
Package ‘scp’
January 24, 2026

Title Mass Spectrometry-Based Single-Cell Proteomics Data Analysis

Version 1.21.0

Description Utility functions for manipulating, processing, and
analyzing mass spectrometry-based single-cell proteomics
data. The package is an extension to the 'QFeatures' package and
relies on 'SingleCellExpirement' to enable single-cell proteomics
analyses. The package offers the user the functionality to process
quantitative table (as generated by MaxQuant, Proteome Discoverer,
and more) into data tables ready for downstream analysis and data
visualization.

Depends R (>= 4.3.0), QFeatures (>= 1.19.1)

Imports IHW, ggplot2, ggrepel, matrixStats, metapod, methods,
MsCoreUtils, MultiAssayExperiment, nipals, RColorBrewer,
S4Vectors, SingleCellExperiment, SummarizedExperiment, stats,
utils

Suggests BiocStyle, BiocGenerics, MsDataHub (>= 1.3.3), impute, knitr,
patchwork, preprocessCore, rmarkdown, scater, scpdata, sva,
testthat, vdiffr, vsn, uwot

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

biocViews GeneExpression, Proteomics, SingleCell, MassSpectrometry,
Preprocessing, CellBasedAssays

BugReports https://github.com/UCLouvain-CBIO/scp/issues

URL https://UCLouvain-CBIO.github.io/scp

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/scp

git_branch devel

git_last_commit c32536b

1

https://github.com/UCLouvain-CBIO/scp/issues
https://UCLouvain-CBIO.github.io/scp

2 addReducedDims

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Christophe Vanderaa [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7443-5427>),

Laurent Gatto [aut] (ORCID: <https://orcid.org/0000-0002-1520-2268>),
Léopold Guyot [ctb]

Maintainer Christophe Vanderaa <christophe.vanderaa@ugent.be>

Contents
addReducedDims . 2
aggregateFeaturesOverAssays-deprecated . 3
computeSCR . 4
cumulativeSensitivityCurve . 6
divideByReference . 8
jaccardIndex . 9
leduc_minimal . 10
medianCVperCell . 11
mqScpData . 13
normalizeSCP . 17
pep2qvalue . 18
readSCP . 20
reportMissingValues . 21
sampleAnnotation . 22
scp1 . 23
scpAnnotateResults . 24
scplainer . 25
ScpModel . 26
ScpModel-DataCorrection . 28
ScpModel-DifferentialAnalysis . 30
ScpModel-VarianceAnalysis . 33
ScpModel-Workflow . 36
scpModelComponentMethods . 39
ScpModelFit . 44

Index 46

addReducedDims Add scplainer Component Analysis Results

Description

The function will add the component results computed by scpComponentAnalysis() to a SingleCellExperiment’s
reducedDims slot, to all using the many scater functions, such as scater::plotReducedDim(),
scater::plotTSNE(), ...

https://orcid.org/0000-0001-7443-5427
https://orcid.org/0000-0002-1520-2268

aggregateFeaturesOverAssays-deprecated 3

Usage

addReducedDims(sce, x)

Arguments

sce An instance of class SingleCellExperiment.

x A List of DataFrames containing principal components. This list is typically
the bySample element produced by scpComponentAnalysis().

Value

A SingleCellExperiment with updated reducedDims.

Author(s)

Laurent Gatto and Christophe Vanderaa

Examples

library("scater")
data("leduc_minimal")
pcs <- scpComponentAnalysis(

leduc_minimal, method = "ASCA",
effects = "SampleType")$bySample

reducedDims(leduc_minimal)
leduc_minimal <- addReducedDims(leduc_minimal, pcs)
reducedDims(leduc_minimal)
plotReducedDim(leduc_minimal, dimred = "ASCA_SampleType",

colour_by = "SampleType")
leduc_minimal <- runTSNE(leduc_minimal, dimred = "ASCA_SampleType")
plotTSNE(leduc_minimal, colour_by = "SampleType")

aggregateFeaturesOverAssays-deprecated

Aggregate features over multiple assays

Description

The aggregateFeaturesOverAssays function is deprecated and will be removed in a future re-
lease. Please use the aggregateFeatures method from the QFeatures package instead.

This function is a wrapper function around QFeatures::aggregateFeatures. It allows the user to
provide multiple assays for which aggregateFeatures will be applied sequentially.

Usage

aggregateFeaturesOverAssays(object, i, fcol, name, fun, ...)

4 computeSCR

Arguments

object A QFeatures object

i A numeric(1) or character(1) indicating which assay to transfer the colData
to.

fcol The feature variables for each assays i defining how to summarise the QFea-
tures. If fcol has length 1, the variable name is assumed to be the same for all
assays

name A character() naming the new assay. name must have the same length as i.
Note that the function will fail if of the names in name is already present.

fun A function used for quantitative feature aggregation.

... Additional parameters passed the fun.

Value

A QFeatures object

See Also

QFeatures::aggregateFeatures

Examples

data("scp1")
scp1 <- aggregateFeaturesOverAssays(scp1,

i = 1:3,
fcol = "peptide",
name = paste0("peptides", 1:3),
fun = colMeans,
na.rm = TRUE)

scp1

computeSCR Compute the sample over carrier ratio (SCR)

Description

The function computes the ratio of the intensities of sample channels over the intentisty of the
carrier channel for each feature. The ratios are averaged within the assay.

computeSCR 5

Usage

computeSCR(
object,
i,
colvar,
samplePattern,
sampleFUN = "mean",
carrierPattern,
carrierFUN = sampleFUN,
rowDataName = "SCR"

)

Arguments

object A QFeatures object.

i A character() or integer() indicating for which assay(s) the SCR needs to
be computed.

colvar A character(1) indicating the variable to take from colData(object) that
gives the sample annotation.

samplePattern A character(1) pattern that matches the sample encoding in colvar.

sampleFUN A character(1) or function that provides the summarization function to use
(eg mean, sum, media, max, ...). Only used when the pattern matches multiple
samples. Default is mean. Note for custom function, na.rm = TRUE is passed
to sampleFUN to ignore missing values, make sure to provide a function that
accepts this argument.

carrierPattern A character(1) pattern that matches the carrier encoding in colvar. Only one
match per assay is allowed, otherwise only the first match is taken

carrierFUN A character(1) or function that provides the summarization function to use
(eg mean, sum, media, max, ...). Only used when the pattern matches multiple
carriers. Default is the same function as sampleFUN. Note for custom function,
na.rm = TRUE is passed to carrierFUN to ignore missing values, make sure to
provide a function that accepts this argument.

rowDataName A character(1) giving the name of the new variable in the rowData where the
computed SCR will be stored. The name cannot already exist in any of the assay
rowData.

Value

A QFeatures object for which the rowData of the given assay(s) is augmented with the mean SCR.

Examples

data("scp1")
scp1 <- computeSCR(scp1,

i = 1,
colvar = "SampleType",
carrierPattern = "Carrier",

6 cumulativeSensitivityCurve

samplePattern = "Blank|Macrophage|Monocyte",
sampleFUN = "mean",
rowDataName = "MeanSCR")

Check results
rowData(scp1)[[1]][, "MeanSCR"]

cumulativeSensitivityCurve

Cumulative sensitivity curve

Description

The cumulative sensitivity curve is used to evaluate if the sample size is sufficient to accurately
estimate the total sensitivity. If it is not the case, an asymptotic regression model may provide a
prediction of the total sensitivity if more samples would have been acquired.

Usage

cumulativeSensitivityCurve(
object,
i,
by = NULL,
batch = NULL,
nsteps = 30,
niters = 10

)

predictSensitivity(df, nSamples)

Arguments

object An object of class QFeatures.

i The index of the assay in object. The assay must contain an identification
matrix, that is a matrix where an entry is TRUE if the value is observed and
FALSE is the value is missing (see examples).

by A vector of length equal to the number of columns in assay i that defines groups
for a cumulative sensitivity curve will be computed separately. If missing, the
sensitivity curve is computed for the completd dataset.

batch A vector of length equal to the number of columns in assay i that defines the
cell batches. All cells in a batch will be aggregated to a single sample.

nsteps The number of equally spaced sample sizes to compute the sensitivity.

niters The number of iteration to compute

df The output from cumulativeSensitivityCurve().

nSamples A numeric() of samples sizes. If Inf, the prediction provides the extrapolated
total sensitivity.

cumulativeSensitivityCurve 7

Details

As more samples are added to a dataset, the total number of distinct features increases. When
sufficient number of samples are acquired, all peptides that are identifiable by the technology and
increasing the sample size no longer increases the set of identified features. The cumulative sen-
sitivity curve depicts the relationship between sensitivity (number of distinct peptides in the data)
and the sample size. More precisely, the curve is built by sampling cells in the data and count the
number of distinct features found across the sampled cells. The sampling is repeated multiple times
to account for the stochasticity of the approach. Datasets that have a sample size sufficiently large
should have a cumulative sensitivity curve with a plateau.

The set of features present in a cell depends on the cell type. Therefore, we suggest to build the
cumulative sensitivity curve for each cell type separately. This is possible when providing the by
argument.

For multiplexed experiments, several cells are acquired in a run. In that case, when a features is
identified in a cell, it is frequently also identified in all other cells of that run, and this will distort the
cumulative sensitivity curve. Therefore, the function allows to compute the cumulative sensitivity
curve at the batches level rather than at the cell level. This is possible when providing the batch
argument.

Once the cumulative sensitivity curve is computed, the returned data can be visualized to explore the
relationship between the sensitivity and the sample size. If enough samples are acquired, the curve
should plateau at high numbers of samples. If it is not the case, the total sensitivity can be predicted
using an asymptotic regression curve. To predict the total sensitivity, the model is extrapolated to
infinite sample size. Therefore, the accuracy of the extrapolation will highly depend on the available
data. The closer the curve is to the plateau, the more accurate the prediction.

Value

A data.frame with groups as many rows as pairs of cells and the following column(s):

• jaccard: the computed Jaccard index

• by: if by is not NULL, the group of the pair of cells for which the Jaccard index is computed.

Examples

Simulate data
1000 features in 100 cells
library(SummarizedExperiment)
id <- matrix(FALSE, 1000, 1000)
id[sample(1:length(id), 5000)] <- TRUE
dimnames(id) <- list(

paste0("feat", 1:1000),
paste0("cell", 1:1000)

)
sce <- SummarizedExperiment(assays = List(id))
sim <- QFeatures(experiments = List(id = sce))
sim$batch <- rep(1:100, each = 10)
sim$SampleType <- rep(c("A", "B"), each = 500)
sim

Compute the cumulative sensitivity curve, take batch and sample

8 divideByReference

type into account
csc <- cumulativeSensitivityCurve(

sim, "id", by = sim$SampleType,
batch = sim$batch

)
predCSC <- predictSensitivity(csc, nSample = 1:50)

library(ggplot2)
ggplot(csc) +

aes(x = SampleSize, y = Sensitivity, colour = by) +
geom_point() +
geom_line(data = predCSC)

Extrapolate the total sensitivity
predictSensitivity(csc, nSamples = Inf)
(real total sensitivity = 1000)

divideByReference Divide assay columns by a reference column

Description

The function divides the sample columns by a reference column. The sample and reference columns
are defined based on the provided colvar variable and on regular expression matching.

Usage

divideByReference(object, i, colvar, samplePattern = ".", refPattern)

Arguments

object A QFeatures object
i A numeric() or character() vector indicating from which assays the rowData

should be taken.
colvar A character(1) indicating the variable to take from colData(object) that

gives the sample annotation.
samplePattern A character(1) pattern that matches the sample encoding in colvar. By de-

fault all samples are devided (using the regex wildcard .).
refPattern A character(1) pattern that matches the carrier encoding in colvar. Only one

match per assay is allowed, otherwise only the first match is taken

Details

The supplied assay(s) are replaced with the values computed after reference division.

Value

A QFeatures object

jaccardIndex 9

Examples

data("scp1")
scp1 <- divideByReference(scp1,

i = 1,
colvar = "SampleType",
samplePattern = "Macrophage",
refPattern = "Ref")

jaccardIndex Compute the pairwise Jaccard index

Description

The function computes the Jaccard index between all pairs of cells.

Usage

jaccardIndex(object, i, by = NULL)

Arguments

object An object of class QFeatures.

i The index of the assay in object. The assay must contain an identification
matrix, that is a matrix where an entry is TRUE if the value is observed and
FALSE is the value is missing (see examples).

by A vector of length equal to the number of columns in assay i that defines groups
for which the Jaccard index should be computed separately. If missing, the
Jaccard indices are computed for all airs of cells in the dataset.

Value

A data.frame with as many rows as pairs of cells and the following column(s):

• jaccard: the computed Jaccard index

• by: if by is not NULL, the group of the pair of cells for which the Jaccard index is computed.

Examples

data("scp1")

Define the identification matrix
peps <- scp1[["peptides"]]
assay(peps) <- ifelse(is.na(assay(peps)), FALSE, TRUE)
scp1 <- addAssay(scp1, peps, "id")

Compute Jaccard indices
jaccardIndex(scp1, "id")

10 leduc_minimal

Compute Jaccard indices by sample type
jaccardIndex(scp1, "id", scp1$SampleType)

leduc_minimal Minimally processed single-cell proteomics data set

Description

A SingleCellExperiment object that has been minimally processed. The data set is published by
Leduc et al. 2022 (see references) and retrieved using scpdata::leduc2022_pSCoPE(). The data
processing was conducted with QFeatures and scp. Quality control was performed, followed by
building the peptide data and log2-transformation. To limit the size of the data, only cells associated
to the 3 first and 3 last MS acquisition runs were kept. For the same reason, 200 peptides were
randomly sampled. Therefore, the data set consists of 200 peptides and 73 cells. Peptide annotations
can be retrieved from the rowData and cell annotations can be retrieved from the colData.

Usage

data("leduc_minimal")

Format

An object of class SingleCellExperiment with 200 rows and 73 columns.

Quality control

Any zero value has been replaced by NA.

A peptide was removed from the data set if:

• it matched to a decoy or contaminant peptide

• it had an parental ion fraction below 60 \

• it had a DART-ID adjusted q-value superior to 1\

• it had an average sample to carrier ratio above 0.05

A cell was removed from the data set if:

• it had a median coefficient of variation superior to 0.6

• it had a log2 median intensity outside (6, 8)

• it contained less than 750 peptides

Building the peptide matrix

PSMs belonging to the same peptide were aggregating using the median value. Some peptides were
mapped to a different protein depending on the MS acquisition run. To solve this issue, a majority
vote was applied to assign a single protein to each peptide. Protein IDs were translated into gene
symbols using the ensembldb package.

medianCVperCell 11

Author(s)

Christophe Vanderaa, Laurent Gatto

References

Leduc, Andrew, R. Gray Huffman, Joshua Cantlon, Saad Khan, and Nikolai Slavov. 2022. “Ex-
ploring Functional Protein Covariation across Single Cells Using nPOP.” Genome Biology 23 (1):
261.

medianCVperCell Compute the median coefficient of variation (CV) per cell

Description

The function computes for each cell the median CV and stores them accordingly in the colData of
the QFeatures object. The CVs in each cell are computed from a group of features. The grouping
is defined by a variable in the rowData. The function can be applied to one or more assays, as long
as the samples (column names) are not duplicated. Also, the user can supply a minimal number
of observations required to compute a CV to avoid that CVs computed on too few observations
influence the distribution within a cell. The quantification matrix can be optionally normalized
before computing the CVs. Multiple normalizations are possible.

Usage

medianCVperCell(
object,
i,
groupBy,
nobs = 5,
na.rm = TRUE,
colDataName = "MedianCV",
norm = "none",
...

)

Arguments

object A QFeatures object

i A numeric() or character() vector indicating from which assays the rowData
should be taken.

groupBy A character(1) indicating the variable name in the rowData that contains the
feature grouping.

nobs An integer(1) indicating how many observations (features) should at least be
considered for computing the CV. Since no CV can be computed for less than 2
observations, nobs should at least be 2.

12 medianCVperCell

na.rm A logical(1) indicating whether missing data should be removed before com-
putation.

colDataName A character(1) giving the name of the new variable in the colData where the
computed CVs will be stored. The name cannot already exist in the colData.

norm A character() of normalization methods that will be sequentially applied to
each feature (row) in each assay. Available methods and additional information
about normalization can be found in MsCoreUtils::normalizeMethods. You can
also specify norm = "SCoPE2" to reproduce the normalization performed before
computing the CVs as suggested by Specht et al. norm = "none" will not nor-
malize the data (default)

... Additional arguments that are passed to the normalization method.

Details

A new column is added to the colData of the object. The samples (columns) that are not present in
the selection i will get assigned an NA.

Value

A QFeatures object.

References

Specht, Harrison, Edward Emmott, Aleksandra A. Petelski, R. Gray Huffman, David H. Perlman,
Marco Serra, Peter Kharchenko, Antonius Koller, and Nikolai Slavov. 2021. “Single-Cell Pro-
teomic and Transcriptomic Analysis of Macrophage Heterogeneity Using SCoPE2.” Genome Biol-
ogy 22 (1): 50.

Examples

data("scp1")
scp1 <- filterFeatures(scp1, ~ !is.na(Proteins))
scp1 <- medianCVperCell(scp1,

i = 1:3,
groupBy = "Proteins",
nobs = 5,
na.rm = TRUE,
colDataName = "MedianCV",
norm = "div.median")

Check results
hist(scp1$MedianCV)

mqScpData 13

mqScpData Example MaxQuant/SCoPE2 output

Description

A data.frame with 1088 observations and 139 variables, as produced by reading a MaxQuant
output file with read.delim().

• Sequence: a character vector

• Length: a numeric vector

• Modifications: a character vector

• Modified.sequence: a character vector

• Deamidation..N..Probabilities: a character vector

• Oxidation..M..Probabilities: a character vector

• Deamidation..N..Score.Diffs: a character vector

• Oxidation..M..Score.Diffs: a character vector

• Acetyl..Protein.N.term.: a numeric vector

• Deamidation..N.: a numeric vector

• Oxidation..M.: a numeric vector

• Missed.cleavages: a numeric vector

• Proteins: a character vector

• Leading.proteins: a character vector

• protein: a character vector

• Gene.names: a character vector

• Protein.names: a character vector

• Type: a character vector

• Set: a character vector

• MS.MS.m.z: a numeric vector

• Charge: a numeric vector

• m.z: a numeric vector

• Mass: a numeric vector

• Resolution: a numeric vector

• Uncalibrated...Calibrated.m.z..ppm.: a numeric vector

• Uncalibrated...Calibrated.m.z..Da.: a numeric vector

• Mass.error..ppm.: a numeric vector

• Mass.error..Da.: a numeric vector

• Uncalibrated.mass.error..ppm.: a numeric vector

• Uncalibrated.mass.error..Da.: a numeric vector

14 mqScpData

• Max.intensity.m.z.0: a numeric vector

• Retention.time: a numeric vector

• Retention.length: a numeric vector

• Calibrated.retention.time: a numeric vector

• Calibrated.retention.time.start: a numeric vector

• Calibrated.retention.time.finish: a numeric vector

• Retention.time.calibration: a numeric vector

• Match.time.difference: a logical vector

• Match.m.z.difference: a logical vector

• Match.q.value: a logical vector

• Match.score: a logical vector

• Number.of.data.points: a numeric vector

• Number.of.scans: a numeric vector

• Number.of.isotopic.peaks: a numeric vector

• PIF: a numeric vector

• Fraction.of.total.spectrum: a numeric vector

• Base.peak.fraction: a numeric vector

• PEP: a numeric vector

• MS.MS.count: a numeric vector

• MS.MS.scan.number: a numeric vector

• Score: a numeric vector

• Delta.score: a numeric vector

• Combinatorics: a numeric vector

• Intensity: a numeric vector

• Reporter.intensity.corrected.0: a numeric vector

• Reporter.intensity.corrected.1: a numeric vector

• Reporter.intensity.corrected.2: a numeric vector

• Reporter.intensity.corrected.3: a numeric vector

• Reporter.intensity.corrected.4: a numeric vector

• Reporter.intensity.corrected.5: a numeric vector

• Reporter.intensity.corrected.6: a numeric vector

• Reporter.intensity.corrected.7: a numeric vector

• Reporter.intensity.corrected.8: a numeric vector

• Reporter.intensity.corrected.9: a numeric vector

• Reporter.intensity.corrected.10: a numeric vector

• RI1: a numeric vector

• RI2: a numeric vector

mqScpData 15

• RI3: a numeric vector

• RI4: a numeric vector

• RI5: a numeric vector

• RI6: a numeric vector

• RI7: a numeric vector

• RI8: a numeric vector

• RI9: a numeric vector

• RI10: a numeric vector

• RI11: a numeric vector

• Reporter.intensity.count.0: a numeric vector

• Reporter.intensity.count.1: a numeric vector

• Reporter.intensity.count.2: a numeric vector

• Reporter.intensity.count.3: a numeric vector

• Reporter.intensity.count.4: a numeric vector

• Reporter.intensity.count.5: a numeric vector

• Reporter.intensity.count.6: a numeric vector

• Reporter.intensity.count.7: a numeric vector

• Reporter.intensity.count.8: a numeric vector

• Reporter.intensity.count.9: a numeric vector

• Reporter.intensity.count.10: a numeric vector

• Reporter.PIF: a logical vector

• Reporter.fraction: a logical vector

• Reverse: a character vector

• Potential.contaminant: a logical vector

• id: a numeric vector

• Protein.group.IDs: a character vector

• Peptide.ID: a numeric vector

• Mod..peptide.ID: a numeric vector

• MS.MS.IDs: a character vector

• Best.MS.MS: a numeric vector

• AIF.MS.MS.IDs: a logical vector

• Deamidation..N..site.IDs: a numeric vector

• Oxidation..M..site.IDs: a logical vector

• remove: a logical vector

• dart_PEP: a numeric vector

• dart_qval: a numeric vector

• razor_protein_fdr: a numeric vector

16 mqScpData

• Deamidation..NQ..Probabilities: a logical vector

• Deamidation..NQ..Score.Diffs: a logical vector

• Deamidation..NQ.: a logical vector

• Reporter.intensity.corrected.11: a logical vector

• Reporter.intensity.corrected.12: a logical vector

• Reporter.intensity.corrected.13: a logical vector

• Reporter.intensity.corrected.14: a logical vector

• Reporter.intensity.corrected.15: a logical vector

• Reporter.intensity.corrected.16: a logical vector

• RI12: a logical vector

• RI13: a logical vector

• RI14: a logical vector

• RI15: a logical vector

• RI16: a logical vector

• Reporter.intensity.count.11: a logical vector

• Reporter.intensity.count.12: a logical vector

• Reporter.intensity.count.13: a logical vector

• Reporter.intensity.count.14: a logical vector

• Reporter.intensity.count.15: a logical vector

• Reporter.intensity.count.16: a logical vector

• Deamidation..NQ..site.IDs: a logical vector

• input_id: a logical vector

• rt_minus: a logical vector

• rt_plus: a logical vector

• mu: a logical vector

• muij: a logical vector

• sigmaij: a logical vector

• pep_new: a logical vector

• exp_id: a logical vector

• peptide_id: a logical vector

• stan_peptide_id: a logical vector

• exclude: a logical vector

• residual: a logical vector

• participated: a logical vector

• peptide: a character vector

Usage

data("mqScpData")

normalizeSCP 17

Format

An object of class data.frame with 1361 rows and 149 columns.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The input
file evidence_unfiltered.csv was downloaded from a Google Drive repository. The MaxQuant
evidence file was loaded and the data was cleaned (renaming columns, removing duplicate fields,...).
MS runs that were selected in the scp1 dataset (see ?scp1) were kept along with a blank run. The
data is stored as a data.frame.

See Also

readSCP() for an example on how mqScpData is parsed into a QFeatures object.

normalizeSCP Normalize single-cell proteomics (SCP) data

Description

This function normalises an assay in a QFeatures according to the supplied method (see Details).
The normalized data is added as a new assay

Usage

normalizeSCP(object, i, name = "normAssay", method, ...)

Arguments

object An object of class QFeatures.

i A numeric vector or a character vector giving the index or the name, respec-
tively, of the assay(s) to be processed.

name A character(1) naming the new assay name. Defaults is are normAssay.

method character(1) defining the normalisation method to apply. See Details.‘

... Additional parameters passed to MsCoreUtils::normalizeMethods().

Details

The method parameter in normalize can be one of "sum", "max", "center.mean", "center.median",
"div.mean", "div.median", "diff.meda", "quantiles", "quantiles.robust" or "vsn". The
MsCoreUtils::normalizeMethods() function returns a vector of available normalisation meth-
ods.

• For "sum" and "max", each feature’s intensity is divided by the maximum or the sum of the
feature respectively. These two methods are applied along the features (rows).

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx

18 pep2qvalue

• "center.mean" and "center.median" center the respective sample (column) intensities by
subtracting the respective column means or medians. "div.mean" and "div.median" divide
by the column means or medians. These are equivalent to sweeping the column means (medi-
ans) along MARGIN = 2 with FUN = "-" (for "center.*") or FUN = "/" (for "div.*").

• "diff.median" centers all samples (columns) so that they all match the grand median by
subtracting the respective columns medians differences to the grand median.

• Using "quantiles" or "quantiles.robust" applies (robust) quantile normalisation, as im-
plemented in preprocessCore::normalize.quantiles() and preprocessCore::normalize.quantiles.robust().
"vsn" uses the vsn::vsn2() function. Note that the latter also glog-transforms the intensities.
See respective manuals for more details and function arguments.

For further details and examples about normalisation, see MsCoreUtils::normalize_matrix().

Value

A QFeatures object with an additional assay containing the normalized data.

See Also

QFeatures::normalize for more details about normalize

Examples

data("scp1")
scp1
normalizeSCP(scp1, i = "proteins", name = "normproteins",

method = "center.mean")

pep2qvalue Compute q-values

Description

This function computes q-values from the posterior error probabilities (PEPs). The functions takes
the PEPs from the given assay’s rowData and adds a new variable to it that contains the computed
q-values.

Usage

pep2qvalue(object, i, groupBy, PEP, rowDataName = "qvalue")

pep2qvalue 19

Arguments

object A QFeatures object

i A numeric() or character() vector indicating from which assays the rowData
should be taken.

groupBy A character(1) indicating the variable name in the rowData that contains the
grouping variable, for instance to compute protein FDR. When groupBy is not
missing, the best feature approach is used to compute the PEP per group, mean-
ing that the smallest PEP is taken as the PEP of the group.

PEP A character(1) indicating the variable names in the rowData that contains the
PEPs. Since, PEPs are probabilities, the variable must be contained in (0, 1).

rowDataName A character(1) giving the name of the new variable in the rowData where the
computed FDRs will be stored. The name cannot already exist in any of the
assay rowData.

Details

The q-value of a feature (PSM, peptide, protein) is the minimum FDR at which that feature will be
selected upon filtering (Savitski et al.). On the other hand, the feature PEP is the probability that
the feature is wrongly matched and hence can be seen as a local FDR (Kall et al.). While filtering
on PEP is guaranteed to control for FDR, it is usually too conservative. Therefore, we provide this
function to convert PEP to q-values.

We compute the q-value of a feature as the average of the PEPs associated to PSMs that have equal
or greater identification confidence (so smaller PEP). See Kall et al. for a visual interpretation.

We also allow inference of q-values at higher level, for instance computing the protein q-values
from PSM PEP. This can be performed by supplying the groupBy argument. In this case, we adopt
the best feature strategy that will take the best (smallest) PEP for each group (Savitski et al.).

Value

A QFeatures object.

References

Käll, Lukas, John D. Storey, Michael J. MacCoss, and William Stafford Noble. 2008. “Posterior
Error Probabilities and False Discovery Rates: Two Sides of the Same Coin.” Journal of Proteome
Research 7 (1): 40–44.

Savitski, Mikhail M., Mathias Wilhelm, Hannes Hahne, Bernhard Kuster, and Marcus Bantscheff.
2015. “A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data
Sets.” Molecular & Cellular Proteomics: MCP 14 (9): 2394–2404.

Examples

data("scp1")
scp1 <- pep2qvalue(scp1,

i = 1,
groupBy = "protein",
PEP = "dart_PEP",

20 readSCP

rowDataName = "qvalue_protein")
Check results
rowData(scp1)[[1]][, c("dart_PEP", "qvalue_protein")]

readSCP Read single-cell proteomics tabular data

Description

Function to import and convert tabular data from a spreadsheet or a data.frame into a SingleCellExperiment
and QFeatures object.

Usage

readSCP(..., experimentsAsSce = FALSE)

readSCPfromDIANN(..., experimentsAsSce = FALSE)

readSingleCellExperiment(...)

Arguments

... Parameters passed to readSummarizedExperiment(), readQFeatures() or readQFeaturesFromDIANN().
See these respective manual pages for details.

experimentsAsSce

A logical(1) indicating whether the QFeatures object should be composed
of SingleCellExperiment objects. By default: FALSE, the QFeatures ob-
ject will be composed of SummarizedExperiment objects. Note that using
SingleCellExperiment can impact the performance.

Value

An instance of class SingleCellExperiment or a QFeatures, composed of SingleCellExperiment
or SummarizedExperiment objects.

Note

The SingleCellExperiment class is built on top of the RangedSummarizedExperiment class. This
means that some column names are forbidden in the rowData. Avoid using the following names:
seqnames, ranges, strand, start, end, width, element

See Also

• The more general QFeatures::readQFeatures() function, which this function depends on.

• The more general QFeatures::readQFeaturesFromDIANN() function, for details and an ex-
ample on how to read label-free and plexDIA (mTRAQ) data processed with DIA-NN.

reportMissingValues 21

• The QFeatures::readSummarizedExperiment() function, which readSingleCellExperiment()
depends on.

• The SingleCellExperiment::SingleCellExperiment() class.

Examples

##
Load a single acquisition as a SingleCellExperiment

Load a data.frame with PSM-level data
data("mqScpData")

Create the QFeatures object
quantCols <- grep("Reporter.intensity.\\d", colnames(mqScpData))
sce <- readSingleCellExperiment(mqScpData, quantCols)
sce

##
Load multiple acquisitions as a QFeatures

Load an example table containing MaxQuant output
data("mqScpData")

Load the (user-generated) annotation table
data("sampleAnnotation")

Format the tables into a QFeatures object
readSCP(assayData = mqScpData,

colData = sampleAnnotation,
runCol = "Raw.file")

reportMissingValues Four metrics to report missing values

Description

The function computes four metrics to report missing values in single-cell proteomics.

Usage

reportMissingValues(object, i, by = NULL)

Arguments

object An object of class QFeatures.

i The index of the assay in object. The assay must contain an identification
matrix, that is a matrix where an entry is TRUE if the value is observed and
FALSE is the value is missing (see examples). i may be numeric, character or
logical, but it must select only one assay.

22 sampleAnnotation

by A vector of length equal to the number of columns in assay i that defines groups
for which the metrics should be computed separately. If missing, the metrics are
computed for the complete assay.

Value

A data.frame with groups as rows and 5 columns:

• LocalSensitivityMean: the average number of features per cell.

• LocalSensitivitySd: the standard deviation of the local sensitivity.

• TotalSensitivity: the total number of features found in the dataset.

• Completeness: the proportion of values that are not missing in the data.

• NumberCells: the number of cells in the dataset.

Examples

data("scp1")

Define the identification matrix
peps <- scp1[["peptides"]]
assay(peps) <- !is.na(assay(peps))
scp1 <- addAssay(scp1, peps, "id")

Report metrics
reportMissingValues(scp1, "id")
Report metrics by sample type
reportMissingValues(scp1, "id", scp1$SampleType)

data

sampleAnnotation Single cell sample annotation

Description

A data frame with 48 observations on the following 6 variables.

• Set: a character vector

• Channel: a character vector

• SampleType: a character vector

• lcbatch: a character vector

• sortday: a character vector

• digest: a character vector

scp1 23

Usage

data("sampleAnnotation")

Format

An object of class data.frame with 64 rows and 6 columns.

Details

##’ The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The
input files batch.csv and annotation.csv were downloaded from a Google Drive repository.
The two files were loaded and the columns names were adapted for consistency with mqScpData
table (see ?mqScpData). The two tables were filtered to contain only sets present in “mqScp-
Data. The tables were then merged based on the run ID, hence merging the sample annotation and the batch annotation. Finally, annotation for the blank run was added manually. The data is stored as a data.frame‘.

See Also

readSCP() to see how this file is used.

scp1 Single Cell QFeatures data

Description

A small QFeatures object with SCoPE2 data. The object is composed of 5 assays, including 3
PSM-level assays, 1 peptide assay and 1 protein assay.

Usage

data("scp1")

Format

An object of class QFeatures of length 5.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). This dataset
was converted to a QFeatures object where each assay in stored as a SingleCellExperiment
object. One assay per chromatographic batch ("LCA9", "LCA10", "LCB3") was randomly sampled.
For each assay, 100 proteins were randomly sampled. PSMs were then aggregated to peptides and
joined in a single assay. Then peptides were aggregated to proteins.

Examples

data("scp1")
scp1

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx
https://www.biorxiv.org/content/10.1101/665307v3

24 scpAnnotateResults

scpAnnotateResults Annotate single-cell proteomics analysis output

Description

The function takes as input a list of DFrame and a table with additional annotations. The annotation
tables is automatically merged into all tables of the list by matching the specified columns (given by
the arguments by and by2). This function is useful to add annotation to analysis results generated
by scpVarianceAnalysis(), scpDifferentialAnalysis(), or scpComponentAnalysis(). The
annotation table is typically the colData or rowData of the object used for modelling. In case
of shared column names between the input tables and the annotation table, any annotation that is
already present in the list of tables will be overwritten by the new annotations.

Usage

scpAnnotateResults(tableList, annotations, by, by2 = NULL)

Arguments

tableList A list of tables, typically the output of scpVarianceAnalysis(), scpDifferentialAnalysis(),
or the the bySample or byFeature elements returned by scpComponentAnalysis().

annotations A table of class ’data.frame’ or ’DFrame’ containing the annotations to add. If
no further arguments are provided, the table must have row names.

by A character(1) providing the name of the column in the tables in tableList
to use to match the rows of the annotation table.

by2 A character(1) providing the name of the column in the annotation table to
use to match the rows of the tables in tableList. If NULL, it will be defined by
by. The column pointed by by2 will be dropped in the output tables.

Author(s)

Christophe Vanderaa, Laurent Gatto

See Also

• ScpModel-VarianceAnalysis

• ScpModel-DifferentialAnalysis

• ScpModel-ComponentAnalysis

Examples

data("leduc_minimal")
var <- scpVarianceAnalysis(leduc_minimal)
colnames(var$Residuals)
Add peptide annotations available from the rowData
var <- scpAnnotateResults(

scplainer 25

var, rowData(leduc_minimal), by = "feature", by2 = "Sequence"
)
colnames(var$Residuals)

scplainer scplainer: linear models to understand mass spectrometry-based
single-cell proteomics data

Description

scplainer, standing for SCP-based Linear modelling Approach for Interpretable aNd Explorable
Results, is a principled and standardised approach for extracting meaningful insights from SCP
data. At its core, the approach performs statistical modelling using linear regression.

The workflow starts from a SingleCellExperiment object containing SCP data. The data is assumed
to be log-transformed. We advise to perform cell and feature quality control to avoid that failed
or outlying cells/feature distort the results. We also recommend starting at the precursor or the
peptide-level, but the workflow also allows protein-level data. Similarly, the workflow is robust
against for missing values, but it also allows for data where missing values are imputed.

To learn how to import your data, we suggest reading the vignette: vignette("read_scp", package
= "scp")

To learn how to process your data, we suggest reading the vignette: vignette("scp", package =
"scp")

Outline of the workflow

1. scpModel-Workflow: performs the data modelling and filtering using linear regression.

2. ScpModel-VarianceAnalysis: investigate the contribution of each model variable to the data

3. ScpModel-DifferentialAnalysis: assess the statistical significance of the differences observed
between group of samples of interest.

4. ScpModel-ComponentAnalysis: visually explore the data captured by each model variable.

Once the data are modelled and explored, the filtered, normalised and batch-corrected data can be
retrieved for further downstream analysis, such as clustering or trajectory inference.

You can find a demonstration of the scplainer workflow in a dedicated vignette: vignette("scp_data_modelling",
package = "scp")

Author(s)

Christophe Vanderaa, Laurent Gatto

References

scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data
Christophe Vanderaa, Laurent Gatto bioRxiv 2023.12.14.571792; doi: https://doi.org/10.1101/2023.12.14.571792.

26 ScpModel

ScpModel Class to store the results of single-cell proteomics modelling

Description

An ScpModel object must be always stored in the metadata() of an object that inherits from the
SummarizedExperiment class. The ScpModel object should never be accessed directly by the
user. Instead, we provide several setter function to retrieve information that may be useful to the
user.The ScpModel class contains several slots:

• scpModelFormula: a formula object controlling which variables are to be modelled.

• scpModelInputIndex: a numeric(1), selecting the assay to use in the SummarizedExperiment
object as input matrix. Note that this slot serves as a pointer, meaning that the quantitative data
is not duplicated. Any change to the assay in the SummarizedExperiment will impact the es-
timation of the ScpModel object.

• scpModelFilterThreshold: A numeric(1) indicating the minimal n/p ratio required for a
feature to be included in further model exploration. n/p is the number of measured values
for a features divided by the number of coefficients to estimate. n/p cannot be smaller than 1
because this would lead to over-specified models.

• scpModelFitList: A List that contains the model results for each feature. Each element is
a ScpModelFit object (see ScpModelFit)

Usage

scpModelFormula(object, name)

scpModelInput(object, name, filtered = TRUE)

scpModelFilterThreshold(object, name)

scpModelFilterNPRatio(object, name, filtered = TRUE)

scpModelResiduals(object, name, join = TRUE, filtered = TRUE)

scpModelEffects(object, name, join = TRUE, filtered = TRUE)

scpModelNames(object)

scpModelFilterThreshold(object, name) <- value

Arguments

object An object that inherits from the SummarizedExperiment class.

name A character(1) providing the name to use to store or retrieve the modelling
results. When retrieving a model and name is missing, the name of the first
model found in object is used.

ScpModel 27

filtered A logical(1) indicating whether the output should return all features (FALSE)
or the features that comply to the n/p ratio threshold (TRUE).

join A logical(1) indicating whether the output should be combined in a single
matrix (TRUE) or it should be returned as a list with one element for each feature
(FALSE). When TRUE, any gaps across features will be filled with NA’s.

value An numeric(1), the new value for the n/p ratio threshold

Getters

Each slot has a getter function associated:

• scpModelNames(): returns a vector of names of ScpModel objects stored in the SummarizedExperiment
object.

• scpModelFormula(): returns the formula slot of the ScpModel within an object that inherits
from the SummarizedExperiment class.

• scpModelFilterThreshold(): returns the n/p ration threshold used for feature filtering.

• scpModelInput(): returns a matrix with the quantitative values used as input of the model.
Hence, the matrix contains the data before modelling. If filtered = TRUE, the feature of the
matrix are restricted to the features that satisfy the n/p ratio threshold.

• scpModelFilterNPRatio(): returns the computed n/p ratio for each feature. If filtered =
TRUE, the function returns only the n/p of the features that satisfy the n/p ratio threshold.

• scpModelResiduals(): when join = FALSE, the function returns a list where each element
corresponds to a feature and contains the estimated residuals. When join = TRUE (default),
the function combines the list into a matrix with features in rows and cells in columns, and
filling the gaps with NA. If filtered = TRUE, the feature of the matrix are restricted to the
features that satisfy the n/p ratio threshold.

• scpModelEffects(): when join = FALSE, the function return a list where each element of
the list corresponds to a feature. Each element contains another list with as many elements as
variable in the model and each element contains the data effect vector for that vector. When
join = TRUE (default), each element of the list is a matrix with features in rows and cells
in columns where gaps are filled with NA. If filtered = TRUE, the feature of the matrix are
restricted to the features that satisfy the n/p ratio threshold.

Setter:

• scpModelFilterThreshold<-(): the function changes the n/p ratio threshold used for filter-
ing features.

Author(s)

Christophe Vanderaa, Laurent Gatto

See Also

• ScpModelFit for a description of the class that store modelling results

• ScpModel-Workflow that uses the class to store the estimated model.

28 ScpModel-DataCorrection

Examples

data("leduc_minimal")

####---- Getters ----####

scpModelNames(leduc_minimal)

scpModelFormula(leduc_minimal)

dim(leduc_minimal)
dim(scpModelInput(leduc_minimal))
dim(scpModelInput(leduc_minimal, filtered = FALSE))

head(scpModelFilterNPRatio(leduc_minimal))

dim(scpModelResiduals(leduc_minimal))
dim(scpModelResiduals(leduc_minimal, filtered = FALSE))
scpModelResiduals(leduc_minimal, join = FALSE)

scpModelEffects(leduc_minimal)
dim(scpModelEffects(leduc_minimal)$Set)
dim(scpModelEffects(leduc_minimal, filtered = FALSE)$Set)
scpModelEffects(leduc_minimal, join = FALSE)[[1]]

scpModelFilterThreshold(leduc_minimal)

####---- Setter ----####

scpModelFilterThreshold(leduc_minimal) <- 2
scpModelFilterThreshold(leduc_minimal)

ScpModel-DataCorrection

Correct single-cell proteomics data

Description

The function uses the data modelling output to generate corrected data that can be used for down-
stream analysis. The input is expected to be a SummarizedExperiment object that contains an
estimated ScpModel. There are two approaches:

• scpKeepEffect(): keep the effects of interests. The reconstructed data is the sum of the
effect matrices for the variable of interest and the residuals. Note that the intercepts (baseline
intensity of each feature) are not included by default, but they can be added when intercept
= TRUE.

• scpRemoveBatchEffect(): remove any undesired effect. The batch corrected data is the
input data minus the effect matrices that correspond to batch effect variables. Note that the
intercepts (baseline intensity of each feature) are removed by default, but they can be kept
when intercept = FALSE.

ScpModel-DataCorrection 29

Despite the two approaches are conceptually different, they can lead to similar results if the effects
that are used to reconstruct the data are the ones that are not removed when performing batch
correction (see examples).

The function returns a new SummarizedExperiment that contains an assay with the batch corrected
data. Note that the ’ScpModel‘ is erased in this new object.

Usage

scpKeepEffect(object, effects = NULL, intercept = FALSE, name)

scpRemoveBatchEffect(object, effects = NULL, intercept = TRUE, name)

Arguments

object An object that inherits from the SummarizedExperiment class. It must contain
an estimated ScpModel in its metadata

effects A character() vector. For scpKeepEffect(), which model variable should
be used to reconstruct the data. For scpRemoveBatchEffect(), which model
variable should be removed from the data. When NULL (default), both functions
return the model residuals.

intercept A logical(1). For scpKeepEffect(), should the intercepts be included when
reconstructing the data? Defaults to FALSE, hence the intercepts are not in-
cluded. For scpRemoveBatchEffect(), should the intercepts be removed from
the data? Defaults to TRUE, hence the intercepts are removed from the data.

name A character(1) providing the name to use to retrieve the model results. When
retrieving a model and name is missing, the name of the first model found in
object is used.

Author(s)

Christophe Vanderaa, Laurent Gatto

See Also

• ScpModel for functions to extract information from the ScpModel object

• ScpModel-Workflow to run a model on SCP data required for batch correction.

Examples

data("leduc_minimal")
scpModelFormula(leduc_minimal)

reconstructed <- scpKeepEffect(leduc_minimal, effects = "SampleType")
batchCorreced <- scpRemoveBatchEffect(

leduc_minimal, effects = c("Channel", "Set", "MedianIntensity")
)
The two approaches are identical
identical(reconstructed, batchCorreced)

30 ScpModel-DifferentialAnalysis

ScpModel-DifferentialAnalysis

Differential abundance analysis for single-cell proteomics

Description

Differential abundance analysis assess the statistical significance of the differences observed be-
tween group of samples of interest. Differential abundance analysis is part of the scplainer work-
flow.

Usage

scpDifferentialAnalysis(object, coefficients = NULL, contrasts = NULL, name)

scpDifferentialAggregate(differentialList, fcol, ...)

scpVolcanoPlot(
differentialList,
fdrLine = 0.05,
top = 10,
by = "padj",
decreasing = FALSE,
textBy = "feature",
pointParams = list(),
labelParams = list()

)

Arguments

object An object that inherits from the SummarizedExperiment class. It must contain
an estimated ScpModel in its metadata.

coefficients A character() vector with coefficient names to test. coefficients and contrasts
cannot be both NULL.

contrasts A list() where each element is a contrast to test. Each element must be a
vector with 3 strings: 1. The name of a categorical variable to test; 2. The name
of the reference group: 3. The name of the second group to contrast against the
reference group. coefficients and contrasts cannot be both NULL.

name A character(1) providing the name to use to retrieve the model results. When
retrieving a model and name is missing, the name of the first model found in
object is used.

differentialList

A list of tables returned by scpDifferentialAnalysis().

fcol A character(1) indicating the column to use for grouping features. Typically,
this would be protein or gene names for grouping proteins.

... Further arguments passed to metapod::combineGroupedPValues().

ScpModel-DifferentialAnalysis 31

fdrLine A numeric(1) indicating the FDR threshold bar to show on the plot.

top A numeric(1) indicating how many features should be labelled on the plot.

by A character(1) used to order the features It indicates which variable should
be considered when sorting the results. Can be one of: "Estimate", "SE", "Df",
"tstatistic", "pvalue", "padj" or any other annotation added by the user.

decreasing A logical(1) indicating whether the features should be ordered decreasingly
(TRUE, default) or increasingly (FALSE) depending on the value provided by by.

textBy A character(1) indicating the name of the column to use to label points.

pointParams A list where each element is an argument that is provided to ggplot2::geom_point().
This is useful to change point size, transparency, or assign colour based on an
annotation (see ggplot2::aes()).

labelParams A list where each element is an argument that is provided to ggrepel::geom_label_repel().
This is useful to change label size, transparency, or assign colour based on an
annotation (see ggplot2::aes()).

Running the differential abundance analysis

scpDifferentialAnalysis() performs statistical inference by means of a t-test on the estimatated
parameters. There are 2 use cases:

1. Statistical inference for differences between 2 groups

You can contrast 2 groups of interest through the contrasts argument. Multiple contrasts, that is
multiple pairwise group comparisons, can be performed. Therefore, contrasts must be provided
as a list where each element describes the comparison to perform as a three-element character vector
(see examples). The first element is the name of the annotation variable that contains the two groups
to compare. This variable must be categorical. The second element is the name of the reference
group. The third element is the name of the other group to compare against the reference.

1. Statistical inference for numerical variables

Numerical variables can be tested by providing the coefficient argument, that is the name of the
numerical annotation variable.

The statistical tests in both use cases are conducted for each feature independently. The p-values
are adjusted using IHW::ihw(), where each test is weighted using the feature intercept (that is
the average feature intensity). The function returns a list of DataFrames with one table for each
test contrast and/or coefficient. It provides the adjusted p-values and the estimates. For contrast,
the estimates represent the estimated log fold changes between the groups. For coefficients, the
estimates are the estimated slopes. Results are only provided for features for which contrasts or
coefficients are estimable, that are features for which there is sufficient observations for inference.

Differential abundance at the protein level

scpDifferentialAggregate() combines the differential abundance analysis results for groups of
features. This is useful, for example, to return protein-level results when data is modelled at the pep-
tide level. The function heavily relies on the approaches implemented in metapod::combineGroupedPValues().
The p-values are combined into a single value using one of the following methods: Simes’ method

32 ScpModel-DifferentialAnalysis

(default), Fisher’s method, Berger’s method, Pearson’s method, minimum Holm’s approach, Stouf-
fer’s Z-score method, and Wilkinson’s method. We refer to the metapod documentation for more
details on the assumptions underlying each approach. The estimates are combined using the repre-
sentative estimate, as defined by metapod. Which estimate is representative depends on the selected
combination method. The function takes the list of tables generated by scpDifferentialAnalysis()
and returns a new list of DataFrames with aggregated results. Note that we cannot meaningfully
aggregate degrees of freedom. Those are hence removed from the aggregated result tables.

Volcano plots

scpAnnotateResults() adds annotations to the differential abundance analysis results. The anno-
tations are added to all elements of the list returned by (). See the associated man page for more
information.

scpVolcanoPlot() takes the list of tables generated by scpDifferentialAnalysis() and returns
a ggplot2 scatter plot. The plots show the adjusted p-values with respect to the estimate. A hori-
zontal bar also highlights the significance threshold (defaults to 5%, fdrLine). The top (default 10)
features with lowest p-values are labeled on the plot. You can control which features are labelled
using the top, by and decreasing arguments. Finally, you can change the point and label aesthetics
thanks to the pointParams and the labelParams arguments, respectively.

Author(s)

Christophe Vanderaa, Laurent Gatto

References

scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data
Christophe Vanderaa, Laurent Gatto bioRxiv 2023.12.14.571792; doi: https://doi.org/10.1101/2023.12.14.571792.

See Also

This function is part of the scplainer workflow, which also consists of ScpModel-Workflow to
run a model on SCP data upstream of analysis of variance, and ScpModel-VarianceAnalysis and
ScpModel-ComponentAnalysis to explore the model results.

scpAnnotateResults() streamlines the annotation of the differential abundance results.

Examples

library("patchwork")
library("ggplot2")
data("leduc_minimal")
Add n/p ratio information in rowData
rowData(leduc_minimal)$npRatio <-

scpModelFilterNPRatio(leduc_minimal, filtered = FALSE)

####---- Run differential abundance analysis ----####

(res <- scpDifferentialAnalysis(
leduc_minimal, coefficients = "MedianIntensity",
contrasts = list(c("SampleType", "Melanoma", "Monocyte"))

ScpModel-VarianceAnalysis 33

))
IHW return a message because of the example data set has only few
peptides, real dataset should not have that problem.

####---- Annotate results ----####

Add peptide annotations available from the rowData
res <- scpAnnotateResults(

res, rowData(leduc_minimal),
by = "feature", by2 = "Sequence"

)

####---- Plot results ----####

scpVolcanoPlot(res, textBy = "gene") |>
wrap_plots(guides = "collect")

Modify point and label aesthetics
scpVolcanoPlot(

res, textBy = "gene", top = 20,
pointParams = list(aes(colour = npRatio), alpha = 0.5),
labelParams = list(size = 2, max.overlaps = 20)) |>
wrap_plots(guides = "collect")

####---- Aggregate results ----####

Aggregate to protein-level results
byProteinDA <- scpDifferentialAggregate(

res, fcol = "Leading.razor.protein.id"
)
scpVolcanoPlot(byProteinDA) |>

wrap_plots(guides = "collect")

ScpModel-VarianceAnalysis

Analysis of variance for single-cell proteomics

Description

Analysis of variance investigates the contribution of each effects in capturing the variance in the
data. Analysis of variance is part of the scplainer workflow.

Usage

scpVarianceAnalysis(object, name)

scpVarianceAggregate(varianceList, fcol)

scpVariancePlot(

34 ScpModel-VarianceAnalysis

varianceList,
effect = "Residuals",
by = "percentExplainedVar",
top = Inf,
decreasing = TRUE,
combined = TRUE,
fcol = NULL,
colourSeed = 1234

)

Arguments

object An object that inherits from the SummarizedExperiment class. It must contain
an estimated ScpModel in its metadata.

name A character(1) providing the name to use to retrieve the model results. When
retrieving a model and name is missing, the name of the first model found in
object is used.

varianceList A list of tables returned by scpVarianceAnalysis().

fcol A character(1) indicating the column to use for grouping features. Typically,
this would be protein or gene names for grouping proteins.

effect A character(1) used to filter theb results. It indicates which effect should be
considered when sorting the results.

by A character(1) used to filter the results. It indicates which variable should be
considered when sorting the results. Can be one of: "SS", "df", or "percentEx-
plainedVar".

top A numeric(1) used to filter the results. It indicates how many features should
be plotted. When top = Inf (default), all feature are considered.

decreasing A logical(1) indicating whether the effects should be ordered decreasingly
(TRUE, default) or increasingly (FALSE) depending on the value provided by by.

combined A logical(1) indicating whether the results should be combined across all
features. When TRUE, the barplot shows the explained variance for the complete
dataset.

colourSeed A integer(1) providing a seed that is used when randomly sampling colours
for the effects. Change the number to generate another colour scheme.

Running the variance analysis

scpVarianceAnalysis() computes the amount of data (measured as the sums of squares) that is
captured by each model variable, but also that is not modelled and hence captured in the residuals.
The proportion of variance explained by each effect is the sums of squares for that effect divided
by the sum of all sums of squares for each effect and residuals. This is computed for each feature
separately. The function returns a list of DataFrames with one table for each effect.

scpVarianceAggregate() combines the analysis of variance results for groups of features. This is
useful, for example, to return protein-level results when data is modelled at the peptide level. The
function takes the list of tables generated by scpVarianceAnalysis() and returns a new list of
DataFrames with aggregated results.

ScpModel-VarianceAnalysis 35

Exploring variance analysis results

scpAnnotateResults() adds annotations to the component analysis results. The annotations are
added to all elements of the list returned by scpComponentAnalysis(). See the associated man
page for more information.

scpVariancePlot() takes the list of tables generated by scpVarianceAnalysis() and returns
a ggplot2 bar plot. The bar plot shows the proportion of explained variance by each effect and
the residual variance. By default, the function will combine the results over all features, showing
the effect’s contributions on the complete data set. When combine = FALSE, the results are shown
for individual features, with additional arguments to control how many and which features are
shown. Bars can also be grouped by fcol. This is particularly useful when exploring peptide
level results, but grouping peptides that belong to the same protein (note that you should not use
scpVarianceAggregate() in that case).

Author(s)

Christophe Vanderaa, Laurent Gatto

References

scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data
Christophe Vanderaa, Laurent Gatto bioRxiv 2023.12.14.571792; doi: https://doi.org/10.1101/2023.12.14.571792.

See Also

This function is part of the scplainer workflow, which also consists of ScpModel-Workflow to run
a model on SCP data upstream of analysis of variance, and ScpModel-DifferentialAnalysis and
ScpModel-ComponentAnalysis to explore the model results.

scpAnnotateResults() streamlines the annotation of the analysis of variance results.

Examples

data("leduc_minimal")

####---- Run analysis of variance ----####

(var <- scpVarianceAnalysis(leduc_minimal))

####---- Annotate results ----####

Add peptide annotations available from the rowData
var <- scpAnnotateResults(

var, rowData(leduc_minimal), by = "feature", by2 = "Sequence"
)

####---- Plot results ----####

Plot the analysis of variance through the whole data
scpVariancePlot(var)

Plot the analysis of variance for the top 20 peptides with highest

36 ScpModel-Workflow

percentage of variance explained by the cell type
scpVariancePlot(

var, effect = "SampleType", top = 20, combined = FALSE
)

Same but grouped by protein
scpVariancePlot(

var, effect = "SampleType", top = 20, combined = FALSE, fcol = "gene"
)

####---- Aggregate results ----####

Aggregate to protein-level results
varProtein <- scpVarianceAggregate(var, fcol = "gene")
scpVariancePlot(

varProtein, effect = "SampleType", top = 20, combined = FALSE
)

ScpModel-Workflow Modelling single-cell proteomics data

Description

Function to estimate a linear model for each feature (peptide or protein) of a single-cell proteomics
data set. This is the modelling step of the scplainer workflow.

Usage

scpModelWorkflow(object, formula, i = 1, name = "model", verbose = TRUE)

scpModelFilterPlot(object, name)

Arguments

object An object that inherits from the SummarizedExperiment class.

formula A formula object controlling which variables are to be modelled.

i A logical, numeric or character indicating which assay of object to use as
input for modelling. Only a single assay can be provided. Defaults to the first
assays.

name A character(1) providing the name to use to store or retrieve the modelling
results. When retrieving a model and name is missing, the name of the first
model found in object is used.

verbose A logical(1) indicating whether to print progress to the console.

ScpModel-Workflow 37

Input data

The main input is object that inherits from the SummarizedExperiment class. The quantitative
data will be retrieve using assay(object). If object contains multiple assays, you can specify
which assay to take as input thanks to the argument i, the function will then assume assay(object,
i) as quantification input .

The objective of modelling single-cell proteomics data is to estimate, for each feature (peptide or
protein), the effect of known cell annotations on the measured intensities. These annotations may
contain biological information such as the cell line, FACS-derived cell type, treatment, etc. We also
highly recommend including technical information, such as the MS acquisition run information or
the chemical label (in case of multiplexed experiments). These annotation must be available from
colData(object). formula specifies which annotations to use during modelling.

Data modelling workflow

The modelling worflow starts with generating a model matrix for each feature given the colData(object)
and formula. The model matrix for peptide i, denoted Xi, is adapted to the pattern of missing val-
ues (see section below). Then, the functions fits the model matrix against the quantitative data. In
other words, the function determines for each feature i (row in the input data) the contribution of
each variable in the model. More formally, the general model definition is:

Yi = βiX
T
(i) + ϵi

where Y is the feature by cell quantification matrix, βi contains the estimated coefficients for feature
i with as many coefficients as variables to estimate, XT

(i) is the model matrix generated for feature
i, and ϵ is the feature by cell matrix with residuals.

The coefficients are estimated using penalized least squares regression. Next, the function computes
the residual matrix and the effect matrices. An effect matrix contains the data that is captured by a
given cell annotation. Formally, for each feature i:

ˆ
Mf

i =
ˆ
βf
i X

fT
(i)

where M̂f is a cell by feature matrix containing the variables associated to annotation f , ˆ
βf
i are the

estimated coefficients associated to annotation f and estimated for feature i, and XfT
(i) is the model

matrix for peptide i containing only the variables to annotation f .

All the results are stored in an ScpModel object which is stored in the object’s metadata. Note that
multiple models can be estimated for the same object. In that case, provide the name argument to
store the results in a separate ScpModel.

Feature filtering

The proportion of missing values for each features is high in single-cell proteomics data. Many fea-
tures can typically contain more coefficients to estimate than observed values. These features cannot
be estimated and will be ignored during further steps. These features are identified by computing
the ratio between the number of observed values and the number of coefficients to estimate. We call
it the n/p ratio. Once the model is estimated, use scpModelFilterPlot(object) to explore the
distribution of n/p ratios across the features. You can also extract the n/p ratio for each feature using

38 ScpModel-Workflow

scpModelFilterNPRatio(object). By default, any feature that has an n/p ratio lower than 1 is
ignored. However, feature with an n/p ratio close to 1 may lead to unreliable outcome because there
are not enough observed data. You could consider the n/p ratio as the average number of replicate
per coefficient to estimate. Therefore, you may want to increase the n/p threshold. You can do so
using scpModelFilter(object) <- npThreshold.

About missing values

The data modelling workflow is designed to take the presence of missing values into account. We
highly recommend to not impute the data before modelling. Instead, the modelling approach will
ignore missing values and will generate a model matrix using only the observed values for each
feature. However, the model matrices for some features may contain highly correlated variables,
leading to near singular designs. We include a small ridge penalty to reduce numerical instability
associated to correlated variables.

Author(s)

Christophe Vanderaa, Laurent Gatto

References

scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data
Christophe Vanderaa, Laurent Gatto bioRxiv 2023.12.14.571792; doi: https://doi.org/10.1101/2023.12.14.571792.

See Also

This function is part of the scplainer workflow, which also consists of ScpModel-VarianceAnalysis,
ScpModel-DifferentialAnalysis, ScpModel-ComponentAnalysis to explore the model results

ScpModel provides functions to extract information from the ScpModel object.

scpKeepEffect and scpRemoveBatchEffect perform batch correction for downstream analyses.

Examples

data("leduc_minimal")
leduc_minimal
Overview of available cell annotations
colData(leduc_minimal)

####---- Model data ----####

f <- ~ 1 + ## intercept
Channel + Set + ## batch variables
MedianIntensity +## normalization
SampleType ## biological variable

leduc_minimal <- scpModelWorkflow(leduc_minimal, formula = f)

####---- n/p feature filtering ----####

Get n/p ratios
head(scpModelFilterNPRatio(leduc_minimal))

scpModelComponentMethods 39

Plot n/p ratios
scpModelFilterPlot(leduc_minimal)

Change n/p ratio threshold
scpModelFilterThreshold(leduc_minimal) <- 2
scpModelFilterPlot(leduc_minimal)

scpModelComponentMethods

Component analysis for single cell proteomics

Description

Component analysis is a powerful tool for exploring data. The package implements the ANOVA-
principal component analysis extended to linear models (APCA+) and derivatives (suggested by
Thiel at al. 2017). This framework is based on principal component analysis (PCA) and allows
exploring the data captured by each model variable individually. Component analysis is part of the
scplainer workflow.

Usage

scpModelComponentMethods

scpComponentAnalysis(
object,
method = NULL,
effects = NULL,
pcaFUN = "auto",
residuals = TRUE,
unmodelled = TRUE,
name,
...

)

scpComponentAggregate(componentList, fcol, fun = colMedians, ...)

scpComponentPlot(
componentList,
comp = 1:2,
pointParams = list(),
maxLevels = NULL

)

scpComponentBiplot(
scoreList,
eigenvectorList,

40 scpModelComponentMethods

comp = 1:2,
pointParams = list(),
arrowParams = list(arrow = arrow(length = unit(0.2, "cm"))),
labelParams = list(size = 2, max.overlaps = 10),
textBy = "feature",
top = 10,
maxLevels = NULL

)

Arguments

object An object that inherits from the SummarizedExperiment class. It must contain
an estimated ScpModel in its metadata.

method A character() indicating which approach(es) to use for principal component
analysis (PCA). Are allowed: "APCA" (default), "ASCA" and/or "ASCA.E" (mul-
tiple values are allowed). "ASCA", "APCA", "ASCA.E" are iterated through each
desired effects.

effects A character() indicating on which model variables the component analysis
should be performed. Default to all modelled variables.

pcaFUN A character(1) indicating which function to use to perform PCA. "nipals"
will use nipals::nipals() while "svd" will use base::svd(). If "auto", the
function uses "nipals" if the data contain missing values and "svd" otherwise.

residuals A logical(1), if TRUE, PCA is performed on the residual matrix as well.

unmodelled A logical(1), if TRUE, PCA is performed on the input matrix as well.

name A character(1) providing the name to use to retrieve the model results. When
retrieving a model and name is missing, the name of the first model found in
object is used.

... For scpComponentAnalysis(), further arguments passed to the PCA function.
For scpComponentAggregate(), further arguments passed to QFeatures::aggregateFeatures().

componentList A list of components analysis results. This is typically the bySample or byFeature
element of the list returned by scpComponentAnalysis().

fcol A character(1) providing the name of the column to use to group features.

fun A function that summarises the values for each group. See QFeatures::aggregateFeatures()
for a list of available functions.

comp An integer(2) pointing to which components to fit. The values of comp are
not allowed to exceed the number of computed components in componentList.

pointParams A list where each element is an argument that is provided to ggplot2::geom_point().
This is useful to change point size, transparency, or assign colour based on an
annotation (see ggplot2::aes()).

maxLevels An integer(1) indicating how many colour levels should be shown on the
legend when colours are derived from a discrete factor. If maxLevels = NULL,
all levels are shown. This parameters is useful to colour points based on a factor
with many levels that would otherwise overcrowd the legend.

scoreList A list of components analysis results. This is typically the bySample element in
the list returned by scpComponentAnalysis().

scpModelComponentMethods 41

eigenvectorList

A list of components analysis results. This is typically the byFeature element
in the list returned by scpComponentAnalysis().

arrowParams A list where each element is an argument that is provided to ggplot2::geom_segment().
This is useful to change arrow head style, line width, transparency, or assign
colour based on an annotation (see ggplot2::aes()). Note that changing the
’x’, ’y’, ’xend’, and ’yend’ aesthetics is not allowed.

labelParams A list where each element is an argument that is provided to ggrepel::geom_label_repel().
This is useful to change label size, transparency, or assign colour based on an
annotation (see ggplot2::aes()). Note that changing the ’x’, ’y’, ’xend’, and
’yend’ aesthetics is not allowed.

textBy A character(1) indicating the name of the column to use to label arrow heads.

top An integer(1) indicating how many arrows should be drawn. The arrows are
sorted based on their size as determined by the euclidean distance in the princi-
pal component space.

Format

An object of class character of length 3.

PCA - notation and algorithms

Given A a m x n matrix, PCA can be summarised as the following decomposition:

AAT /(n− 1) = V LV T

Where V is a m x k orthogonal matrix, that is V V T = I , with k the number of components. V is
called the matrix of eigenvectors. L is the k x k diagonal matrix of eigenvalues that contains the
variance associated to each component, ordered from highest to lowest variance. The unscaled PC
scores are given by S = ATV .

There are 2 available algorithm to perform PCA:

• nipals: The non-linear iterative partial least squares (NIPALS) algorithm can handle miss-
ing values and approximates classical PCA, although it does not explicitly maximise the vari-
ance. This is implemented in nipals::nipals().

• svd: The singular value decomposition (SVD) is used to perform an exact PCA, but it cannot
handle missing values. This is implemented in base::svd().

Which algorithm to use is controlled by the pcaFUN argument, by default ("auto"), the function
automatically uses svd when there is no missing values and nipals when there is at least one
missing value.

Component analysis methods

scpComponentAnalysis() performs a PCA on the modelling output. What modelling output the
function will use depends on the method. The are 3 PCA approaches:

42 scpModelComponentMethods

• ASCA performs a PCA on the effect matrix, that is A = M̂f where f is one of the effects in
the model. This PCA is useful to explore the modelled effects and the relationship between
different levels of a factor.

• ASCA.E: perform PCA on the effect matrix, just like ASCA. The scores are then updated by
projecting the effect matrix added to the residuals using the eigenvectors, that is scores =
(M̂f + ϵ)TV . This PCA is useful to explore the modelled effects while blurring these effects
with the unmodelled variability. Note however that for this approach, the scores are no longer
guaranteed to be orthogonal and the eigenvalues are no longer meaningful. The percentage of
variation should not be interpreted.

• APCA (default) performs PCA on the effect matrix plus the residuals, that is A = M̂f + ϵ. This
PCA is useful to explore the modelled effects in relation with the unmodelled variability that
is remaining in the residuals.

Available methods are listed in scpModelComponentMethods. Note that for all three methods, a
PCA on the residual matrix is also performed when residuals = TRUE, that is A = ϵ = Y − β̂XT .
A PCA on the residuals is useful to explore residual effects that are not captured by any effect in
the model. Similarly, a PCA on the input data matrix, that is on the data before modelling is also
performed when unmodelled = TRUE, that is A = Y .

scpComponentAnalysis() always returns a list with 2 elements. The first element, bySample is
a list where each element contains the PC scores for the desired model variable(s). The second
element, byFeature is a list where each element contains the eigenvectors for the desired model
variable(s).

Exploring component analysis results

scpAnnotateResults() adds annotations to the component analysis results. The annotations are
added to all elements of the list returned by scpComponentAnalysis(). See the associated man
page for more information.

scpComponentPlot() takes one of the two elements of the list generated by scpComponentAnalysis()
and returns a list of ggplot2 scatter plots. Commonly, the first two components, that bear most of
the variance, are explored for visualisation, but other components can be explored as well thanks
to the comp argument. Each point represents either a sample or a feature, depending on the pro-
vided component analysis results (see examples). Change the point aesthetics by providing ggplot
arguments in a list (see examples).

scpComponentBiplot() simultaneously explores the PC scores (sample-space) and the eigenvec-
tors (feature-space). Scores are shown as points while eigenvectors are shown as arrows. Point
aesthetics and arrow aesthetics can be controlled with the pointParams and the arrowParams ar-
guments, respectively. Moreover, arrows are also labelled and label aesthetics can be controlled
using labelParams and textBy. Plotting all eigenvectors as arrows leads to overcrowded plots.
You can limit the plotting to the top longest arrows (default to the top 10) as defined by the distance
on the two selected PCs.

scpComponentAggregate() offers functionality to aggregate the results from multiple features.
This can be used to obtain, for example, component analysis results for proteins when modelling at
the peptide level. The approach is inspired from scuttle::aggregateAcrossCells() and combines, for
each group, multiple values for each component using QFeatures::aggregateFeatures(). By
default, values are aggregated using the median, but QFeatures offers other methods as well. The
annotation of the component results are automatically aggregated as well. See the aggregateFeatures()
man page for more information on available methods and expected behavior.

https://bioconductor.org/packages/release/bioc/html/scuttle.html

scpModelComponentMethods 43

Author(s)

Christophe Vanderaa, Laurent Gatto

References

Thiel, Michel, Baptiste Féraud, and Bernadette Govaerts. 2017. "ASCA+ and APCA+: Extensions
of ASCA and APCA in the Analysis of Unbalanced Multifactorial Designs." Journal of Chemomet-
rics 31 (6): e2895.

scplainer: using linear models to understand mass spectrometry-based single-cell proteomics data
Christophe Vanderaa, Laurent Gatto bioRxiv 2023.12.14.571792; doi: https://doi.org/10.1101/2023.12.14.571792.

See Also

This function is part of the scplainer workflow, which also consists of ScpModel-Workflow to run
a model on SCP data upstream of analysis of variance, and ScpModel-DifferentialAnalysis and
ScpModel-VarianceAnalysis to explore the model results.

Other useful functions:

• The nipals::nipals() function and package for detailed information about the algorithm
and associated parameters.

• The ggplot2::ggplot() function and associated tutorials to manipulate and save the visual-
isation output

• scpAnnotateResults() to annotate component analysis results.

Examples

library("patchwork")
library("ggplot2")
data("leduc_minimal")
leduc_minimal$cell <- rownames(colData(leduc_minimal))

####---- Run component analysis ----####

(pcs <- scpComponentAnalysis(
leduc_minimal, method = "ASCA", effects = "SampleType",
pcaFUN = "auto", residuals = FALSE, unmodelled = FALSE

))

####---- Annotate results ----####

Add cell annotation available from the colData
bySamplePCs <- scpAnnotateResults(

pcs$bySample, colData(leduc_minimal), by = "cell"
)

Add peptide annotations available from the rowData
byFeaturePCs <- scpAnnotateResults(

pcs$byFeature, rowData(leduc_minimal),
by = "feature", by2 = "Sequence"

)

44 ScpModelFit

####---- Plot results ----####

Plot result in cell-space, ie each dot is a cell
scpComponentPlot(

bySamplePCs,
pointParams = list(## ggplot arguments

aes(colour = SampleType, shape = lcbatch),
alpha = 0.6

)
) |>

wrap_plots(guides = "collect")

Plot result in peptide-space, ie each dot is a peptide
scpComponentPlot(

byFeaturePCs,
pointParams = list(colour = "dodgerblue", alpha = 0.6)

) |>
wrap_plots(guides = "collect")

Plot both
scpComponentBiplot(

bySamplePCs, byFeaturePCs,
pointParams = list(aes(colour = SampleType), alpha = 0.6),
labelParams = list(max.overlaps = 20),
textBy = "gene"

) |>
wrap_plots(guides = "collect")

####---- Aggregate results ----####

Aggregate to protein-level results
byProteinPCs <- scpComponentAggregate(

byFeaturePCs, fcol = "Leading.razor.protein.id"
)

Plot result in protein-space, ie each dot is a protein
scpComponentPlot(

byProteinPCs,
pointParams = list(colour = "firebrick", alpha = 0.6)

) |>
wrap_plots(guides = "collect")

ScpModelFit Class to store the components of an estimated model for a feature

Description

An ScpModelFit object is expected to be stored as a list element in the scpModelFitList of an
ScpModel object. The ScpModelFit object should never be accessed directly by the user. Refer to

ScpModelFit 45

the ScpModel for a list of function to access the information in an ScpModelFit. The ScpModelFit
class contains several slots that contain the model output for a feature:

• n: an integer, the number of observations for the feature

• p: an integer, the number of coefficient to estimate

• coefficients: a numeric vector with the estimated coefficients

• residuals: a numeric vector with the estimated residuals

• effects: a List with the

• df: an integer providing the number of degrees of freedom of the model estimation

• var: a numeric vector with the residual variance of the model estimation

• uvcov: the unscaled variance covariance matrix

• levels: a named List where each elements corresponds to a categorical model variable and
contains a vector with the possible categories.

Author(s)

Christophe Vanderaa, Laurent Gatto

See Also

ScpModel for a description of the class that relies on ScpModelFit

Examples

new("ScpModelFit") ## this should never be used by the user

Index

∗ datasets
leduc_minimal, 10
mqScpData, 13
sampleAnnotation, 22
scp1, 23
scpModelComponentMethods, 39

addReducedDims, 2
aggregateFeaturesOverAssays

(aggregateFeaturesOverAssays-deprecated),
3

aggregateFeaturesOverAssays-deprecated,
3

base::svd(), 40, 41

class:ScpModel (ScpModel), 26
class:ScpModelFit (ScpModelFit), 44
computeSCR, 4
cumulativeSensitivityCurve, 6

divideByReference, 8

ggplot2::aes(), 31, 40, 41
ggplot2::geom_point(), 31, 40
ggplot2::geom_segment(), 41
ggplot2::ggplot(), 43
ggrepel::geom_label_repel(), 31, 41

IHW::ihw(), 31

jaccardIndex, 9

leduc_minimal, 10

medianCVperCell, 11
metapod::combineGroupedPValues(), 30,

31
mqScpData, 13
MsCoreUtils::normalize_matrix(), 18
MsCoreUtils::normalizeMethods, 12

MsCoreUtils::normalizeMethods(), 17

nipals::nipals(), 40, 41, 43
normalizeSCP, 17

pep2qvalue, 18
predictSensitivity

(cumulativeSensitivityCurve), 6
preprocessCore::normalize.quantiles(),

18
preprocessCore::normalize.quantiles.robust(),

18

QFeatures, 6, 9, 17, 21, 23
QFeatures::aggregateFeatures, 3, 4
QFeatures::aggregateFeatures(), 40, 42
QFeatures::normalize, 18
QFeatures::readQFeatures(), 20
QFeatures::readQFeaturesFromDIANN(),

20
QFeatures::readSummarizedExperiment(),

21

read.delim(), 13
readQFeatures(), 20
readQFeaturesFromDIANN(), 20
readSCP, 20
readSCP(), 17, 23
readSCPfromDIANN (readSCP), 20
readSingleCellExperiment (readSCP), 20
readSummarizedExperiment(), 20
reportMissingValues, 21

sampleAnnotation, 22
scater::plotReducedDim(), 2
scater::plotTSNE(), 2
scp1, 23
scpAnnotateResults, 24
scpAnnotateResults(), 32, 35, 42, 43
scpComponentAggregate

(scpModelComponentMethods), 39

46

INDEX 47

scpComponentAnalysis
(scpModelComponentMethods), 39

scpComponentAnalysis(), 2, 3
scpComponentBiplot

(scpModelComponentMethods), 39
scpComponentPlot

(scpModelComponentMethods), 39
scpDifferentialAggregate

(ScpModel-DifferentialAnalysis),
30

scpDifferentialAnalysis
(ScpModel-DifferentialAnalysis),
30

scpKeepEffect, 38
scpKeepEffect

(ScpModel-DataCorrection), 28
scplainer, 25
ScpModel, 26, 29, 37, 38, 45
ScpModel-class (ScpModel), 26
ScpModel-ComponentAnalysis, 24, 25, 32,

35, 38
ScpModel-ComponentAnalysis

(scpModelComponentMethods), 39
ScpModel-DataCorrection, 28
ScpModel-DifferentialAnalysis, 24, 25,

30, 35, 38, 43
ScpModel-VarianceAnalysis, 24, 25, 32, 33,

38, 43
ScpModel-Workflow, 27, 29, 32, 35, 36, 43
scpModel-Workflow, 25
scpModelComponentMethods, 39
scpModelEffects (ScpModel), 26
scpModelFilterNPRatio (ScpModel), 26
scpModelFilterPlot (ScpModel-Workflow),

36
scpModelFilterThreshold (ScpModel), 26
scpModelFilterThreshold<- (ScpModel), 26
ScpModelFit, 26, 27, 44
ScpModelFit-class (ScpModelFit), 44
scpModelFormula (ScpModel), 26
scpModelInput (ScpModel), 26
scpModelNames (ScpModel), 26
scpModelResiduals (ScpModel), 26
scpModelWorkflow (ScpModel-Workflow), 36
scpRemoveBatchEffect, 38
scpRemoveBatchEffect

(ScpModel-DataCorrection), 28
scpVarianceAggregate

(ScpModel-VarianceAnalysis), 33
scpVarianceAnalysis

(ScpModel-VarianceAnalysis), 33
scpVariancePlot

(ScpModel-VarianceAnalysis), 33
scpVolcanoPlot

(ScpModel-DifferentialAnalysis),
30

SingleCellExperiment, 3, 23, 25
SingleCellExperiment::SingleCellExperiment(),

21

vsn::vsn2(), 18

	addReducedDims
	aggregateFeaturesOverAssays-deprecated
	computeSCR
	cumulativeSensitivityCurve
	divideByReference
	jaccardIndex
	leduc_minimal
	medianCVperCell
	mqScpData
	normalizeSCP
	pep2qvalue
	readSCP
	reportMissingValues
	sampleAnnotation
	scp1
	scpAnnotateResults
	scplainer
	ScpModel
	ScpModel-DataCorrection
	ScpModel-DifferentialAnalysis
	ScpModel-VarianceAnalysis
	ScpModel-Workflow
	scpModelComponentMethods
	ScpModelFit
	Index

