Package ‘scde’

January 24, 2026
Type Package
Title Single Cell Differential Expression
Version 2.39.0

Description The scde package implements a set of statistical methods for
analyzing single-cell RNA-seq data. scde fits individual error models for
single-cell RNA-seq measurements. These models can then be used for assessment
of differential expression between groups of cells, as well as other types of
analysis. The scde package also contains the pagoda framework which applies
pathway and gene set overdispersion analysis to identify and characterize
putative cell subpopulations based on transcriptional signatures. The overall
approach to the differential expression analysis is detailed in the following
publication: * * Bayesian approach to single-cell differential expression
analysis" (Kharchenko PV, Silberstein L, Scadden DT, Nature Methods, doi:
10.1038/nmeth.2967). The overall approach to subpopulation identification and
characterization is detailed in the following pre-print: * ~ Characterizing
transcriptional heterogeneity through pathway and gene set overdispersion
analysis" (Fan J, Salathia N, Liu R, Kaeser G, Yung Y, Herman J, Kaper F,
Fan JB, Zhang K, Chun J, and Kharchenko PV, Nature Methods, doi:10.1038/nmeth.3734).

Author Peter Kharchenko [aut, cre], Jean Fan [aut], Evan Biederstedt [aut]

Maintainer Evan Biederstedt <evan.biederstedt@gmail.com>
URL http://pklab.med.harvard.edu/scde

BugReports https://github.com/hms-dbmi/scde/issues
License GPL-2

LazyData true

Depends R (>= 3.0.0), flexmix

Imports Rcpp (>=0.10.4), ReppArmadillo (>= 0.5.400.2.0), mgcv, Rook,
rjson, MASS, Cairo, RColorBrewer, edgeR, quantreg, methods,
nnet, RMTstat, extRemes, pcaMethods, BiocParallel, parallel

Suggests knitr, cba, fastcluster, WGCNA, GO.db, org.Hs.eg.db,
rmarkdown

biocViews ImmunoOncology, RNASeq, StatisticalMethod,
DifferentialExpression, Bayesian, Transcription, Software

1

http://pklab.med.harvard.edu/scde
https://github.com/hms-dbmi/scde/issues

LinkingTo Rcpp, ReppArmadillo
VignetteBuilder knitr

RoxygenNote 5.0.0

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/scde
git_branch devel

git_last_commit 013edaa

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents

bwpca
cleanccounts
clean.gos
esmefismall oo
knn ...
knn.errormodels oo
make.pagoda.app
oifm.o
pagoda.clustercells
pagoda.effectiveccells,
pagoda.gene.clusters
pagoda.pathway.wPCA
pagoda.reduce.loading.redundancy
pagoda.reduce.redundancy
pagoda.show.pathways
pagoda.subtract.aspecto
pagoda.top.aspects

scde.browsediffexpo
scdeedffo o
scde.errormodels oL oo
scde.expression.difference L.
scde.expression.magnitude L. L.
scde.expression.prior
scde.failure.probability
scde.fit.models.to.reference L.
scde.posteriorso
scde.test.gene.expression.difference

Contents

bwpca 3

SHOW.APD .« o o e e e e e 34

VIEW.ASPECES . .« v vt i i e e e e e e e e e e e e e e 35

ViewPagodaApp-class 36

WINSOrZe. MatriX o e 37

Index 38
bwpca Determine principal components of a matrix using per-

observation/per-variable weights

Description

Implements a weighted PCA

Usage

bwpca(mat, matw = NULL, npcs = 2, nstarts = 1, smooth = 0,
em.tol = 1e-06, em.maxiter = 25, seed = 1, center = TRUE,
n.shuffles = 0)

Arguments
mat matrix of variables (columns) and observations (rows)
matw corresponding weights
npcs number of principal components to extract
nstarts number of random starts to use
smooth smoothing span
em. tol desired EM algorithm tolerance
em.maxiter maximum number of EM iterations
seed random seed
center whether mat should be centered (weighted centering)
n.shuffles optional number of per-observation randomizations that should be performed in
addition to the main calculations to determine the lambdal (PC1 eigenvalue)
magnitude under such randomizations (returned in $randvar)
Value

a list containing eigenvector matrix ($rotation), projections ($scores), variance (weighted) explained
by each component ($var), total (weighted) variance of the dataset ($totalvar)

4 clean.counts

Examples

set.seed(0)

mat <- matrix(c(rnorm(5x10,mean=0,sd=1), rnorm(5*10,mean=5,sd=1)), 10, 10) # random matrix
base.pca <- bwpca(mat) # non-weighted pca, equal weights set automatically

matw <- matrix(c(rnorm(5%10,mean=0,sd=1), rnorm(5%10,mean=5,sd=1)), 10, 10) # random weight matrix
matw <- abs(matw)/max(matw)

base.pca.weighted <- bwpca(mat, matw) # weighted pca

clean.counts Filter counts matrix

Description

Filter counts matrix based on gene and cell requirements

Usage

clean.counts(counts, min.lib.size = 1800, min.reads = 10,
min.detected = 5)

Arguments

counts read count matrix. The rows correspond to genes, columns correspond to indi-
vidual cells

min.lib.size Minimum number of genes detected in a cell. Cells with fewer genes will be
removed (default: 1.8e3)

min.reads Minimum number of reads per gene. Genes with fewer reads will be removed
(default: 10)

min.detected = Minimum number of cells a gene must be seen in. Genes not seen in a sufficient
number of cells will be removed (default: 5)

Value

a filtered read count matrix

Examples

data(pollen)

dim(pollen)

cd <- clean.counts(pollen)
dim(cd)

clean.gos

clean.gos Filter GOs list

Description

Filter GOs list and append GO names when appropriate

Usage

clean.gos(go.env, min.size = 5, max.size = 5000, annot = FALSE)

Arguments

go.env GO or gene set list

min.size Minimum size for number of genes in a gene set (default: 5)

max.size Maximum size for number of genes in a gene set (default: 5000)

annot Whether to append GO annotations for easier interpretation (default: FALSE)
Value

a filtered GO list
Examples

10 sample GOs

library(org.Hs.eg.db)

go.env <- mget(ls(org.Hs.egGO2ALLEGS)[1:10], org.Hs.egGO2ALLEGS)
Filter this list and append names for easier interpretation
go.env <- clean.gos(go.env)

es.mef.small Sample data

Description

A subset of Saiful et al. 2011 dataset containing first 20 ES and 20 MEF cells.

References

http://www.ncbhi.nlm.nih.gov/pubmed/21543516

http://www.ncbi.nlm.nih.gov/pubmed/21543516

knn.error.models

knn

Sample error model

Description

SCDE error model generated from the Pollen et al. 2014 dataset.

References

www.ncbi.nlm.nih.gov/pubmed/25086649

knn.error.models Build error models for heterogeneous cell populations, based on K-

nearest neighbor cells.

Description

Builds cell-specific error models assuming that there are multiple subpopulations present among
the measured cells. The models for each cell are based on average expression estimates obtained
from K closest cells within a given group (if groups = NULL, then within the entire set of measured
cells). The method implements fitting of both the original log-fit models (when linear.fit = FALSE),
or newer linear-fit models (linear.fit = TRUE, default) with locally fit overdispersion coefficient
(local.theta.fit = TRUE, default).

Usage

knn.error.models(counts, groups = NULL, k = round(ncol(counts)/2),

min.nonfailed = 5, min.count.threshold = 1, save.model.plots = TRUE,
max.model.plots = 50, n.cores = parallel::detectCores(),
min.size.entries = 2000, min.fpm = @, cor.method = "pearson”,
verbose = @, fpm.estimate.trim = 0.25, linear.fit = TRUE,
local.theta.fit = linear.fit, theta.fit.range = c(0.01, 100),
alpha.weight.power = 1/2)

Arguments
counts count matrix (integer matrix, rows- genes, columns- cells)
groups optional groups partitioning known subpopulations
k number of nearest neighbor cells to use during fitting. If k is set sufficiently

high, all of the cells within a given group will be used.

min.nonfailed minimum number of non-failed measurements (within the k nearest neighbor

cells) required for a gene to be taken into account during error fitting procedure

min.count.threshold

minimum number of reads required for a measurement to be considered non-
failed

www.ncbi.nlm.nih.gov/pubmed/25086649

knn.error.models 7

save.model.plots

whether model plots should be saved (file names are (group).models.pdf, or
cell.models.pdf if no group was supplied)

max.model.plots

maximum number of models to save plots for (saves time when there are too
many cells)

n.cores number of cores to use through the calculations

min.size.entries
minimum number of genes to use for model fitting

min. fpm optional parameter to restrict model fitting to genes with group-average expres-
sion magnitude above a given value

cor.method correlation measure to be used in determining k nearest cells

verbose level of verbosity

fpm.estimate.trim
trim fraction to be used in estimating group-average gene expression magnitude
for model fitting (0.5 would be median, O would turn off trimming)

linear.fit whether newer linear model fit with zero intercept should be used (T), or the
log-fit model published originally (F)

local.theta.fit

whether local theta fitting should be used (only available for the linear fit mod-
els)

theta.fit.range
allowed range of the theta values

alpha.weight.power
1/theta weight power used in fitting theta dependency on the expression magni-
tude

Value

a data frame with parameters of the fit error models (rows- cells, columns- fitted parameters)

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10

8 make.pagoda.app

make . pagoda. app Make the PAGODA app

Description

Create an interactive user interface to explore output of PAGODA.

Usage

make.pagoda.app(tamr, tam, varinfo, env, pwpca, clpca = NULL,
col.cols = NULL, cell.clustering = NULL, row.clustering = NULL,
title = "pathway clustering”, zlim = c(-1, 1) * quantile(tamr$xv, p =

0.95))
Arguments

tamr Combined pathways that show similar expression patterns. Output of pagoda. reduce.redundancy

tam Combined pathways that are driven by the same gene sets. Output of pagoda. reduce. loading. redundar

varinfo Variance information. Output of pagoda.varnorm

env Gene sets as an environment variable.

pwpca Weighted PC magnitudes for each gene set provided in the env. Output of
pagoda.pathway.wPCA

clpca Weighted PC magnitudes for de novo gene sets identified by clustering on ex-
pression. Output of pagoda.gene.clusters

col.cols Matrix of column colors. Useful for visualizing cell annotations such as batch

labels. Default NULL.
cell.clustering
Dendrogram of cell clustering. Output of pagoda.cluster.cells . Default

NULL.

row.clustering Dendrogram of combined pathways clustering. Default NULL.

title Title text to be used in the browser label for the app. Default, set as ’pathway
clustering’

zlim Range of the normalized gene expression levels, inputted as a list: c(lower_bound,

upper_bound). Values outside this range will be Winsorized. Useful for increas-
ing the contrast of the heatmap visualizations. Default, set to the S5th and 95th
percentiles.

Value

PAGODA app

o.ifm 9

0.ifm Sample error model

Description
SCDE error model generated from a subset of Saiful et al. 2011 dataset containing first 20 ES and
20 MEF cells.

References

http://www.ncbi.nlm.nih.gov/pubmed/21543516

pagoda.cluster.cells Determine optimal cell clustering based on the genes driving the sig-
nificant aspects

Description

Determines cell clustering (hclust result) based on a weighted correlation of genes underlying the
top aspects of transcriptional heterogeneity. Branch orientation is optimized if ’cba’ package is
installed.

Usage

pagoda.cluster.cells(tam, varinfo, method = "ward.D"”,
include.aspects = FALSE, verbose = @, return.details = FALSE)

Arguments
tam result of pagoda.top.aspects() call
varinfo result of pagoda.varnorm() call
method clustering method ("ward.D’ by default)

include.aspects
whether the aspect patterns themselves should be included alongside with the
individual genes in calculating cell distance

verbose 0 or 1 depending on level of desired verbosity

return.details Boolean of whether to return just the hclust result or a list containing the hclust
result plus the distance matrix and gene values

Value

hclust result

http://www.ncbi.nlm.nih.gov/pubmed/21543516

10 pagoda.eftective.cells

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

tam <- pagoda. top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only

hc <- pagoda.cluster.cells(tam, varinfo)

plot(hc)

pagoda.effective.cells

Estimate effective number of cells based on lambdal of random gene
sets

Description

Examines the dependency between the amount of variance explained by the first principal compo-
nent of a gene set and the number of genes in a gene set to determine the effective number of cells
for the Tracy-Widom distribution

Usage

pagoda.effective.cells(pwpca, start = NULL)

Arguments
pwpca result of the pagoda.pathway.wPCA() call with n.randomizations > 1
start optional starting value for the optimization (if the NLS breaks, trying high start-
ing values usually fixed the local gradient problem)
Value

effective number of cells

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
pagoda.effective.cells(pwpca)

pagoda.gene.clusters

11

pagoda.gene.clusters Determine de-novo gene clusters and associated overdispersion info

Description

Determine de-novo gene clusters, their weighted PCA lambdal values, and random matrix expec-

tation.

Usage

pagoda.gene.clusters(varinfo, trim = 3.1/ncol(varinfo$mat),

n.clusters

nn

150, n.samples = 6@, cor.method = "p",

n.internal.shuffles = @, n.starts = 10, n.cores = detectCores(),

verbose = @, plot = FALSE, show.random = FALSE, n.components = 1,
method = "ward.D"”, secondary.correlation = FALSE,
n.cells = ncol(varinfo$mat), old.results = NULL)
Arguments
varinfo varinfo adjusted variance info from pagoda.varinfo() (or pagoda.subtract.aspect())
trim additional Winsorization trim value to be used in determining clusters (to re-
move clusters that group outliers occurring in a given cell). Use higher values
(5-15) if the resulting clusters group outlier patterns
n.clusters number of clusters to be determined (recommended range is 100-200)
n.samples number of randomly generated matrix samples to test the background distribu-
tion of lambdal on
cor.method correlation method ("pearson”, "spearman") to be used as a distance measure for

clustering

n.internal.shuffles

n.starts
n.cores
verbose

plot

show. random

n.components

method

number of internal shuffles to perform (only if interested in set coherence, which
is quite high for clusters by definition, disabled by default; set to 10-30 shuffles
to estimate)

number of WPCA EM algorithm starts at each iteration
number of cores to use
verbosity level

whether a plot showing distribution of random lambdal values should be shown
(along with the extreme value distribution fit)

whether the empirical random gene set values should be shown in addition to
the Tracy-Widom analytical approximation

number of PC to calculate (can be increased if the number of clusters is small
and some contain strong secondary patterns - rarely the case)

clustering method to be used in determining gene clusters

12 pagoda.pathway.wPCA

secondary.correlation
whether clustering should be performed on the correlation of the correlation
matrix instead

n.cells number of cells to use for the randomly generated cluster lambdal model
old.results optionally, pass old results just to plot the model without recalculating the stats
Value

a list containing the following fields:

* clusters a list of genes in each cluster values

 xf extreme value distribution fit for the standardized lambdal of a randomly generated pattern
* tci index of a top cluster in each random iteration

* cl.goc weighted PCA info for each real gene cluster

» varm standardized lambdal values for each randomly generated matrix cluster

¢ clvlm alinear model describing dependency of the cluster lambdal on a Tracy-Widom lambdal
expectation

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)
clpca <- pagoda.gene.clusters(varinfo, trim=7.1/ncol(varinfo$mat), n.clusters=15@, n.cores=10, plot=FALSE)

pagoda.pathway .wPCA Run weighted PCA analysis on pre-annotated gene sets

Description

For each valid gene set (having appropriate number of genes) in the provided environment (setenv),
the method will run weighted PCA analysis, along with analogous analyses of random gene sets of
the same size, or shuffled expression magnitudes for the same gene set.

Usage

pagoda.pathway.wPCA(varinfo, setenv, n.components = 2,
n.cores = detectCores(), min.pathway.size = 10, max.pathway.size = 1000,
n.randomizations = 10, n.internal.shuffles = 0, n.starts = 10,
center = TRUE, batch.center = TRUE, proper.gene.names = NULL,
verbose = 0)

pagoda.pathway.wPCA 13

Arguments
varinfo adjusted variance info from pagoda.varinfo() (or pagoda.subtract.aspect())
setenv environment listing gene sets (contains variables with names corresponding to

gene set name, and values being vectors of gene names within each gene set)
n.components number of principal components to determine for each gene set
n.cores number of cores to use
min.pathway.size
minimum number of observed genes that should be contained in a valid gene set
max.pathway.size
maximum number of observed genes in a valid gene set
n.randomizations
number of random gene sets (of the same size) to be evaluated in parallel with
each gene set (can be kept at 5 or 10, but should be increased to 50-100 if the
significance of pathway overdispersion will be determined relative to random
gene set models)
n.internal.shuffles
number of internal (independent row shuffles) randomizations of expression data
that should be evaluated for each gene set (needed only if one is interested in
gene set coherence P values, disabled by default; set to 10-30 to estimate)

n.starts number of random starts for the EM method in each evaluation
center whether the expression matrix should be recentered

batch.center whether batch-specific centering should be used

proper.gene.names
alternative vector of gene names (replacing rownames(varinfo$mat)) to be used
in cases when the provided setenv uses different gene names

verbose verbosity level

Value

a list of weighted PCA info for each valid gene set

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

create go environment

library(org.Hs.eg.db)

translate gene names to ids

ids <- unlist(lapply(mget(rownames(cd), org.Hs.egALIAS2EG, ifnotfound = NA), function(x) x[1]))

rids <- names(ids); names(rids) <- ids

go.env <- lapply(mget(ls(org.Hs.egGO2ALLEGS), org.Hs.egGO2ALLEGS), function(x) as.character(na.omit(rids[x])))
clean GOs

go.env <- clean.gos(go.env)

convert to an environment

14 pagoda.reduce.loading.redundancy

go.env <- list2env(go.env)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

pagoda.reduce.loading.redundancy
Collapse aspects driven by the same combinations of genes

Description

Examines PC loading vectors underlying the identified aspects and clusters aspects based on a
product of loading and score correlation (raised to corr.power). Clusters of aspects driven by the
same genes are determined based on the distance.threshold and collapsed.

Usage
pagoda.reduce.loading.redundancy(tam, pwpca, clpca = NULL, plot = FALSE,
cluster.method = "complete”, distance.threshold = 0.01, corr.power = 4,
n.cores = detectCores(), abs = TRUE, ...)
Arguments
tam output of pagoda.top.aspects()
pwpca output of pagoda.pathway.wPCA()
clpca output of pagoda.gene.clusters() (optional)
plot whether to plot the resulting clustering

cluster.method one of the standard clustering methods to be used (fastcluster::hclust is used if
available or stats::hclust)

distance.threshold
similarity threshold for grouping interdependent aspects

corr.power power to which the product of loading and score correlation is raised
n.cores number of cores to use during processing
abs Boolean of whether to use absolute correlation

additional arguments are passed to the pagoda.view.aspects() method during
plotting

Value

a list structure analogous to that returned by pagoda.top.aspects(), but with addition of a $cnam
element containing a list of aspects summarized by each row of the new (reduced) $xv and $xvw

pagoda.reduce.redundancy 15

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

tam <- pagoda. top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only
tamr <- pagoda.reduce.loading.redundancy(tam, pwpca)

pagoda.reduce.redundancy
Collapse aspects driven by similar patterns (i.e. separate the same
sets of cells)

Description

Examines PC loading vectors underlying the identified aspects and clusters aspects based on score
correlation. Clusters of aspects driven by the same patterns are determined based on the dis-
tance.threshold.

Usage
pagoda.reduce.redundancy(tamr, distance.threshold = 0.2,
cluster.method = "complete”, distance = NULL,
weighted.correlation = TRUE, plot = FALSE, top = Inf, trim = 0,
abs = FALSE, ...)
Arguments
tamr output of pagoda.reduce.loading.redundancy()

distance. threshold
similarity threshold for grouping interdependent aspects

cluster.method one of the standard clustering methods to be used (fastcluster::hclust is used if
available or stats::hclust)

distance distance matrix

weighted.correlation
Boolean of whether to use a weighted correlation in determining the similarity

of patterns
plot Boolean of whether to show plot
top Restrict output to the top n aspects of heterogeneity
trim Winsorization trim to use prior to determining the top aspects
abs Boolean of whether to use absolute correlation

additional arguments are passed to the pagoda.view.aspects() method during
plotting

16 pagoda.show.pathways

Value

a list structure analogous to that returned by pagoda.top.aspects(), but with addition of a $cnam
element containing a list of aspects summarized by each row of the new (reduced) $xv and $xvw

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=1@, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

tam <- pagoda.top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only
tamr <- pagoda.reduce.loading.redundancy(tam, pwpca)

tamr2 <- pagoda.reduce.redundancy(tamr, distance.threshold = 0.9, plot = TRUE, labRow = NA, 1labCol = NA, box = TRUE,

pagoda.show.pathways View pathway or gene weighted PCA

Description

Takes in a list of pathways (or a list of genes), runs weighted PCA, optionally showing the result.

Usage

pagoda.show.pathways(pathways, varinfo, goenv = NULL, n.genes = 20,
two.sided = FALSE, n.pc = rep(1, length(pathways)), colcols = NULL,
zlim = NULL, showRowLabels = FALSE, cexCol = 1, cexRow = 1,
nstarts = 10, cell.clustering = NULL, show.cell.dendrogram = TRUE,

plot = TRUE, box = TRUE, trim = @, return.details = FALSE, ...)
Arguments
pathways character vector of pathway or gene names
varinfo output of pagoda.varnorm()
goenv environment mapping pathways to genes
n.genes number of genes to show
two.sided whether the set of shown genes should be split among highest and lowest loading

(T) or if genes with highest absolute loading (F) should be shown

n.pc optional integer vector giving the number of principal component to show for
each listed pathway

colcols optional column color matrix

zlim optional z color limit

pagoda.subtract.aspect 17

showRowLabels controls whether row labels are shown in the plot

cexCol column label size (cex)
cexRow row label size (cex)
nstarts number of random starts for the wPCA

cell.clustering
cell clustering
show.cell.dendrogram
whether cell dendrogram should be shown

plot whether the plot should be shown
box whether to draw a box around the plotted matrix
trim optional Winsorization trim that should be applied

return.details whether the function should return the matrix as well as full PCA info instead
of just PC1 vector

additional arguments are passed to the c.view.pathways

Value

cell scores along the first principal component of shown genes (returned as invisible)

pagoda.subtract.aspect
Control for a particular aspect of expression heterogeneity in a given
population

Description

Similar to subtracting n-th principal component, the current procedure determines (weighted) pro-
jection of the expression matrix onto a specified aspect (some pattern across cells, for instance
sequencing depth, or PC corresponding to an undesired process such as ribosomal pathway vari-
ation) and subtracts it from the data so that it is controlled for in the subsequent weighted PCA
analysis.

Usage

pagoda.subtract.aspect(varinfo, aspect, center = TRUE)

Arguments
varinfo normalized variance info (from pagoda.varnorm())
aspect a vector giving a cell-to-cell variation pattern that should be controlled for (Iength

should be corresponding to ncol(varinfo$mat))

center whether the matrix should be re-centered following pattern subtraction

18 pagoda.top.aspects

Value

a modified varinfo object with adjusted expression matrix (varinfo$mat)

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

create go environment

library(org.Hs.eg.db)

translate gene names to ids

ids <- unlist(lapply(mget(rownames(cd), org.Hs.egALIAS2EG, ifnotfound = NA), function(x) x[1]1))

rids <- names(ids); names(rids) <- ids

go.env <- lapply(mget(ls(org.Hs.egGO2ALLEGS), org.Hs.egGO2ALLEGS), function(x) as.character(na.omit(rids[x])))
clean GOs

go.env <- clean.gos(go.env)

convert to an environment

go.env <- list2env(go.env)

subtract the pattern

cc.pattern <- pagoda.show.pathways(ls(go.env)[1:2], varinfo, go.env, show.cell.dendrogram = TRUE, showRowLabels =
varinfo.cc <- pagoda.subtract.aspect(varinfo, cc.pattern)

pagoda.top.aspects Score statistical significance of gene set and cluster overdispersion

Description

Evaluates statistical significance of the gene set and cluster lambdal values, returning either a text
table of Z scores, etc, a structure containing normalized values of significant aspects, or a set of
genes underlying the significant aspects.

Usage

pagoda.top.aspects(pwpca, clpca = NULL, n.cells = NULL,
z.score = gnorm(0.05/2, lower.tail = FALSE), return.table = FALSE,
return.genes = FALSE, plot = FALSE, adjust.scores = TRUE,
score.alpha = 0.05, use.oe.scale = FALSE, effective.cells.start = NULL)

Arguments
pwpca output of pagoda.pathway.wPCA()
clpca output of pagoda.gene.clusters() (optional)

n.cells effective number of cells (if not provided, will be determined using pagoda.effective.cells())

pagoda.varnorm 19

z.score Z score to be used as a cutoff for statistically significant patterns (defaults to
0.05 P-value

return.table whether a text table showing
return.genes whether a set of genes driving significant aspects should be returned
plot whether to plot the cv/n vs. dataset size scatter showing significance models

adjust.scores whether the normalization of the aspect patterns should be based on the adjusted
Z scores - qnorm(0.05/2, lower.tail = FALSE)

score.alpha significance level of the confidence interval for determining upper/lower bounds

use.oe.scale whether the variance of the returned aspect patterns should be normalized us-
ing observed/expected value instead of the default chi-squared derived variance
corresponding to overdispersion Z score

effective.cells.start
starting value for the pagoda.effective.cells() call

Value

if return.table = FALSE and return.genes = FALSE (default) returns a list structure containing the
following items:

* xv a matrix of normalized aspect patterns (rows- significant aspects, columns- cells

* xvw corresponding weight matrix

* gw set of genes driving the significant aspects

« df text table with the significance testing results

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

tam <- pagoda. top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only

pagoda.varnorm Normalize gene expression variance relative to transcriptome-wide ex-
pectations

Description

Normalizes gene expression magnitudes to ensure that the variance follows chi-squared statistics
with respect to its ratio to the transcriptome-wide expectation as determined by local regression on
expression magnitude (and optionally gene length). Corrects for batch effects.

20 pagoda.varnorm

Usage

pagoda.varnorm(models, counts, batch = NULL, trim = @, prior = NULL,
fit.genes = NULL, plot = TRUE, minimize.underdispersion = FALSE,
n.cores = detectCores(), n.randomizations = 100, weight.k = 0.9,
verbose = @, weight.df.power = 1, smooth.df = -1, max.adj.var = 10,
theta.range = c(0.01, 100), gene.length = NULL)

Arguments

models model matrix (select a subset of rows to normalize variance within a subset of
cells)

counts read count matrix

batch measurement batch (optional)

trim trim value for Winsorization (optional, can be set to 1-3 to reduce the impact of
outliers, can be as large as 5 or 10 for datasets with several thousand cells)

prior expression magnitude prior

fit.genes a vector of gene names which should be used to establish the variance fit (default
is NULL.: use all genes). This can be used to specify, for instance, a set spike-in
control transcripts such as ERCC.

plot whether to plot the results

minimize.underdispersion
whether underdispersion should be minimized (can increase sensitivity in datasets
with high complexity of population, however cannot be effectively used in datasets
where multiple batches are present)

n.cores number of cores to use

n.randomizations
number of bootstrap sampling rounds to use in estimating average expression
magnitude for each gene within the given set of cells

weight.k k value to use in the final weight matrix

verbose verbosity level

weight.df.power
power factor to use in determining effective number of degrees of freedom (can
be increased for datasets exhibiting particularly high levels of noise at low ex-
pression magnitudes)

smooth.df degrees of freedom to be used in calculating smoothed local regression between
coefficient of variation and expression magnitude (and gene length, if provided).
Leave at -1 for automated guess.

max.adj.var maximum value allowed for the estimated adjusted variance (capping of ad-
justed variance is recommended when scoring pathway overdispersion relative
to randomly sampled gene sets)

theta.range valid theta range (should be the same as was set in knn.error.models() call

gene.length optional vector of gene lengths (corresponding to the rows of counts matrix)

pagoda.view.aspects 21

Value
a list containing the following fields:

» mat adjusted expression magnitude values

* matw weight matrix corresponding to the expression matrix

* arv a vector giving adjusted variance values for each gene

* avmodes a vector estimated average expression magnitudes for each gene
* modes a list of batch-specific average expression magnitudes for each gene
* prior estimated (or supplied) expression magnitude prior

* edf estimated effective degrees of freedom

* fit.genes fit.genes parameter

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pagoda.view.aspects View PAGODA output

Description

Create static image of PAGODA output visualizing cell hierarchy and top aspects of transcriptional

heterogeneity
Usage
pagoda.view.aspects(tamr, row.clustering = hclust(dist(tamr$xv)), top = Inf,
>
Arguments
tamr Combined pathways that show similar expression patterns. Output of pagoda. reduce. redundancy

row.clustering Dendrogram of combined pathways clustering
top Restrict output to the top n aspects of heterogeneity

additional arguments are passed to the view.aspects method during plotting

Value

PAGODA heatmap

22 pollen

Examples

data(pollen)
cd <- clean.counts(pollen)

knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var =5, n.cores = 1, plot = FALSE)

pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)

tam <- pagoda. top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only
pagoda.view.aspects(tam)

papply wrapper around different mclapply mechanisms

Description

Abstracts out mclapply implementation, and defaults to lapply when only one core is requested
(helps with debugging)

Usage
papply(..., n.cores = n)
Arguments
parameters to pass to lapply, mclapply, bplapply, etc.
n.cores number of cores. If 1 core is requested, will default to lapply
pollen Sample data
Description

Single cell data from Pollen et al. 2014 dataset.

References

www.ncbi.nlm.nih.gov/pubmed/25086649

www.ncbi.nlm.nih.gov/pubmed/25086649

scde 23

scde Single-cell Differential Expression (with Pathway And Gene set
Overdispersion Analysis)

Description

The scde package implements a set of statistical methods for analyzing single-cell RNA-seq data.
scde fits individual error models for single-cell RNA-seq measurements. These models can then
be used for assessment of differential expression between groups of cells, as well as other types
of analysis. The scde package also contains the pagoda framework which applies pathway and
gene set overdispersion analysis to identify and characterize putative cell subpopulations based
on transcriptional signatures. See vignette("diffexp") for a brief tutorial on differential expression
analysis. See vignette("pagoda") for a brief tutorial on pathway and gene set overdispersion analysis
to identify and characterize cell subpopulations. More extensive tutorials are available at http:
//pklab.med.harvard.edu/scde/index.html. (test)

Author(s)

Peter Kharchenko <Peter_Kharchenko@hms.harvard. edu>

Jean Fan <jeanfan@fas.harvard.edu>

scde.browse.diffexp View differential expression results in a browser

Description

Launches a browser app that shows the differential expression results, allowing to sort, filter, etc.
The arguments generally correspond to the scde.expression.difference() call, except that the
results of that call are also passed here. Requires Rook and rjson packages to be installed.

Usage

scde.browse.diffexp(results, models, counts, prior, groups = NULL,
batch = NULL, geneLookupURL = NULL, server = NULL, name = "scde”,

port = NULL)
Arguments
results result object returned by scde.expression.difference(). Note to browse
group posterior levels, use return.posteriors = TRUE in the scde.expression.difference()
call.
models model matrix
counts count matrix

prior prior

http://pklab.med.harvard.edu/scde/index.html
http://pklab.med.harvard.edu/scde/index.html

24 scde.edff

groups group information
batch batch information

geneLookupURL The URL that will be used to construct links to view more information on gene
names. By default (if can’t guess the organism) the links will forward to EN-
SEMBL site search, using geneLookupURL = "http://useast.ensembl.org/Multi/Search/Results?
={0}". The "0" in the end will be substituted with the gene name. For instance,
to link to GeneCards, use "http://www.genecards.org/cgi-bin/carddisp.pl?gene

={0}".
server optional previously returned instance of the server, if want to reuse it.
name app name (needs to be altered only if adding more than one app to the server

using server parameter)

port Interactive browser port

Value

server instance, on which $stop() function can be called to kill the process.

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads
sg <- factor(gsub(”(MEF|ESC).x", "\\1", colnames(cd)), levels
names(sg) <- colnames(cd)

1, min.detected = 1)
c("ESC", "MEF"))

0.ifm <- scde.error.models(counts = cd, groups = sg, n.cores = 10, threshold.segmentation = TRUE)

o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)

make sure groups corresponds to the models (o.ifm)

groups <- factor(gsub("”(MEF|ESC).*", "\\1", rownames(o.ifm)), levels = c("ESC", "MEF"))

names(groups) <- row.names(o.ifm)

ediff <- scde.expression.difference(o.ifm, cd, o.prior, groups = groups, n.randomizations = 100, n.cores = 10, verk
scde.browse.diffexp(ediff, o.ifm, cd, o.prior, groups = groups, geneLookupURL="http://www.informatics. jax.org/se:

scde. edff Internal model data

Description

Numerically-derived correction for NB->chi squared approximation stored as an local regression
model

scde.error.models 25

scde.error.models Fit single-cell error/regression models

Description

Fit error models given a set of single-cell data (counts) and an optional grouping factor (groups).
The cells (within each group) are first cross-compared to determine a subset of genes showing
consistent expression. The set of genes is then used to fit a mixture model (Poisson-NB mixture,
with expression-dependent concomitant).

Usage

scde.error.models(counts, groups = NULL, min.nonfailed = 3,
threshold.segmentation = TRUE, min.count.threshold = 4,
zero.count.threshold = min.count.threshold, zero.lambda = 0.1,

save.crossfit.plots = FALSE, save.model.plots = TRUE, n.cores = 12,
min.size.entries = 2000, max.pairs = 5000, min.pairs.per.cell = 10,
verbose = @, linear.fit = TRUE, local.theta.fit = linear.fit,
theta.fit.range = c(0.01, 100))
Arguments
counts read count matrix. The rows correspond to genes (should be named), columns
correspond to individual cells. The matrix should contain integer counts
groups an optional factor describing grouping of different cells. If provided, the cross-

fits and the expected expression magnitudes will be determined separately within
each group. The factor should have the same length as ncol(counts).

min.nonfailed minimal number of non-failed observations required for a gene to be used in the
final model fitting
threshold. segmentation
use a fast threshold-based segmentation during cross-fit (default: TRUE)
min.count.threshold

the number of reads to use to guess which genes may have "failed" to be detected
in a given measurement during cross-cell comparison (default: 4)

zero.count.threshold
threshold to guess the initial value (failed/non-failed) during error model fitting
procedure (defaults to the min.count.threshold value)
zero.lambda the rate of the Poisson (failure) component (default: 0.1)
save.crossfit.plots

whether png files showing cross-fit segmentations should be written out (default:
FALSE)

save.model.plots
whether pdf files showing model fits should be written out (default = TRUE)

n.cores number of cores to use

26

scde.expression.difference

min.size.entries
minimum number of genes to use when determining expected expression mag-
nitude during model fitting

max.pairs maximum number of cross-fit comparisons that should be performed per group
(default: 5000)

min.pairs.per.cell
minimum number of pairs that each cell should be cross-compared with

verbose 1 for increased output

linear.fit Boolean of whether to use a linear fit in the regression (default: TRUE).
local.theta.fit
Boolean of whether to fit the overdispersion parameter theta, ie. the negative
binomial size parameter, based on local regression (default: set to be equal to
the linear.fit parameter)
theta.fit.range
Range of valid values for the overdispersion parameter theta, ie. the negative
binomial size parameter (default: c(le-2, 1e2))

Details

Note: the default implementation has been changed to use linear-scale fit with expression-dependent
NB size (overdispersion) fit. This represents an interative improvement on the originally published
model. Use linear.fit=F to revert back to the original fitting procedure.

Value

a model matrix, with rows corresponding to different cells, and columns representing different
parameters of the determined models

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
sg <- factor(gsub(”(MEF|ESC).x", "\\1", colnames(cd)), levels = c("ESC", "MEF"))
names(sg) <- colnames(cd)

0.ifm <- scde.error.models(counts = cd, groups = sg, n.cores = 10, threshold.segmentation = TRUE)

scde.expression.difference

Test for expression differences between two sets of cells

Description

Use the individual cell error models to test for differential expression between two groups of cells.

scde.expression.difference 27

Usage

scde.expression.difference(models, counts, prior, groups = NULL,
batch = NULL, n.randomizations = 150, n.cores = 10,
batch.models = models, return.posteriors = FALSE, verbose = 0)

Arguments

models models determined by scde.error.models

counts read count matrix

prior gene expression prior as determined by scde.expression.prior

groups a factor determining the two groups of cells being compared. The factor entries
should correspond to the rows of the model matrix. The factor should have two
levels. NAs are allowed (cells will be omitted from comparison).

batch a factor (corresponding to rows of the model matrix) specifying batch assign-

ment of each cell, to perform batch correction
n.randomizations
number of bootstrap randomizations to be performed

n.cores number of cores to utilize

batch.models (optional) separate models for the batch data (if generated using batch-specific
group argument). Normally the same models are used.

return.posteriors
whether joint posterior matrices should be returned

verbose integer verbose level (1 for verbose)

Value

default: a data frame with the following fields:

¢ Ib, mle, ub lower bound, maximum likelihood estimate, and upper bound of the 95 ce con-
servative estimate of expression-fold change (equals to the min(abs(c(lb, ub))), or O if the CI
crosses the 0 Z uncorrected Z-score of expression difference cZ expression difference Z-score
corrected for multiple hypothesis testing using Holm procedure
If batch correction has been performed (batch has been supplied), analogous data frames are
returned in slots $batch.adjusted for batch-corrected results, and $batch.effect for the
differences explained by batch effects alone.

return.posteriors = TRUE: A list is returned, with the default results data frame given in the
$results slot. difference.posterior returns a matrix of estimated expression difference pos-
teriors (rows - genes, columns correspond to different magnitudes of fold-change - log2 values
are given in the column names) joint.posteriors a list of two joint posterior matrices (rows -
genes, columns correspond to the expression levels, given by prior$x grid)

Examples

data(es.mef.small)
cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
sg <- factor(gsub(”(MEF|ESC).x", "\\1", colnames(cd)), levels = c("ESC", "MEF"))

28 scde.expression.magnitude

names(sg) <- colnames(cd)

0.ifm <- scde.error.models(counts = cd, groups = sg, n.cores = 10, threshold.segmentation = TRUE)

o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)

make sure groups corresponds to the models (o.ifm)

groups <- factor(gsub("”(MEF|ESC).*", "\\1", rownames(o.ifm)), levels = c("ESC", "MEF"))

names(groups) <- row.names(o.ifm)

ediff <- scde.expression.difference(o.ifm, cd, o.prior, groups = groups, n.randomizations = 100, n.cores = n.cores

scde.expression.magnitude
Return scaled expression magnitude estimates

Description

Return point estimates of expression magnitudes of each gene across a set of cells, based on the
regression slopes determined during the model fitting procedure.

Usage

scde.expression.magnitude(models, counts)

Arguments
models models determined by scde.error.models
counts count matrix

Value

a matrix of expression magnitudes on a log scale (rows - genes, columns - cells)

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
data(o.ifm) # Load precomputed model. Use ?scde.error.models to see how o.ifm was generated
get expression magnitude estimates

1fpm <- scde.expression.magnitude(o.ifm, cd)

scde.expression.prior 29

scde.expression.prior Estimate prior distribution for gene expression magnitudes

Description

Use existing count data to determine a prior distribution of genes in the dataset

Usage

scde.expression.prior(models, counts, length.out = 400, show.plot = FALSE,
pseudo.count = 1, bw = 0.1, max.quantile = 1 - 0.001,
max.value = NULL)

Arguments
models models determined by scde.error.models
counts count matrix
length.out number of points (resolution) of the expression magnitude grid (default: 400).
Note: larger numbers will linearly increase memory/CPU demands.
show.plot show the estimate posterior

pseudo.count pseudo-count value to use (default 1)
bw smoothing bandwidth to use in estimating the prior (default: 0.1)

max.quantile determine the maximum expression magnitude based on a quantile (default :
0.999)

max.value alternatively, specify the exact maximum expression magnitude value

Value

a structure describing expression magnitude grid ($x, on log10 scale) and prior ($y)

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
data(o.ifm) # Load precomputed model. Use ?scde.error.models to see how o.ifm was generated
o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)

30 scde.failure.probability

scde.failure.probability
Calculate drop-out probabilities given a set of counts or expression
magnitudes

Description

Returns estimated drop-out probability for each cell (row of models matrix), given either an expres-
sion magnitude

Usage

scde.failure.probability(models, magnitudes = NULL, counts = NULL)

Arguments
models models determined by scde.error.models
magnitudes avector (length(counts) == nrows(models)) or a matrix (columns correspond
to cells) of expression magnitudes, given on a log scale
counts avector (length(counts) == nrows(models)) or a matrix (columns correspond
to cells) of read counts from which the expression magnitude should be esti-
mated
Value

a vector or a matrix of drop-out probabilities

Examples

data(es.mef.small)
cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
data(o.ifm) # Load precomputed model. Use ?scde.error.models to see how o.ifm was generated

o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)

calculate probability of observing a drop out at a given set of magnitudes in different cells
mags <- c(1.0, 1.5, 2.0)

p <- scde.failure.probability(o.ifm, magnitudes = mags)

calculate probability of observing the dropout at a magnitude corresponding to the

number of reads actually observed in each cell

self.p <- scde.failure.probability(o.ifm, counts = cd)

scde.fit.models.to.reference 31

scde.fit.models.to.reference
Fit scde models relative to provided set of expression magnitudes

Description

If group-average expression magnitudes are available (e.g. from bulk measurement), this method
can be used to fit individual cell error models relative to that reference

Usage

scde.fit.models.to.reference(counts, reference, n.cores = 10,
zero.count.threshold = 1, nrep = 1, save.plots = FALSE,

plot.filename = "reference.model.fits.pdf"”, verbose = @, min.fpm = 1)
Arguments
counts count matrix
reference a vector of expression magnitudes (read counts) corresponding to the rows of

the count matrix

n.cores number of cores to use
zero.count. threshold
read count to use as an initial guess for the zero threshold

nrep number independent of mixture fit iterations to try (default = 1)
save.plots whether to write out a pdf file showing the model fits
plot.filename model fit pdf filename

verbose verbose level

min.fpm minimum reference fpm of genes that will be used to fit the models (defaults to
1). Note: fpm is calculated from the reference count vector as reference/sum(reference)*1e6

Value

matrix of scde models

Examples

data(es.mef.small)
cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)

0.ifm <- scde.error.models(counts = cd, groups = sg, n.cores = 10, threshold.segmentation = TRUE)

o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)

calculate joint posteriors across all cells

jp <- scde.posteriors(models = 0.ifm, cd, o.prior, n.cores = 10, return.individual.posterior.modes = TRUE, n.randor
use expected expression magnitude for each gene

av.mag <- as.numeric(jp$jp %*% as.numeric(colnames(jp$jp)))

translate into counts

32 scde.posteriors

av.mag.counts <- as.integer(round(av.mag))
now, fit alternative models using av.mag as a reference (normally this would correspond to bulk RNA expression mag
ref.models <- scde.fit.models.to.reference(cd, av.mag.counts, n.cores = 1)

scde.posteriors Calculate joint expression magnitude posteriors across a set of cells

Description

Calculates expression magnitude posteriors for the individual cells, and then uses bootstrap re-
sampling to calculate a joint expression posterior for all the specified cells. Alternatively during
batch-effect correction procedure, the joint posterior can be calculated for a random composition of
cells of different groups (see batch and composition parameters).

Usage

scde.posteriors(models, counts, prior, n.randomizations = 100, batch = NULL,
composition = NULL, return.individual.posteriors = FALSE,
return.individual.posterior.modes = FALSE, ensemble.posterior = FALSE,
n.cores = 20)

Arguments
models models models determined by scde.error.models
counts read count matrix
prior gene expression prior as determined by scde.expression.prior

n.randomizations
number of bootstrap iterations to perform

batch a factor describing which batch group each cell (i.e. each row of models matrix)
belongs to
composition a vector describing the batch composition of a group to be sampled

return.individual.posteriors

whether expression posteriors of each cell should be returned
return.individual.posterior.modes

whether modes of expression posteriors of each cell should be returned
ensemble.posterior

Boolean of whether to calculate the ensemble posterior (sum of individual pos-
teriors) instead of a joint (product) posterior. (default: FALSE)

n.cores number of cores to utilize

scde.test.gene.expression.difference 33

Value

default: a posterior probability matrix, with rows corresponding to genes, and columns to ex-
pression levels (as defined by prior$x)

return.individual.posterior.modes: a list is returned, with the $jp slot giving the joint posterior
matrix, as described above. The $modes slot gives a matrix of individual expression posterior
mode values on log scale (rows - genes, columns -cells)

return.individual.posteriors: a list is returned, with the $post slot giving a list of individual
posterior matrices, in a form analogous to the joint posterior matrix, but reported on log scale

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
data(o.ifm) # Load precomputed model. Use ?scde.error.models to see how o.ifm was generated
o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)
calculate joint posteriors

jp <- scde.posteriors(o.ifm, cd, o.prior, n.cores = 1)

scde.test.gene.expression.difference
Test differential expression and plot posteriors for a particular gene

Description

The function performs differential expression test and optionally plots posteriors for a specified
gene.

Usage

scde.test.gene.expression.difference(gene, models, counts, prior,
groups = NULL, batch = NULL, batch.models = models,
n.randomizations = 1000, show.plots = TRUE, return.details = FALSE,
verbose = FALSE, ratio.range = NULL, show.individual.posteriors = TRUE,
n.cores = 1)

Arguments
gene name of the gene to be tested
models models
counts read count matrix (must contain the row corresponding to the specified gene)
prior expression magnitude prior
groups a two-level factor specifying between which cells (rows of the models matrix)

the comparison should be made

34 show.app

batch optional multi-level factor assigning the cells (rows of the model matrix) to dif-
ferent batches that should be controlled for (e.g. two or more biological repli-
cates). The expression difference estimate will then take into account the likely
difference between the two groups that is explained solely by their difference in
batch composition. Not all batch configuration may be corrected this way.

batch.models optional set of models for batch comparison (typically the same as models, but
can be more extensive, or recalculated within each batch)

n.randomizations
number of bootstrap/sampling iterations that should be performed

show.plots whether the plots should be shown
return.details whether the posterior should be returned
verbose set to T for some status output

ratio.range optionally specifies the range of the log2 expression ratio plot

show.individual.posteriors
whether the individual cell expression posteriors should be plotted

n.cores number of cores to use (default = 1)

Value

by default returns MLE of log2 expression difference, 95

Examples

data(es.mef.small)

cd <- clean.counts(es.mef.small, min.lib.size=1000, min.reads = 1, min.detected = 1)
data(o.ifm) # Load precomputed model. Use ?scde.error.models to see how o.ifm was generated
o.prior <- scde.expression.prior(models = 0.ifm, counts = cd, length.out = 400, show.plot = FALSE)
scde.test.gene.expression.difference("Tdh", models = o.ifm, counts = cd, prior = o.prior)

show. app View PAGODA application

Description

Installs a given pagoda app (or any other rook app) into a server, optionally making a call to show
it in the browser.

Usage

show.app(app, name, browse = TRUE, port = NULL, ip = "127.0.0.1",
server = NULL)

view.aspects 35

Arguments
app pagoda app (output of make.pagoda.app()) or another rook app
name URL path name for this app
browse whether a call should be made for browser to show the app
port optional port on which the server should be initiated
ip IP on which the server should listen (typically localhost)
server an (optional) Rook server instance (defaults to ___scde.server)
Value

Rook server instance

Examples

app <- make.pagoda.app(tamr2, tam, varinfo, go.env, pwpca, clpca, col.cols=col.cols, cell.clustering=hc, title="NI
show app in the browser (port 1468)
show.app(app, "pollen”, browse = TRUE, port=1468)

view.aspects View heatmap

Description

Internal function to visualize aspects of transcriptional heterogeneity as a heatmap. Used by pagoda.view.aspects.

Usage

view.aspects(mat, row.clustering = NA, cell.clustering = NA, zlim = c(-1,
1) * quantile(mat, p = 0.95), row.cols = NULL, col.cols = NULL,

cols = colorRampPalette(c("darkgreen”, "white"”, "darkorange"”), space =
"Lab")(1024), show.row.var.colors = TRUE, top = Inf, ...)
Arguments
mat Numeric matrix

row.clustering Row dendrogram

cell.clustering
Column dendrogram

zlim Range of the normalized gene expression levels, inputted as a list: c(lower_bound,
upper_bound). Values outside this range will be Winsorized. Useful for increas-

ing the contrast of the heatmap visualizations. Default, set to the Sth and 95th
percentiles.

row.cols Matrix of row colors.

36 ViewPagodaApp-class

col.cols Matrix of column colors. Useful for visualizing cell annotations such as batch
labels.
cols Heatmap colors

show.row.var.colors
Boolean of whether to show row variance as a color track

top Restrict output to the top n aspects of heterogeneity

additional arguments for heatmap plotting

Value

A heatmap

ViewPagodaApp-class A Reference Class to represent the PAGODA application

Description

This ROOK application class enables communication with the client-side ExtJS framework and
Inchlib HTMLS canvas libraries to create the graphical user interface for PAGODA Refer to the
code in make . pagoda. app for usage example

Fields

results Output of the pathway clustering and redundancy reduction
genes List of genes to display in the Detailed clustering panel

mat Matrix of posterior mode count estimates

matw Matrix of weights associated with each estimate in mat

goenv Gene set list as an environment

renv Global environment

name Name of the application page; for display as the page title
trim Trim quantity used for Winsorization for visualization

batch Any batch or other known confounders to be included in the visualization as a column color
track

winsorize.matrix 37

winsorize.matrix Winsorize matrix

Description

Sets the ncol(mat)*trim top outliers in each row to the next lowest value same for the lowest outliers

Usage

winsorize.matrix(mat, trim)

Arguments
mat matrix
trim fraction of outliers (on each side) that should be Winsorized, or (if the value is
>= 1) the number of outliers to be trimmed on each side
Value

Winsorized matrix

Examples

set.seed(0)

mat <- matrix(c(rnorm(5*10,mean=0,sd=1), rnorm(5x10,mean=5,sd=1)), 10, 10) # random matrix
mat[1,1] <- 1000 # make outlier

range(mat) # look at range of values

win.mat <- winsorize.matrix(mat, 0.1)

range(win.mat) # note outliers removed

Index

bwpca, 3 show. app, 34
clean.counts, 4 view.aspects, 21, 35
clean.gos, 5 ViewPagodaApp (ViewPagodaApp-class), 36

ViewPagodaApp-class, 36
es.mef.small, 5

winsorize.matrix, 37
knn, 6
knn.error.models, 6

make . pagoda. app, 8, 36
0.ifm, 9

pagoda.cluster.cells, 8,9
pagoda.effective.cells, 10
pagoda.gene.clusters, 8, 11
pagoda.pathway.wPCA, 8, 12
pagoda.reduce.loading.redundancy, 8, 14
pagoda.reduce.redundancy, 8, 15, 21
pagoda. show.pathways, 16
pagoda.subtract.aspect, 17
pagoda.top.aspects, 18
pagoda.varnorm, 8, 19
pagoda.view.aspects, 21, 35
papply, 22

pollen, 22

scde, 23
scde-package (scde), 23
scde.browse.diffexp, 23
scde.edff, 24
scde.error.models, 25, 27-30, 32
scde.expression.difference, 26
scde.expression.magnitude, 28
scde.expression.prior, 27, 29, 32
scde.failure.probability, 30
scde.fit.models.to.reference, 31
scde.posteriors, 32
scde.test.gene.expression.difference
33

38

	bwpca
	clean.counts
	clean.gos
	es.mef.small
	knn
	knn.error.models
	make.pagoda.app
	o.ifm
	pagoda.cluster.cells
	pagoda.effective.cells
	pagoda.gene.clusters
	pagoda.pathway.wPCA
	pagoda.reduce.loading.redundancy
	pagoda.reduce.redundancy
	pagoda.show.pathways
	pagoda.subtract.aspect
	pagoda.top.aspects
	pagoda.varnorm
	pagoda.view.aspects
	papply
	pollen
	scde
	scde.browse.diffexp
	scde.edff
	scde.error.models
	scde.expression.difference
	scde.expression.magnitude
	scde.expression.prior
	scde.failure.probability
	scde.fit.models.to.reference
	scde.posteriors
	scde.test.gene.expression.difference
	show.app
	view.aspects
	ViewPagodaApp-class
	winsorize.matrix
	Index

