Package ‘rhdfs’

January 24, 2026

Type Package
Title R Interface to HDF5
Version 2.55.12

Description This package provides an interface between HDF5 and R.
HDF5's main features are the ability to store and access very large and/or
complex datasets and a wide variety of metadata on mass storage (disk)
through a completely portable file format. The rhdf5 package is thus suited
for the exchange of large and/or complex datasets between R and other
software package, and for letting R applications work on datasets that are
larger than the available RAM.

License Artistic-2.0

URL https://huber-group-embl.github.io/rhdf5/,
https://github.com/Huber-group-EMBL/rhdf5

BugReports https://github.com/Huber-group-EMBL/rhdf5/issues
Lazyl.oad true

VignetteBuilder knitr

Imports Rhdf5Slib (>= 1.13.4), rthdf5filters (>=1.15.5)

Depends R (>=4.0.0), methods

Suggests bit64, BiocStyle, knitr, rmarkdown, testthat, bench, dplyr,
ggplot2, mockery, BiocParallel, curl

LinkingTo Rhdf5lib

SystemRequirements GNU make

biocViews Infrastructure, Datalmport

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/rhdf5
git_branch devel

git_last_commit 2480ef1

https://huber-group-embl.github.io/rhdf5/
https://github.com/Huber-group-EMBL/rhdf5
https://github.com/Huber-group-EMBL/rhdf5/issues

2 Contents

git_last_commit_date 2025-12-10
Repository Bioconductor 3.23
Date/Publication 2026-01-23

Author Bernd Fischer [aut],
Mike Smith [aut] (ORCID: <https://orcid.org/0000-0002-7800-3848>,
Maintainer from 2017 to 2025),
Gregoire Pau [aut],
Martin Morgan [ctb],
Daniel van Twisk [ctb],
Hugo Gruson [cre] (ORCID: <https://orcid.org/0000-0002-4094-1476>),
German Network for Bioinformatics Infrastructure - de.NBI [fnd]

Maintainer Hugo Gruson <hugo.gruson@embl.de>

Contents
HS5Aclose e e e e e e 5
HS5Acreate e 5
HS5Adelete e 6
HSAeXiSts e e e 6
HS5Aget_name e e e e 7
HSAget_space o e e 7
HS5Aget_type e 8
HSAopen e 8
HS5Aread e e e 9
HSAWwrite e e e e e e e 10
hScheckFilters e e 10
hScloseAll e e 11
hSconstants e 12
HS5Dclose e e e e e 13
HS5Dcreate e e e e e e e e 13
HS5Dget_create_plist e 14
H5Dget_num_chunks 14
HSDget_space o e 15
HS5Dget_storage_size v v v v i e e e e e e e e 16
HSDget_type o o e e e e 16
HS5Dopen e 17
HS5Dread e 18
HSDset_extent e e e e 19
HSDwrite e e e e e e e 20
HS5D_extras e 20
HSFclose e e 21
HSFcreate e e e e 21
HSFflush e e 22
HSFget_filesize e 22
HSFget_intent e e 23

HSFget_name e 24

https://orcid.org/0000-0002-7800-3848
https://orcid.org/0000-0002-4094-1476

Contents

3
HSFget_plist e e e e 24
HS5Fis_hdf5 e e 25
HSFopen e 25
HS5functions e e e e 26
HS5Gclose e e e e e 27
H5Gcreate e 27
HS5Gcreate_anon e e 28
HS5Gget_info e 28
HS5Gopen e 29
HS5IdComponent-class L 30
HSIget_name e 31
HSIget_type o e 32
HSLis_valid e 33
HSLcopy o o e 33
HS5Lcreate_external e 34
HS5Ldelete e e e 35
HSLexists e e e e 36
HS5Lget_info. e 36
hSlistObjects o e e e 37
HS5Lmove e e e 38
hSIS . . e 39
H50close e e e e e 40
H50copy e 41
H50get_info e 42
HS50get_num_attrs o . e e e e e 43
HS50Link e e e 43
HS50o0pen e 44
HS5Pall_filters_avail e e 45
HSPclose e e e e e 46
HS5Pcopy o e 46
HSPcreate e 47
HS5Pfill_value _defined e 47
HS5Pget_class e 48
HSPget_version 48
HS5Pobject_track_times L 49
HS5Pset_blosc e e e e 49
HS5Pset_bzip2 e e 50
HS5Pset_deflate e e 50
HS5Pset_fapl_ros3 e 51
HS5Pset_filter e e 51
HS5Pset_istore K o e 52
HS5Pset_1zf o e 52
HS5Pset_nbit e e e e e e e 53
H5Pset_shared_mesg_index 53
H5Pset_shared_mesg_nindexes e 54
H5Pset_shared_mesg_phase_change 54
HS5Pset_shuffle e 55

HSPset_Sizes o o e e 55

Contents

HS5Pset_sym_k e 56
HSPset_szip o e e 56
H5Pset_userblock e 57
HSP_chunk e e 57
HS5P_chunk_cache e 58
HS5P_create_intermediate_groupo 58
HSP_fill_time e 59
HSP_fill_value e e 59
HSP_layout e 60
HSP_libver bounds e 61
HSR . . e e e e e 61
HS5Rcreate e e e e e 62
HS5Rdereference 63
hSreadTimestamps oL 63
HS5Ref-class e e e e 64
HS5Rget_name e 65
HSRget_obj_type 66
HSRget_region o e e e e e e e 66
HS5Sclose e e e e e e e 67
H5Scombine_hyperslab 67
H5Scombine_select e e 68
HS5Scopy o e e e 70
HS5Screate e e 70
HS5Screate_simple 71
H5Sget_select_npoints e e e 71
HS5Sget_simple_extent_dims Lo 72
HSSis_simple o 72
HS5Sselect_all o o e e 72
HS5Sselect_hyperslab 73
HS5Sselect_index e e e e 74
HS5Sselect_none e 75
HS5Sselect_valid e e 75
HS5Sset_extent_simple 76
HS5Sunlimited 76
HSTcopy . . . o o o e 77
HS5Tis_variable_str e e e e 77
HST cset e e 78
HST enum e 78
HST_ops . . . o e e e 79
HST_precision e e 80
HST size o s 80
HST_strpad e e e e 81
hSversion e 81
H5Zfilter_avail e 82
h5_createAttribute L e e 82
hS5_createDataset e e 84
hS5_createFile e 88

hS_createGroup 89

H5Aclose 5

hS_delete e 90
h5_deleteAttribute L e 90
hS_dump e 91
h5_errorHandling 92
hS5_FileLocking e 93
hS_read e e e e e 94
h5_readAttributes e 97
h5_save e 98
hS_Set_extent e e 99
h5_write 100
hS5_writeAttribute e 103
thdf5 e 104

Index 105

H5Aclose Close an HDF5 attribute
Description

Close an HDFS attribute

Usage

H5Aclose(h5attribute)

Arguments

h5attribute An object of class H5IdComponent representing a the attribute to be closed.

See Also

Normally created by H5Aopen() or similar.

H5Aopen()

H5Acreate Create an attribute for an HDF5 object

Description

Creates an attribute, name, which is attached to the object specified by the identifier h5obj. The
attribute name must be unique for the object.

Usage

H5Acreate(h50bj, name, dtype_id, h5space)

Arguments

h50bj

name

dtype_id

h5space

Value

H5Aexists

An object of class H5IdComponent representing a HS object identifier (file,
group, or dataset). See H5Fcreate(), H5Fopen(), H5Gcreate(), H5Gopen(),
H5Dcreate (), or H5Dopen() to create an object of this kind.

The name of the attribute (character).

A character name of a datatype. See h5const("H5T") for possible datatypes.
Can also be an integer representing an HDFS datatype. Only simple datatypes
are allowed for attributes.

An object of class HSIdComponent representing a H5 dataspace. See H5Dget_space(),
H5Screate_simple(), H5Screate() to create an object of this kind.

An object of class H5SIdComponent representing a HS attribute identifier.

H5Adelete

Delete an specified attribute of an HDF5 object

Description

Delete an specified attribute of an HDF5 object

Usage

H5Adelete(h50bj, name)

Arguments
h5obj An object of class H5IdComponent representing a HS object identifier (file,
group, or dataset). See H5Fcreate(), H5Fopen(), H5Gcreate(), H5Gopen(),
H5Dcreate (), or H5SDopen() to create an object of this kind.
name The name of the attribute (character).
H5Aexists Check whether an specific attribute exists for an HDF5 object
Description

Check whether an specific attribute exists for an HDF5 object

Usage

H5Aexists(h50bj, name)

H5Aget_name 7

Arguments
h50bj An object of class HSIdComponent representing a H5 object identifier (file,
group, or dataset). See H5Fcreate(), H5Fopen(), H5Gecreate(), H5Gopen(),
H5Dcreate (), or H5Dopen() to create an object of this kind.
name The name of the attribute (character).
Value

A logical value indicating whether an attribute with name name exists for the object specified by
h50bj.

H5Aget_name Get the name of an HDF'5 attribute object

Description

Retrieves the name of the attribute specified by an HDFS5 attribute object.

Usage

H5Aget_name(h5attribute)

Arguments
h5attribute An object of class HSIdComponent representing an attribute. Normally created
by H5Aopen () or similar.
Value

A character vector of length 1 containing the name of the attribute.

H5Aget_space Get a copy of the attribute dataspace

Description

Get a copy of the attribute dataspace

Usage
H5Aget_space(hbattribute)

Arguments

h5attribute An object of class H5SIdComponent representing an attribute. Normally created
by H5Aopen () or similar.

8 H5Aopen

Value

Returns an object of class HSIdComponent representing a HS dataspace identifier

H5Aget_type Get a copy of the attribute datatype

Description

Get a copy of the attribute datatype

Usage

H5Aget_type(hbattribute)

Arguments
h5attribute An object of class H5SIdComponent representing an attribute. Normally created
by H5Aopen () or similar.
H5Aopen Open an attribute for an HDF5 object
Description

Open an attribute for an HDF5 object

Usage
H5Aopen(h50bj, name)

non

H5Aopen_by_name(h50bj, objname = , hame)
H5Aopen_by_idx(

h50bj,

n,

objname = ".",

index_type = h5default(”"H5_INDEX"),

order = h5default("H5_ITER")

H5Aread

Arguments

h50bj

name
objname
n

index_type
order

Value

An object of class HSIdComponent representing a H5 object identifier (file,
group, or dataset). See H5Fcreate(), H5Fopen(), H5Gecreate(), H5Gopen(),
H5Dcreate (), or H5Dopen() to create an object of this kind.

The name of the attribute (character).
The name of the object the attribute belongs to.

Opens attribute number n in the given order and index. Indexing is C-style,
base-0, so the first attribute is opened with n=0.

See h5const ("H5_INDEX") for possible arguments.
See h5const ("H5_ITER") for possible arguments.

An object of class H5IdComponent representing a HS attribute identifier.

H5Aread

Read data from an HDF5 attribute

Description

Read data from an HDFS5 attribute

Usage

H5Aread(h5attribute, buf = NULL, bit64conversion = c("int"”, "double"”, "bit64"))

Arguments

h5attribute

buf

bit64conversion

Details

An object of class HSIdComponent representing an attribute. Normally created
by H5Aopen () or similar.

Optional buffer to store retrieved values. The buffer size has to fit the size of
the memory space h5spaceMem. No extra memory will be allocated for the data.
Default is NULL which means the function will return the attribute data.

Defines how 64-bit integers are converted. (See the details section for more
information on these options.)

Internally, R does not support 64-bit integers. All integers in R are 32-bit integers. By setting
bitb4conversion="int’, a coercing to 32-bit integers is enforced, with the risk of data loss, but
with the insurance that numbers are represented as integers. bit64conversion="double’ coerces
the 64-bit integers to floating point numbers. doubles can represent integers with up to 54-bits,
but they are not represented as integer values anymore. For larger numbers there is again a data
loss. bit64conversion="bit64’ is recommended way of coercing. It represents the 64-bit integers
as objects of class ’integer64’ as defined in the package ’bit64’. Make sure that you have installed
’bit64’. The datatype ’integer64’ is not part of base R, but defined in an external package. This can
produce unexpected behaviour when working with the data.

10 h5checkFilters

Value

If buf=NULL returns the contents of the attribute. Otherwise return O if attribute is read successfully.

H5Awrite Write data to an HDFS attribute

Description

Write data to an HDFS attribute

Usage

H5Awrite(h5attribute, buf)

Arguments
h5attribute An object of class HSIdComponent representing an attribute. Normally created
by H5Aopen () or similar.
buf The data to be written.
h5checkFilters Identifies the filters required to read a dataset If filters aren’t available
it will try to identify them and print the names to the user.
Description

Identifies the filters required to read a dataset If filters aren’t available it will try to identify them
and print the names to the user.

Usage

h5checkFilters(h5id)

h5closeAll 11

h5closeAll Close open HDFS handles

Description

This functions can be used in two ways. Firstly, it can be passed one or more H5IdComponent
objects and it’ll will try to close all of them regardless of the whether they represent a file, group,
dataset etc. This can be easier than making multiple calls to H5Fclose (), H5Gclose(), etc.

Usage
h5closeAll(...)

Arguments
One or more objects of class HSIdComponent which should be closed. If noth-
ing is provided to the function, all open handles will be closed.

Details

Secondly, occasionally references to HDFS files, groups, datasets etc can be created and not closed
correctly. Maybe because a function stopped before getting to the close statement, or the open
handle was not assigned to an R variable. If no arguments are provide this function identifies all
open handles and closes them.

Value

Doesn’t return anything. Called for the side-effect of closing open HDF5 handles.

Author(s)
Mike Smith

Examples

create an empty file and then re-open it
h5File <- tempfile(pattern = "ex_h5closeAll.h5")
h5createFile(h5File)

H5Fopen(h5File)

list all open identifiers
h5listIdentifier()

close all open identifiers and verify
h5closeAll()
h5listIdentifier()

12 h5constants

h5constants HDF5 library constants.

Description

Access to HDF5 constants.

Usage
h5const(type = "")
h5constType()

h5default(type = "")

Arguments

type A character name of a group of constants.

Details

These functions provide a list of HDFS constants that are defined in the R package. h5constType
provides a list of group names and h5const gives the constants defined within a group. h5default
gives the default choice for each group.

Value

A character vector with names of HDF5 constants or groups.

Author(s)

Bernd Fischer

Examples

h5constType()[1]
h5const(h5constType()[1])

H5Dclose

13

H5Dclose

Close an open HDF5 dataset

Description

Close an open HDF5 dataset

Usage

H5Dclose(h5dataset)

Arguments

h5dataset

Object of class HSIdComponent representing an open HDFS5 dataset

H5Dcreate

Create a new HDF5 dataset

Description

Create a new HDF5 dataset

Usage

H5Dcreate(
h5loc,
name,
dtype_id,
h5space,
lcpl = NULL,
dcpl = NULL,
dapl = NULL

Arguments

h5loc
name
dtype_id
h5space

lcpl, dcpl, dapl

An object of class H5SIdComponent representing a HS location identifier (file or
group). See H5Fcreate(), H5Fopen(), H5Gecreate(), H5Gopen() to create an
object of this kind.

Name of the dataset.

A character name of a datatype. See h5const("H5T") for possible datatypes.

Can also be an integer representing an HDF5 datatype.

An object of class HSIdComponent representing a H5 dataspace. See H5Dget_space(),
H5Screate_simple(), H5Screate() to create an object of this kind

An objects of class HSIdComponent representing HDFS5 property lists. Specially

these should respectively be: a link creation property list, a dataset creation
property list, a dataset access property list

14 H5Dget_num_chunks

Value

An object of class H5IdComponent representing the opened dataset.

H5Dget_create_plist Return a copy of the dataset creation property list for a dataset

Description

Return a copy of the dataset creation property list for a dataset

Usage

H5Dget_create_plist(h5dataset)

Arguments
h5dataset Object of class HSIdComponent representing an open HDFS5 dataset
H5Dget_num_chunks Get the number of chunks in a dataset
Description

Retrieves the number of chunks used by an HDF5 dataset.

Usage

H5Dget_num_chunks(h5dataset)

Arguments
h5dataset An object of class HSIdComponent representing the dataset from which chunks
will be counted.
Details

Note, this function only returns the number of chunks that actually have data written to them. It does
not return the theoretical number of chunks in a dataset or intersection with a dataspace. For exam-
ple, if an empty dataset is created and but no values have been written to it H5Dget_num_chunks ()
will return 0. This can be seen in the examples below.

The C API also provides an optional parameter to constrain the query by providing a dataspace
selection. However this argument is not currently used at the C level and so is ommitted here.

Value

An integer value indicating the number of chunks present in the dataset or selected region.

H5Dget_space 15

Examples

file <- tempfile(fileext = ".h5")
fid <- H5Fcreate(file)

Create a dataset that will be represented by 4 chunks if complete
h5createDataset(file, "data"”, dims = c(10, 10), chunk = c(5, 5), storage.mode = "integer")
did <- H5Dopen(fid, "data")

Here we return @ chunks as no values have been written

H5Dget_num_chunks(did)

Now write data to half the dataset

h5writeDataset(obj = matrix(1:50, nrow = 10), h5loc = fid, name = "/data"”, index = list(1:10, 1:5))
We now see it contains 2 chunks

H5Dget_num_chunks(did)

Now write the complete dataset, overwriting the existing values

h5writeDataset(obj = matrix(201:300, nrow = 10), h5loc = fid, name = "/data"”, index = NULL)
We now see it contains 4 chunks

H5Dget_num_chunks(did)

Tidy up op handles
h5closeAll(did, fid)

H5Dget_space Return a copy of the HDF5 dataspace for a dataset

Description

Return a copy of the HDF5 dataspace for a dataset

Usage

H5Dget_space(h5dataset)

Arguments

h5dataset Object of class HSIdComponent representing an open HDFS dataset

Value

Returns an object of class H5IdComponent representing a HDFS dataspace identifier

16 H5Dget_type

H5Dget_storage_size Find the amount of storage allocated for a dataset

Description

H5Dget_storage_size returns the amount of storage, in bytes, allocated in an HDF? file to hold a
given dataset. This is the amount of space required on-disk, which not typically a good indicator of
the amount of memory that will be required to read the complete dataset.

Usage

H5Dget_storage_size(h5dataset)

Arguments

h5dataset Object of class HSIdComponent representing an open HDF5 dataset

Value

Returns an integer giving the number of bytes allocated in the file to the dataset.

H5Dget_type Return a copy of the HDF5 datatype for a dataset

Description

Return a copy of the HDF5 datatype for a dataset

Usage

H5Dget_type(h5dataset)

Arguments

h5dataset Object of class HSIdComponent representing an open HDF5 dataset

H5Dopen 17

H5Dopen Open an existing HDF5 dataset

Description

Open an existing HDF5 dataset

Usage

H5Dopen(h5loc, name, dapl = NULL)

Arguments
h5loc An object of class H5IdComponent representing a HS location identifier (file or
group).
name Name of the dataset to open.
dapl An object of class H5SIdComponent representing a HS dataset access property
list.
Value

An object of class H5IdComponent representing the opened dataset. To prevent memory leaks this
must be closed with a call to H5Dclose () when no longer needed.

Examples

h5file <- tempfile(fileext = ".h5")
h5createFile(h5file)
h5createDataset(h5file, dataset = "A", dims = 10)

fid <- H5Fopen(h5file)
did <- H5Dopen(h5loc = fid, name = "A")
did

rember to close open handles
H5Dclose(did)
H5Fclose(fid)

18 H5Dread

H5Dread Read from an HDF5 dataset

Description

H5Dread() reads a (partial) dataset from an HDFS file into the R session.

Usage

H5Dread(
h5dataset,
h5spaceFile = NULL,
h5spaceMem = NULL,
buf = NULL,
compoundAsDataFrame = TRUE,
bit64conversion = c("int", "double", "bit64"),
drop = FALSE

Arguments

h5dataset Object of class HSIdComponent representing an open HDFS5 dataset.

h5spaceFile An object of class H5IdComponent representing a HDFS dataspace. See H5Dget_space(),
H5Screate_simple(), H5Screate() to create an object of this kind.

h5spaceMem An object of class H5IdComponent representing a HDF5 dataspace. See H5Dget_space(),
H5Screate_simple(), H5Screate() to create an object of this kind. The di-
mensions of the dataset in the file and in memory. The dimensions in file and in
memory are interpreted in an R-like manner. The first dimension is the fastest
changing dimension. When reading the file with a C-program (e.g. HDFView)
the order of dimensions will invert, because in C the fastest changing dimension
is the last one.

buf Buffer to hold the read data. The buffer size has to fit the size of the memory
space h5spaceMem. No extra memory will be allocated for the data. A pointer
to the same data is returned.

compoundAsDataFrame
Logical vector of length 1. If TRUE, a compound datatype will be coerced to a
data.frame. This is not possible, if the dataset is multi-dimensional. Otherwise
the compound datatype will be returned as a 1ist. Nested compound data types
will be returned as a nested 1ist.

bit64conversion
Defines how 64-bit integers are converted. (See the details section for more
information on these options.)

drop Logical vector of length 1. If TRUE, the HDF5 object is read as a vector with
NULL dim attributes. Default is FALSE.

H5Dset_extent 19

Details

Internally, R does not support 64-bit integers. All integers in R are 32-bit integers. By setting
bitb4conversion="int’, a coercing to 32-bit integers is enforced, with the risk of data loss, but
with the insurance that numbers are represented as integers. bit64conversion="double’ coerces
the 64-bit integers to floating point numbers. doubles can represent integers with up to 54-bits,
but they are not represented as integer values anymore. For larger numbers there is again a data
loss. bit64conversion="bit64’ is recommended way of coercing. It represents the 64-bit integers
as objects of class ’integer64’ as defined in the package "bit64’. Make sure that you have installed
’bit64’. The datatype ’integer64’ is not part of base R, but defined in an external package. This can
produce unexpected behaviour when working with the data.

H5Dset_extent Change the dimensions of an HDF5 dataset

Description

Change the dimensions of an HDF5 dataset

Usage

H5Dset_extent(h5dataset, size)

Arguments
h5dataset Object of class HSIdComponent representing an open HDFS5 dataset.
size An integer vector with the new dimension of the dataset.

Details

This function can only be applied to datasets that meet the following criteria:

¢ A chunked dataset with unlimited dimensions

¢ A chunked dataset with fixed dimensions if the new dimension sizes are less than the maxi-
mum sizes set with maxdims

Value

A logical vector of length 1. Value will be TRUE if the operation was sucessful and FALSE otherwise.

Author(s)
Bernd Fischer, Mike Smith

20 H5D_ extras

H5Dwrite Write data to dataset

Description

Write data to dataset

Usage
H5Dwrite(h5dataset, buf, h5type = NULL, h5spaceMem = NULL, h5spaceFile = NULL)

Arguments
h5dataset Object of class HSIdComponent representing an open HDFS5 dataset.
buf The R object containing the data to be written to the dataset.
h5type Datatype of the HDF5 dataset to be written. If left as NULL it will use the dataype

of the R object supplied to buf.

h5spaceMem, h5spaceFile
H5IdComponent objects representing the memory and file dataspaces respec-
tively. If these are left NULL dataspaces that match the size and shape of h5dataset
will be used.

H5D_extras Additional functions for finding details of dataset chunking.

Description

Additional functions for finding details of dataset chunking.

Usage

H5Dchunk_dims (h5dataset)

H5Dis_chunked(h5dataset)

Arguments

h5dataset Object of class HSIdComponent representing an open HDFS5 dataset.

Details

These functions do not map directly to the HDF5 C API but follow the same style and are included
as potentially useful additions.

¢ H5Dis_chunked tests whether a dataset is chunked.

¢ H5Dchunk_dims will return the dimensions of the dataset chunks.

H5Fclose 21

Value
* H5Dchunk_dims: If the supplied dataset is chunked returns a vector, with length equal to the
rank of the dataset, containing the size of the dataset dimensions. Returns NULL if the given
dataset is not chunked.
* H5Dis_chunked: returns TRUE if a dataset is chunked and FALSE otherwise.
Author(s)
Mike Smith
H5Fclose Close access to an HDF file
Description

Close access to an HDFS file

Usage
H5Fclose(h5file)
Arguments
h5file H5IdComponent representing an HDFS file ID. Typically created via HSFcreate ()
or H5Fopen().
H5Fcreate Create an HDFY file
Description

Create an HDFS5 file

Usage
H5Fcreate(
name,
flags = h5default("H5F_ACC"),
fcpl = NULL,
fapl = NULL,

native = FALSE

22 H5Fget_filesize

Arguments
name The name of the HDFS file to create.
flags See h5const ("H5F_ACC") for possible arguments.
fcpl, fapl Object object of class HSIdComponent. This should representing a file creation
property list and a file access property list respectively. See H5Pcreate() or
H5Pcopy () to create objects of this kind. Leaving as NULL will use the default
HDFS settings which are often sufficient.
native An object of class logical. If TRUE, array-like objects are treated as stored in
HDFS5 row-major rather than R column-major orientation. Using native = TRUE
increases HDFS file portability between programming languages. A file written
with native = TRUE should also be read with native = TRUE.
H5Fflush Flush all buffers associated with a file to disk
Description

Flush all buffers associated with a file to disk

Usage
H5Fflush(h5file, scope = h5default("H5F_SCOPE"))

Arguments
h5file H5IdComponent representing any object associated with the file to be flushed.
scope Specifies whether the scope of the flushing action is global (flushes the entire vir-
tual file) or local (flushes only the specified file). Valid values are H5F _SCOPE_GLOBAL
and H5F _SCOPE_LOCAL.
H5Fget_filesize Find the size of an open HDFS file
Description

H5Fget_filesize() returns the size in bytes of the HDFS file specified by h5file.

Usage
H5Fget_filesize(h5file)

Arguments

h5file H5IdComponent representing an HDFS5 file ID. Typically created via H5SFcreate ()
or H5Fopen().

H5Fget_intent 23

H5Fget_intent Determine the read only or read/write status of an open file handle.

Description

Determine the read only or read/write status of an open file handle.

Usage

H5Fget_intent(h5file)

Arguments
h5file An object of class HSIdComponent representing a HS file identifier. Typically
produced by H5Fopen () or H5Fcreate().
Details

The native H5Fget_intent() function can in theory also return the values H5F _ACC_SWMR_WRITE
and H5F_ACC_SWMR_READ. However these require the underlying HDFS5 library to be complied with
support for single-writer/multiple-reader (SWMR), which Rhdf5lib currently is not. Hence only the
two values detailed in the values section should be possible.

Value

Returns a character vector of length 1. This will either be H5F _ACC_RDWR (read / write) or H5F _ACC_READONLY
(read only).

Examples

use an example file and show its location

h5file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
open the file as read only and check this

fid <- H5Fopen(h5file, flags = "H5F_ACC_RDONLY")

H5Fget_intent(fid)

H5Fclose(fid)

open file as read write and confirm

fid <- H5Fopen(h5file, flags = "H5F_ACC_RDWR")
H5Fget_intent(fid)

H5Fclose(fid)

24 H5Fget_plist

H5Fget_name Retrieve the name of the file to which an object belongs

Description

Retrieve the name of the file to which an object belongs

Usage

H5Fget_name(h50bj)

Arguments
h5obj An object of class H5SIdComponent. Despite this being an HSF function, it
works equally well on HS file, group, dataset and attribute datatypes.
Examples

use an example file and show its location
h5file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
h5file

open a file handle and confirm we can identify the file it points to
fid <- H5Fopen(h5file)
H5Fget_name(fid)

H5Fget_name() can be applied to group and dataset handles too
gid <- H5Gopen(fid, name = "/")

did <- H5Dopen(fid, name = "DS1")

H5Fget_name(gid)

H5Fget_name(did)

tidy up

H5Dclose(did)
H5Gclose(gid)
H5Fclose(fid)

H5Fget_plist Get property lists associated with an HDF file

Description

Get property lists associated with an HDFS file

H5Fis_hdf5 25

Usage

H5Fget_create_plist(h5file)

H5Fget_access_plist(h5file)

Arguments
h5file An object of class HSIdComponent representing a HS file identifier. Typically
produced by H5Fopen() or H5Fcreate().
H5Fis_hdf5 Determine whether a file is in the HDF5 format
Description

H5Fis_hdf5() determines whether a file is in the HDF5 format.

Usage

H5Fis_hdf5(name, showWarnings = TRUE)

Arguments

name Character vector of length 1, giving the path to the file to be checked.

showWarnings If the file doesn’t exist an warning is generated. Setting this argument to FALSE
will suppress the warning.

Value

Returns TRUE, if the file is an HDF?5 file, or FALSE otherwise. In the case the file doesn’t exist, NA is
returned

H5Fopen Open an existing HDF'5 file

Description

Open an existing HDF5 file

Usage
H5Fopen(name, flags = h5default("H5F_ACC_RD"), fapl = NULL, native = FALSE)

26 H5functions
Arguments
name The name (or path) of the HDFS5 file to be opened.
flags Character string defining the access mode for opening the file.
fapl H5IdComponent object representing a file access property list. Leaving this
argument as NULL will use the default HDFS5 properties.
native An object of class logical. If TRUE, array-like objects are treated as stored in
HDFS5 row-major rather than R column-major orientation. Using native = TRUE
increases HDFS5 file portability between programming languages. A file written
with native = TRUE should also be opened for reading with native = TRUE.
Details
Possible values for the flags argument are H5F_ACC_RDWR and H5F_ACC_RDONLY. Note that HDF5’s
"Single Write Multiple Reader (SWMR) mode is not currently supported via rhdf5.
H5functions HDF5 General Library Functions
Description
These low level functions provide general library functions for HDF5.
Usage
H5open ()
H5close()
H5garbage_collect()
H5get_libversion()
Value
* H5open initializes the HDFS5 library.
* H5close flushes all data to disk, closes all open identifiers, and cleans up memory.
* H5garbage_collect cleans up memory.
* H5get_libversion returns the version number of the HDFS C-library.
Author(s)

Bernd Fischer, Mike Smith

H5Gclose 27

Examples

Not run:
H5open()

H5close()
H5garbage_collect()
H5get_libversion()

End(Not run)

H5Gclose Close a specified group

Description

Close a specified group

Usage

H5Gclose (h5group)

Arguments

h5group An object of class HSIdComponent representing a H5 group. Typically created
via H5Gopen () or H5Gcreate ().

H5Gcreate Create a new HDF5 group and link it to a location in a file

Description

H5Gcreate is used to a new group and link it into a file.

Usage

H5Gcreate(h5loc, name)

Arguments

h5loc An object of class HSIdComponent

name Name of the new group to be created.

28 H5Gget_info

H5Gcreate_anon Create a new HDFS5 group without linking it into a file

Description

Create a new HDF5 group without linking it into a file

Usage

H5Gcreate_anon(h51oc)

Arguments
h5loc An object of class H5IdComponent specifying the file in which the new group
is to be created.
Value

H5Gcreate_anon returns an object of class HSIdComponent representing the newly created group.
However at this point is is still anonymous, and must be linked into the file structure via H501ink ().
If this is not done, the group will be deleted from the file when it is closed.

See Also
H5Gcreate(), H501ink ()

H5Gget_info Retrieve information about a group

Description

Retrieve information about a group

Usage
H5Gget_info(h5loc)

H5Gget_info_by_name(h5loc, group_name)

H5Gget_info_by_idx(
h5loc,
n,
group_name = ".",
index_type = h5default(”"H5_INDEX"),
order = h5default("H5_ITER")

H5Gopen 29

Arguments
h5loc An object of class H5SIdComponent representing a H5 group.
group_name An additional group name specifying the group for which information is sought.
It is interpreted relative to h5loc.
n Position in the index of the group for which information is retrieved.
index_type See h5const ("H5_INDEX") for possible arguments.
order See h5const ("H5_ITER") for possible arguments.
Value

A list with group information

Examples

h5file <- system.file("testfiles”, "multiple_dtypes.h5", package = "rhdf5")
fid <- H5Fopen(h5file)

gid <- H5Gopen(fid, "/foo")

gid

H5Gget_info(gid)

H5Gclose(gid)

the "get_info_by"” functions take the H5 object that contains the

group(s) of interest. We can retrieve information by index or by name
H5Gget_info_by_idx(fid, 3)

H5Gget_info_by_name(fid, "/foo")

H5Fclose(fid)

H5Gopen Open a specified group

Description

Open a specified group

Usage

H5Gopen(h5loc, name)

Arguments

h5loc An object of class H5IdComponent representing a HS file or group that contains
the group to be opened.

name Name of the group to open.

30 H5IdComponent-class

Value

An object of class HSIdComponent representing the opened group. When access to the group is no
longer needed this should be released with H5Gclose () to prevent resource leakage.

See Also
H5Gclose ()

H5IdComponent-class An S84 class representing an H5 object

Description
A class representing a HDFS identifier handle. HDFS5 identifiers represent open files, groups,
datasets, dataspaces, attributes, and datatypes.

Usage

S4 method for signature 'H5IdComponent'
show(object)

S4 method for signature 'H5IdComponent,character'
el & e2

S4 method for signature 'H5IdComponent'’
x$name

S4 replacement method for signature 'H5IdComponent'’
x$name <- value

S4 method for signature 'H5IdComponent'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'H5IdComponent'’

x[i, j, ...] <= value
Arguments
object Object of class H5IdComponent
el An H5IdComponent object representing an H5 file or group.
e2 Character giving the path to an HDF5 group or dataset relative to e1.
X Object of class H5IdComponent representing the HDF5 dataset from which to

extract element(s) or in which to replace element(s).
name Character giving the path to an HDF5 group or dataset relative to x.

value Array-like R object containing value to be inserted into the HDF5 dataset.

H5Iget_name 31

i, 3, ... Indices specifying elements to extract or replace. Indices are numeric vec-
tors or empty (missing) or NULL. Numeric values are coerced to integer as by
base::as.integer () (and hence truncated towards zero).

drop If TRUE the result is coerced to the lowest possible dimension (see the exam-
ples). This only works for extracting elements, not for the replacement. See
base: :drop() for further details.

Methods (by generic)

* show(H5IdComponent): Print details of the object to screen.

* el & e2: Returns a group handle or dataset handle for the group or dataset name in the HDF5
location h5loc. h5loc can either be a file handle as returned by H5Fopen or a group handle
as e.g. returned by h5f$g1 or h5f$'/g1/g2".

* $: Reads the HDF5 object name in the HDF5 location x. x can either be a file handle as
returned by H5Fopen() or a group handle as e.g. returned by h5f$g1 or h5f$'/g1/g2".

* ~$° (H5IdComponent) <- value: Writes the assigned object to to the HDFS5 file at location
el. el can either be a file handle as returned by H5Fopen() or a group handle as e.g. returned
by h5f$g1 or h5f$°/g1/g2’s. The storage.mode of the assigned object has to be compatible to
the datatype of the HDF5 dataset. The dimension of the assigned object have to be identical
the dimensions of the HDF5 dataset. To create a new HDFS5 dataset with specific properties
(e.g. compression level or chunk size), please use the function h5createDataset () first.

 [: Subsetting of an HDF5 dataset. The function reads a subset of an HDF5 dataset. The given
dimensions have to fit the dimensions of the HDF5 dataset.

e [~ (H5IdComponent) <- value: Subsetting of an HDF5 dataset. The function writes an
R data object to a subset of an HDF5 dataset. The given dimensions have to fit the di-
mensions of the HDF5 dataset. The HDF5 dataset has to be created beforehand, e.g. by
h5createDataset().

Slots

ID integer of length 1. Contains the handle of C-type hid_t.

native An object of class logical. If TRUE, array-like objects are treated as stored in HDF5
row-major rather than R column-major orientation. Using native = TRUE increases HDFS file
portability between programming languages. A file written with native = TRUE should also
be read with native = TRUE

H5Iget_name Retrieve the name of an object from a given identifier

Description

Retrieve the name of an object from a given identifier

Usage

H5Iget_name(h50bj)

32 H5Iget_type

Arguments
h5obj An object of class H5SIdComponent. Can represent a file, group, dataset or at-
tribute.
H5Iget_type Find the type of an object
Description

Possible types returned by the function are:

e H5I_FILE

* H5I_GROUP

* H5I_DATATYPE
e H5I_DATASPACE
e H5I_DATASET

* H5I_ATTR

Usage

H5Iget_type(h5identifier)

Arguments

hsidentifier Object of class HSIdComponent.

Value

Returns a character vector of length 1 containing the HDFS5 type for the supplied identifier.

Examples

h5file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
fid <- H5Fopen(h5file)
gid <- H5Gopen(fid, "/")

identify the HDF5 types for these identifiers
H5Iget_type(fid)
H5Iget_type(gid)

tidy up
H5Gclose(gid)
H5Fclose(fid)

H5Iis_valid 33

H5Iis_valid Determine whether an identifier is valid

Description

An identifier is no longer valid after it has been closed.

Usage

H5Iis_valid(h5identifier)

Arguments

hsidentifier Object of class HSIdComponent.

Value

A logical of length 1. TRUE is the identifier is valid, FALSE if not.

Examples

h5file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
fid <- H5Fopen(h5file)

test whether the identifer to the opened file is valid
H5Iis_valid(fid)

the file ID is no longer valid after it has been closed
H5Fclose(fid)
H5Iis_valid(fid)

H5Lcopy Copy a link from one location to another

Description

Copy a link from one location to another

Usage

H5Lcopy(h5loc, name, h5loc_dest, name_dest, lcpl = NULL, lapl = NULL)

34 H5L create_external

Arguments
h5loc An object of class H5SIdComponent representing a HS location identifier (file or
group) where the new link is placed.
name The name of the link to be copied.
h5loc_dest An object of class HSIdComponent representing the destination file or group
where a copied or moved link should be created.
name_dest The name of the link to be created when copying or moving.
lcpl, 1apl Link creation and link access property lists. If left as NULL the HDFS5 defaults
will be used.
H5Lcreate_external Create a link to an object in a different HDFS file
Description

H5Lcreate_external() creates a new external link. An external link is a soft link to an object in a
different HDFS file from the location of the link.

Usage

H5Lcreate_external (target_file_name, target_obj_name, link_loc, link_name)

Arguments

target_file_name
Name of the external HDF5 to link to
target_obj_name
Path to the object in the file specified by target_file_name to link to.

link_loc H5IdComponent object giving the location where the new link should be cre-
ated. Can represent an HDFS5 file or group.
link_name Name (path) of the new link, relative to the location of 1ink_loc.
Examples

The example below creates a new HDF5 file in a temporary director, and then
links to the group "/foo” found in the file "multiple_dtypes.h5"
distributed with the package.

h5Filel <- system.file("testfiles”, "multiple_dtypes.h5", package = "rhdf5")
h5File2 <- tempfile(pattern = "H5L_2_", fileext = ".h5")
h5createFile(h5File2)

open the new file & create a link to the group "/foo” in the original file
fid <- H5Fopen(h5File2)
H5Lcreate_external(

target_file_name = h5Filel, target_obj_name = "/foo",

H5Ldelete 35

link_loc = fid, link_name = "/external_link"

)
H5Fclose(fid)

check the new file has a group called "/external_link"
h51s(h5File2)

H5Ldelete Remove a link from a group

Description

Remove a link from a group

Usage

H5Ldelete(h5loc, name)

Arguments
h5loc An object of class HSIdComponent representing a HS location identifier (file or
group).
name The name of the link to be deleted.
Examples
h5file <- tempfile(pattern = "_ex_H5L.h5")

create an hdf5 file and a group
h5createFile(h5file)
h5createGroup(h5file, "/foo")

reopen file and confirm "/foo" exists but "/baa" does not
fid <- H5Fopen(h5file)
H5Lexists(fid, "/foo")

remove the link to "/foo" and confirm it no longer exists
H5Ldelete(fid, "/foo")
H5Lexists(fid, "/foo")

H5Fclose(fid)

36 H5Lget_info

H5Lexists Confirm existence of a link

Description

Confirm existence of a link

Usage

H5Lexists(h5loc, name)

Arguments
h5loc An object of class H5SIdComponent representing a HS location identifier (file or
group).
name The name of the link to be checked
H5Lget_info Find information about a link
Description

H5Lget_info() identifies the type of link specified by the the h51oc and name arguments. This is
more limited than the equivalent function in the standard HDFS5 library.

Usage

H5Lget_info(h5loc, name)

Arguments
h5loc An object of class H5SIdComponent representing a HS location identifier (file or
group).
name The name of the link to be queried.
Value

A character vector of length 1 giving the type of link. Possible values are: H5L_TYPE_HARD,
H5L_TYPE_SOFT, H5L_TYPE_EXTERNAL, H5L_TYPE_ERROR

hS5listObjects 37

h5listObjects List all open HDF5 objects.

Description

A list of all valid HDFS identifiers. H5 objects should be closed after usage to release resources.

Usage

h5listIdentifier()

h5validObjects(native = FALSE)

Arguments
native An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE
Value

h5validObjects returns a list of HSIdComponent objects. h5listIdentifier prints the valid
identifiers on screen and returns NULL.

Author(s)

Bernd Fischer, Mike Smith

Examples

h5File <- tempfile("ex_list_identifier.h5")
h5createFile(h5File)

create groups
h5createGroup(h5File, "foo")

h5listIdentifier()
h5validObjects()

38 H5Lmove

H5Lmove Move a link within an HDF? file

Description

Move a link within an HDFS5 file

Usage

H5Lmove(h5loc, name, h5loc_dest, name_dest, lcpl = NULL, lapl = NULL)

Arguments
h5loc An object of class HSIdComponent representing a HS location identifier (file or
group) where the new link is placed.
name The name of the link to be moved.
h5loc_dest HS5IdComponent object representing the HS location where the new link should
be created.
name_dest Name of the new link to be created
lcpl, 1apl Link creation and link access property lists to be associated with the new link.
Leaving these arguments as NULL will use the HDF5 default property lists.
Examples

create an HDF5 file with a single group
that contains a dataset of 10 numbers
h5file <- tempfile(fileext = ".h5")
h5createFile(h5file)

h5createGroup(h5file, "/foo")

h5write(1:10, h5file, name = "/foo/vectorl”)
check the structure is what we expect
h51s(h5file)

open the file, the group where the dataset currently is
and the root group

fid <- H5Fopen(name = h5file)

gidl <- H5Gopen(fid, "/foo")

gid2 <- H5Gopen(fid, "/")

move the dataset to the root of the file and rename it
H5Lmove(gid1l, "vectorl”, gid2, "vector_new")

h5closeAll()

check the dataset has moved out of the foo group
h51s(h5file)

we can also provide the ID of the HDF5 file

and use the "name” arguments to move between groups
fid <- H5Fopen(name = h5file)

H5Lmove(fid, "/vector_new", fid, "/foo/vector_newer")

h5Is

H5Fclose(fid)
h51s(h5file)

39

h51s

List the content of an HDFS file.

Description

List the content of an HDFS file.

Usage
h51s(
file,
recursive =
all = FALSE,

TRUE,

datasetinfo = TRUE,

index_type

h5default("H5_INDEX"),

order = h5default("H5_ITER"),

s3 = FALSE,

s3credentials = NULL,
native = FALSE

Arguments

file

recursive
all
datasetinfo

index_type
order
s3

s3credentials

native

The filename (character) of the file in which the dataset will be located. You can
also provide an object of class HSIdComponent representing a H5 location iden-
tifier (file or group). See H5Fcreate(), H5Fopen(), H5Gcreate(), H5Gopen ()
to create an object of this kind.

If TRUE, the content of the whole group hierarchy is listed. If FALSE, Only the
content of the main group is shown. If a positive integer is provided this indi-
cates the maximum level of the hierarchy that is shown.

If TRUE, a longer list of information on each entry is provided.

If FALSE, datatype and dimensionality information is not provided. This can
speed up the content listing for large files.

See h5const ("H5_INDEX") for possible arguments.

See h5const ("H5_ITER") for possible arguments.

Logical value indicating whether the file argument should be treated as a URL
to an Amazon S3 bucket, rather than a local file path.

A list of length three, providing the credentials for accessing files in a private
Amazon S3 bucket.

An object of class logical. If TRUE, array-like objects are treated as stored
in HDFS5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

40 H50Oclose

Value

h51s returns a data. frame with the file content.

Author(s)
Bernd Fischer, Mike L. Smith

References

https://portal.hdfgroup.org/display/HDF5

See Also
h5dump ()

Examples

h5File <- tempfile(pattern = "ex_dump.h5")
h5createFile(h5File)

create groups
h5createGroup(h5File, "foo")
h5createGroup(h5File, "foo/foobaa™)

write a matrix
B <- array(seq(@.1, 2.0, by = 0.1), dim = c(5, 2, 2))
attr(B, "scale") <- "liter”

hswrite(B, hSFile, "foo/B")

list content of hdf5 file
h51s(h5File, all = TRUE)

list content of an hdf5 file in a public S3 bucket

h51s(file = "https://rhdf5-public.s3.eu-central-1.amazonaws.com/h5ex_t_array.h5", s3 = TRUE)

H50close Close an HDF5 object

Description

Close an HDFS5 object

Usage
H50close(h50bj)

https://portal.hdfgroup.org/display/HDF5

H50copy 41

Arguments

h50bj An object of class H5SIdComponent representing an open HDFS5 object.

See Also
H500pen()

H50copy Copies an HDF5 object

Description

Copies an HDF5 object

Usage

H50copy(h5loc, name, h5loc_dest, name_dest, obj_cpy_pl = NULL, lcpl = NULL)

Arguments
h5loc An object of class HSIdComponent representing an open HDF5 object where
the source object should be copied from.
name Character vector of length 1, giving the name of the source object to be copied.
h5loc_dest An object of class H5SIdComponent representing an open HDF5 object where
the new copy should be created.
name_dest Character vector of length 1, giving the name of the new object to be created.

obj_cpy_pl, lcpl
H5IdComponent objects representing object copy and link creation property
lists respectively. If left as NULL the default values for these will be used.

Examples

Create a temporary copy of an example file check the contents

example_file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
file.copy(example_file, tempdir())

h5_file <- file.path(tempdir(), "h5ex_t_array.h5")

h51s(h5_file)

open the example file and create a new, empty, file
fidl <- H5Fopen(h5_file)

h5_file2 <- tempfile(fileext = ".h5")

fid2 <- H5Fcreate(h5_file2)

We can copy a dataset inside the same file

H50copy (h5loc = fid1, name = "DS1", h5loc_dest = fidl, name_dest = "DS2")

Or to a different file

H50copy (h5loc = fid1, name = "DS1"”, h5loc_dest = fid2, name_dest = "DS1_copy")

42 H50get_info

if we want to create a new group hierarchy we can use a link creation property list
lcpl <- H5Pcreate("H5P_LINK_CREATE")
H5Pset_create_intermediate_group(lcpl, create_groups = TRUE)
H50copy (
h5loc = fidl, name = "DS1"”, h5loc_dest = fid2,
name_dest = "/foo/baa/DS1_nested”, lcpl = lcpl
)

tidy up

H5Pclose(lcpl)
H5Fclose(fid1)
H5Fclose(fid2)

Check we now have groups DS1 and DS2 in the original file
h51s(h5_file)

Check we have a copy of DS1 at the root and nests in the new file
h51s(h5_file2)

H50get_info Retrieves the metadata for an HDF5 object specified by an identifier.

Description

Retrieves the metadata for an HDF5 object specified by an identifier.

Usage
H50get_info(h5loc)

Arguments

h5loc An object of class HSIdComponent representing an open HDF5 dataset or group.

Examples

Create a temporary copy of an example file check the contents
example_file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")

open the example file, root group, and DS1 dataset
fid <- H5Fopen(example_file)

gid <- H5Gopen(fid, "/")

did <- H5Dopen(fid, "/DS1")

List the available object information for both groups and datasets
H50get_info(h5loc = gid)

H50get_info(h5loc = did)

H50get_num_attrs 43

close open handles
h5closeAll(did, gid, fid)

H50get_num_attrs Find the number of attributes associated with an HDFS5 object

Description

Find the number of attributes associated with an HDF5 object

Usage

H50get_num_attrs(h50bj)

H50get_num_attrs_by_name(h5loc, name)

Arguments
h50bj An object of class H5IdComponent representing a HS object identifier (file,
group, or dataset).
h5loc An object of class H5IdComponent representing a HS location identifier (file or
group).
name The name of the object to be checked.
Details

These functions are not part of the standard HDF5 C APIL.

Value

Returns a vector of length 1 containing the number of attributes the specified object has.

H501ink Create a hard link to an object in an HDF' file

Description

Create a hard link to an object in an HDF? file

Usage
H501ink(h50bj, h5loc, newLinkName, lcpl = NULL, lapl = NULL)

44 H50o0pen

Arguments
h50bj An object of class HSIdComponent representing the object to be linked to.
h5loc An object of class HSIdComponent representing the location at which the object
is to be linked. Can represent a file, group, dataset, datatype or attribute.
newLinkName Character string giving the name of the new link. This should be relative to
h5loc.
lcpl, 1apl HS5IdComponent objects representing link creation and link access property lists
respectively. If left as NULL the default values for these will be used.
See Also

H5Gcreate_anon

Examples

Create a temporary copy of an example file, and open it

example_file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")
file.copy(example_file, tempdir())

h5_file <- file.path(tempdir(), "h5ex_t_array.h5")

fid <- H5Fopen(h5_file)

create a new group without a location in the file
gid <- H5Gcreate_anon(fid)

create link to newly create group
relative to the file identifier
H501ink (h50bj = gid, h5loc = fid, newLinkName = "foo")

tidy up
H5Gclose(gid)
H5Fclose(fid)

Check we now have a "/foo" group
h51s(h5_file)

H500pen Open an object in an HDF file

Description

Open an object in an HDFS file

Usage

H500pen(h5loc, name)

HS5Pall_filters_avail 45

Arguments
h5loc An object of class HSIdComponent
name Path to the object to be opened. This should be relative to h51oc rather than the
file.
Value

An object of class HSIdComponent if the open operation was successful. FALSE otherwise.

See Also

H50close()

Examples

h5File <- tempfile(pattern = "ex_H50.h5")

create an hdf5 file and write something
h5createFile(h5File)

h5createGroup(h5File, "foo")

B <- array(seq(@.1, 2.0, by = 0.1), dim = c(5, 2, 2))
h5write(B, h5File, "foo/B")

reopen file and dataset and get object info
fid <- H5Fopen(h5File)

oid <- H50open(fid, "foo")
H50get_num_attrs(oid)

H50close(oid)

H5Fclose(fid)

H5Pall_filters_avail Query dataset filter properties.

Description

Return information about the filter pipeline applied to a dataset creation property list.
Usage

H5Pall_filters_avail(h5plist)

H5Pget_nfilters(h5plist)

H5Pget_filter(h5plist, idx)

46 H5Pcopy

Arguments
h5plist Object of class HSIdComponent representing a dataset creation property list.
idx Integer of length 1. This argument selects which filter to return information
about. Indexing is R-style 1-based.
Details

* H5Pall_filters_avail() checks whether all filters required to process a dataset are avail-
able to rhdf5. This can be required if reading files created with other HDF5 software.

* H5Pget_nfilters() returns the number of filters in the dataset chunk processing pipeline.

* H5Pget_filter() provides details of a specific filter in the pipeline. This includes the filter
name and the parameters provided to it e.g. compression level.

H5Pclose Close and release a property list

Description

H5Pclose() terminates access to a property list. All property lists should be closed when they
no longer need to be accessed. This frees resources used by the property list. Failing to call
H5Pclose() can lead to memory leakage over time.

Usage
H5Pclose(h5plist)

Arguments

h5plist H5IdComponent object representing the property list to close.

H5Pcopy Copy an existing property list to create a new property list

Description

Copy an existing property list to create a new property list

Usage
H5Pcopy (h5plist)

Arguments

h5plist H5IdComponent object representing the property list to be copied.

H5Pcreate 47

H5Pcreate Create a new HDF5 property list

Description

Create a new HDF5 property list

Usage

H5Pcreate(type = h5default("H5P"), native = FALSE)

Arguments
type A character name of a property list type. See h5const("H5P") for possible
property list types.
native Defunct! Doesn’t achieve anything for property lists.

H5Pfill_value_defined Determine whether a property list has a fill value defined

Description

Determine whether a property list has a fill value defined

Usage

H5Pfill_value_defined(h5plist)

Arguments

h5plist Object of class HSIdComponent representing a dataset creation property list.

Details

Note that the return value for this function is slightly different from the C version. The C API
provides three return types and can, in the case that a fill value is defined, differentiate whether the
value is the HDF5 library default or has been set by the application.

Value

TRUE if the fill value is defined, FALSE if not. Will return NULL if there is a problem determining the
status of the fill value.

48 H5Pget_version

H5Pget_class Return the property list class identifier for a property list

Description

Return the property list class identifier for a property list

Usage

H5Pget_class(h5plist)

Arguments
h5plist H5IdComponent object representing any type of HDF5 property list.
H5Pget_version Get version information for objects in a file creation property list
Description

Get version information for objects in a file creation property list

Usage

H5Pget_version(h5plist)

Arguments

h5plist H5IdComponent object representing the file creation property list

Value

Named integer vector

H5Pobject_track_times 49

H5Pobject_track_times Set whether to record timestamps for operations performed on an
HDFS5 object.

Description

Set whether to record timestamps for operations performed on an HDF5 object.

Usage
H5Pset_obj_track_times(h5plist, track_times = TRUE)

H5Pget_obj_track_times(h5plist)

Arguments
h5plist An H5IdComponent object representing an object creation property list.
track_times logical specifying whether times associated with an object should recorded.
Details

Objects created using high-level rhdf5 functions like h5createDataset() will have this setting
turned off. This was done to ensure otherwise identical files returned the same md5 hash. This
differs from the default setting in HDFS, which is for objects to record the times operations were
performed on them.

H5Pset_blosc Add the BLOSC filter to the chunk processing pipeline.

Description

Add the BLOSC filter to the chunk processing pipeline.

Usage
H5Pset_blosc(h5plist, h5tid, method = 1L, level = 6L, shuffle = TRUE)

Arguments
h5plist Object of class HSIdComponent representing a dataset creation property list.
h5tid HDFS5 data type id
method Integer defining which of the compression algorithms provided by BLOSC should
be used. (See the details section for the mapping between integers and algo-
rithms).

level Compression level to be used by the selected algorithm.

50 H5Pset_deflate

shuffle Logical defining whether the bit-shuffle algorithm should be used prior to com-
pression. This makes use of the shuffle implementation provide by BLOSC,
rather than the HDF5 version.

H5Pset_bzip2 Add the BZIP? filter to the chunk processing pipeline.

Description

Add the BZIP2 filter to the chunk processing pipeline.

Usage

H5Pset_bzip2(h5plist, level = 2L)

Arguments
h5plist Object of class HSIdComponent representing a dataset creation property list.
level Compression level to be used by the selected algorithm.
H5Pset_deflate Add the deflate compression filter to the chunk processing pipeline.
Description

Valid values for the compression level range from 0 (no compression) to 9 (best compression, slow-
est speed). Note that applying this function with level = @ does not mean the filter is removed. It
is still part of the filter pipeline, but no compression is performed. The filter will still need to be
available on any system that reads a file created with this setting

Usage

H5Pset_deflate(h5plist, level)

Arguments

h5plist Object of class HSIdComponent representing a dataset creation property list.

level Integer giving the compression level to use. Valid values are from 0 to 9.

H5Pset_tfapl_ros3 51

H5Pset_fapl_ros3 Set the read-only S3 virtual file driver

Description

The read-only S3 virtual file driver can be used to read files hosted remotely on Amazon’s S3
storage.

Usage

H5Pset_fapl_ros3(h5plist, s3credentials = NULL)

Arguments

h5plist H5IdComponent object representing a file access property list.

s3credentials Either NULL or a list of length 3 specifying the AWS access credentials (see
details).

Details

To access files in a private Amazon S3 bucket you will need to provide three additional details: The
AWS region where the files are hosted, your AWS access key ID, and your AWS secret access key.
More information on how to obtain AWS access keys can be found at https://docs. aws.amazon.
com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys.
These are provided as a list to the s3credentials argument. If you are accessing public data this
argument should be NULL.

Examples

this doesn't work on the Bioconductor Mac build machine
Not run:

pid <- HS5Pcreate("H5P_FILE_ACCESS")

H5Pset_fapl_ros3(pid)

H5Pclose(pid)

End(Not run)

H5Pset_filter Add a filter to the dataset filter pipeline.

Description

Add a filter to the dataset filter pipeline.

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

52 H5Pset_1zf

Usage
H5Pset_filter(h5plist, filter_id, is_mandatory = FALSE, cd_values)

Arguments
h5plist Object of class HSIdComponent representing a dataset creation property list.
filter_id Integer of length 1, giving the ID of the filter to be used.

is_mandatory Logical of length 1. Filters can be either optional or mandatory. If this argument
is set to FALSE the filter won’t be applied to a chunk in the case of failure, but
the data will still be written. Setting to TRUE will result in a failure when writing
the dataset if the filter fails for some reason.

cd_values Integer vector giving parameters to be supplied to the filter. No guidance is given
for the number of values supplied here, it is specific to each filter and the user is
expected to know appropriate options for the requested filter.

H5Pset_istore_k Get and set the 1/2 rank of an indexed storage B-tree

Description

Get and set the 1/2 rank of an indexed storage B-tree

Usage

H5Pset_istore_k(h5plist, ik)

H5Pget_istore_k(h5plist)

Arguments
h5plist H5IdComponent object representing the file creation property list
ik chunked Storage B-tree 1/2 rank
H5Pset_lzf Add the LZF filter to the chunk processing pipeline.
Description

Add the LZF filter to the chunk processing pipeline.

Usage
H5Pset_lzf(h5plist, h5tid)

H5Pset_nbit 53

Arguments
h5plist Object of class HSIdComponent representing a dataset creation property list.
h5tid HDFS5 data type id
H5Pset_nbit Add the N-Bit filter to the chunk processing pipeline.
Description

Add the N-Bit filter to the chunk processing pipeline.

Usage

H5Pset_nbit(h5plist)

Arguments

h5plist Object of class HSIdComponent representing a dataset creation property list.

Value

Returns (invisibly) an integer vector of length 1. The only element of this vector will be non-
negative if the filter was set successfully and negative otherwise.

H5Pset_shared_mesg_index
Get and set shared object header message index properties

Description

Get and set shared object header message index properties

Usage

H5Pset_shared_mesg_index(
h5plist,
index_num,
mesg_type_flags = h5default(type = "H50_SHMESG_FLAG"),
min_mesg_size

)

H5Pget_shared_mesg_index(h5plist, index_num)

54 H5Pset_shared_mesg_phase_change

Arguments
h5plist H5IdComponent object representing the file creation property list
index_num Index being configured. Indices use C-style O-based counting, so the first index

will be numbered 0.

mesg_type_flags
Character specifying the types of messages that may be stored in this index.
Valid values can be found with h5const(type = "H50_SHMESG_FLAG")

min_mesg_size Minimum message size

Value

H5Pget_shared_mesg_index () returns a list of length 2. The first element is the types of messages
that may be stored in the index, the second element is the minimum message size.

H5Pset_shared_mesg_nindexes
Get and set the number of object header message indexes

Description

Get and set the number of object header message indexes

Usage

H5Pset_shared_mesg_nindexes(h5plist, nindexes)

H5Pget_shared_mesg_nindexes(h5plist)

Arguments
h5plist H5IdComponent object representing the file creation property list
nindexes Number of shared object header message indexes to be available in files

H5Pset_shared_mesg_phase_change
Get and set threshold values for storage of shared object header mes-
sage indexes

Description

Get and set threshold values for storage of shared object header message indexes

H5Pset_shuffle 55

Usage

H5Pset_shared_mesg_phase_change(h5plist, max_list, min_btree)

H5Pget_shared_mesg_phase_change(h5plist)

Arguments
h5plist H5IdComponent object representing the file creation property list
max_list Threshold above which storage shifts from list to B-tree
min_btree Threshold below which storage reverts to list format
H5Pset_shuffle Add the shuffle filter to the chunk processing pipeline.
Description

Add the shuffle filter to the chunk processing pipeline.

Usage
H5Pset_shuffle(h5plist)

Arguments

h5plist Object of class HSIdComponent representing a dataset creation property list.

Value

Returns (invisibly) an integer vector of length 1. The only element of this vector will be non-
negative if the filter was set successfully and negative otherwise.

H5Pset_sizes Get and set the sizes of offsets and lengths used in an HDF3 file

Description

Get and set the sizes of offsets and lengths used in an HDFS file

Usage

H5Pset_sizes(h5plist, sizeof_addr, sizeof_size)

H5Pget_sizes(h5plist)

56

Arguments

h5plist
sizeof_addr
sizeof_size

H5Pset_szip

H5IdComponent object representing the file creation property list
Offset size in bytes
Length size in bytes

H5Pset_sym_k

Get and set the size of the symbol table B-tree 1/2 rank and the leaf
node 1/2 size

Description

Get and set the size of the symbol table B-tree 1/2 rank and the leaf node 1/2 size

Usage

H5Pset_sym_k(h5plist, ik, 1k)

H5Pget_sym_k(h5plist)

Arguments
h5plist
ik
1k

H5IdComponent object representing the file creation property list
Symbol table B-tree 1/2 rank
Symbol table leaf node 1/2 size

H5Pset_szip

Add the SZIP compression filter to the chunk processing pipeline.

Description

Add the SZIP compression filter to the chunk processing pipeline.

Usage

H5Pset_szip(h5plist, options_mask, pixels_per_block)

Arguments

h5plist

Object of class HSIdComponent representing a dataset creation property list.

options_mask, pixels_per_block

References

Integer vectors of length 1, setting parameters of the SZIP algorithm. See
https://portal.hdfgroup.org/display/HDF5/H5P_SET_SZIP for more de-
tails.

https://portal.hdfgroup.org/display/HDF5/Szip+Compression+in+HDF+Products

https://portal.hdfgroup.org/display/HDF5/H5P_SET_SZIP
https://portal.hdfgroup.org/display/HDF5/Szip+Compression+in+HDF+Products

H5Pset_userblock 57

H5Pset_userblock Get and set the user block size

Description

Get and set the user block size

Usage

H5Pset_userblock(h5plist, size)

H5Pget_userblock(h5plist)

Arguments
h5plist HS5IdComponent object representing the file creation property list
size of the user block in bytes
H5P_chunk Get and set the size of the chunks used to store a chunked layout
dataset
Description

Get and set the size of the chunks used to store a chunked layout dataset

Usage
H5Pset_chunk(h5plist, dim)

H5Pget_chunk(h5plist)

Arguments
h5plist An object of class HSIdComponent representing a dataset creation property list.
dim The chunk size used to store the dataset. This argument should be an integer
vector of the same length as the number of dimensions of the dataset the dataset
creation property list will be applied to.
Details

Note that a necessary side effect of running this function is that the layout of the dataset will be
changes to H5D_CHUNKED if it is not already set to this.

See Also

H5Pset_layout()

58 H5P_create_intermediate_group

H5P_chunk_cache Set parameters for the raw data chunk cache

Description

Set parameters for the raw data chunk cache

Usage

H5Pset_chunk_cache(h5plist, rdcc_nslots, rdcc_nbytes, rdcc_we)

Arguments

h5plist Object of class HSIdComponent representing a dataset access property list.

rdcc_nslots Integer defining the number of chunk slots in the raw data chunk cache for this
dataset.

rdcc_nbytes Integer setting the total size of the raw data chunk cache for this dataset in bytes.
In most cases increasing this number will improve performance, as long as you
have enough free memory. The default size is 1 MB

rdcc_wo Numeric value defining the chunk preemption policy. Must be between @ and 1

inclusive.

H5P_create_intermediate_group
Get and set whether to create missing intermediate groups

Description

Get and set whether to create missing intermediate groups

Usage

H5Pset_create_intermediate_group(h5plist, create_groups = TRUE)

H5Pget_create_intermediate_group(h5plist)

Arguments

h5plist An object of class HSIdComponent representing a link creation property list.

create_groups A logical of length 1 specifying whether missing groups should be created when
a new object is created. Default is TRUE.

HS5P_fill_time 59

Examples

pid <- H5Pcreate("H5P_LINK_CREATE")

by default intermediate groups are not created
H5Pget_create_intermediate_group(pid)

Change the setting so groups will be created
H5Pget_create_intermediate_group(pid)

tidy up
H5Pclose(pid)

H5P_fill_time Set the time when fill values are written to a dataset

Description

Set the time when fill values are written to a dataset

Usage
H5Pset_fill_time(h5plist, fill_time = h5default("H5D_FILL_TIME"))

H5Pget_fill_time(h5plist)

Arguments
h5plist An object of class HSIdComponent representing a dataset creation property list.
fill_time When the fill values should be written. Possible options can be listed with
h5const ("H5D_FILL_TIME").
H5P_fill_value Set the fill value for an HDF5 dataset
Description

H5Pset_fill_value sets the fill value for a dataset in the dataset creation property list.

Usage

H5Pset_fill_value(h5plist, value)

60 H5P_layout

Arguments
h5plist An object of class HSIdComponent representing a dataset creation property list.
value The default fill value of the dataset. A vector of length 1.

See Also

H5P_fill_time,H5Pfill_value_defined

H5P_layout Get and set the type of storage used to store the raw data for a dataset

Description
Possible options for the layout argument are:
* H5D_COMPACT
* H5D_CONTIGUOUS

* H5D_CHUNKED
* H5D_VIRTUAL

Usage

H5Pset_layout(h5plist, layout = h5default("H5D"))

H5Pget_layout (h5plist)

Arguments
h5plist An object of class HSIdComponent representing a dataset creation property list.
layout A character giving the name of a dataset layout type.

Details

The names of the layout types can also be obtained via h5const("H5D").

H5P_libver_bounds 61

H5P_libver_bounds Control the range of HDF5 library versions that will be compatible
with a file.

Description

Control the range of HDF?5 library versions that will be compatible with a file.

Usage

H5Pset_libver_bounds(
h5plist,
libver_low = "H5F_LIBVER_EARLIEST",
libver_high = "H5F_LIBVER_LATEST"

)

H5Pget_libver_bounds(h5plist)

Arguments

h5plist HS5IdComponent object representing a file access property list.

libver_low, libver_high
Define the earliest and latest versions of the HDFS5 library that will be used when
writing object in the file.

H5R H5R - References to objects and regions

Description

The H5R functions can be used for creating or working with references to specific objects and data
regions in an HDFS file.

Author(s)
Mike Smith

Examples

library(rhdf5)

first we'll create a file with a group named "foo” and a
1-dimensional dataset named "baa” inside that group.
file_name <- tempfile(fileext = ".h5")
h5createFile(file_name)

h5createGroup(file = file_name, group = "/foo")

62

H5Rcreate

h5write(1:100, file = file_name, name = "/foo/baa")

fid <- H5Fopen(file_name)

ref_to_group <- H5Rcreate(fid, name = "/foo")
ref_to_dataset <- H5Rcreate(fid, name = "/foo/baa")
two_refs <- c(ref_to_group, ref_to_dataset)
two_refs

the size of this dataspace is the number of object references

we want to store

sid <- H5Screate_simple(2)

tid <- H5Tcopy(dtype_id = "H5T_STD_REF_OBJ")

did <- H5Dcreate(fid, name = "object_refs”, dtype_id = tid, h5space = sid)
H5Dwrite(did, two_refs)

H5Dclose(did)

H5Sclose(sid)

H5Fclose(fid)

H5Rcreate

Create a reference

Description

Creates a reference to an object or dataset selection inside an HDFS5 file.

Usage

H5Rcreate(h5loc, name, ref_type = "HS5R_OBJECT"”, h5space = NULL)

Arguments

h5loc

name

ref_type

h5space

Value

An H5IdComponent object representing the location to be pointed to by the cre-
ated reference.

Character string giving the name of the object to be referenced, relative to the
location given by h5loc.

The type of reference to create. Accepts either HSR_OBJECT or HSR_DATASET_REGION.

An object of class H5IdComponent representing a dataspace with a selection set.
This argument is only used if creating a reference to a dataset region, and will
be ignored otherwise.

An H5Ref object storing the reference.

H5Rdereference 63

H5Rdereference Open a reference object.

Description

Given a reference and the file to which that reference applies, H5Rdeference () will open the refer-
ence object and return an identifier.

Usage
H5Rdereference(ref, h5loc)

Arguments

ref H5ref object containing the reference to be opened.

h5loc An H5IdComponent object representing the file containing the referenced object.
Details

If ref contains more than one reference, only the first reference will be used. It must be subset with
[if one of the other stored references should be opened.
Value

An object of class H5IdComponent representing the opened object referenced by ref. This should
be closed with the appropriate function e.g. H5Dclose (), H50close (), etc. when no longer needed.

h5readTimestamps Read the time stamps associated with an HDF5 group or dataset.

Description

Read the time stamps associated with an HDF5 group or dataset.

Usage

h5readTimestamps(file, name)

Arguments
file Character vector of length 1, giving the path to the HDFS file
name Path within the HDFS file to the object whose attributes should be read. The

datasets present in file can be listed with the function h51s.

64 H5Ref-class

Details

All timestamps are returned in the UTC timezone. HDF5 objects can have between 0 and 4 times-
tamps set, depending on the property lists provided when they are created or accessed. Timestamps
that are not tracked will be returned as the UNIX epoch 1970-01-01 UTC.

Value
A named list of length 4 containing the timestamps on the object. The timestamps themselves are

POSIXct objects (see base: :DateTimeClasses()).

Examples

example file
example_file <- system.file("testfiles”, "h5ex_t_array.h5", package = "rhdf5")

read timestamps on a group
h5readTimestamps(example_file, name = "/")

read timestamps on a datasets
h5readTimestamps(example_file, name = "/DS1")

H5Ref-class An 84 class representing H5 references.

Description

A class representing one or more HDF5 references.

Usage

S4 method for signature 'H5Ref"
show(object)

S4 method for signature 'H5Ref’
length(x)

S4 method for signature 'H5Ref"

c(x, ...)
S4 method for signature 'H5Ref’
x[i]

Arguments
object Object of class H5Ref
X An H5Ref object.

Additional H5Ref objects to be combined with x.
i Integer vector giving the indices of references to select.

H5Rget_name 65

Details

The length of the val slot is dependent on both the number and type of references stored in the
object. HSR_OBJECT references are stored in 8 bytes, while HSR_DATASET_REGION references require
12 bytes. The length of val will then be a multiple of 8 or 12 respectively. This also means that
references of different types cannot be combined in a single object.

Methods (by generic)

* show(H5Ref): Print details of the object to screen.
* length(H5Ref): Return the number of references stored in an H5Ref object.

* c(H5Ref): Combine two or more H5Ref objects. Objects must all contain the same type of
reference, either HSR_OBJECT or HSR_DATASET_REFERENCE.

* [: Subset an H5Ref object.

Slots

val raw vector containing the byte-level representation of each reference.

type integer of length 1, which maps to either HSR_OBJECT or H5R_DATASET_REGION.

H5Rget_name Return the name of the object that a reference points to

Description

Return the name of the object that a reference points to

Usage

H5Rget_name(ref, h5loc)

Arguments

ref H5ref object containing the reference to be queried.

h5loc An H5IdComponent object representing the file containing the referenced object.
Value

Character string of length 1 giving the name of the referenced object.

66 H5Rget_region

H5Rget_obj_type Identify the type of object that a reference points to

Description

Identify the type of object that a reference points to

Usage
H5Rget_obj_type(ref, h5loc)

Arguments

ref H5ref object containing the reference to be queried.

h5loc An H5IdComponent object representing the file containing the referenced object.
Value

Character string of length 1 identifying the object type. Valid return values are: "GROUP", "DATASET",
and "NAMED_DATATYPE".

H5Rget_region Return selection for a reference to dataset region

Description
Given a dataset region reference, this function will return the dataspace and selection required to
read the data points indicated by the reference.

Usage

H5Rget_region(ref, h5loc)

Arguments
ref An object of class H5Ref. This function is only valid for reference of type
H5R_DATASET_REGION, and not H5R_OBJECT.
h5loc An H5IdComponent object representing the file containing the referenced object.
Value

An object of class H5IdComponent representing the dataspace of the dataset that ref points to. The
dataspace will have the selection set that matches the selection pointed to by ref. This should be
closed using H5Sclose () when no longer required.

H5Sclose 67

H5Sclose Close and release a dataspace

Description

Close and release a dataspace

Usage
H5Sclose(h5space)

Arguments

h5space Object of class HSIdComponent representing the dataspace to be closed.

See Also

H5Screate()

H5Scombine_hyperslab Perform operation between an existing selection and an another hy-
perslab definition.

Description

Combines a hyperslab selection specified by start, stride, count and block arguments with the
current selection for the dataspace represented by h5space.

Usage
H5Scombine_hyperslab(
h5space,
op = h5default("H5S_SELECT"),
start = NULL,
stride = NULL,
count = NULL,
block = NULL
)
Arguments
h5space H5IdComponent object representing a dataspace.
op Character string defined the operation used to join the two dataspaces. See

h5const ("H5S_SELECT") for the list of available options.

start, stride, count, block
Integer vectors, each with length equal to the rank of the dataspace. These pa-
rameters define the new hyperslab to select.

68 H5Scombine_select

Value

An H5IdComponent object representing a new dataspace with the generated selection.

See Also

H5Scombine_select(), H5Sselect_hyperslab()

Examples

create a 1 dimensional dataspace
sid_1 <- H5Screate_simple(dims = 20)

select a single block of 5 points in sid_1
this is equivalent to [11:16] in R syntax
H5Sselect_hyperslab(sid_1,

start = 11, stride =1,

block = 5, count =1
) #

combine the existing selection with a new
selection consisting of 2 blocks each of 1 point
equivalent to [c(3,5)] in R syntax
sid_2 <- H5Scombine_hyperslab(sid_1,
op = "H5S_SELECT_OR",
start = 3, stride = 2,
block = 1, count = 2
)

confirm we have selected 5 in our original dataspace
and 7 points in the newly created dataspace
H5Sget_select_npoints(sid_1)
H5Sget_select_npoints(sid_2)

tidy up
H5Sclose(sid_1)
H5Sclose(sid_2)

H5Scombine_select Combine two selections

Description

Combine two selections

Usage

H5Scombine_select(h5spacel, op = h5default("H5S_SELECT"), h5space2)

H5Scombine_select 69

Arguments

h5space1, h5space2
H5IdComponent objects representing a dataspaces.

op Character string defined the operation used to join the two dataspaces. See
h5const ("H5S_SELECT") for the list of available options.

Value

Returns an H5IdComponent object representing a new dataspace. The new dataspace will have the
same extent as h5space1 with the hyperslab selection being the result of combining the selections
of h5spacel and h5space?2.

See Also

H5Scombine_hyperslab()

Examples

create two 1 dimensional dataspaces
of different sizes

sid_1 <- H5Screate_simple(dims = 20)
sid_2 <- H5Screate_simple(dims = 10)

select a single block of 5 points in sid_1
this is equivalent to [11:16] in R syntax
H5Sselect_hyperslab(sid_1,

start = 11, stride = 1,

block = 5, count =1
)

select 2 blocks of 1 point from sid_2
equivalent to [c(3,5)] in R syntax
H5Sselect_hyperslab(sid_2,

start = 3, stride = 2,

block = 1, count = 2
)

confirm we have select 5 and 2 points resepectively
H5Sget_select_npoints(sid_1)
H5Sget_select_npoints(sid_2)

combine the two dataset selections keeping points that
are in one or both of the selections
sid_3 <- H5Scombine_select(sid_1, "H5S_SELECT_OR", sid_2)

extent of the new dataset is the same as sid_1
sid_3

confirm the selection contains 7 points
H5Sget_select_npoints(sid_3)

tidy up

70 H5Screate

H5Sclose(sid_1)
H5Sclose(sid_2)
H5Sclose(sid_3)

H5Scopy Create a copy of a dataspace

Description

H5S_copy () creates an exact copy of a given dataspace.

Usage

H5Scopy (h5space)
Arguments

h5space Object of class HSIdComponent representing the dataspace to be copied.
Value

If the copying is successful returns an object of class HSIdComponent representing the new datas-
pace. Otherwise returns FALSE.

H5Screate Create a new dataspace of a specified type

Description

Create a new dataspace of a specified type

Usage

H5Screate(type = h5default("H5S"), native = FALSE)

Arguments
type The type of dataspace to create. See h5const ("H5S") for possible types.
native An object of class logical. If TRUE, array-like objects are treated as stored in
HDFS5 row-major rather than R column-major orientation. Using native = TRUE
increases HDFS file portability between programming languages. A file written
with native = TRUE should also be read with native = TRUE.
Value

Returns an object of class HSIdComponent representing a dataspace.

H5Screate_simple 71

See Also

H5Screate_simple

H5Screate_simple Create a simple dataspace

Description

Create a simple dataspace

Usage

H5Screate_simple(dims, maxdims, native = FALSE)

Arguments
dims A numeric vector defining the initial dimensions of the dataspace. The length of
dims determines the rank of the dataspace.
maxdims A numeric vector with the same length length as dims. Specifies the upper limit
on the size of the dataspace dimensions. Only needs to be specified if this is
different from the values given to dims.
native An object of class logical. If TRUE, array-like objects are treated as stored in
HDFS5 row-major rather than R column-major orientation. Using native = TRUE
increases HDFS file portability between programming languages. A file written
with native = TRUE should also be read with native = TRUE.
Value

Returns an object of class HSIdComponent representing a dataspace.

See Also

H5Screate

H5Sget_select_npoints Find the number of elements in a dataspace selection

Description

Find the number of elements in a dataspace selection

Usage
H5Sget_select_npoints(h5space)

Arguments

h5space H5IdComponent object representing a dataspace.

72 H5Sselect_all

H5Sget_simple_extent_dims
Find the size of a dataspace

Description

Find the size of a dataspace

Usage

H5Sget_simple_extent_dims(h5space)

Arguments
h5space H5IdComponent object representing a dataspace.
H5Sis_simple Determine whether a dataspace is a simple dataspace
Description

In HDFS5 a dataspace is considered "simple" if it represents a regular N-dimensional array of points.
Currently (HDF 1.10.7) all dataspaces are simple. Support for complex dataspaces is planned for
future HDF versions.

Usage
H5Sis_simple(h5space)

Arguments
h5space H5IdComponent object representing a dataspace.
H5Sselect_all Set the selection region of a dataspace to include all elements
Description

Set the selection region of a dataspace to include all elements

Usage
H5Sselect_all(h5space)

Arguments

h5space H5IdComponent object representing a dataspace.

H5Sselect_hyperslab 73

H5Sselect_hyperslab Perform operation between an existing selection and an another hy-
perslab definition.

Description

Combines a hyperslab selection specified by start, stride, count and block arguments with the
current selection for the dataspace represented by h5space.

Usage
H5Sselect_hyperslab(
h5space,
op = h5default("H5S_SELECT"),
start = NULL,
stride = NULL,
count = NULL,
block = NULL
)
Arguments
h5space H5IdComponent object representing a dataspace.
op Character string defined the operation used to join the two dataspaces. See

h5const ("H5S_SELECT") for the list of available options.
start, stride, count, block

Integer vectors, each with length equal to the rank of the dataspace. These pa-
rameters define the new hyperslab to select.

Details

H5Sselect_hyperslab is similar to, but subtly different from, H5Scombine_hyperslab(). The
former modifies the selection of the dataspace provided in the h5space argument, while the later
returns a new dataspace with the combined selection.

Examples

create a 1 dimensional dataspace
sid_1 <- H5Screate_simple(dims = 20)

select a single block of 5 points in sid_1
this is equivalent to [11:16] in R syntax
H5Sselect_hyperslab(sid_1,

start = 11, stride = 1,

block = 5, count =1
)

confirm we have selected 5 in our original dataspace

74 H5Sselect_index

H5Sget_select_npoints(sid_1)

combine the existing selection with a new
selection consisting of 2 blocks each of 1 point
equivalent to [c(3,5)] in R syntax
H5Sselect_hyperslab(sid_1,

op = "H5S_SELECT_OR",

start = 3, stride = 2,

block = 1, count = 2
)

The dataspace now has 7 points selected
H5Sget_select_npoints(sid_1)

tidy up
H5Sclose(sid_1)

H5Sselect_index Select elements of a dataspace using R-style indexing

Description
Combines a hyperslab selection specified by start, stride, count and block arguments with the
current selection for the dataspace represented by h5space.

Usage

H5Sselect_index(h5space, index)

Arguments
h5space H5IdComponent object representing a dataspace.
index A list of integer indices. The length of the list corresponds to the number of
dimensions of the HDF5 array. If a list element is NULL, all elements of the
respective dimension are selected.
Details

H5Sselect_hyperslab is similar to, but subtly different from, H5Scombine_hyperslab(). The
former modifies the selection of the dataspace provided in the h5space argument, while the later
returns a new dataspace with the combined selection.

Examples

create a 1 dimensional dataspace
sid <- H5Screate_simple(c(10, 5, 3))

Select elements that lie in in the rows 1-3, columns 2-4,

H5Sselect_none 75

and the entire 3rd dimension
H5Sselect_index(sid, list(1:3, 2:4, NULL))

We can check the number of selected points.
This should be 27 (3 * 3 * 3)
H5Sget_select_npoints(sid)

always close dataspaces after usage to free resources
H5Sclose(sid)

H5Sselect_none Set the selection region of a dataspace to include no elements

Description

Set the selection region of a dataspace to include no elements

Usage

H5Sselect_none(h5space)

Arguments
h5space H5IdComponent object representing a dataspace.
H5Sselect_valid Check that a selection is valid
Description

Check that a selection is valid

Usage

H5Sselect_valid(h5space)

Arguments

h5space HS5IdComponent object representing a dataspace.

76 H5Sunlimited

H5Sset_extent_simple Set the size of a dataspace

Description

Set the size of a dataspace

Usage

H5Sset_extent_simple(h5space, dims, maxdims)

Arguments
h5space H5IdComponent object representing a dataspace.
dims Dimension of the dataspace. This argument is similar to the dim attribute of an
array.
maxdims Maximum extension of the dimension of the dataset in the file. If not provided,
itis set to dims.
When viewing the HDFS dataset with other software (e.g. HDFView), the di-
mensions appear in inverted order, because the fastest changing dimension in R
is the first one, and in C it’s the last one.
H5Sunlimited Retrieve value for HSS_UNLIMITED constant
Description

The value for H5S_UNLIMITED can be provided to the maxdims argument of H5Screate_simple to
indicate that the maximum size of the corresponding dimension is unlimited.

Usage

H5Sunlimited()

See Also

HS5Screate_simple

H5Tcopy 77

H5Tcopy Copy an existing datatype

Description

Copy an existing datatype

Usage

H5Tcopy(dtype_id = h5default(type = "H5T"))

Arguments
dtype_id Datatype to copy. Can either be a character specifying a predefined HDF5
datatype (see h5const("H5T") for valid options) or the ID of an already cre-
ated datatype.
H5Tis_variable_str Determine whether a datatype is a variable length string
Description

Determine whether a datatype is a variable length string

Usage

H5Tis_variable_str(dtype_id)

Arguments

dtype_id ID of HDFS datatype to query.

78 H5T enum

H5T_cset Retrieve or set the character set to be used in a string datatype.

Description

Retrieve or set the character set to be used in a string datatype.

Usage

H5Tset_cset(dtype_id, cset = "ASCII")

H5Tget_cset(dtype_id)

Arguments
dtype_id ID of HDF5 datatype to query or modify.
cset Encoding to use for string types. Valid options are ’ASCII’ and "UTF-8’.
H5T_enum Create or modify an HDF5 enum datatype
Description

Create or modify an HDFS5 enum datatype

Usage
H5Tenum_create(dtype_id = "H5T_NATIVE_INT")

H5Tenum_insert(dtype_id, name, value)

Arguments
dtype_id ID of HDF5 datatype to work with. For H5Tenum_create, this is the identi-
fier of the base data type, and must be an integer e.g. H5T_NATIVE_INT. For
H5Tenum_insert this will be a datatype identifier created by H5Tenum_create.
name The name of a the new enum member. This is analogous to a "level" in an R
factor.
value The value of the new member. Must be compatible with the base datatype de-
fined by dtype_id.
Value

e H5Tinsert_enum() returns an character representing the H5 identifier of the new datatype.

* H5Tset_precision() is called for its side-effect of modifying the existing datatype. It will
invisibly return TRUE if this is successful FALSE if not.

H5T _ops 79
Examples

tid <- H5Tenum_create(dtype_id = "H5T_NATIVE_UCHAR")

H5Tenum_insert(tid, name = "TRUE", value = 1L)

H5Tenum_insert(tid, name = "FALSE"”, value = 0L)

H5T_ops Get details of HDF'5 data types

Description

Get details of HDF5 data types
Usage

H5Tget_class(dtype_id)

H5Tget_nmembers(dtype_id)
Arguments

dtype_id ID of HDF5 datatype to work with. Normally created with a function like

H5Tcopy or H5Tenum_create.

Value

* H5Tget_class() returns an character vector of length 1 giving the class of the data type.

* H5Tget_nmembers() returns the number of members in the given datatype. Will fail with an

error if the supplied datatype is not of type H5T_COMPUND or H5T_ENUM.

Examples

create an enum datatype with two entries

tid <- H5Tenum_create(dtype_id = "H5T_NATIVE_UCHAR")
H5Tenum_insert(tid, name = "TRUE", value = 1L)
H5Tenum_insert(tid, name = "FALSE", value = 0L)

H5Tget_class(tid)
H5Tget_nmembers(tid)

80 HS5T size

H5T_precision Retrieve or set the precision of an HDF5 datatype

Description

Retrieve or set the precision of an HDFS5 datatype

Usage

H5Tset_precision(dtype_id, precision)

H5Tget_precision(dtype_id)

Arguments
dtype_id ID of HDF5 datatype to set precision of.
precision The number of bytes of precision for the datatype.
Value

* H5Tget_precision() returns an integer giving the number of significant bits used by the
given datatype.

* H5Tset_precision() is call for its side-effect of modifying the precision of a datatype. It
will invisibly return TRUE if this is successful and will stop with an error if the operation fails.

H5T_size Retrieve or set the type of padding used by string datatype

Description

Retrieve or set the type of padding used by string datatype

Usage

H5Tset_size(dtype_id = h5default(type = "H5T"), size)

H5Tget_size(dtype_id)

Arguments

dtype_id ID of HDFS5 datatype to query or modify.

size The new datatype size in bytes.

HS5T_strpad 81

H5T_strpad Retrieve or set the type of padding used by string datatype

Description

Retrieve or set the type of padding used by string datatype

Usage

H5Tset_strpad(dtype_id, strpad = "NULLPAD")

H5Tget_strpad(dtype_id)

Arguments
dtype_id ID of HDFS datatype to query or modify.
strpad Character vector of length 1 specifying the type of padding to use. Valid options
are NULLTERM, NULLPAD and SPACEPAD.
h5version Print the rhdf5 and libhdf5 version numbers
Description

Returns the version number of the Bioconductor package rhdf5 and the C-library libhdf5.

Usage

h5version()

Value

A list of major, minor and release number.

Author(s)
Bernd Fischer, Mike L. Smith

Examples

h5version()

82

h5_createAttribute

H5Zfilter_avail Determine whether a filter is available on this system

Description

Determine whether a filter is available on this system

Usage
H5Zfilter_avail(filter_id)

Arguments
filter_id Integer representing the ID of the filter to be checked.
h5_createAttribute Create HDFS attribute
Description

R function to create an HDFS5 attribute and defining its dimensionality.

Usage
h5createAttribute(
obj,
attr,
dims,
maxdims = dims,
file,
storage.mode = "double”,
H5type = NULL,
size = NULL,

encoding = NULL,
native = FALSE

Arguments

obj The name (character) of the object the attribute will be attached to. For ad-
vanced programmers it is possible to provide an object of class HSIdComponent
representing a HS object identifier (file, group, dataset). See H5Fcreate(),
H5Fopen(), H5Gcreate (), H5Gopen(), H5Dcreate(), H5Dopen() to create an

object of this kind.

attr Name of the attribute to be created.

h5_createAttribute

dims

maxdims

file

storage.mode

H5type

size

encoding

native

Details

83

The dimensions of the attribute as a numeric vector. If NULL, a scalar dataspace
will be created instead.

The maximum extension of the attribute.

The filename (character) of the file in which the dataset will be located. For ad-
vanced programmers it is possible to provide an object of class HSIdComponent
representing an HS location identifier. See H5Fcreate (), H5Fopen(), H5Gereate(),
H5Gopen() to create an object of this kind. The file argument is not required,

if the argument obj is of type H5IdComponent.

The storage mode of the data to be written. Can be obtained by storage .mode (mydata).

Advanced programmers can specify the datatype of the dataset within the file.
See h5const ("H5T") for a list of available datatypes. If H5type is specified the
argument storage.mode is ignored. It is recommended to use storage.mode

The maximum string length when storage.mode="character"'. If this is spec-
ified, HDFS5 stores each string of attr as fixed length character arrays. Together
with compression, this should be efficient.

If this argument is set to NULL, HDF5 will instead store variable-length strings.

The encoding of the string data type i.e. when storage.mode = 'character'.
Valid options are "ASCII" and "UTF-8".

An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

Creates a new attribute and attaches it to an existing HDF5 object. The function will fail, if the file
doesn’t exist or if there exists already another attribute with the same name for this object.

You can use hbwriteAttribute() immediately. It will create the attribute for you.

Value

Returns TRUE is attribute was created successfully and FALSE otherwise.

Author(s)

Bernd Fischer

References

https://portal.hdfgroup.org/display/HDF5

See Also

h5createFile(), hbcreateGroup(), h5createDataset (), hsread(), hswrite(), rhdf5

https://portal.hdfgroup.org/display/HDF5

84 h5 createDataset

Examples

h5File <- tempfile(pattern = "ex_createAttribute.h5")
h5createFile(h5File)

hswrite(1:1, h5File, "A")

fid <- H5Fopen(h5File)

did <- H5Dopen(fid, "A")

h5createAttribute(did, "time"”, c(1, 10))
H5Dclose(did)

H5Fclose(fid)

h5_createDataset Create HDFS dataset

Description

R function to create an HDFS dataset and defining its dimensionality and compression behaviour.

Usage

h5createDataset(
file,
dataset,
dims,
maxdims = dims,
storage.mode = "double”,
H5type = NULL,
size = NULL,

encoding = NULL,
chunk = dims,
fillValue,

level = 6,
filter = "gzip",
shuffle = TRUE,
native = FALSE

)
Arguments
file The filename (character) of the file in which the dataset will be located. For ad-
vanced programmers it is possible to provide an object of class H5IdComponent
representing a H5 location identifier (file or group). See H5Fcreate (), H5Fopen()
H5Gcreate (), H5Gopen () to create an object of this kind.
dataset Name of the dataset to be created. The name can contain group names, e.g.

"group/dataset’, but the function will fail, if the group does not yet exist.

h5_createDataset

dims

maxdims

storage.mode

H5type

size

encoding

chunk

fillvalue

level

filter

shuffle

native

Details

85

The dimensions of the array as they will appear in the file. Note, the dimensions
will appear in inverted order when viewing the file with a C-program (e.g. HD-
FView), because the fastest changing dimension in R is the first one, whereas
the fastest changing dimension in C is the last one.

The maximum extension of the array. Use H5Sunlimited() to indicate an ex-
tensible dimension.

The storage mode of the data to be written. Can be obtained by storage.mode (mydata).

Advanced programmers can specify the datatype of the dataset within the file.
See h5const ("H5T") for a list of available datatypes. If H5type is specified the
argument storage.mode is ignored. It is recommended to use storage.mode

For storage.mode="character' the maximum string length to use. The de-
fault value of NULL will result in using variable length strings. See the details for
more information on this option.

The encoding of the string data type. Valid options are "ASCII" or "UTF-8".

The chunk size used to store the dataset. It is an integer vector of the same length
as dims. This argument is usually set together with a compression property
(argument level).

Standard value for filling the dataset. The storage.mode of value has to be con-
vertible to the dataset type by HDFS5.

The compression level used. An integer value between 0 (no compression) and
9 (highest and slowest compression).

Character defining which compression filter should be applied to the chunks of
the dataset. See the Details section for more information on the options that can
be provided here.

Logical defining whether the byte-shuffle algorithm should be applied to data
prior to compression.

An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

Creates a new dataset in an existing HDF5 file. The function will fail if the file doesn’t exist or if
there exists already another dataset with the same name within the specified file.

The size argument is only used when storage.mode = 'character'. When storing strings HDF5
can use either a fixed or variable length datatype. Setting size to a positive integer will use fixed
length strings where size defines the length. rhdf5 writes null padded strings by default and so
to avoid data loss the value provided here should be the length of the longest string. Setting size
=NULL will use variable length strings. The choice is probably dependent on the nature of the
strings you’re writing. The principle difference is that a dataset of variable length strings will not be
compressed by HDFS5 but each individual string only uses the space it requires, whereas in a fixed
length dataset each string is of length uses size, but the whole dataset can be compressed. This
explored more in the examples below.

86 h5 createDataset

The filter argument can take several options matching to compression filters distributed in either
with the HDF5 library in Rhdf5lib or via the rhdf5filters package. The plugins available and the
corresponding values for selecting them are shown below:

zlib: Ubiquitous deflate compression algorithm used in GZIP or ZIP files. All three options below achieve the same r

"GZIP",
° ”ZLIB”,
e "DEFLATE"

szip: Compression algorithm maintained by the HDFS5 group. « "SZIP”
bzip2 -+ "BZIP2"

BLOSC meta compressor: As a meta-compressor BLOSC wraps several different compression algorithms. Each of t
"BLOSC_BLOSCLZ"

e "BLOSC_LZ4"

e "BLOSC_LZ4HC"
* "BLOSC_SNAPPY"
e "BLOSC_ZLIB"

e "BLOSC_ZSTD"

lzf o "LZF"

Disable: It is possible to write chunks without any compression applied. * "NONE”

Value

Returns (invisibly) TRUE if dataset was created successfully and FALSE otherwise.

Author(s)
Bernd Fischer, Mike L. Smith

See Also

h5createFile(), h5createGroup(), h5read(), h5write()

Examples

"

h5File <- tempfile(pattern = "_ex_createDataset.h5")
h5createFile(h5File)

create dataset with compression
h5createDataset(h5File, "A", c(5, 8), storage.mode = "integer"”, chunk = c(5, 1), level = 6)

create dataset without compression
h5createDataset(h5File, "B", c(5, 8), storage.mode = "integer")
h5createDataset(h5File, "C", c(5, 8), storage.mode = "double")

create dataset with bzip2 compression
h5createDataset(h5File, "D", c(5, 8),
storage.mode = "integer",
chunk = c(5, 1), filter = "BZIP2", level = 6

h5_createDataset 87

)

create a dataset of strings & define size based on longest string
ex_strings <- c("long"”, "longer"”, "longest")
h5createDataset(h5File, "E",

storage.mode = "character”, chunk = 3, level = 6,

dims = length(ex_strings), size = max(nchar(ex_strings))

)

write data to dataset

h5write(matrix(1:40, nr = 5, nc = 8), file = h5File, name = "A")

write second column

hSwrite(matrix(1:5, nr = 5, nc = 1), file = h5File, name = "B", index = list(NULL, 2))
write character vector

h5write(ex_strings, file = h5File, name = "E")

h5dump(h5File)
Investigating fixed vs variable length string datasets

create 1000 random strings with length between 50 and 100 characters
words <- vapply(
X = ceiling(runif(n = 1000, min = 50, max = 100)),
FUN = function(x) {
paste(sample(letters, size = x, replace
collapse = ""

)

TRUE),

}Y
FUN.VALUE = character(1)

)

create two HDF5 files
f1 <- tempfile()
f2 <- tempfile()
h5createFile(f1)
h5createFile(f2)

create two string datasets
the first is variable length strings, the second fixed at the length of our longest word
h5createDataset(f1, "strings"”,

dims = length(words), storage.mode = "character”,
size = NULL, chunk = 25

)

h5createDataset(f2, "strings”,
dims = length(words), storage.mode = "character”,
size = max(nchar(words)), chunk = 25

)

Write the data
h5write(words, f1, "strings")
h5write(words, f2, "strings")

88 h5_createFile

Check file sizes.

In this example the fixed length string dataset is normally much smaller
file.size(f1)

file.size(f2)

h5_createFile Create HDFY file

Description

R function to create an empty HDFS5 file.

Usage

h5createFile(file)
Arguments

file The filename of the HDFS5 file.
Details

Creates an empty HDFS file.

Value

Returns (invisibly) TRUE is file was created successfully and FALSE otherwise.

Author(s)
Bernd Fischer

See Also
h5createGroup(), h5createDataset (), hsread(), hswrite(), rhdf5
Examples
h5File <- tempfile(pattern = "ex_createFile.h5")
h5createFile(h5File)
create groups
h5createGroup(h5File, "foo")

h5createGroup(h5File, "foo/foobaa")

h51s(h5File)

h5_createGroup 89

h5_createGroup Create HDF5 group

Description

Creates a group within an HDFS file.

Usage
h5createGroup(file, group)

Arguments
file The filename (character) of the file in which the dataset will be located. For ad-
vanced programmers it is possible to provide an object of class H5SIdComponent
representing a H5 location identifier (file or group). See H5Fcreate(), H5Fopen(),
H5Gcreate (), H5Gopen() to create an object of this kind.
group The name of the new group. The name can contain a hierarchy of groupnames,
e.g. "/groupl/group2/newgroup”, but the function will fail if the top level
groups do not exists.
Details

Creates a new group within an HDFS file.

Value

Returns TRUE is group was created successfully and FALSE otherwise.

Author(s)
Bernd Fischer

See Also

h5createFile(), h5createDataset(), h5read(), h5write()

Examples

h5File <- tempfile(pattern = "ex_createGroup.h5")
h5createFile(h5File)

create groups
h5createGroup(h5File, "foo")
h5createGroup(h5File, "foo/foobaa")

h51s(h5File)

90 h5_deleteAttribute

h5_delete Delete objects within a HDFS file

Description

Deletes the specified group or dataset from within an HDFS file.

Usage

h5delete(file, name)

Arguments

file The filename (character) of the file in which the object is located.

name For h5delete the name of the object to be deleted. For h5deleteAttribute

the name of the object to which the attribute belongs.

Author(s)

Mike Smith

h5_deleteAttribute Delete attribute

Description

Deletes an attribute associated with a group or dataset within an HDFS5 file.

Usage

h5deleteAttribute(file, name, attribute)

Arguments
file The filename (character) of the file in which the object is located.
name The name of the object to which the attribute belongs.
attribute Name of the attribute to be deleted.

Author(s)

Mike Smith

h5_dump

91

h5_dump

Dump the content of an HDFY file.

Description

Dump the content of an HDFS file.

Usage

h5dump (
file,
recursive =

TRUE,

load = TRUE,
all = FALSE,
index_type = h5default("H5_INDEX"),

order = h5default("H5_ITER"),

s3 = FALSE,

s3credentials

L

= NULL,

native = FALSE

Arguments

file

recursive

load

all
index_type
order

s3

s3credentials

native

The filename (character) of the file in which the dataset will be located. You can
also provide an object of class HSIdComponent representing a H5 location iden-
tifier (file or group). See H5Fcreate(), H5Fopen(), H5Gereate (), H5Gopen()
to create an object of this kind.

If TRUE, the content of the whole group hierarchy is listed. If FALSE, Only the
content of the main group is shown. If a positive integer is provided this indi-
cates the maximum level of the hierarchy that is shown.

If TRUE the datasets are read in, not only the header information. Note, that this
can cause memory problems for very large files. In this case choose 1oad=FALSE
and load the datasets successively.

If TRUE, a longer list of information on each entry is provided.

See h5const ("H5_INDEX") for possible arguments.

See h5const ("H5_ITER") for possible arguments.

Logical value indicating whether the file argument should be treated as a URL
to an Amazon S3 bucket, rather than a local file path.

A list of length three, providing the credentials for accessing files in a private
Amazon S3 bucket.

Arguments passed to h5read()

An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

92 h5_errorHandling

Value

Returns a hierarchical list structure representing the HDF5 group hierarchy. It either returns the
datasets within the list structure (1oad=TRUE) or it returns a data. frame for each dataset with the
dataset header information (1oad=FALSE).

Author(s)
Bernd Fischer, Mike L. Smith

See Also
h51s()

Examples

h5File <- tempfile(pattern = "ex_dump.h5")
h5createFile(h5File)

create groups
h5createGroup(h5File, "foo")
h5createGroup(h5File, "foo/foobaa™)

write a matrix
B <- array(seq(@.1, 2.0, by = 0.1), dim = c(5, 2, 2))
attr(B, "scale"”) <- "liter”

h5write(B, h5File, "foo/B")

list content of hdf5 file
h5dump(h5File)

list content of an hdf5 file in a public S3 bucket

h5dump(file = "https://rhdf5-public.s3.eu-central-1.amazonaws.com/h5ex_t_array.h5", s3 = TRUE)

h5_errorHandling Set how HDF5 error messages are displayed

Description

Sets the options for handling HDF5 error messages in the R sessions.

Usage

h5errorHandling(type = "normal”)

h5_FileLocking 93

Arguments
type ‘normal’ (default) shows a one line error message in R. ’verbose’ shows the
whole HDF5 error message. ’suppress’ suppresses the HDFS error messages
completely.
Value

Returns 0 if options are set successfully.

Author(s)
Bernd Fischer

See Also
rhdf5

Examples

h5errorHandling(”"normal”)

h5_FilelLocking Test and set file locking for HDF5

Description

HDF5 1.10 uses file locking by default. On some file systems this is not available, and the HDF5
library will throw an error if the user attempts to create or access a file located on such a file system.
These functions help identify if file locking is available without throwing an error, and allow the
locking to be disabled for the duration of the R session if needed.

Usage

h5testFilelLocking(location)
h5disableFilelLocking()

h5enableFileLocking()

Arguments

location The name of a directory or file to test. If an existing directory is provided a
temporary file will be created in this folder. If non-existent location is provided
a file with the name will be created, tested for file locking, and then removed.
Providing an existing file will result in an error.

94 h5_read

Details

h5testFilelLocking will create a temporary file and then attempt to apply a file lock using the
appropriate function within the HDFS5 library. The success or failure of the locking is then recorded
and the temporary file removed. Even relatively low level functions such as H5Fcreate() will fail
inelegantly if file locking fails.

h5disableFilelLocking will set the environment variable HDF5_USE_FILE_LOCKING=FALSE, which
is the recommended was to disable this behaviour if file locking is not supported. This will only
persist within the current R session. You can set the environment variable outside of R if this is a
more general issue on your system.

h5enableFilelLocking will unset the HDF5_USE_FILE_LOCKING environment variable.

More discussion of HDF5’s use of file locking can be found online e.g. https://forum.hdfgroup.
org/t/hdf5-1-10-0-and-flock/3761/4 orhttps://forum.hdfgroup.org/t/hdf5-files-on-nfs/
3985/5

Value

h5testFilelLocking returns TRUE if a file can be successfully locked at the specified location, or
FALSE otherwise.

h5disableFilelLocking and h5enableFilelLocking set are called for the side effect of setting or
unsetting the environment variable HDF5_USE_FILE_LOCKING and do not return anything.

Author(s)
Mike Smith

Examples

either a file name or directory can be tested
file <- tempfile()
dir <- tempdir()

h5testFileLocking(dir)
h5testFilelLocking(file)

we can check for file locking, and disable if needed
if (!h5testFilelLocking(dir)) {

h5disableFileLocking()
3

h5_read Reads and write object in HDF5 files

Description

Reads objects in HDF? files. This function can be used to read either full arrays/vectors or subarrays
(hyperslabs) from an existing dataset.

https://forum.hdfgroup.org/t/hdf5-1-10-0-and-flock/3761/4
https://forum.hdfgroup.org/t/hdf5-1-10-0-and-flock/3761/4
https://forum.hdfgroup.org/t/hdf5-files-on-nfs/3985/5
https://forum.hdfgroup.org/t/hdf5-files-on-nfs/3985/5

h5_read 95
Usage
h5read(

file,

name,

index = NULL,

start = NULL,

stride = NULL,

block = NULL,

count = NULL,

compoundAsDataFrame = TRUE,
callGeneric = TRUE,
read.attributes = FALSE,
drop = FALSE,

<

native = FALSE,

s3 = FALSE,
s3credentials = NULL
)
Arguments

file The file name (character) of the file in which the dataset is be located. It is
possible to provide an object of class H5SIdComponent representing a H5 lo-
cation identifier (file or group). See H5Fcreate(), H5Fopen(), H5Gcreate()
H5Gopen () to create an object of this kind.

name The name of the dataset in the HDFS5 file. The datasets present in file can be
listed with the function h51s.

index List of indices for subsetting. The length of the list has to agree with the di-
mensional extension of the HDFS5 array. Each list element is an integer vector
of indices. A list element equal to NULL chooses all indices in this dimension.
Counting is R-style 1-based.

start The start coordinate of a hyperslab (similar to subsetting in R). Counting is R-
style 1-based. This argument is ignored, if index is not NULL.

stride The stride of the hypercube. Read the introduction http://ftp.hdfgroup.
org/HDF5/Tutor/phypecont.html before using this argument. R behaves like
Fortran in this example. This argument is ignored, if index is not NULL.

block The block size of the hyperslab. Read the introduction http://ftp.hdfgroup.
org/HDF5/Tutor/phypecont.html before using this argument. R behaves like
Fortran in this example. This argument is ignored, if index is not NULL.

count The number of blocks to be read. This argument is ignored, if index is not
NULL.

compoundAsDataFrame

If true, a compound datatype will be coerced to a data.frame. This is not possi-
ble, if the dataset is multi-dimensional. Otherwise the compound datatype will
be returned as a list. Nested compound data types will be returned as a nested
list.

http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html

96

h5_read

callGeneric If TRUE a generic function h5read.classname will be called if it exists depend-
ing on the dataset’s class attribute within the HDF5 file. This function can be
used to convert the standard output of h5read depending on the class attribute.
Note that hS5read is not a S3 generic function. Dispatching is done based on the
HDFS5 attribute after the standard h5read function.

read.attributes
(logical) If TRUE, the HDFS5 attributes are read and attached to the respective R
object.

drop (logical) If TRUE, the HDF5 object is read as a vector with NULL dim attributes.
Further arguments passed to H5Dread ().

native An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

s3 Logical value indicating whether the file argument should be treated as a URL
to an Amazon S3 bucket, rather than a local file path.

s3credentials A list of length three, providing the credentials for accessing files in a private
Amazon S3 bucket.

Details

Read an R object from an HDFS5 file. If none of the arguments start, stride, block, count are
specified, the dataset has the same dimension in the HDFS5 file and in memory. If the dataset al-
ready exists in the HDFS5 file, one can read subarrays, so called hyperslabs from the HDF?5 file. The
arguments start, stride, block, count define the subset of the dataset in the HDFS file that is to
be read/written. See these introductions to hyperslabs: https://support.hdfgroup.org/HDF5/
Tutor/selectsimple.html, https://support.hdfgroup.org/HDF5/Tutor/select.html and
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html. Please note that in R the first dimen-
sion is the fastest changing dimension.

When viewing the HDF5 datasets with any C-program (e.g. HDFView), the order of dimensions
is inverted. In the R interface counting starts with 1, whereas in the C-programs (e.g. HDFView)
counting starts with 0.

Special cases. There are a few instances where rhdf5 will make assumptions about the dataset you
are reading and treat it slightly differently. 1) complex numbers. If your datasets is a compound
datatype, has only two columns, and these are named ’r’ and ’i’ rhdf5 will assume the data is
intended to be complex numbers and will read this into R’s complex type. If that is not the case,
you will need to extract the two values separately using the Re () and Im() accessors manually.

Value

h5read returns an array with the data read.

Author(s)

Bernd Fischer, Mike Smith

https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/Tutor/select.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html

h5_readAttributes 97

See Also
h51s()

Examples

h5File <- tempfile(pattern = "ex_hdf5file.h5")
h5createFile(h5File)

write a matrix
B <- array(seq(@.1, 2.0, by = 0.1), dim = c(5, 2, 2))
h5write(B, h5File, "B")

read a matrix
E <- h5read(h5File, "B")

write and read submatrix

h5createDataset(h5File, "S"”, c(5, 8), storage.mode = "integer"”, chunk = c(5, 1), level =7)
hSwrite(matrix(1:5, nr = 5, nc = 1), file = h5File, name = "S", index = list(NULL, 1))
h5read(h5File, "S")

h5read(h5File, "S", index = list(NULL, 2:3))

Read a subset of an hdf5 file in a public S3 bucket
h5read("https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5",

s3 = TRUE, name = "al", index = list(NULL, 3, NULL)
)

h5_readAttributes Read all attributes from a given location in an HDFS file

Description

Read all attributes from a given location in an HDFS file

Usage
h5readAttributes(file, name, native = FALSE, ...)
Arguments
file Character vector of length 1, giving the path to the HDF5
name Path within the HDFS file to the object whose attributes should be read. The
datasets present in file can be listed with the function h51s().
native An object of class logical. If TRUE, array-like objects are treated as stored in

HDFS5 row-major rather than R column-major orientation.

Further arguments passed to H5Aread().

98 h5_save

Value

A named list of the same length as the number of attributes attached to the specific object. The
names of the list entries correspond to the attribute names. If no attributes are found an empty list
is returned.

h5_save Saves a one or more objects to an HDFYS file.

Description

Saves a number of R objects to an HDFS5 file.

Usage
h5save(..., file, name = NULL, createnewfile = TRUE, native = FALSE)

Arguments

The objects to be saved.

file The filename (character) of the file in which the dataset will be located. It is
also possible to provide an object of class HSIdComponent representing a HS
location identifier (file or group). See H5Fcreate(), H5SFopen(), H5Gcreate(),
H5Gopen () to create an object of this kind.

name A character vector of names for the datasets. The length of the name vector
should match the number of objects.

createnewfile If TRUE, a new file will be created if necessary.

native An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE
Details
The objects will be saved to the HDF? file. If the file does not exists it will be created. The data can
be read again by either h5dump () or individually for each dataset by h5read().

Value

Nothing returned.

Author(s)
Bernd Fischer

See Also
h51s(), hswrite()

h5_set_extent 99

Examples

A<-1:7
B <-1:18
D <- seq(@, 1, by = 0.1)

h5File <- tempfile(pattern = "ex_save.h5")
h5save(A, B, D, file = h5File)
h5dump (h5File)

h5_set_extent Set a new dataset extension

Description

Set a new dataset extension to an existing dataset in an HDF5 file

Usage

h5set_extent(file, dataset, dims, native = FALSE)

Arguments

file The filename (character) of the file in which the dataset will be located. For ad-
vanced programmers it is possible to provide an object of class H5IdComponent
representing a H5 location identifier (file or group). See H5Fcreate(), H5Fopen(),
H5Gcreate (), H5Gopen() to create an object of this kind.

dataset The name of the dataset in the HDFS5 file, or an object of class HSIdComponent
representing a HS5 dataset identifier. See H5Dcreate(), or H5Dopen() to create
an object of this kind.

dims The dimensions of the array as they will appear in the file. Note, the dimensions
will appear in inverted order when viewing the file with a C program (e.g. HD-
FView), because the fastest changing dimension in R is the first one, whereas
the fastest changing dimension in C is the last one.

native An object of class logical. If TRUE, array-like objects are treated as stored in
HDFS5 row-major rather than R column-major orientation. Using native = TRUE
increases HDFS file portability between programming languages. A file written
with native = TRUE should also be read with native = TRUE

Value

Returns TRUE if the dimension of the dataset was changed successfully and FALSE otherwise.

Author(s)
Bernd Fischer, Mike Smith

100 h5_ write

Examples

tmpfile <- tempfile()

h5createFile(file = tmpfile)
h5createDataset(tmpfile, "A", c(10, 12), c(20, 24))
h51s(tmpfile, all = TRUE)[c("dim", "maxdim")]
h5set_extent(tmpfile, "A", c(20, 24))

h51ls(tmpfile, all = TRUE)[c("dim", "maxdim")]

h5_write Write object to an HDFS file.

Description

Writes an R object to an HDFS file. This function can be used to write either full arrays/vectors or
subarrays (hyperslabs) within an existing dataset.

Usage

h5write(obj, file, name, ...)

Default S3 method:
h5write(
obj,
file,
name,
createnewfile = TRUE,
write.attributes = FALSE,

L

native = FALSE

h5writeDataset(obj, h5loc, name, ...)

S3 method for class 'data.frame'
h5writeDataset(

obj,

h5loc,

name,

level = 6,

chunk,

DataFrameAsCompound = TRUE,

S3 method for class 'array'
h5writeDataset(

h5_ write 101

obj,

h5loc,

name,

index = NULL,
start = NULL,
stride = NULL,
block = NULL,
count = NULL,
size = NULL,

variablelLengthString = FALSE,
encoding = NULL,

level = 6,
)
Arguments

obj The R object to be written.

file The filename (character) of the file in which the dataset will be located. For ad-
vanced programmers it is possible to provide an object of class H5IdComponent
representing a HS location identifier (file or group). See H5Fcreate (), H5Fopen(),
H5Gcreate (), H5Gopen () to create an object of this kind.

name The name of the dataset in the HDFS file.

Further arguments passed to H5Dwrite().

createnewfile If TRUE, a new file will be created if necessary.
write.attributes

(logical) If TRUE, all R-attributes attached to the object obj are written to the
HDF5 file.

native An object of class logical. If TRUE, array-like objects are treated as stored
in HDF5 row-major rather than R column-major orientation. Using native =
TRUE increases HDFS5 file portability between programming languages. A file
written with native = TRUE should also be read with native = TRUE

h5loc An object of class HSIdComponent representing a HS location identifier (file or
group). See H5Fcreate(), H5Fopen(), H5Gecreate (), H5Gopen() to create an
object of this kind.

level The compression level. An integer value between 0 (no compression) and 9

(highest and slowest compression). Only used, if the dataset does not yet exist.
See h5createDataset() to create an dataset.

chunk Specifies the number of items to be include in an HDF5 chunk. If left unspecified
the defaults is the smaller of: the total number of cols or the number of cols that
fit within 4GB of memory. If DataFrameAsCompound=FALSE each row of the
data.frame can be consider an "col".

DataFrameAsCompound
If true, a data.frame will be saved as a compound data type. Otherwise it is
saved like a list. The advantage of saving a data.frame as a compound data type
is that it can be read as a table from python or with a struct-type from C. The

102 h5_ write

disadvantage is that the data has to be rearranged on disk and thus can slow down
I/O. If fast reading is required, DataF rameAsCompound=FALSE is recommended.

index List of indices for subsetting. The length of the list has to agree with the di-
mensional extension of the HDFS array. Each list col is an integer vector of
indices. A list col equal to NULL chooses all indices in this dimension. Counting
is R-style 1-based.

start The start coordinate of a hyperslab (similar to subsetting in R). Counting is R-
style 1-based. This argument is ignored, if index is not NULL.

stride The stride of the hypercube. Read the introduction http://ftp.hdfgroup.
org/HDF5/Tutor/phypecont.html before using this argument. R behaves like
Fortran in this example. This argument is ignored, if index is not NULL.

block The block size of the hyperslab. Read the introduction http://ftp.hdfgroup.
org/HDF5/Tutor/phypecont.html before using this argument. R behaves like
Fortran in this example. This argument is ignored, if index is not NULL.

count The number of blocks to be written. This argument is ignored, if index is not
NULL.
size The length of the fixed-width string data type, when obj is a character vector. If

NULL, this is set to the length of the largest string.

variablelLengthString
Whether character vectors should be written as variable-length strings into the
attributes. If TRUE, size is ignored.

encoding The encoding of the string data type. Valid options are "ASCII" or "UTF-8".

Details

Writes an R object to an HDFS file. If none of the arguments start, stride, block, count is
specified, the dataset has the same dimension in the HDFS5 file and in memory. If the dataset al-
ready exists in the HDFS5 file, one can write subarrays, (so called hyperslabs) to the HDFS5 file. The
arguments start, stride, block, count define the subset of the dataset in the HDF?5 file that is
to be written to. See these introductions to hyperslabs: https://support.hdfgroup.org/HDF5/
Tutor/selectsimple.html, https://support.hdfgroup.org/HDF5/Tutor/select.html and
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html. Please note that in R the first dimen-
sion is the fastest changing dimension.

When viewing the HDF5 datasets with any C-program (e.g. HDFView), the order of dimensions
is inverted. In the R interface counting starts with 1, whereas in the C-programs (e.g. HDFView)
counting starts with 0.

If code obj is of type ’complex’ then it will be written as a compound datatype to the HDF5, with
cols named ’r’ and ’i’ for the real and imaginary parts respectively.

Value

h5write returns O if successful.

Author(s)
Bernd Fischer, Mike Smith

http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html
https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/Tutor/select.html
http://ftp.hdfgroup.org/HDF5/Tutor/phypecont.html

h5_ writeAttribute 103

References

https://portal.hdfgroup.org/display/HDF5

See Also

h51s(), h5createFile(), h5createDataset(), rhdf5

Examples

h5File <- tempfile(fileext = ".h5")
h5createFile(h5File)

write a matrix

B <- array(seq(0.1, 2.9, by = 0.1), dim = c(5, 2, 2))
attr(B, "scale"”) <- "liter”

h5write(B, h5File, "B")

write a submatrix
h5createDataset(h5File, "S"”, c(5, 8), storage.mode = "integer"”, chunk = c(5, 1), level =7)
h5write(matrix(1:5, nr = 5, nc = 1), file = h5File, name = "S", index = list(NULL, 1))

h5_writeAttribute Write an R object as an HDF5 attribute

Description

Write an R object as an HDF?5 attribute

Usage

h5writeAttribute(
attr,
h50bj,
name,
h51oc,
encoding = NULL,
variablelLengthString = FALSE,
asScalar = FALSE,
checkForNA = TRUE

S3 method for class 'array'
h5writeAttribute(

attr,

h50bj,

name,

h51oc,

https://portal.hdfgroup.org/display/HDF5

104

rhdf5

encoding = NULL,
variablelLengthString = FALSE,

asScalar = FALSE,
checkForNA = TRUE
)
Arguments

attr The R object to be written as an HDF5 attribute.

h50bj Normally an object of class H5SIdComponent representing a H5 object iden-
tifier (file, group, or dataset). See H5Fcreate(), H5Fopen(), H5Gcreate(),
H5Gopen (), H5Dcreate (), or H5Dopen() to create an object of this kind. This
argument can also be given the path to an HDF5 file.

name The name of the attribute to be written.

h5loc The location of the group or dataset within a file to which the attribute should
be attached. This argument is only used if the h5obj argument is the path to an
HDFS file, otherwise it is ignored.

encoding The encoding of the string data type. Valid options are "ASCII" and "UTF-8".

variablelLengthString
Whether character vectors should be written as variable-length strings into the
attributes.

asScalar Whether length-1 attr should be written into a scalar dataspace.

checkForNA Whether a attr should be checked for NA values before being written. This
only applies of attr is of type logical. Testing for NA values can be slow if the
object to be written is large, so if you are sure no such values will be present this
argument can be used to disable the testing.

rhdf5s rhdf5: An interface between HDF5 and R
Description

The rhdf5 package provides two categories of functions:

* h5 functions are high-level R functions that provide a convenient way of accessing HDFS5 files
* H5 functions mirror much of the the HDF5 C API

Index

* 10
h5_createAttribute, 82
h5_dump, 91
h5_FilelLocking, 93
h5_write, 100
h5closeAll, 11
h51s, 39
x file
h5_createAttribute, 82
h5_dump, 91
h5_FileLocking, 93
h5_write, 100
h5closeAll, 11
h51s, 39
+ interface
h5_createAttribute, 82
h5_dump, 91
h5_write, 100
h51s, 39
* internal
h5checkFilters, 10
* programming
h5_createAttribute, 82
h5_dump, 91
h5_write, 100
h51s, 39
[,H5IdComponent-method
(H5IdComponent-class), 30
[,H5Ref-method (H5Ref-class), 64
[<-,H5IdComponent-method
(H5IdComponent-class), 30
$,H5IdComponent-method
(H5IdComponent-class), 30
$<-,H5IdComponent-method
(H5IdComponent-class), 30
&,H5IdComponent, character-method
(H5IdComponent-class), 30

base::as.integer(), 31
base: :DateTimeClasses(), 64

base: :drop(), 31
c,H5Ref-method (H5Ref-class), 64

h5_createAttribute, 82
h5_createDataset, 84
h5_createFile, 88
h5_createGroup, 89
h5_delete, 90
h5_deleteAttribute, 90
h5_dump, 91
h5_errorHandling, 92
h5_FilelLocking, 93
h5_read, 94
h5_readAttributes, 97
h5_save, 98
h5_set_extent, 99
h5_write, 100
h5_writeAttribute, 103
H5Aclose, 5

H5Acreate, 5

H5Adelete, 6
H5Aexists, 6
H5Aget_name, 7
H5Aget_space, 7
H5Aget_type, 8

H5Aopen, 8
H5Aopen(), 5, 7-10
H5Aopen_by_idx (H5Aopen), 8
H5Aopen_by_name (H5Aopen), 8
H5Aread, 9

H5Aread(), 97
H5Awrite, 10
h5checkFilters, 10
H5close (H5functions), 26
h5closeAll, 11

h5const (h5constants), 12
h5constants, 12
h5constType (h5constants), 12

106

h5createAttribute (h5_createAttribute),
82

h5createDataset (h5_createDataset), 84

h5createDataset(), 31,49, 83, 88, 89, 101
103

h5createFile (h5_createFile), 88

h5createFile(), 83, 86, 89, 103

h5createGroup (h5_createGroup), 89

h5createGroup(), 83, 86, 88

H5D_extras, 20

H5Dchunk_dims (H5D_extras), 20

H5Dclose, 13

H5Dclose(), 17,63

H5Dcreate, 13

H5Dcreate(), 6, 7, 9, 82, 99, 104

h5default (h5constants), 12

h5delete (h5_delete), 90

h5deleteAttribute (h5_deleteAttribute),
90

H5Dget_create_plist, 14

H5Dget_num_chunks, 14

H5Dget_space, 15

H5Dget_space(), 6, 13, 18

H5Dget_storage_size, 16

H5Dget_type, 16

H5Dis_chunked (H5D_extras), 20

h5disableFileLocking (h5_FilelLocking),
93

H5Dopen, 17

H5Dopen(), 6, 7, 9, 82, 99, 104

H5Dread, 18

H5Dread(), 96

H5Dset_extent, 19

h5dump (h5_dump), 91

h5dump (), 40, 98

H5Dwrite, 20

H5Dwrite(), 101

h5enableFilelLocking (h5_FileLocking), 93

h5errorHandling (h5_errorHandling), 92

H5Fclose, 21

H5Fclose(), 11

H5Fcreate, 21

H5Fcreate(), 6, 7,9, 13, 21-23, 25, 39,
82-84, 89, 91, 94, 95, 98, 99, 101,
104

H5Ff1lush, 22

H5Fget_access_plist (H5Fget_plist), 24

H5Fget_create_plist (H5Fget_plist), 24

INDEX

H5Fget_filesize, 22

H5Fget_intent, 23

H5Fget_name, 24

H5Fget_plist, 24

H5Fis_hdf5, 25

H5Fopen, 25, 31

H5Fopen(), 6, 7,9, 13, 21-23, 25, 31, 39,
82-84, 89, 91, 95, 98, 99, 101, 104

H5functions, 26

H5garbage_collect (H5functions), 26

H5Gclose, 27

H5Gclose(), 11, 30

H5Gcreate, 27

H5Gcreate(), 6, 7,9, 13, 27, 28, 39, 82-84,
89,91, 95,98, 99, 101, 104

H5Gcreate_anon, 28, 44

H5get_libversion (H5functions), 26

H5Gget_info, 28

H5Gget_info_by_idx (H5Gget_info), 28

H5Gget_info_by_name (H5Gget_info), 28

H5Gopen, 29

H5Gopen(), 6, 7, 9, 13,27, 39, 82-84, 89, 91,
95,98, 99, 101, 104

H5IdComponent, 5-11, 13-30, 32-39, 41-61,
67-76, 82-84, 89, 91, 95, 98, 99,
101, 104

H5IdComponent-class, 30

H5Iget_name, 31

H5Iget_type, 32

H5Iis_valid, 33

H5Lcopy, 33

H5Lcreate_external, 34

H5Ldelete, 35

H5Lexists, 36

H5Lget_info, 36

h5listIdentifier (h5listObjects), 37

h51listObjects, 37

H5Lmove, 38

h51s, 39, 63, 95

h51s(), 92, 97, 98, 103

H50close, 40

H50close(), 45, 63

H50copy, 41

H50get_info, 42

H50get_num_attrs, 43

H50get_num_attrs_by_name
(H50get_num_attrs), 43

H501ink, 43

INDEX

H501ink(), 28

H500pen, 44

H500pen(), 41

H5open (H5functions), 26

H5P_chunk, 57

H5P_chunk_cache, 58

H5P_create_intermediate_group, 58

H5P_fill_time, 59, 60

H5P_fill_value, 59

H5P_layout, 60

H5P_libver_bounds, 61

H5Pall_filters_avail, 45

H5Pclose, 46

H5Pcopy, 46

H5Pcopy (), 22

H5Pcreate, 47

H5Pcreate(), 22

H5Pfill_value_defined, 47, 60

H5Pget_chunk (H5P_chunk), 57

H5Pget_class, 48

H5Pget_create_intermediate_group
(H5P_create_intermediate_group),
58

H5Pget_fill_time (H5P_fill_time), 59

H5Pget_filter (H5Pall_filters_avail), 45

H5Pget_istore_k (H5Pset_istore_k), 52

H5Pget_layout (H5P_layout), 60

H5Pget_libver_bounds
(H5P_libver_bounds), 61

H5Pget_nfilters (H5Pall_filters_avail),
45

H5Pget_obj_track_times
(H5Pobject_track_times), 49

H5Pget_shared_mesg_index
(H5Pset_shared_mesg_index), 53

H5Pget_shared_mesg_nindexes
(H5Pset_shared_mesg_nindexes),
54

H5Pget_shared_mesg_phase_change
(H5Pset_shared_mesg_phase_change),
54

H5Pget_sizes (H5Pset_sizes), 55

H5Pget_sym_k (H5Pset_sym_k), 56

H5Pget_userblock (H5Pset_userblock), 57

H5Pget_version, 48

H5Pobject_track_times, 49

H5Pset_blosc, 49

H5Pset_bzip2, 50

107

H5Pset_chunk (H5P_chunk), 57

H5Pset_chunk_cache (H5P_chunk_cache), 58

H5Pset_create_intermediate_group
(H5P_create_intermediate_group),
58

H5Pset_deflate, 50

H5Pset_fapl_ros3, 51

H5Pset_fill_time (H5P_fill_time), 59

H5Pset_fill_value (H5P_fill_value), 59

H5Pset_filter, 51

H5Pset_istore_k, 52

H5Pset_layout (H5P_layout), 60

H5Pset_layout(), 57

H5Pset_libver_bounds
(H5P_libver_bounds), 61

H5Pset_1zf, 52

H5Pset_nbit, 53

H5Pset_obj_track_times
(H5Pobject_track_times), 49

H5Pset_shared_mesg_index, 53

H5Pset_shared_mesg_nindexes, 54

H5Pset_shared_mesg_phase_change, 54

H5Pset_shuffle, 55

H5Pset_sizes, 55

H5Pset_sym_k, 56

H5Pset_szip, 56

H5Pset_userblock, 57

H5R, 61

H5Rcreate, 62

H5Rdereference, 63

h5read (h5_read), 94

h5read(), 83, 86, 88, 89, 91, 98

h5readAttributes (h5_readAttributes), 97

h5readTimestamps, 63

H5Ref, 62

H5Ref-class, 64

H5Rget_name, 65

H5Rget_obj_type, 66

H5Rget_region, 66

h5save (h5_save), 98

H5Sclose, 67

H5Sclose(), 66

H5Scombine_hyperslab, 67

H5Scombine_hyperslab(), 69, 73, 74

H5Scombine_select, 68

H5Scombine_select(), 68

H5Scopy, 70

H5Screate, 70, 71

108

H5Screate(), 6, 13, 18, 67
H5Screate_simple, 71,71, 76
H5Screate_simple(), 6, 13, 18
h5set_extent (h5_set_extent), 99
H5Sget_select_npoints, 71
H5Sget_simple_extent_dims, 72
H5Sis_simple, 72
H5Sselect_all, 72
H5Sselect_hyperslab, 73
H5Sselect_hyperslab(), 68
H5Sselect_index, 74
H5Sselect_none, 75
H5Sselect_valid, 75
H5Sset_extent_simple, 76
H5Sunlimited, 76
H5Sunlimited(), 85
H5T_cset, 78
H5T_enum, 78
H5T_ops, 79
H5T_precision, 80
H5T_size, 80
H5T_strpad, 81
H5Tcopy, 77
H5Tenum_create (H5T_enum), 78
H5Tenum_insert (H5T_enum), 78
h5testFilelLocking (h5_FilelLocking), 93
H5Tget_class (H5T_ops), 79
H5Tget_cset (H5T_cset), 78
H5Tget_nmembers (H5T_ops), 79
H5Tget_precision (H5T_precision), 80
H5Tget_size (H5T_size), 80
H5Tget_strpad (H5T_strpad), 81
H5Tis_variable_str, 77
H5Tset_cset (H5T_cset), 78
H5Tset_precision (H5T_precision), 80
H5Tset_size (H5T_size), 80
H5Tset_strpad (H5T_strpad), 81
h5validObjects (h51istObjects), 37
h5version, 81
h5write (h5_write), 100
hswrite(), 83, 86, 88, 89, 98
hSwriteAttribute (h5_writeAttribute),
103
h5writeAttribute(), 83
h5writeDataset (h5_write), 100
H5Zfilter_avail, 82

ImQ), 96

INDEX

length,H5Ref-method (H5Ref-class), 64

Re(), 96
rhdfs, 83, 88, 93, 103, 104

show,H5IdComponent-method
(H5IdComponent-class), 30
show,H5Ref-method (H5Ref-class), 64

	H5Aclose
	H5Acreate
	H5Adelete
	H5Aexists
	H5Aget_name
	H5Aget_space
	H5Aget_type
	H5Aopen
	H5Aread
	H5Awrite
	h5checkFilters
	h5closeAll
	h5constants
	H5Dclose
	H5Dcreate
	H5Dget_create_plist
	H5Dget_num_chunks
	H5Dget_space
	H5Dget_storage_size
	H5Dget_type
	H5Dopen
	H5Dread
	H5Dset_extent
	H5Dwrite
	H5D_extras
	H5Fclose
	H5Fcreate
	H5Fflush
	H5Fget_filesize
	H5Fget_intent
	H5Fget_name
	H5Fget_plist
	H5Fis_hdf5
	H5Fopen
	H5functions
	H5Gclose
	H5Gcreate
	H5Gcreate_anon
	H5Gget_info
	H5Gopen
	H5IdComponent-class
	H5Iget_name
	H5Iget_type
	H5Iis_valid
	H5Lcopy
	H5Lcreate_external
	H5Ldelete
	H5Lexists
	H5Lget_info
	h5listObjects
	H5Lmove
	h5ls
	H5Oclose
	H5Ocopy
	H5Oget_info
	H5Oget_num_attrs
	H5Olink
	H5Oopen
	H5Pall_filters_avail
	H5Pclose
	H5Pcopy
	H5Pcreate
	H5Pfill_value_defined
	H5Pget_class
	H5Pget_version
	H5Pobject_track_times
	H5Pset_blosc
	H5Pset_bzip2
	H5Pset_deflate
	H5Pset_fapl_ros3
	H5Pset_filter
	H5Pset_istore_k
	H5Pset_lzf
	H5Pset_nbit
	H5Pset_shared_mesg_index
	H5Pset_shared_mesg_nindexes
	H5Pset_shared_mesg_phase_change
	H5Pset_shuffle
	H5Pset_sizes
	H5Pset_sym_k
	H5Pset_szip
	H5Pset_userblock
	H5P_chunk
	H5P_chunk_cache
	H5P_create_intermediate_group
	H5P_fill_time
	H5P_fill_value
	H5P_layout
	H5P_libver_bounds
	H5R
	H5Rcreate
	H5Rdereference
	h5readTimestamps
	H5Ref-class
	H5Rget_name
	H5Rget_obj_type
	H5Rget_region
	H5Sclose
	H5Scombine_hyperslab
	H5Scombine_select
	H5Scopy
	H5Screate
	H5Screate_simple
	H5Sget_select_npoints
	H5Sget_simple_extent_dims
	H5Sis_simple
	H5Sselect_all
	H5Sselect_hyperslab
	H5Sselect_index
	H5Sselect_none
	H5Sselect_valid
	H5Sset_extent_simple
	H5Sunlimited
	H5Tcopy
	H5Tis_variable_str
	H5T_cset
	H5T_enum
	H5T_ops
	H5T_precision
	H5T_size
	H5T_strpad
	h5version
	H5Zfilter_avail
	h5_createAttribute
	h5_createDataset
	h5_createFile
	h5_createGroup
	h5_delete
	h5_deleteAttribute
	h5_dump
	h5_errorHandling
	h5_FileLocking
	h5_read
	h5_readAttributes
	h5_save
	h5_set_extent
	h5_write
	h5_writeAttribute
	rhdf5
	Index

