar indicating the assay to use to obtain expression values.
Must refer to a matrix-like object with integer or numeric values.

use.rowdata Logical scalar indicating whether row metadata of x should be included. Al-
ternatively, a character or integer vector specifying the row metadata fields to
use.

check.names Logical scalar indicating whether column names of the output should be made

syntactically valid and unique.
exprs_values, check_names
Soft-deprecated equivalents to the arguments above.

Details

This function enables us to conveniently create a per-feature data.frame from a SingleCellExper-
iment. Each row of the returned data.frame corresponds to a row in x, while each column of the
data.frame corresponds to one aspect of the (meta)data in x.

Columns are provided in the following order:

1. Columns named according to the entries of cells represent the expression values across fea-
tures for the specified cell in the assay. type assay.

2. Columns named according to the columns of rowData(x) represent the row metadata vari-
ables. This consists of all variables if use. rowdata=TRUE, no variables if use. rowdata=FALSE,
and only the specified variables if use.rowdata is set to an integer or character vector.

By default, nothing is done to resolve syntactically invalid or duplicated column names. check_names=TRUE,
this is resolved by passing the column names through make.names. Of course, as a result, some
columns may not have the same names as the original fields in x.

Value
A data.frame containing one field per aspect of data in x - see Details. Each row corresponds to a
feature (i.e., row) of x.

Author(s)

Aaron Lun

See Also

makePerCellDF, for the cell-level equivalent.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce)$Length <- runif(nrow(example_sce))

df <- makePerFeatureDF (example_sce, cells="Cell_001")
head(df)
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medianSizeFactors Compute median-based size factors

Description

Define per-cell size factors by taking the median of ratios to a reference expression profile (a la
DESeq).

Usage
medianSizeFactors(x, ...)

## S4 method for signature 'ANY'
medianSizeFactors(x, subset.row = NULL, reference = NULL, subset_row = NULL)

## S4 method for signature 'SummarizedExperiment'’

medianSizeFactors(x, ..., assay.type = "counts”, exprs_values = NULL)
computeMedianFactors(x, ...)

Arguments
X For medianSizeFactors, a numeric matrix of counts with one row per feature

and column per cell. Alternatively, a SummarizedExperiment or SingleCellEx-
periment containing such counts.

For computeMedianFactors, only a SingleCellExperiment is accepted.
For the medianSizeFactors generic, arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For computeMedianFactors, further arguments to pass to medianSizeFactors.

subset.row A vector specifying whether the size factors should be computed from a subset
of rows of x.
reference A numeric vector of length equal to nrow(x), containing the reference expres-

sion profile. Defaults to rowMeans (x).
subset_row, exprs_values
Soft-deprecated equivalent to the arguments above.

assay.type String or integer scalar indicating the assay of x containing the counts.

Details

This function implements a modified version of the DESeq2 size factor calculation. For each cell,
the size factor is proportional to the median of the ratios of that cell’s counts to reference. The
assumption is that most genes are not DE between the cell and the reference, such that the median
captures any systematic increase due to technical biases.
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The modification stems from the fact that we use the arithmetic mean instead of the geometric
mean to compute the default reference, as the former is more robust to the many zeros in single-
cell RNA sequencing data. We also ignore all genes with values of zero in reference, as this
usually results in undefined ratios when reference is itself computed from x.

Value

For medianSizeFactors, a numeric vector of size factors is returned for all methods.

For computeMedianFactors, x is returned containing the size factors in sizeFactors(x).

Caveats

For typical scRNA-seq datasets, the median-based approach tends to perform poorly, for various
reasons:

* The high number of zeroes in the count matrix means that the median ratio for each cell is often
zero. If this method must be used, we recommend subsetting to only the highest-abundance
genes to avoid problems with zeroes. (Of course, the smaller the subset, the more sensitive the
results are to noise or violations of the non-DE majority.)

* The default reference effectively requires a non-DE majority of genes between any pair of
cells in the dataset. This is a strong assumption for heterogeneous populations containing
many cell types; most genes are likely to exhibit DE between at least one pair of cell types.

For these reasons, the simpler librarySizeFactors is usually preferred, which is no less inaccu-
rate but is at least guaranteed to return a positive size factor for any cell with non-zero counts.

One valid application of this method lies in the normalization of antibody-derived tag counts for
quantifying surface proteins. These counts are usually large enough to avoid zeroes yet are also
susceptible to strong composition biases that preclude the use of librarySizeFactors. In such
cases, we would also set reference to some estimate of the the ambient profile. This assumes that
most proteins are not expressed in each cell; thus, counts for most tags for any given cell can be
attributed to background contamination that should not be DE between cells.

Author(s)

Aaron Lun

See Also

normalizeCounts and logNormCounts, where these size factors can be used.

librarySizeFactors and geometricSizeFactors for other simple methods for computing size
factors.

Examples

example_sce <- mockSCE()
summary (medianSizeFactors(example_sce))
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mockSCE Mock up a SingleCellExperiment

Description

Mock up a SingleCellExperiment containing simulated data, for use in documentation examples.

Usage

mockSCE(ncells = 200, ngenes = 2000, nspikes = 100)

Arguments

ncells Integer scalar, number of cells to simulate.

ngenes Integer scalar, number of genes to simulate.

nspikes Integer scalar, number of spike-in transcripts to simulate.
Details

Users should set a seed to obtain reproducible results from this function.

Value

A SingleCellExperiment object containing a count matrix in the "counts” assay, a set of simulated
colData fields, and spike-in data in the "Spikes” field of altExps.

Author(s)

Aaron Lun

See Also

SingleCellExperiment, for the constructor.

Examples

set.seed(1000)
sce <- mockSCE()
sce
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normalizeCounts Compute normalized expression values

Description

Compute (log-)normalized expression values by dividing counts for each cell by the corresponding
size factor.

Usage

normalizeCounts(x, ...)

## S4 method for signature 'ANY'
normalizeCounts(
X,
size.factors = NULL,
log = NULL,
transform = c("log"”, "none”, "asinh"),
pseudo.count = 1,
center.size.factors = TRUE,
subset.row = NULL,
normalize.all = FALSE,
downsample = FALSE,
down.target = NULL,
down.prop = 0.01,
BPPARAM = SerialParam(),
size_factors = NULL,
pseudo_count = NULL,
center_size_factors = NULL,
subset_row = NULL,
down_target = NULL,
down_prop = NULL

## S4 method for signature 'SummarizedExperiment'’
normalizeCounts(x, ..., assay.type = "counts”, exprs_values = NULL)

## S4 method for signature 'SingleCellExperiment'

normalizeCounts(x, size.factors = sizeFactors(x), ...)
Arguments
X A numeric matrix-like object containing counts for cells in the columns and

features in the rows.

Alternatively, a SingleCellExperiment or SummarizedExperiment object con-
taining such a count matrix.
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size.factors

log

transform

pseudo.count
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For the generic, arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
or DelayedMatrix methods.

For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

A numeric vector of cell-specific size factors. Alternatively NULL, in which case
the size factors are computed from x.

Logical scalar indicating whether normalized values should be log2-transformed.
This is retained for back-compatibility and will override any setting of transform.
Users should generally use transform instead to specify the transformation.

String specifying the transformation (if any) to apply to the normalized expres-
sion values.

Numeric scalar specifying the pseudo-count to add when transform="1og".

center.size.factors

subset.row

normalize.all

downsample

down. target

down.prop

BPPARAM

assay. type
exprs_values,

Logical scalar indicating whether size factors should be centered at unity before
being used.

A vector specifying the subset of rows of x for which to return normalized val-
ues. If size.factors=NULL, the size factors are also computed from this subset.

Logical scalar indicating whether to return normalized values for all genes. If
TRUE, any non-NULL value for subset.row is only used to compute the size
factors. Ignored if subset.row=NULL or size.factors is supplied.

Logical scalar indicating whether downsampling should be performed prior to
scaling and log-transformation.

Numeric scalar specifying the downsampling target when downsample=TRUE. If
NULL, this is defined by down. prop and a warning is emitted.

Numeric scalar between O and 1 indicating the quantile to use to define the
downsampling target. Only used when downsample=TRUE.

A BiocParallelParam object specifying how library size factor calculations should
be parallelized. Only used if size.factors is not specified.

A string or integer scalar specifying the assay of x containing the count matrix.
size_factors, pseudo_count, center_size_factors,

subset_row, down_target, down_prop

Details

Soft-deprecated equivalents to the arguments described previously.

Normalized expression values are computed by dividing the counts for each cell by the size factor
for that cell. This removes cell-specific scaling biases due to differences in sequencing coverage,
capture efficiency or total RNA content. The assumption is that such biases affect all genes equally
(in a scaling manner) and thus can be removed through division by a per-cell size factor.

If transform="1og", log-normalized values are calculated by adding pseudo.count to the nor-
malized count and performing a log2-transformation. Differences in values between cells can be
interpreted as log-fold changes, which are generally more relevant than differences on the untrans-
formed scale. This provides a suitable input to downstream functions computing, e.g., Euclidean
differences, which are effectively an average of the log-fold changes across genes.
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Alternatively, if transform="asinh", an inverse hyperbolic transformation is performed. This is
commonly used in cytometry and converges to the log2-transformation at high normalized values.
(We adjust the scale so that the results are comparable to log2-values, though the actual definition
uses natural log.) For non-negative inputs, the main practical difference from a log2-transformation
is that there is a bigger gap between transformed values derived from zero and those derived from
non-zero inputs.

If the size factors are NULL, they are determined automatically from x. The sum of counts for each
cell is used to compute a size factor via the librarySizeFactors function. For the SingleCellEx-
periment method, size factors are extracted from sizeFactors(x) if available, otherwise they are
computed from the assay containing the count matrix.

If subset. row is specified, the output of the function is equivalent to supplying x[subset.row, ]
in the first place. The exception is if normalize.all=TRUE, in which case subset. row is only used
during the size factor calculation; once computed, the size factors are then applied to all genes and
the full matrix is returned.

Value

A numeric matrix-like object containing normalized expression values, possibly transformed ac-
cording to transform. This has the same dimensions as x, unless subset.row is specified and
normalize.all=FALSE.

Centering the size factors

If center.size.factors=TRUE, size factors are centred at unity prior to calculation of normalized
expression values. This ensures that the computed expression values can be interpreted as being on
the same scale as original counts. We can then compare abundances between features normalized
with different sets of size factors; the most common use of this fact is in the comparison between
spike-in and endogenous abundances when modelling technical noise (see modelGeneVarWithSpikes
package for an example).

In the specific case of transform="1log", centering of the size factors ensures the pseudo-count
can actually be interpreted as a count. This is important as it implies that the pseudo-count’s impact
will diminish as sequencing coverage improves. Thus, if the size factors are centered, differences
between log-normalized expression values will more closely approximate the true log-fold change
with increasing coverage, whereas this would not be true of other metrics like log-CPMs with a
fixed offset.

The disadvantage of using centered size factors is that the expression values are not directly com-
parable across different calls to normalizeCounts, typically for multiple batches. In theory, this is
not a problem for metrics like the CPM, but in practice, we have to apply batch correction methods
anyway to perform any joint analysis - see multiBatchNorm for more details.

Downsampling instead of scaling

If downsample=TRUE, counts for each cell are randomly downsampled instead of being scaled.
This is occasionally useful for avoiding artifacts caused by scaling count data with a strong mean-
variance relationship. Each cell is downsampled according to the ratio between down. target and
that cell’s size factor. (Cells with size factors below the target are not downsampled and are directly
scaled by this ratio.) Any transformation specified by transform is then applied to the downsam-
pled counts.
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We automatically set down. target to the 1st percentile of size factors across all cells involved in
the analysis, but this is only appropriate if the resulting expression values are not compared across
different normalizeCounts calls. To obtain expression values that are comparable across different
normalizeCounts calls (e.g., in modelGeneVarWithSpikes or multiBatchNorm), down_target
should be manually set to a constant target value that can be considered a low size factor in every
call.

Author(s)

Aaron Lun

See Also

logNormCounts, which wraps this function for convenient use with SingleCellExperiment instances.
librarySizeFactors, to compute the default size factors.

downsampleMatrix, to perform the downsampling.

Examples

example_sce <- mockSCE()

# Standard scaling + log-transformation:
normed <- normalizeCounts(example_sce)
normed[1:5,1:5]

# Scaling without transformation:
normed <- normalizeCounts(example_sce, log=FALSE)
normed[1:5,1:5]

# Downscaling with transformation:
normed <- normalizeCounts(example_sce, downsample=TRUE)
normed[1:5,1:5]

# Using custom size factors:

with.meds <- computeMedianFactors(example_sce)
normed <- normalizeCounts(with.meds)
normed[1:5,1:5]

numDetectedAcrossCells
Number of detected expression values per group of cells

Description

Computes the number of detected expression values (by default, defined as non-zero counts) for
each feature in each group of cells. This function is deprecated: use summarizeAssayByGroup
instead.
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Usage

numDetectedAcrossCells

numDetectedAcrossCells(x, ...)

## S4 method for signature 'ANY'
numDetectedAcrossCells(

X)

ids,
subset.row =
subset.col =
store.number

NULL,
NULL,
= "ncells”,

average = FALSE,
threshold = 0,
BPPARAM = SerialParam(),

subset_row =
subset_col =
store_number

NULL,
NULL,
= NULL,

detection_limit = NULL

)

## S4 method for signature 'SummarizedExperiment'’
numDetectedAcrossCells(x, ..., assay.type = "counts"”, exprs_values = NULL)

Arguments

X

ids

subset.row

subset.col

store.number

average

threshold

BPPARAM

A numeric matrix of counts containing features in rows and cells in columns.
Alternatively, a SummarizedExperiment object containing such a count matrix.

For the generic, further arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

A factor specifying the group to which each cell in x belongs. Alternatively, a
DataFrame of such vectors or factors, in which case each unique combination of
levels defines a group.

An integer, logical or character vector specifying the features to use. If NULL,
defaults to all features. For the SingleCellExperiment method, this argument
will not affect alternative Experiments, where aggregation is always performed
for all features (or not at all, depending on use_alt_exps).

An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.

Logical scalar indicating whether the proportion of non-zero counts in each
group should be computed instead.

A numeric scalar specifying the threshold above which a gene is considered to
be detected.

A BiocParallelParam object specifying whether summation should be paral-
lelized.
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subset_row, subset_col, detection_limit, store_number, exprs_values
Soft-deprecated equivalents of the arguments above.

assay. type A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).
Value

A SummarizedExperiment is returned containing a count matrix in the first assay. Each column
corresponds to group as defined by a unique level or combination of levels in ids. Each entry of the
matrix contains the number of cells with detected expression for a feature and group. The identities
of the levels for each column are reported in the colData. If average=TRUE, the assay is instead a
numeric matrix containing the proportion of detected values.

Author(s)

Aaron Lun

See Also

sumCountsAcrossCells, which computes the sum of counts within a group.

Examples

example_sce <- mockSCE()

ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)
bycol <- numDetectedAcrossCells(example_sce, ids)
head(bycol)

numDetectedAcrossFeatures
Number of detected expression values per group of features

Description

Computes the number of detected expression values (by default, defined as non-zero counts) for
each group of features in each cell.

Usage

numDetectedAcrossFeatures(x, ...)

## S4 method for signature 'ANY'
numDetectedAcrossFeatures(

X,

ids,

subset.row = NULL,
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numDetectedAcrossFeatures

subset.col = NULL,
average = FALSE,
threshold = 0,

BPPARAM = SerialParam(),

subset_row

NULL,

subset_col = NULL,
detection_limit = NULL

## S4 method for signature 'SummarizedExperiment'’
numDetectedAcrossFeatures(x, ..., assay.type = "counts”, exprs_values = NULL)

Arguments

X

ids

subset.row

subset.col

average

threshold

BPPARAM

A numeric matrix of counts containing features in rows and cells in columns.
Alternatively, a SummarizedExperiment object containing such a count matrix.
For the generic, further arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

A factor of length nrow(x), specifying the set to which each feature in x belongs.
Alternatively, a list of integer or character vectors, where each vector specifies
the indices or names of features in a set. Logical vectors are also supported.

An integer, logical or character vector specifying the features to use. Defaults to
all features.

An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

Logical scalar indicating whether the proportion of non-zero counts in each
group should be computed instead.

A numeric scalar specifying the threshold above which a gene is considered to
be detected.

A BiocParallelParam object specifying whether summation should be paral-
lelized.

subset_row, subset_col, detection_limit, exprs_values

assay. type

Value

Soft-deprecated equivalents of the arguments above.

A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

An integer matrix containing the number of detected expression values in each group of features
(row) and cell (column). If average=TRUE, this is instead a numeric matrix containing the propor-
tion of detected values.

Author(s)

Aaron Lun
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See Also

sumCountsAcrossFeatures, on which this function is based.

Examples

example_sce <- mockSCE()

ids <- sample(paste@("GENE_", 1:100), nrow(example_sce), replace=TRUE)
byrow <- numDetectedAcrossFeatures(example_sce, ids)
head(byrow[,1:10])

perCellQCFilters Compute filters for low-quality cells

Description

Identifies low-quality cells as outliers for frequently used QC metrics.

Usage
perCellQCFilters(
X’
sum.field = "sum”,

detected.field = "detected”,
sub.fields = NULL,

)

Arguments
X A DataFrame containing per-cell QC statistics, as computed by perCel1QCMetrics.
sum.field String specifying the column of x containing the library size for each cell.

detected.field String specifying the column of x containing the number of detected features
per cell.

sub.fields Character vector specifying the column(s) of x containing the percentage of
counts in subsets of “control features”, usually mitochondrial genes or spike-
in transcripts.

If set to TRUE, this will default to all columns in x with names following the
patterns "subsets_.*_percent” and "altexps_.*_percent”.

Further arguments to pass to isOutlier.
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Details

perCellQCFilters

This function simply calls isOutlier on the various QC metrics in Xx.

e For sum.field, small outliers are detected. These are considered to represent low-quality

cells that have not been insufficiently sequenced. Detection is performed on the log-scale to
adjust for a heavy right tail and to improve resolution at zero.

For detected. field, small outliers are detected. These are considered to represent low-
quality cells with low-complexity libraries. Detection is performed on the log-scale to adjust
for a heavy right tail. This is done on the log-scale to adjust for a heavy right tail and to
improve resolution at zero.

For each column specified by sub. fields, large outliers are detected. This aims to remove
cells with high spike-in or mitochondrial content, usually corresponding to damaged cells.
While these distributions often have heavy right tails, the putative low-quality cells are often
present in this tail; thus, transformation is not performed to ensure maintain resolution of the
filter.

Users can control the outlier detection (e.g., change the number of MADs, specify batches) by
passing appropriate arguments to . . ..

Value

A DataFrame with one row per cell and containing columns of logical vectors. Each column spec-
ifies a reason for why a cell was considered to be low quality, with the final discard column
indicating whether the cell should be discarded.

Author(s)

Aaron Lun

See Also

perCellQCMetrics, for calculation of these metrics.

isOutlier, to identify outliers with a MAD-based approach.

Examples

example_sce <- mockSCE()
x <- perCellQCMetrics(example_sce, subsets=list(Mito=1:100))

discarded <- perCellQCFilters(x,

sub.fields=c("subsets_Mito_percent”, "altexps_Spikes_percent"”))

colSums(as.data.frame(discarded))
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perCellQCMetrics Per-cell quality control metrics

Description

Compute per-cell quality control metrics for a count matrix or a SingleCellExperiment.

Usage

perCellQCMetrics(x, ...)

## S4 method for signature 'ANY'
perCellQCMetrics(
X,
subsets = NULL,
percent.top = integer(0),
threshold = 0,
BPPARAM = SerialParam(),
flatten = TRUE,
percent_top = NULL,
detection_limit = NULL

)

## S4 method for signature 'SummarizedExperiment’
perCellQCMetrics(x, ..., assay.type = "counts”, exprs_values = NULL)

## S4 method for signature 'SingleCellExperiment'’
perCellQCMetrics(

X,

subsets = NULL,

percent.top = integer(9),

flatten = TRUE,
assay.type = "counts”,
use.altexps = NULL,
percent_top NULL,
exprs_values = NULL,
use_altexps = NULL

Arguments

X A numeric matrix of counts with cells in columns and features in rows.

Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

For the generic, further arguments to pass to specific methods.
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For the SummarizedExperiment and SingleCellExperiment methods, further ar-
guments to pass to the ANY method.

subsets A named list containing one or more vectors (a character vector of feature
names, a logical vector, or a numeric vector of indices), used to identify interest-
ing feature subsets such as ERCC spike-in transcripts or mitochondrial genes.

percent.top An integer vector specifying the size(s) of the top set of high-abundance genes.
Used to compute the percentage of library size occupied by the most highly
expressed genes in each cell.

threshold A numeric scalar specifying the threshold above which a gene is considered to
be detected.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

flatten Logical scalar indicating whether the nested DataFrames in the output should be
flattened.

percent_top, detection_limit, exprs_values, use_altexps
Soft deprecated equivalents to the arguments described above.

assay.type A string or integer scalar indicating which assays in the x contains the count
matrix.

use.altexps Logical scalar indicating whether QC statistics should be computed for alterna-
tive Experiments in x. If TRUE, statistics are computed for all alternative experi-
ments.

Alternatively, an integer or character vector specifying the alternative Experi-
ments to use to compute QC statistics.

Alternatively NULL, in which case we only use alternative experiments that con-
tain the specified assay. type.

Alternatively FALSE, in which case alternative experiments are not used.

Details

This function calculates useful QC metrics for identification and removal of potentially problematic
cells. Obvious per-cell metrics are the sum of counts (i.e., the library size) and the number of
detected features. The percentage of counts in the top features also provides a measure of library
complexity.

If subsets is specified, these statistics are also computed for each subset of features. This is useful
for investigating gene sets of interest, e.g., mitochondrial genes, Y chromosome genes. These
statistics are stored as nested DataFrames in the subsets field of the output. For example, if the
input subsets contained "Mito” and "Sex", the output would look like:

output
|-- sum
|-- detected
|-- percent.top
+-- subsets
|-- Mito
| |-- sum
| |-- detected
| +-- percent
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+-- Sex
|-- sum
| -- detected
+-- percent

Here, the percent field contains the percentage of each cell’s count sum assigned to each subset.

If use.altexps=TRUE, the same statistics are computed for each alternative experiment in x. This
can also be an integer or character vector specifying the alternative Experiments to use. These
statistics are also stored as nested DataFrames, this time in the altexps field of the output. For
example, if x contained the alternative Experiments "Spike"” and "Ab", the output would look like:

output

|-- sum

|-- detected

| -- percent.top
+-- altexps

| |-- Spike

[ | |-- sum

| | |-- detected
| | +-- percent

| +-- Ab

| |-- sum

| |-- detected
| +-- percent

+-- total

The total field contains the total sum of counts for each cell across the main and alternative Experi-

ments. The percent field contains the percentage of the total count in each alternative Experiment
for each cell.

Note that the denominator for altexps$...$percent is not the same as the denominator for
subset$. . .$percent. For example, if subsets contains a set of mitochondrial genes, the mito-
chondrial percentage would be computed as a fraction of the total endogenous coverage, while the

altexps percentage would be computed as a fraction of the total coverage across all (endogenous
and artificial) features.

If flatten=TRUE, the nested DataFrames are flattened by concatenating the column names with
underscores. This means that, say, the subsets$Mito$sum nested field becomes the top-level
subsets_Mito_sum field. A flattened structure is more convenient for end-users performing in-

teractive analyses, but less convenient for programmatic access as artificial construction of strings
is required.

Value

A DataFrame of QC statistics where each row corresponds to a column in x. This contains the
following fields:

e sum: numeric, the sum of counts for each cell.

¢ detected: numeric, the number of observations above threshold.

If flatten=FALSE, the DataFrame will contain the additional columns:
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* percent.top: numeric matrix, the percentage of counts assigned to the top most highly ex-
pressed genes. Each column of the matrix corresponds to an entry of percent. top, sorted in
increasing order.

* subsets: A nested DataFrame containing statistics for each subset, see Details.

* altexps: A nested DataFrame containing statistics for each alternative experiment, see De-
tails. This is only returned for the SingleCellExperiment method.

* total: numeric, the total sum of counts for each cell across main and alternative Experiments.
This is only returned for the SingleCellExperiment method.

If flatten=TRUE, nested matrices and DataFrames are flattened to remove the hierarchical structure
from the output DataFrame.

Author(s)

Aaron Lun

See Also

addPerCellQCMetrics, to add the QC metrics to the column metadata.

Examples

example_sce <- mockSCE()
stats <- perCellQCMetrics(example_sce)
stats

# With subsets.

stats2 <- perCellQCMetrics(example_sce, subsets=list(Mito=1:10),
flatten=FALSE)

stats2$subsets

# With alternative Experiments.

pretend.spike <- ifelse(seq_len(nrow(example_sce)) < 10, "Spike", "Gene")
alt_sce <- splitAltExps(example_sce, pretend.spike)

stats3 <- perCellQCMetrics(alt_sce, flatten=FALSE)

stats3$altexps

perFeatureQCMetrics Per-feature quality control metrics

Description

Compute per-feature quality control metrics for a count matrix or a SummarizedExperiment.
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Usage

perFeatureQCMetrics(x, ...)

## S4 method for signature 'ANY'
perFeatureQCMetrics(
X!
subsets = NULL,
threshold = 0,
BPPARAM = SerialParam(),
flatten = TRUE,
detection_limit = NULL

)

## S4 method for signature 'SummarizedExperiment'’

perFeatureQCMetrics(x, ..., assay.type = "counts"”, exprs_values = NULL)
Arguments

X A numeric matrix of counts with cells in columns and features in rows.

Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment and SingleCellExperiment methods, further ar-
guments to pass to the ANY method.

subsets A named list containing one or more vectors (a character vector of cell names,
a logical vector, or a numeric vector of indices), used to identify interesting
sample subsets such as negative control wells.

threshold A numeric scalar specifying the threshold above which a gene is considered to
be detected.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

flatten Logical scalar indicating whether the nested DataFrames in the output should be
flattened.

detection_limit, exprs_values
Soft deprecated equivalents to the arguments described above.

assay.type A string or integer scalar indicating which assays in the x contains the count
matrix.

Details

This function calculates useful QC metrics for features, including the mean across all cells and the
number of expressed features (i.e., counts above the detection limit).

If subsets is specified, the same statistics are computed for each subset of cells. This is useful for
obtaining statistics for cell sets of interest, e.g., negative control wells. These statistics are stored
as nested DataFrames in the output. For example, if subsets contained "empty” and "cellpool”,
the output would look like:
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output
|-- mean
| -- detected
+-- subsets
|-- empty
| |-- mean
| |-- detected
| +-- ratio
+-- cellpool
|-- mean
|-- detected
+-- ratio

The ratio field contains the ratio of the mean within each subset to the mean across all cells.

If flatten=TRUE, the nested DataFrames are flattened by concatenating the column names with
underscores. This means that, say, the subsets$empty$mean nested field becomes the top-level
subsets_empty_mean field. A flattened structure is more convenient for end-users performing

interactive analyses, but less convenient for programmatic access as artificial construction of strings
is required.

Value

A DataFrame of QC statistics where each row corresponds to a row in x. This contains the following
fields:

* mean: numeric, the mean counts for each feature.

* detected: numeric, the percentage of observations above threshold.

If flatten=FALSE, the output DataFrame also contains the subsets field. This a nested DataFrame
containing per-feature QC statistics for each subset of columns.

If flatten=TRUE, subsets is flattened to remove the hierarchical structure.
Author(s)

Aaron Lun

See Also

addPerFeatureQCMetrics, to add the QC metrics to the row metadata.

Examples

example_sce <- mockSCE()

stats <- perFeatureQCMetrics(example_sce)
stats

# With subsets.

stats2 <- perFeatureQCMetrics(example_sce, subsets=list(Empty=1:10))
stats2
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quickPerCellQC Quick cell-level QC

Description

A convenient utility that identifies low-quality cells based on frequently used QC metrics.

Usage

quickPerCellQC(x, ...)

## S4 method for signature 'ANY'
quickPerCellQC(
X,
sum.field = "sum”,
detected.field = "detected”,
sub.fields = NULL,
lib_size = NULL,
n_features = NULL,
percent_subsets = NULL
)

## S4 method for signature 'SummarizedExperiment'’
quickPerCellQC(

X,

subsets = NULL,

assay.type = "counts”,

other.args = list(),

filter = TRUE

)
Arguments

X A DataFrame containing per-cell QC statistics, as computed by perCel1QCMetrics.
Alternatively, a SummarizedExperiment object that can be used to create such a
DataFrame via perCellQCMetrics.
For the generic, further arguments to pass to specific methods.
For the ANY method, further arguments to pass to isOutlier.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

sum.field String specifying the column of x containing the library size for each cell.

detected.field String specifying the column of x containing the number of detected features
per cell.
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sub.fields Character vector specifying the column(s) of x containing the percentage of
counts in subsets of “control features”, usually mitochondrial genes or spike-
in transcripts.
If set to TRUE, this will default to all columns in x with names following the
patterns "subsets_.*_percent” and "altexps_.*_percent”.

lib_size, n_features, percent_subsets
Soft-deprecated equivalents of the arguments above.

subsets, assay. type
Arguments to pass to the perCellQCMetrics function, exposed here for conve-

nience.

other.args A named list containing other arguments to pass to the perCellQCMetrics func-
tion.

filter Logical scalar indicating whether to filter out low-quality cells from x.

Details

For DataFrame X, this function simply calls perCel1QCFilters. The latter should be directly used
in such cases; DataFrame inputs are soft-deprecated here.

For SummarizedExperiment x, this function is simply a convenient wrapper around perCellQCMetrics
and perCellQCFilters.

Value

If filter=FALSE or x is a DataFrame, a DataFrame is returned with one row per cell and containing
columns of logical vectors. Each column specifies a reason for why a cell was considered to be low
quality, with the final discard column indicating whether the cell should be discarded.

If filter=TRUE, x is returned with the low-quality cells removed. QC statistics and filtering infor-
mation for all remaining cells are stored in the colData.
Author(s)

Aaron Lun

See Also

perCellQCMetrics, for calculation of these metrics.

perCellQCFilters, to define filter thresholds based on those metrics.

Examples
example_sce <- mockSCE()
filtered_sce <- quickPerCellQC(example_sce, subsets=list(Mito=1:100),

sub.fields=c("subsets_Mito_percent”, "altexps_Spikes_percent"))
ncol(filtered_sce)

# Same result as the longer chain of expressions:
stats <- perCellQCMetrics(example_sce, subsets=list(Mito=1:100))
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discard <- perCellQCFilters(stats,
sub.fields=c("subsets_Mito_percent”, "altexps_Spikes_percent"))

filtered_sce2 <-

example_sce[, !discard$discard]

ncol (filtered_sce2)

readSparseCounts

Read sparse count matrix from file

Description

Reads a sparse count matrix from file containing a dense tabular format.

Usage
readSparseCounts(
file,
sep = "\t",
quote = NULL,

nn

comment.char = ,
row.names = TRUE,
col.names = TRUE,
ignore.row = oL,

skip.row = oL

’

ignore.col = oL,

skip.col = oL
chunk = 1000L

Arguments

file

sep

quote
comment . char
row.names
col.names

ignore.row

skip.row

ignore.col

’

A string containing a file path to a count table, or a connection object opened in
read-only text mode.

A string specifying the delimiter between fields in file.

A string specifying the quote character, e.g., in column or row names.

A string specifying the comment character after which values are ignored.
A logical scalar specifying whether row names are present.

A logical scalar specifying whether column names are present.

An integer scalar specifying the number of rows to ignore at the start of the file,
before the column names.

An integer scalar specifying the number of rows to ignore at the start of the file,
after the column names.

An integer scalar specifying the number of columns to ignore at the start of the
file, before the column names.
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skip.col An integer scalar specifying the number of columns to ignore at the start of the
file, after the column names.

chunk A integer scalar indicating the chunk size to use, i.e., number of rows to read at
any one time.

Details

This function provides a convenient method for reading dense arrays from flat files into a sparse
matrix in memory. Memory usage can be further improved by setting chunk to a smaller positive
value.

The ignore.* and skip.* parameters allow irrelevant rows or columns to be skipped. Note that
the distinction between the two parameters is only relevant when row.names=FALSE (for skip-
ping/ignoring columns) or col.names=FALSE (for rows).

Value
A dgCMatrix containing double-precision values (usually counts) for each row (gene) and column
(cell).

Author(s)

Aaron Lun

See Also

read. table, readMM

Examples

outfile <- tempfile()
write.table(data.frame(A=1:5, B=0, C=0:4, row.names=letters[1:5]),
file=outfile, col.names=NA, sep="\t", quote=FALSE)

readSparseCounts(outfile)

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

beachmat whichNonZero
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scuttle-pkg Single-cell utilities

Description

The scuttle package provides some utility functions for single-cell omics data analysis. This in-
cludes some simple methods for computing and filtering on quality control; basic data transfor-
mations involving various types of scaling normalization; and flexible aggregation across cells or
features.

scuttle also implements wrapper functions that simplify boilerplate for developers of client pack-
ages. This includes packages such as scran, scater and DropletUtils, to name a few. Note that
much of the code here was inherited from the scater package.

Author(s)

Aaron Lun

scuttle-utils Developer utilities

Description
Various utilities for re-use in packages that happen to depend on scuttle. These are exported simply
to avoid re-writing them in downstream packages, and should not be touched by end-users.
Author(s)

Aaron Lun

sumCountsAcrossCells  Sum expression across groups of cells

Description

Sum counts or average expression values for each feature across groups of cells. This function is
deprecated; use summarizeAssayByGroup instead.
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Usage
sumCountsAcrossCells(x, ...)
## S4 method for signature 'ANY'
sumCountsAcrossCells(
X y
ids,
subset.row = NULL,
subset.col = NULL,
store.number = "ncells”,
average = FALSE,
BPPARAM = SerialParam(),
subset_row = NULL,
subset_col = NULL,
store_number = NULL
)
## S4 method for signature 'SummarizedExperiment'
sumCountsAcrossCells(x, ..., assay.type = "counts”, exprs_values = NULL)
Arguments
X A numeric matrix of expression values (usually counts) containing features in
rows and cells in columns. Alternatively, a SummarizedExperiment object con-
taining such a matrix.
For the generics, further arguments to be passed to specific methods.
For the SummarizedExperiment method, further arguments to be passed to the
ANY method.
ids A factor specifying the group to which each cell in x belongs. Alternatively, a
DataFrame of such vectors or factors, in which case each unique combination of
levels defines a group.
subset.row An integer, logical or character vector specifying the features to use. If NULL,
defaults to all features. For the SingleCellExperiment method, this argument
will not affect alternative Experiments, where aggregation is always performed
for all features (or not at all, depending on use_alt_exps).
subset.col An integer, logical or character vector specifying the cells to use. Defaults to all

store.number

average

BPPARAM

cells with non-NA entries of ids.

String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.
Logical scalar indicating whether the average should be computed instead of the

sum. Alternatively, a string containing "mean”, "median” or "none", specifying
the type of average. ("none” is equivalent to FALSE.)

A BiocParallelParam object specifying whether summation should be paral-
lelized.

subset_row, subset_col, exprs_values, store_number

Soft-deprecated equivalents to the arguments described above.



sumCountsAcrossCells 67

assay.type A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

Details

These functions provide a convenient method for summing or averaging expression values across
multiple columns for each feature. A typical application would be to sum counts across all cells
in each cluster to obtain “pseudo-bulk” samples for further analyses, e.g., differential expression
analyses between conditions.

The behaviour of sumCountsAcrossCells is equivalent to that of colsum. However, this function
can operate on any matrix representation in object; can do so in a parallelized manner for large
matrices without resorting to block processing; and can natively support combinations of multiple
factors in ids.

Any NA values in ids are implicitly ignored and will not be considered during summation. This
may be useful for removing undesirable cells by setting their entries in ids to NA. Alternatively, we
can explicitly select the cells of interest with subset_col.

Setting average=TRUE will compute the average in each set rather than the sum. This is particularly
useful if x contains expression values that have already been normalized in some manner, as com-
puting the average avoids another round of normalization to account for differences in the size of
each set. The same effect is obtained by setting average="mean", while setting average="median"
will instead compute the median across all cells.

Value

A SummarizedExperiment is returned with one column per level of ids. Each entry of the assay
contains the sum or average across all cells in a given group (column) for a given feature (row).
Columns are ordered by levels(ids) and the number of cells per level is reported in the "ncells”
column metadata. For DataFrame ids, each column corresponds to a unique combination of levels
(recorded in the colData).

Author(s)

Aaron Lun

See Also

aggregateAcrossCells, which also combines information in the colData.

numDetectedAcrossCells, which computes the number of cells with detected expression in each
group.

Examples

example_sce <- mockSCE()
ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)

out <- sumCountsAcrossCells(example_sce, ids)
head(out)

batches <- sample(1:3, ncol(example_sce), replace=TRUE)
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out2 <- sumCountsAcrossCells(example_sce,
DataFrame(label=ids, batch=batches))
head(out2)

sumCountsAcrossFeatures
Sum counts across feature sets

Description

Sum together expression values (by default, counts) for each feature set in each cell.

Usage

sumCountsAcrossFeatures(x, ...)

## S4 method for signature 'ANY'
sumCountsAcrossFeatures(

X,

ids,

subset.row = NULL,

subset.col = NULL,

average = FALSE,

BPPARAM = SerialParam(),

subset_row = NULL,

subset_col = NULL

)

## S4 method for signature 'SummarizedExperiment'

sumCountsAcrossFeatures(x, ..., assay.type = "counts"”, exprs_values = NULL)
Arguments

X A numeric matrix of counts containing features in rows and cells in columns.

Alternatively, a SummarizedExperiment object containing such a count matrix.
For the sumCountsAcrossFeatures generic, further arguments to be passed to
specific methods.
For the SummarizedExperiment method, further arguments to be passed to the
ANY method.

ids A factor of length nrow(x), specifying the set to which each feature in x belongs.
Alternatively, a list of integer or character vectors, where each vector specifies
the indices or names of features in a set. Logical vectors are also supported.

subset.row An integer, logical or character vector specifying the features to use. Defaults to
all features.

subset.col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.
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average Logical scalar indicating whether the average should be computed instead of the
sum.

BPPARAM A BiocParalle]Param object specifying whether summation should be paral-
lelized.

subset_row, subset_col, exprs_values
Soft-deprecated equivalents of the arguments described above.

assay.type A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

Details

This function provides a convenient method for aggregating counts across multiple rows for each
cell. Several possible applications are listed below:

» Using a list of genes in ids, we can obtain a summary expression value for all genes in one or
more gene sets. This allows the activity of various pathways to be compared across cells.

* Genes with multiple mapping locations in the reference will often manifest as multiple rows
with distinct Ensembl/Entrez IDs. These counts can be aggregated into a single feature by
setting the shared identifier (usually the gene symbol) as ids.

* It is theoretically possible to aggregate transcript-level counts to gene-level counts with this
function. However, it is often better to do so with dedicated functions (e.g., from the tximport
or tximeta packages) that account for differences in length across isoforms.

The behaviour of this function is equivalent to that of rowsum. However, this function can operate
on any matrix representation in object, and can do so in a parallelized manner for large matrices
without resorting to block processing.

If ids is a factor, any NA values are implicitly ignored and will not be considered or reported. This
may be useful, e.g., to remove undesirable feature sets by setting their entries in ids to NA.

Setting average=TRUE will compute the average in each set rather than the sum. This is particu-
larly useful if x contains expression values that have already been normalized in some manner, as
computing the average avoids another round of normalization to account for differences in the size
of each set.

Value

A count matrix is returned with one row per level of ids. In each cell, counts for all features in
the same set are summed together (or averaged, if average=TRUE). Rows are ordered according to
levels(ids).

Author(s)

Aaron Lun

See Also

aggregateAcrossFeatures, to perform additional aggregation of row-level metadata.

numDetectedAcrossFeatures, to compute the number of detected features per cell.
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Examples

example_sce <- mockSCE()

ids <- sample(LETTERS, nrow(example_sce), replace=TRUE)
out <- sumCountsAcrossFeatures(example_sce, ids)
str(out)

summarizeAssayByGroup Summarize an assay by group

Description
From an assay matrix, compute summary statistics for groups of cells. A typical example would be
to compute various summary statistics for clusters.

Usage

summarizeAssayByGroup(x, ...)

## S4 method for signature 'ANY'
summarizeAssayByGroup(

X)

ids,

subset.row = NULL,

subset.col = NULL,

statistics = c("mean”, "sum”, "num.detected”, "prop.detected”, "median"),
store.number = "ncells”,

threshold = 0,
BPPARAM = SerialParam()

)
## S4 method for signature 'SummarizedExperiment'’
summarizeAssayByGroup(x, ..., assay.type = "counts")
Arguments
X A numeric matrix containing features in rows and cells in columns. Alterna-

tively, a SummarizedExperiment object containing such a matrix.

For the generics, further arguments to be passed to specific methods.

For the SummarizedExperiment method, further arguments to be passed to the
ANY method.

ids A factor (or vector coercible into a factor) specifying the group to which each
cell in x belongs. Alternatively, a DataFrame of such vectors or factors, in which
case each unique combination of levels defines a group.

subset.row An integer, logical or character vector specifying the features to use. If NULL,
defaults to all features.
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subset.col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

statistics Character vector specifying the type of statistics to be computed, see Details.

store.number  String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.

threshold A numeric scalar specifying the threshold above which a gene is considered to
be detected.
BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.
assay.type A string or integer scalar specifying the assay of x containing the assay to be
summarized.
Details

These functions provide a convenient method for summing or averaging expression values across
multiple columns for each feature. A typical application would be to sum counts across all cells
in each cluster to obtain “pseudo-bulk” samples for further analyses, e.g., differential expression
analyses between conditions.

For each feature, the chosen assay can be aggregated by:

* "sum”, the sum of all values in each group. This makes the most sense for raw counts, to allow
models to account for the mean-variance relationship.

* "mean”, the mean of all values in each group. This makes the most sense for normalized
and/or transformed assays.

* "median”, the median of all values in each group. This makes the most sense for normalized
and/or transformed assays, usually generated from large counts where discreteness is less of
an issue.

* "num.detected” and "prop.detected”, the number and proportion of values in each group
that are non-zero. This makes the most sense for raw counts or sparsity-preserving transfor-
mations.

Any NA values in ids are implicitly ignored and will not be considered during summation. This
may be useful for removing undesirable cells by setting their entries in ids to NA. Alternatively, we
can explicitly select the cells of interest with subset_col.

If ids is a factor and contains unused levels, they will not be represented as columns in the output.

Value

A SummarizedExperiment is returned with one column per level of ids. Each entry of the assay
contains the sum or average across all cells in a given group (column) for a given feature (row).
Columns are ordered by levels(ids) and the number of cells per level is reported in the "ncells”
column metadata. For DataFrame ids, each column corresponds to a unique combination of levels
(recorded in the colData).

Author(s)

Aaron Lun
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See Also

aggregateAcrossCells, which also combines information in the colData of x.

Examples

example_sce <- mockSCE()
ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)

out <- summarizeAssayByGroup(example_sce, ids)
out

batches <- sample(1:3, ncol(example_sce), replace=TRUE)

out2 <- summarizeAssayByGroup(example_sce,
DataFrame(label=ids, batch=batches))

head(out2)

uniquifyDataFrameByGroup
Groupwise unique rows of a DataFrame

Description

Obtain unique values for groups of rows in a DataFrame. This is used by aggregateAcrossCells
to obtain colData for the aggregated SummarizedExperiment.

Usage

uniquifyDataFrameByGroup(x, grouping)

Arguments
X A DFrame.
grouping A factor (or a vector coercible into a factor) of length equal to nrow(x), con-
taining the groupings for each row of x.
Value

A DFrame where each row corresponds to a level of grouping. Each column corresponds to a
column of x and contains the unique value for each group, or NA if no such value exists.

Author(s)

Aaron Lun
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Examples

x <- DataFrame(

foo = rep(LETTERS[1:3]1, 10),

bar = rep(letters[1:3], 10),

val = sample(3, 30, replace=TRUE)
)
uniquifyDataFrameByGroup(x, x$foo)
uniquifyDataFrameByGroup(x, x$val)

uniquifyFeatureNames  Make feature names unique

Description
Combine a user-interpretable feature name (e.g., gene symbol) with a standard identifier that is
guaranteed to be unique and valid (e.g., Ensembl) for use as row names.

Usage

uniquifyFeatureNames(ID, names)

Arguments
1D A character vector of unique identifiers.
names A character vector of feature names.
Details

This function will attempt to use names if it is unique. If not, it will append the _ID to any non-
unique value of names. Missing names will be replaced entirely by ID.

The output is guaranteed to be unique, assuming that ID is also unique. This can be directly used as
the row names of a SingleCellExperiment object.
Value

A character vector of unique-ified feature names.

Author(s)

Aaron Lun

Examples

uniquifyFeatureNames(
ID=paste@("ENSG0O00QQ00Q", 1:5),
names=c(”A”, NA, "B", "C", "A")
)
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