Package ‘recoup’

January 23, 2026
Type Package

Title An R package for the creation of complex genomic profile plots

Author Panagiotis Moulos <moulos@fleming.gr>

Maintainer Panagiotis Moulos <moulos@fleming.gr>

Depends R (>=4.0.0), GenomicRanges, GenomicAlignments, ggplot2,
ComplexHeatmap

Imports BiocGenerics, biomaRt, Biostrings, circlize, Seqinfo,
GenomicFeatures, graphics, grDevices, httr, IRanges, methods,
parallel, RSQLite, Rsamtools, rtracklayer, S4Vectors, stats,
stringr, txdbmaker, utils

Suggests GenomelnfoDDb, grid, BiocStyle, knitr, rmarkdown, zoo, RUnit,
BiocManager, BSgenome, RMySQL

Description recoup calculates and plots signal profiles
created from short sequence reads derived from Next
Generation Sequencing technologies. The profiles
provided are either sumarized curve profiles or heatmap
profiles. Currently, recoup supports genomic profile
plots for reads derived from ChIP-Seq and RNA-Seq
experiments. The package uses ggplot2 and ComplexHeatmap
graphics facilities for curve and heatmap coverage
profiles respectively.

License GPL (>=3)
Encoding UTF-8
LazyLoad yes
LazyData yes

URL https://github.com/pmoulos/recoup

biocViews ImmunoOncology, Software, GeneExpression, Preprocessing,
QualityControl, RNASeq, ChIPSeq, Sequencing, Coverage, ATACSeq,
ChipOnChip, Alignment, Datalmport

VignetteBuilder knitr
Version 1.39.0

https://github.com/pmoulos/recoup

2 Contents

Date 2025-07-22

Collate 'annotation.R' 'argcheck.R' 'coverage.R' 'count.R' 'plot.R’

'profile.R' 'query.R' 'ranges.R' 'recoup.R' 'util.R’

git_url https://git.bioconductor.org/packages/recoup

git_branch devel

git_last_commit 66d3f66

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-22

Contents
buildAnnotationDatabase 3
buildAnnotationStore L. 4
buildCustomAnnotation 6
calcCoverageo e e e 8
coverageRef L 9
coverageRnaRef 10
GEtANNOLAtION oL e e e e e e e 11
getBIOtYPES e 12
getlnstalledAnnotations e e 13
importCustomANNOtation e 13
kmeansDesign e e e e e e e e 15
loadAnnotation e e 16
mergeRuns 17
preprocessRanges e 18
profileMatrix 20
TECOUD .+« v v e v v e 21
recoup-defunct 34
recoup-deprecated Lol 34
recoupCorrelation L 35
recoupHeatmap L e 36
recoupPlot L 37
recoupProfile L 38
recoup_test_data L e e e 39
removeData oL 40
IPMALTIX . . . o o o e e e e e e e e e e e e e e e e e 41
simpleGetSet 43
sliceObj o o 44

Index 46

buildAnnotationDatabase 3

buildAnnotationDatabase
Build a local annotation database for recoup

Description

This function creates a local annotation database to be used with recoup so as to avoid long time on
the fly annotation downloads and formatting.

Usage
buildAnnotationDatabase(organisms, sources,
db = file.path(system.file(package = "recoup”),
"annotation.sqlite"),
forceDownload = TRUE, rc = NULL)
Arguments
organisms a list of organisms and versions for which to download and build annotations.
Check the main recoup help page for details on supported organisms and the
Details section below.
sources a character vector of public sources from which to download and build anno-
tations. Check the main recoup help page for details on supported annotation
sources.
db a valid path (accessible at least by the current user) where the annotation database

will be set up. It defaults to system. file(package = "recoup”), "annotation.sqlite")
that is, the installation path of recoup package. See also Details.

forceDownload by default, buildAnnotationDatabase will not download an existing annota-
tion again (FALSE). Set to TRUE if you wish to update the annotation database for
a particular version.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization). Sometimes used for building certain annotation types.

Details

Regarding the organisms argument, it is a list with specific format which instructs buildAnnotationDatabase
on which organisms and versions to download from the respective sources. Such a list may have
the format: organisms=1ist(hg19=75, mm9=67, mm10=96:97) This is explained as follows:

* A database comprising the human genome versions hg19 and the mouse genome versions
mm9, mm1@ will be constructed.

e If "ensembl” is in sources, version 75 is downloaded for hg19 and versions 67, 96, 97 for
mm9, mm10.

» If "ucsc” or "refseq” are in sources, the latest versions are downloaded and marked by the
download date. As UCSC and RefSeq versions are not accessible in the same way as Ensembl,
this procedure cannot always be replicated.

4 buildAnnotationStore

organisms can also be a character vector with organism names/versions (e.g. organisms = c("mm10", "hg19")),
then the latest versions are downloaded in the case of Ensembl.

Regarding db, this controls the location of the installation database. If the default is used, then there
is no need to provide the local database path to any function that uses the database (e.g. the main
recoup). Otherwise, the user will either have to provide this each time, or the annotation will have
to be downloaded and used on-the-fly.

Value

The function does not return anything. Only the SQLite database is created or updated.

Author(s)

Panagiotis Moulos

Examples

Build a test database with one genome
myDb <- file.path(tempdir(),"testann.sqlite")

organisms <- list(mm10=96)
sources <- "ensembl”

If the example is not running in a multicore system, rc is ignored
buildAnnotationDatabase(organisms, sources,db=myDb,rc=0.5)

A more complete case, don't run as example
Since we are using Ensembl, we can also ask for a version
#organisms <- list(

mm9=67,

mm10=96:97,

hg19=75,

hg38=96:97

#)

#sources <- c("ensembl”, "refseq")

Build on the default location (depending on package location, it may
require root/sudo)
#buildAnnotationDatabase(organisms, sources)

Build on an alternative location
#myDb <- file.path(path.expand("~"),"my_ann.sqlite")
#buildAnnotationDatabase(organisms, sources,db=myDb)

buildAnnotationStore Build a local annotation database for recoup

buildAnnotationStore 5

Description

This function is defunct! Please use buildAnnotationDatabase. This function creates a local
annotation database to be used with recoup so as to avoid long time on the fly annotation downloads
and formatting.

Usage
buildAnnotationStore(organisms, sources,
home = file.path(path.expand(”"~"), ".recoup”),
forceDownload = TRUE, rc = NULL)
Arguments
organisms a character vector of organisms for which to download and build annotations.
Check the main recoup help page for details on supported organisms.
sources a character vector of public sources from which to download and build anno-
tations. Check the main recoup help page for details on supported annotation
sources.
home a valid path (accessible at least by the current user) where the annotation database

will be set up. It defaults to " . recoup” inside the current user’s home directory.

forceDownload by default, buildAnnotationStore will not download an existing annotation
again (FALSE). Set to TRUE if you wish to update the annotation database.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization). It is used in the case of type="exon" to process the return
value of the query to the UCSC Genome Browser database.

Value

The function does not return anything. Only the annotation directory and contents are created.

Author(s)

Panagiotis Moulos

Examples

buildAnnotationStore(”"mm1@","ensembl”)

6 buildCustomAnnotation

buildCustomAnnotation Import custom annotation to the recoup annotation database from
GTF file

Description

This function imports a GTF file with some custom annotation to the recoup annotation database.

Usage
buildCustomAnnotation(gtfFile, metadata,
db = file.path(system.file(package = "recoup”),
"annotation.sqlite”"), rewrite=TRUE)
Arguments
gtfFile a GTF file containing the gene structure of the organism to be imported.
metadata a list with additional information about the annotation to be imported. See De-
tails.
db a valid path (accessible at least by the current user) where the annotation database
will be set up. It defaults to system. file(package = "recoup”), "annotation.sqlite”)
that is, the installation path of recoup package. See also Details.
rewrite if custom annotation found, rwrite? (default FALSE). Set to TRUE if you wish to
update the annotation database for a particular custom annotation.
Details

Regarding the metadata argument, it is a list with specific format which instructs buildCustomAnnotation
on importing the custom annotation. Such a list may has the following members:

* organisma name of the organism which is imported (e.g. "my_mm9"). This is the only manda-
tory member.

* source a name of the source for this custom annotation (e.g. "my_mouse_db"). If not given
or NULL, the word "inhouse” is used.
* version a string denoting the version. If not given or NULL, current date is used.
* chromInfo it can be one of the following:
— a tab-delimited file with two columns, the first being the chromosome/sequence names
and the second being the chromosome/sequence lengths.
— a BAM file to read the header from and obtain the required information

— a data.frame with one column with chromosome lengths and chromosome names as
rownames.

See the examples below for a metadata example.

Regarding db, this controls the location of the installation database. If the default is used, then there
is no need to provide the local database path to any function that uses the database (e.g. the main
metaseqr2). Otherwise, the user will either have to provide this each time, or the annotation will
have to be downloaded and used on-the-fly.

buildCustomAnnotation

Value

The function does not return anything. Only the SQLite database is created or updated.

Author(s)

Panagiotis Moulos

Examples

Dummy database as example
customDir <- file.path(tempdir(),"test_custom”)
dir.create(customDir)

myDb <- file.path(customDir,"testann.sqlite")
chromInfo <- data.frame(length=c(1000L,2000L,1500L),
row.names=c("A","B","C"))

Build with the metadata list filled (you can also provide a version)
buildCustomAnnotation(
gtfFile=file.path(system.file(package="recoup”),"dummy.gtf"),
metadata=1list(
organism="dummy",
source="dummy_db",
version=1,
chromInfo=chromInfo
),
db=myDb
)

Try to retrieve some data

myGenes <- loadAnnotation(genome="dummy", refdb="dummy_db",
type="gene",db=myDb)

myGenes

Real data!

Setup a temporary directory to download files etc.
#customDir <- file.path(tempdir(),"test_custom”)
#dir.create(customDir)

#myDb <- file.path(customDir,"testann.sqlite")

Gene annotation dump from Ensembl
#download.file(paste@("ftp://ftp.ensembl.org/pub/release-98/gtf/",
"dasypus_novemcinctus/Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
file.path(customDir, "Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"))

Chromosome information will be provided from the following BAM file

available from Ensembl

#bamForInfo <- paste@("ftp://ftp.ensembl.org/pub/release-98/bamcov/",

"dasypus_novemcinctus/genebuild/Dasnov3.broad.Ascending_Colon_5.1.bam")

Build with the metadata list filled (you can also provide a version)

8 calcCoverage

#buildCustomAnnotation(

gtfFile=file.path(customDir,"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
metadata=list(

organism="dasNov3_test",

source="ensembl_test",

chromInfo=bamForInfo

),

db=myDb

#)

Try to retrieve some data

#dasGenes <- loadAnnotation(genome="dasNov3_test"”,refdb="ensembl_test",
level="gene",type="gene", db=myDb)

#dasGenes

calcCoverage Calculate coverages over a genomic region

Description

This function returns a coverage list for the genomic regions in mask argument. Generally it should
not be used alone and is intended for internal use, although it is useful for calculating stand-alone
coverages.

Usage

calcCoverage(input, mask, strand = NULL,
ignore.strand = TRUE, rc = NULL)

Arguments
input a GRanges object or a list of GRanges (not a GRangesList!) or the path to a
BAM or BigWig file.
mask a GRanges or GRangesList object.
strand see the strandedParams in the main recoup function.

ignore.strand see the strandedParams in the main recoup function.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).

Details

input contains the short reads in one of the formats described in the arguments section. When
input is a list, this list should contain one member per chromosome of the organism of interest.

mask contains the genomic regions over which the coverage will be calculated from the input reads.
When calculating RNA-Seq profiles, mask must be a named GRangesList where each member
represents the exons of the respective gene.

coverageRef 9

Value

A list of R1e objects representing the genomic coverages of interest.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data"”,package="recoup"”)

Calculate coverage Rle

mask <- makeGRangesFromDataFrame(df=test.genome,
keep.extra.columns=TRUE)

small.cov <- calcCoverage(test.input[[1]]$ranges,mask)

coverageRef Calculate coverage in a set of reference genomic regions (ChlP-Seq
or unspliced mode)

Description

This function fills the coverage field in the main input argument in recoup function.

Usage
coverageRef (input, mainRanges,
strandedParams = list(strand=NULL, ignoreStrand=TRUE),
rc = NULL)
Arguments
input an input list as in recoup but with the ranges field of each member filled (e.g.
after using preprocessRanges).
mainRanges the genome from recoup as a GRanges object (e.g. the output from makeGRangesFromDataFrame).

strandedParams see the strandedParams argument in the main recoup function.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).

Value

Same as input with the ranges fields filled.

Author(s)

Panagiotis Moulos

10 coverageRnaRef

Examples

Load some data
data("recoup_test_data"”,package="recoup")

Calculate coverages

testGenomeRanges <- makeGRangesFromDataFrame(df=test.genome,
keep.extra.columns=TRUE)

test.input <- coverageRef(
test.input,
mainRanges=testGenomeRanges

)
coverageRnaRef Calculate coverage in a set of reference genomic regions (RNA-Seq or
spliced mode)
Description

This function is defunct! Please use coverageRef. This function fills the coverage field in the
main input argument in recoup function.

Usage
coverageRnaRef (input, mainRanges,
strandedParams = list(strand=NULL, ignoreStrand=TRUE),
rc = NULL)
Arguments
input an input list as in recoup but with the ranges field of each member filled (e.g.
after using preprocessRanges).
mainRanges anamed GRangesList where list member names are genes and list members are

GRanges representing each gene’s exons.
strandedParams see the strandedParams argument in the main recoup function.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).

Value

Same as input with the ranges fields filled.

Author(s)

Panagiotis Moulos

getAnnotation 11

Examples

Load some data
#data("recoup_test_data”,package="recoup"”)

Note: the figures that will be produced will not look
realistic or pretty and will be "bumpy”. This is because
package size limitations posed by Bioconductor guidelines

do not allow for a full test dataset. As a result, the input
below is not an RNA-Seq dataset. Have a look at the

vignette on how to test with more realistic data.

% o H W

Calculate coverages

#testGenomeRanges <- makeGRangesFromDataFrame(df=test.genome,
keep.extra.columns=TRUE)

#test.input <- coverageRef (

test.input,

mainRanges=test.exons
#)
getAnnotation Annotation downloader
Description

This function connects to the EBI’s Biomart service using the package biomaRt and downloads
annotation elements (gene co-ordinates, exon co-ordinates, gene identifications, biotypes etc.) for
each of the supported organisms. See the help page of recoup for a list of supported organisms.
The function downloads annotation for an organism genes or exons. It also uses the UCSC public
database connection API to download UCSC and RefSeq annotations.

Usage
getAnnotation(org, type, refdb = "ensembl”, ver = NULL,
rc = NULL)

Arguments

org the organism for which to download annotation. Check the main recoup help

page for details on supported organisms.
type either "gene" or "exon".
refdb the online source to use to fetch annotation. It can be "ensembl” (default),

"ucsc” or "refseq”. In the later two cases, an SQL connection is opened with
the UCSC public databases.

ver the version of org to use as related to refdb or NULL for latest versions. See also
the main recoup help page.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization). It is used in the case of type="exon" to process the return
value of the query to the UCSC Genome Browser database.

12

getBiotypes

Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to Ensembl gene and exon accessions respectively. The gene_name corresponds to HUGO
nomenclature gene names.

Note

The data frame that is returned contains only "canonical" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos

Examples

mm10.genes <- getAnnotation("mm1@","gene")

getBiotypes List default Ensembl biotypes

Description

This function returns a character vector of Ensembl biotypes for each supported organism. Mostly
for internal use, but can also be used to list the biotypes and use some of them to subset initial
genomic regions to be profiled.

Usage
getBiotypes(org)
Arguments
org One of the supported recoup organisms See recoup for further information.
Value

A character vector of biotypes.

Author(s)

Panagiotis Moulos

Examples

hg18.bt <- getBiotypes("hg18")

getlnstalledAnnotations 13

getInstalledAnnotations
Load a recoup annotation element

Description
This function returns a data frame with information on locally installed, supported or custom, an-
notations.

Usage

getInstalledAnnotations(obj = NULL)

Arguments
obj NULL or the path to a recoup SQLite annotation database. If NULL, the function
will try to guess the location of the SQLite database.
Value

The function returns a data. frame object with the installed local annotations.

Author(s)

Panagiotis Moulos

Examples

db <- file.path(system.file(package="recoup"”),
"annotation.sqlite”)

if (file.exists(db))
ig <- getInstalledAnnotations(obj=db)

importCustomAnnotation
Import a recoup custom annotation element

Description

This function imports GenomicRanges to be used with recoup from a local GTF file.

Usage

importCustomAnnotation(gtfFile, metadata,
type = c("gene”, "exon", "utr"))

14 importCustomAnnotation

Arguments
gtfFile a GTF file containing the gene structure of the organism to be imported.
metadata a list with additional information about the annotation to be imported. The same
as in the buildCustomAnnotation man page.
type one of the "gene"”, "exon" or "utr".
Value

The function returns a GenomicRanges object with the requested annotation.

Author(s)

Panagiotis Moulos

Examples

Dummy GTF as example
chromInfo <- data.frame(length=c(1000L,2000L,1500L),
row.names=c("A","B","C"))

Build with the metadata list filled (you can also provide a version)
myGenes <- importCustomAnnotation(
gtfFile=file.path(system.file(package="recoup”),"dummy.gtf"),
metadata=1list(
organism="dummy",
source="dummy_db",
version=1,
chromInfo=chromInfo
),
type="gene"
)

Real data!

Gene annotation dump from Ensembl
#download.file(paste@("ftp://ftp.ensembl.org/pub/release-98/gtf/",
"dasypus_novemcinctus/Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
file.path(tempdir(), "Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"))

Build with the metadata list filled (you can also provide a version)
#dasGenes <- importCustomAnnotation(

gtfFile=file.path(tempdir(),"Dasypus_novemcinctus.Dasnov3.0.98.gtf.gz"),
metadata=list(

organism="dasNov3_test",

source="ensembl_test"

),

type="gene"

#)

kmeansDesign 15

kmeansDesign Apply k-means clustering to profile data

Description

This function performs k-means clustering on recoup generated profile matrices and stores the
result as a factor in the design element. If no design is present, then one is created from the k-means
result.

Usage

kmeansDesign(input, design = NULL, kmParams)

Arguments
input a list object created from recoup or partially processed by recoup or its data
member. See the main input to recoup for further information.
design See the respective argument in recoup for further information
kmParams Contains parameters for k-means clustering on profiles. See the respective argu-
ment in recoup for further information.
Value

The design data frame, either created from scratch or augmented by k-means clustering.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data”,package="recoup”)

Calculate coverages

test.tss <- recoup(
test.input,
design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(1000,1000),
selector=NULL,
plotParams=1ist(plot=FALSE,profile=TRUE,

heatmap=TRUE,device="x11"),

rc=0.1

16 loadAnnotation

Re-design based on k-means

kmParams=1ist(k=2,nstart=20,algorithm="MacQueen”,iterMax=20,
reference=NULL)

design <- kmeansDesign(test.tss$data,kmParams=kmParams)

loadAnnotation Load a recoup annotation element

Description

This function creates loads an annotation element from the local annotation database to be used
with recoup. If the annotation is not found and the organism is supported, the annotation is created
on the fly but not imported in the local database. Use buildAnnotationDatabase for this purpose.

Usage
loadAnnotation(genome, refdb,
type = c("gene”, "exon", "utr"), version="auto",
db = file.path(system.file(package = "recoup”),
"annotation.sqlite"”), summarized = FALSE,
asdf = FALSE, rc = NULL)
Arguments
genome a recoup supported organisms or a custom, imported by the user, name. See
also the main recoup man page.
refdb a recoup supported annotation source or a custom, imported by the user, name.
See also the main recoup man page.
type one of the "gene”, "exon" or "utr”.
version same as the version in recoup.
db same as the db in buildAnnotationDatabase.
summarized if TRUE, retrieve summarized, non-overlaping elements where appropriate (e.g.
exons).
asdf return the result as a data. frame (default FALSE).
rc same as the rc in buildAnnotationDatabase.
Value

The function returns a GenomicRanges object with the requested annotation.

Author(s)

Panagiotis Moulos

mergeRuns 17

Examples

db <- file.path(system.file(package="recoup”),
"annotation.sqlite”)
if (file.exists(db))
gr <- loadAnnotation(genome="hg19", refdb="ensembl”,
type="gene",db=db)

mergeRuns Merge recoup outputs of same type

Description

This function accepts two or more recoup output objects holding single samples to a merged ob-
ject so that all samples can be used together. This is useful when many coverages must be calu-
lated/plotted and memory issues do not allow effective parallelization.

Usage
mergeRuns (..., withDesign = c("auto”, "drop"),
dropPlots = TRUE)
Arguments
one or more recoup output objects.
withDesign one of "auto” (default) or "drop”. Determines how to merge designs. See
details for further information.
dropPlots if profile and/or heatmap plots are attached to the input object(s), they will be
recalculated if dropPlots=="TRUE" (default) or dropped otherwise
Details

The withDesign argument controls what should be done if any input has an attached design. The
default behavioir ("auto”) will try to do its best to preserve compatible designs. If one or more
inputs have the same design, it will be applied to the rest of the samples. If there is only one design,
it will be applied to all samples (if you don’t want this to happen, choose "drop”). If more than one
sample has an attached design but these are incompatible (different numbers of rows/rownames,
columns/columnnames), then all designs are dropped. Obviously, withDesign="drop" drops all
attached designs and the output object is free of a design data frame.

Value

A recoup output object with as many samples asin

Author(s)

Panagiotis Moulos

18 preprocessRanges

Examples

Load some data
data("recoup_test_data”,package="recoup”)

test.input.shift <- test.input

names(test.input.shift) <- paste(names(test.input.shift),”_1",sep="")

test.input.shift[[1]1]1$id <- paste@(test.input.shift[[1]1]1$id,"_1")

test.input.shift[[1]]$ranges <-
shift(test.input.shift[[1]]1$ranges, 100)

test.input.shift[[2]]$id <- paste@(test.input.shift[[2]]$id,"_1")

test.input.shift[[2]]$ranges <-
shift(test.input.shift[[2]]$ranges, 100)

test.tss.1 <- recoup(
test.input,
design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(2000,2000),
selector=NULL,
rc=0.1

test.tss.2 <- recoup(
test.input.shift,
design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(2000,2000),
selector=NULL,
rc=0.1

test.tss <- mergeRuns(test.tss.1,test.tss.2)

preprocessRanges Read and preprocess BAM/BED files to GRanges

Description
This function reads the BAM/BED files present in the input list object and fills the ranges field of
the latter. At the same time it takes care of certain preprocessing steps like normalization.

Usage

preprocessRanges(input, preprocessParams, genome,
bamRanges=NULL, bamParams = NULL, rc = NULL)

preprocessRanges 19

Arguments
input an input list as in recoup but with the ranges field of each member filled (e.g.
after using preprocessRanges).
preprocessParams
see the preprocessParams argument in the main recoup function.
genome see the genome argument in the main recoup function.
bamRanges a GRanges object to mask the BAM/BED files to save time and space. If NULL,
the whole file is read.
bamParams see the bamParams argument in the main recoup function.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
Value

This function fills the ranges field in the main input argument in recoup function.

Author(s)

Panagiotis Moulos

Examples

#
#
#
#
#
#
#

This example only demonstrates the usage of the
preprocessRanges function. The input BAM files
included with the package will not produce
realistic plots as they contain only a very small
subset of the original data presented in the
vignettes (50k reads). Please see recoup vignettes
for further demonstrations.

test.in <- list(

WT_H4K20me1=1ist(
id="WT_H4K20me1",
name="WT H4K20me1l",
file=system.file("extdata",

"WT_H4K20me1_50kr.bam",

package="recoup"),
format="bam",
color="#EEQ000"

),

Set8KO_H4K20me1=1ist(
id="Set8K0O_H4K20me1",
name="Set8K0O H4K20mel",
file=system.file("extdata",

"Set8KO_H4K20me1_50kr.bam",
package="recoup"),
format="bam",
color="#00BB00"

20 profileMatrix

pp=list(
normalize="none",
spliceAction="split",
spliceRemoveQ=0.75

)

test.in <- preprocessRanges(test.in,pp)

profileMatrix Calculate final profile matrices for plotting

Description

This function fills the profile field in the main input argument in recoup function by calculating
profile matrices from coverages which will be used for plotting.

Usage
profileMatrix(input, flank, binParams, rc = NULL,
.feNoSplit = FALSE)
Arguments
input an input list as in recoup but with the ranges the coverage fields of each mem-
ber filled (e.g. after using preprocessRanges and coverageRef).
flank see the flank argument in the main recoup function.
binParams see the binParams argument in the main recoup function.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
.feNoSplit Temporary internal variable. Do not change unless you know what you are
doing!
Value

Same as input with the profile fields filled.

Author(s)

Panagiotis Moulos

recoup 21

Examples

Load some data
data("recoup_test_data”,package="recoup”)
Do some work
testGenomeRanges <- makeGRangesFromDataFrame(df=test.genome,
keep.extra.columns=TRUE)
w <- width(testGenomeRanges)
testGenomeRanges <- promoters(testGenomeRanges, upstream=2000,downstream=0)
testGenomeRanges <- resize(testGenomeRanges,width=w+4000)
test.input <- coverageRef(
test.input,
mainRanges=testGenomeRanges
)
test.input <- profileMatrix(
test.input,
flank=c(2000,2000),
binParams=1list(flankBinSize=50,regionBinSize=150,
sumStat="mean"”,interpolation="auto"),
rc=0.1

recoup Create genomic signal profiles in predefined or custom areas using
short sequence reads

Description

This function calculates and plots signal profiles created from short sequence reads derived from
Next Generation Sequencing technologies. The profiles provided are either sumarized curve profiles
or heatmap profiles. Currently, recoup supports genomic profile plots for reads derived from ChIP-
Seq and RNA-Seq experiments. The function uses ggplot2 and ComplexHeatmap graphics facilities
for curve and heatmap coverage profiles respectively. The output list object can be reused as input
to this function which will automatically recognize which profile elements needto be recalculated,
saving time.

Usage
recoup(

input,

design = NULL,

region = c("genebody”, "tss", "tes"”, "utr3”, "custom"),

type = c("chipseq”, "rnaseq"),

signal = c("coverage”, "rpm"),

genome = c("hg18", "hgl19"”, "hg38", "mm9" ,"mm1Q",
"rn5", "rn6", "dm3"”, "dm6", "danrer7", "danrerl@",
"pantro4”, "pantro5", "susscr3", "susscril”,

"ecucab2”, "tair10"),
version = "auto",

22

refdb = c("ensembl”, "ucsc”, "refseq"),
flank = c(2000, 2000),

onFlankFail = c("drop”,"trim"),
fraction = 1,

orderBy = list(

what = c("none”, "suma”, "sumn",
”maXa”,”maXn", "avga"7 "avgn", Hhcnll),
order = c("descending”, "ascending”),

custom = NULL

),

binParams = list(
flankBinSize = 0,
regionBinSize = 0,
sumStat = c("mean”, "median"),
interpolation = c("auto”, "spline”, "linear"”,

"neighborhood”),

binType = c("variable”, "fixed"),
forceHeatmapBinning = TRUE,
forcedBinSize = c(50, 200),
chunking = FALSE

),

selector = NULL,

preprocessParams = list(

fraglen = NA,
cleanLevel = c(0, 1, 2, 3),
normalize = c("none”, "linear”,

n on

"downsample”, "sampleto”),
sampleTo = le+6,
spliceAction = c("split”, "keep", "remove"),
spliceRemoveQ = 0.75,
bedGenome = NA
),
plotParams = list(
plot = TRUE,
profile = TRUE,
heatmap = TRUE,
correlation = TRUE,
signalScale = c("natural”, "log2"),

heatmapScale = c("common”, "each”),
heatmapFactor = 1,

corrScale = c("normalized”, "each"),
sumStat = c("mean”, "median"),

smooth = TRUE,
corrSmoothPar = ifelse(is.null(design), 0.1,
0.5),
singleFacet = c("none", "wrap”, "grid"),
multiFacet = c("wrap”, "grid"),
singleFacetDirection = c("horizontal”, "vertical"),

recoup

recoup

conf = TRUE,
device = c("x11", "png”, "jpg", "tiff", "bmp",
"pdf”, "ps”),

outputDir = ".",
outputBase = NULL

),

saveParams = list(
ranges = TRUE,
coverage = TRUE,
profile = TRUE,
profilePlot = TRUE,
heatmapPlot = TRUE,
correlationPlot = TRUE

),
kmParams = list(
k =0,
nstart = 20,
algorithm = c("Hartigan-Wong",
"Lloyd"”, "Forgy", "MacQueen"),
iterMax = 20,
reference = NULL
),

strandedParams = list(
strand = NULL,
ignoreStrand = TRUE
),
ggplotParams = list(
title = element_text(size = 12),
axis.title.x = element_text(size = 10,
face = "bold"),
axis.title.y = element_text(size = 10,
face = "bold"),

axis.text.x = element_text(size = 9,
face = "bold"),
axis.text.y = element_text(size = 10,

face = "bold"),
strip.text.x = element_text(size = 10,
face = "bold"),
strip.text.y = element_text(size = 10,
face = "bold"),
legend.position = "bottom”,
panel.spacing = grid::unit(1, "lines")
),
complexHeatmapParams = list(
main = list(
cluster_rows = ifelse(length(grep(
"hc", orderBy$what)) > @, TRUE, FALSE),
cluster_columns = FALSE,

23

24

Arguments

input

design

region

type

recoup

column_title_gp = grid::gpar(fontsize = 10,
font = 2),
show_row_names = FALSE,
show_column_names = FALSE,
heatmap_legend_param = list(
color_bar = "continuous”
)
),
group=list(
cluster_rows = ifelse(length(grep(
"hc", orderBy$what)) > @, TRUE, FALSE),
cluster_columns = FALSE,
column_title_gp = grid::gpar(fontsize = 10,
font = 2),
show_row_names = FALSE,
show_column_names = FALSE,
row_title_gp = grid::gpar(fontsize = 8,
font = 2),
gap = unit(5, "mm"),
heatmap_legend_param = list(
color_bar = "continuous”
)
)

),
bamParams = NULL,

onTheFly = FALSE,

localDb = file.path(system.file(package = "recoup”),
"annotation.sqlite"),

rc = NULL

the main input to recoup can be either a list or a configuration file (with essen-
tially the same contents as the list). In case of list input, it is a list of n lists, where
n the number of samples. See Details for the inner list contents. Alternatively,
input can be a text tab delimited file with a specific header (the same fields as
each inner list when input is a list) and one row for each sample. Again, see
Details section for the field specifications.

either a data frame with grouping factors as columns (e.g. two grouping factors
can be strand, and Ensembl biotype) or a tab delimited text file with the same
content (grouping factors in columns). If a data frame, the row.names attribute
must correspond to the names (e.g. rownames) of the genome argument, or be
a superset or subset of them. If a file, the first column must correspond to the
names (e.g. rownames) of the genome argument or be a superset or subset of
them.

non non

one of "tss”, "tes”, "genebody"”, "custom”.

n o n

one of "chipseq”, "rnaseq".

recoup 25

signal plots signal based on coverage ("coverage"” default) or reads per million "rpm”
(experimental!).

genome when region is "tss"”, "tes"” or "genebody”, genome can be one of "hg38",
"hg19", "hg18", "mm1@", "mm9", "dm3", "rn5", "danrer7”, "pantro4", "susscr3”
for human, mouse, fruitfly, rat, zebrafish and chimpanzee genomes respectively.
When when region is one of the above or "custom”, genome can be a tab de-
limited BED-like text file or a data frame.

version the version of genome to use as related to source. Either "auto” (default) or a
numeric value representing an Ensembl version or the creation date of UCSC or
RefSeq annotations.

refdb one of "ensembl”, "ucsc” or "refseq”. It will be used to retrieve genomic
reference regions when genome argument is one of the supported organisms.

flank a vector of length two with the number of base pairs to flank upstream and
downstream the region. Minimum flank is Obp and maximum is 50kb. It is
always expressed in bp.

onFlankFail action to be taken when flanking causes the requested plot genomic coordinates
to go beyond the lengths of reference sequences (e.g. chromosomes). It can
be "drop” (default) or "trim". Note that trimming will cause the flanking and
main regions to be merged in genebody plots and therefore possibly reducing
plot resolution.

regionMinimum flank is Obp and maximum is 50kb. It is always expressed in bp.

fraction a number from 0 to 1 (default) denoting the fraction of total data to be used. See
Details for further information.

orderBy a named list whose members control the order of the genomic regions (related
to the genome and region arguments as they appear in heatmap profiles. The

list has the following fields:
¢ what: one of "none” (default), "suma”, "sumn”, "maxa", "maxn”, "avga",

"avgn”, "hcn”, where n in "sumn”, "maxn”, "hcn” is the index of the pro-
file which sould be used as reference. See Details for further information.

* order: either "descending” (default) for ordering coverages from highest
to lowest, or "ascending” for the opposite.

* custom: a numeric vector of custom values (e.g. RNA abundance) that will
be used to sort all the profiles. If provided, what will be ignored. Defaults
to NULL.

binParams a named list whose members control the resolution of the coverage profiles. The
list has the following fields:

e flankBinSize: the number of intervals (bins) into which the upstream and
downstream regions are split and the per-base coverage is averaged across.
If @ (default), no binning is performed and the profiles are calculated based
at the base-pair level (the highest possible resolution).

* regionBinSize: the number of intervals (bins) into which the main region
is split and the per-base coverage is averaged across. If @ (default), no
binning is performed and the profiles are calculated based at the base-pair
level (the highest possible resolution).

recoup

* sumStat: the statistic which is used to summarize the bin coverage. Can be
"mean” (default) or "median”.

* interpolation: the interpolation method to be used for coverage interpo-
lation when the reference regions are of unequal lengths (e.g. gene bodies)
and the regionBinSize is larger than some of the former. Can be "auto”
(default), "spline”, "linear" or "neighborhood”. See Details for further
explanations of each option.

* binType: the type of bins (variable or fixed) when signal="rpm". It de-
faults to "variable”. See Details for further info.

» forceHeatmapBinning: if TRUE (default) and the profile resolution is very
high (see flankBinSize and regionBinSize above), binning is applied
prior to heatmap profile generation, otherwise the heatmaps will be over-
sized and will take a lot of time to render. Set to FALSE if both flankBinSize
and regionBinSize are not zero so as to avoid unecessary profile recalcu-
lations.

* forcedBinSize: a vector with two integers representing the flankBinSize
and regionBinSize to be used with forceHeatmapBinning above.

e chunking: TRUE (default) or FALSE. When TRUE, recoup will try to chunk
the data for profile matrix calculation.

See Details for a few further notes in the usage of binParams.

selector a named list whose members control some subsetting abilities regarding the in-
put reference genomic regions (genome argument) or NULL (default) when the
genome argument is/may be custom. When list, it has the following fields:

* id: a vector of ids of the same type as those present in the genome file or
organism type/version.

* bioype: a vector of Ensembl biotypes that will be used to filter the genome
when the latter is one of the supported organisms. Not used when genome
is a custom file.

* exonType: currently not used.

preprocessParams
a named list whose members control certain preprocessing steps applied to the
GRanges objects obtained while or after reading the input BAM/BED files with
short reads or BigWig files with processed signals. The list has the following
fields:

* fraglLen: the expected DNA fragment length. Reads will be extended (or
truncated) to this size. Not used for RNA-Seq type plots.

* cleanLevel: integer from O (default) to 3, controlling read filtering level
prior to profile generation. See details for further information.

e normalize: one of "none"” (default), "linear”, "downsample”, "sampleto”.
Controls how the coverages are normalized across samples. See Details for
explanation of these options.

* sampleTo: afixed library size for downsampling to be used with "sampleto”
option above. If a sample has less reads than this fixed size, it is silently
reported as is.

e spliceAction: one of "split” (default), "keep”, "remove"”. Controls
the action to be performed with spliced reads in the case of RNA-Seq sam-
ples. See Details for explanation of these options.

recoup 27

* spliceRemoveQ: the quantile of putative joint spliced read length to be used
for read filtering when spliceAction is "remove”. See Details for further
explanations.

* bedGenome: one of the supported genomes, as when reading from bed files,
chromosomal lenghts are not available and must be retrieved with another
way.

plotParams a named list whose members control profile (curve and heatmap) plotting pa-
rameters. The list has the following fields:

e plot: if set to TRUE (default), the plots created with the calculated pro-
files with recoup are displayed. Set to FALSE to plot later using the output
object.

» profile: if set to TRUE (default), the average coverage profile across the
genomic regions of preference is calculated. Set to FALSE to suppress this.

* heatmap: if set to TRUE (default), the coverage heatmap profile across the
genomic regions of preference is calculated. Set to FALSE to suppress this.

» correlation: if set to TRUE (default), the plots created with the calculated
coverage correlations are displayed. Set to FALSE to plot later using the
output object.

* signalScale: one of "natural” (default) or "log2" to control the signal
scale of the final coverage plots. Hint: use 1log2 scale for RNA-Seq profiles
as it produces much smoother plots.

¢ heatmapScale: one of "common” (default) or "each”. When "common”, a
common heatmap color scale is calculated for all samples. When "each”,
each heatmap has its own color scale.

* heatmapFactor: a positive numeric value by which the upper color scale
limit of the heatmap profile is multiplied. Defaults to 1. See Details for
further information.

e corrScale: either "normalized” (default) or "each”. Controls the scale
display in coverage correlation plots. See Details for further information.

* sumStat: the statistic which is used to summarize coverage matrices. Can
be "mean” (default) or "median”.

* smooth: if TRUE (default), the final curve profiles are smoothed using splines.
Set to FALSE for no smoothing. If the reference genomic regions are many,
the differences are minimal.

* corrSmoothPar: a numeric value between 0 and 1 which controls the
smoothing of correlation plots. Its default value is controlled by the pres-
ence of design. See Details for further information.

e corrScale: either "normalized"” (default) or "each”. See Details for fur-
ther information.

* singleFacet: how should ggplot2 should facet the profiles with 1-factor
design and only one sample whose profile will be plotted. Can be "none”
(default), "wrap” or "grid"”. When "none"”, no gridding is applied and de-
sign factors are distinguished by colour. With more than one design factors,
the multiFacet option below is used.

e multiFacet: how should ggplot2 should facet the profiles with 1-factor
design and more than one samples whose profile will be plotted. Can be

recoup

"wrap” (default) or "grid”. 2 or 3 (3rd would be colour) factor designs are
faceted with "grid".

* singleFacetDirection: if single facetting is requested, how should the
panels be arranged, horizontally (default, "horizontal”) or vertically ("vertical”).

* conf: plot also confidence intervals using geom_ribbon in profile or corre-
lation plots.

* device: the R plotting device to redirect the plots to. Can be "x11" (de-
fault), "png"”, "jpg", "tiff", "bmp"”, "pdf", "ps".

* outputDir: the directory to place profiles when the plotting device is not
"x11". Defaults to ".".

e outputBase: the naming template for output files when the plotting de-
vice is not "x11". The extensions "_profile” and "_heatmap” will be
appended to distinguish each plot type. Leave NULL (default) for automatic
filename generation.

saveParams a named list which controls the information to be stored in the recoup output
list object. The list has the following fields:

* ranges: set to TRUE (default) to store the GRanges object obtained from the
BAM/BED files. Set to FALSE for not saving. Not applicable when input is
of type BigWig.

* coverage: set to TRUE (default) to store the R1le list object obtained from
the coverage calculations. Set to FALSE for not saving.

* profile: set to TRUE (default) to store the profile matrices exracted from
coverage summarizations. Set to FALSE for not saving. It must be present
when using the recoup output in the plotting functions recoupProfile and
recoupHeatmap.

* profilePlot: set to TRUE (default) to store ggplot object containing the
average coverage plot. Set to FALSE for not saving. Must be TRUE if you
wish to use the recoup output later with recoupPlot.

* heatmapPlot: set to TRUE (default) to store ComplexHeatmap object con-
taining the coverage heatmap plot. Set to FALSE for not saving. Must be
TRUE if you wish to use the recoup output later with recoupPlot.

e correlationPlot: set to TRUE (default) to store ggplot object containing
coverage correlation plot. Set to FALSE for not saving. Must be TRUE if you
wish to use the recoup output later with recoupPlot.

See the Details section for some additional information.

kmParams a named list which controls the execution of k-means clustering using standard
R base function kmeans otherwise. The list has the following fields:

e k: the number of clusters for k-means clustering. When 0 (default), no
k-means clustering is performed.

* nstart: See kmeans.

e algorithm: See kmeans.

e iterMax: See the iter.max parameter in kmeans.

* reference: which profile to use as reference for the determination of clus-
ters and ordering. The rest of the heatmaps will be ordered according to the
reference clustering. It can be either a sample id or NULL (default). If the

recoup 29

latter, all the profile matrices are merged into one big matrix and k-means
clustering is performed on that matrix.

The result of k-means clustering will be appended to design as an additional
field. If design is NULL, it will be created and passed to the plotting functions.

strandedParams a named list which controls how strand information will be treated (if present).
The list has the following fields:

e strand: if set to NULL (default) then reads from both strands are used from
the input BAM/BED files. If "+" or "-", then only the respective strands
are used. Not applicable for input of type BigWig.

e ignoreStrand: TRUE (default) or FALSE. Passed to the ignore.strand ar-
gument in the findOverlaps function used during coverage calculations.

ggplotParams anamed list with theme parameters passed to the ggplot function of the ggplot2
package. See the documentation of ggplot2 for further details. Only the param-
eters mentioned in the function call are used.

complexHeatmapParams
a named list with groups of parameters passed to the Heatmap function of the
ComplexHeatmap package. The list has the following fields:

* main: Heatmap parameters applied to each non-split (according to design)
heatmap. See the recoup function call for supported parameters and Heatmap
for further details.

* main: Heatmap parameters applied to each split (according to design)
heatmap. See the recoup function call for supported parameters and Heatmap
for further details.

bamParams BAM file read parameters passed to BamFile. See the related function. Cur-
rently this is not used.

onTheFly Read short reads directly from BAM files when input contains paths to BAM
files. In this case the storage of short reads in the output list object as a GRanges
object is not possible and the final object becomes less reusable but the memory
footprint is lower. Defaults to FALSE.

localDb local path with the annotation database. See also buildAnnotationDatabase.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
Details

When input is a list, is should contain as many sublists as the number of samples. Each sublist
must have at least the following fields:

* id: a unique identifier for each sample which should not contain whitespaces and preferably
no special characters.

* file: the full path to the BAM, BED of BigWig file. If the path to the BAM is a hyperlink,
the BAM file must be indexed. BigWigs are already indexed.

e format: one of "bam”, "bed"” or "bigwig".

Additionally, each sublist may also contain the following fields:

30

recoup

* name: a sample name which will appear in plots.

* color: either an R color (see the colors function) or a hexadecimal color (e.g. "#FF0000").

When input is a text file, this should be strictly tab-delimited (no other delimiters like comma),
should contain a header with the same names (case sensitive) as the sublist fields above (id, file,
format are mandatory and name, color are optional).

When genome is not one of the supported organisms, it should be a text tab delimited file (only
tabs supported) with a header line, or a data frame, where the basic BED field must be present,
that means that at least "chromosome”, "start”, "end"”, a unique identifier column and "strand”
must be present, \ preferably in this order. This file is read in a data frame and then passed to
the makeGRangesFromDataFrame function from the GenomicRanges package which takes care of
the rest. See also the makeGRangesFromDataFrame’s documentation. When genome is one of the

supported organisms, recoup takes care of the rest.

The version argument controls what annotation version is used (when using local annotation after
having built a store with buildAnnotationStore or when downloading on the fly). When "auto",
it will use the latest annotation version for the selected source. So, if source="ensembl”, it will
use the latest installed or available version for the specified organism based on information retrieved
from the biomaRt package. For example, for organism="hg19", it will be 91 at the point where this
manual is written. If source="refseq"”, recoup will either use the latest downloaded annotation
according to a timestamp in the directory structure or download and use the latest tables from UCSC
on the fly. If an annotation version does not exist, recoup will throw an error and exit.

When region is "tss”, the curve and heatmap profiles are centered around the TSS of the (gene)
regions provided with the genome argument, flanked accordind to the flank argument. The same
applied for region="tes"” where the plots are centered around the transcription end site. When
region is "genebody”, the profiles consist of two flanking parts (upstream of the TSS and down-
stream of the TES) and a middle part consisting of the gene body coverage profile. The latter is
constructed by creating a fixed number of intervals (bins) along each gene and averaging the cover-
age of each interval. In some extreme cases (e.g. for small genes), the number of bins may be larger
than the gene length. In these cases, a few zeros are distributed randomly across the number of
bins to reach the predefined number of gene body intervals. When region is "custom” the behav-
ior depends on the custom regions length. If it contains single-base intervals (e.g. ChIP-Seq peak
centers), then the behavior is similar to the TSS behavior above. If it contains genomic intervals of
equal or unequal size, the behavior is similar to the gene body case.

The fraction parameter controls the total fraction of both total reads and genomic regions to be
used for profile creation. This means that the total reads for each sample are randomly downsampled
to fraction*100% of the original reads and the same applied to the input genomic regions. This
practice is followed by similar packages (like ngs.plot) and serves the purpose of a quick overview
of how the actual profiles look before profiling the whole genome.

Regarding the orderBy parameters, for the options of the what parameter "sum” type of options
order profiles according to i) the sum of coverages of all samples in each genomic region when
orderBy$what="suma" or ii) the sum of coverages of sample n (e.g. 2) in each genomic region
when orderBy$what="sumn" (e.g. orderBy$what="sum1"). The same apply for the "max" type of
options but this time the ordering is performed according to the position of the highest coverage in
each genomic profile. Ties in the position of highest coverage are broken randomly and sorting is
performed with the default R sort. Similarly for "avg"” type of options, the ordering is performed
according to the average total coverage of a reference region. For the "hc" type of options, hier-
archical clustering is performed on the selected (n) reference profile (e.g. orderBy$what="hc1")

recoup 31

and this ordering is applied to the rest of the sample profiles. When what="none", no ordering
is performed and the input order is used (genome argument). If any design is present through the
design argument or k-means clustering is also performed (through the kmParams argument), the
orderBy directives are applied to each sub-profile created by design or k-means clustering.

Regarding the flankBinSize field of binParams, it is used only when region="genebody" or
region="custom” and the custom regions are not single-base regions. This happens as when
the genomic regions to be profiled are single-base regions (e.g. TSSs or ChIP-Seq peak centers),
these regions are merged with the flanking areas and alltogether form the main genomic region.
In these cases, only the regionBinSize field value is used. Note that when type="rnaseq"” or
region="genebody" or region="custom" with non single-base regions the values of flankBinSize
and regionBinSize offer a fine control over how the flanking and the main regions are presented
in the profiles. For example, when flankBinSize=100 and regionBinSize=100 with a gene body
profile plot, the outcome will look kind of "unrealistic" as the e.g. 2kb flanking regions will
look very similar to the usually larger gene bodies. On the other hand if flankBinSize=50 and
regionBinSize=200, this setting will create more "realistic" gene body profiles as the flanking
regions will be squished and the gene body area will look expanded. Within the same parame-
ter group is also interpolation. When working with reference regions of different lengths (e.g.
gene bodies), it happens very often that their lengths are a little to a lot smaller than the number of
bins into which they should be split and averaged in order to be able to create the average curve
and heatmap profiles. recoup allows for dynamic resolutions by permitting to the user to set the
number of bins into which genomic areas will be binned or by allowing a per-base resolution where
possible. The interpolation parameter controls what happens in such cases. When "spline”, the
R function spline is used, with the default method, to produce a spline interpolation of the same
size as the regionBinSize option and is used as the coverage for that region. When "linear”, the
procedure is the same as above but using approx. When "neighborhood”, a number of NA values
are distributed randomly across the small area coverage vector, excluding the first and the last two
positions, in order to reach regionBinSize. Then, each NA position is filled with the mean value
of the two values before and the two values after the NA position, with na.rm=TRUE. This method
should be avoided when >20% of the values of the extended vector are NA’s as it may cause a crash.
However, it should be the most accurate one in the opposite case (few NA’s). When "auto” (the
default), a hybrid of "spline” and "neighborhood” is applied. If the NA’s constitute more than
20% of the extended vector, "spline” is used, otherwise "neighborhood”. None of the above is
applied to regions of equal length as there is no need for that. Furthermore, the parameter binType
within the same parameter group controls the type of bins that a genomic interval should be split
to in order to effectively calculate realistic signals when signal="rpm". When "variable”, the
number of bins that each genomic interval is split to is proportional to the square root of its size
(the square root smooths the region length distribution, otherwise many regions e.g. in the set of
human genes/transcripts will end up in unit-size bins even though they can support larger resolu-
tions). The final signal is interpolated to a length of regionBinSize or flankBinSize to produce
the final plots. When "fixed"”, the genomic intervals are "pushed" to have regionBinSize or
flankBinSize bins, but if the areas are not large enought, they may end-up to many unit-size bins
which will inflate and oversmooth the signal. It may give better results if the regions where the
profile is to be created are all large enough.

Regarding the usage of selector$id field, this requires some careful usage, as if the ids present
there and the ids of the genome areas do not match, there will be no genomic regions left to calculate
coverage profiles on and the program will crash.

Regarding the usage of the preprocessParams argument, the normalize field controls how the
GRanges representing the reads extracted from BAM/BED files or the signals extracted from Big-

32

recoup

Wig files will be normalized. When "none”, no normalization is applied and external normalization
is assumed. When "linear”, all the library sizes are divided by the maximum one and a normal-
ization factor is calculated for each sample. The coverage of this sample across the input genomic
regions is then multiplied by this factor. When "downsample”, all libraries are downsampled to
the minimum library size among samples. When "sampleto”, all libraries are downsampled to
a fixed number of reads. The sampleTo field of preprocessParams tells recoup the fixed num-
ber of reads to downsample all libraries when preprocessParams$normalize="sampleTo". It
defaults to 1 million reads (1e+6). The spliceAction field of preprocessParams is used to con-
trol the action to be taken in the presence of RNA-Seq spliced reads (implies type="rnaseq").
When "keep”, no action is performed regarding the spliced reads (represented as very long reads
spanning intronic regions in the GRanges object). When "remove”, these reads are excluded from
coverage calculations according to their length as follows: firstly the length distribution of all reads
lengths (using the width function for GRanges) is calculated. Then the quantile defined by the field
spliceRemoveQ of preprocessParams is calculated and reads above the length corresponding to
this quantile are excluded. When "splice”, then splice junction information inferred from CIGAR
strings (if) present in the BAM files is used to splice the longer reads and calculate real coverages.
This option is not available with BED files, however, BED files can contain pre-spliced reads using
for example BEDTools for conversion. It should also be noted that in the case of BigWig files, only
linear normalization is supported as there is no information on raw reads. The cleanLevel field
controls what filtering will be applied to the raw reads read from BAM/BED files prior to producing
the signal track. It can have four values: @ for no read processing/filtering, (use reads as they are,
no uniqueness and no removal of unlocalized regions and mitochondrial DNA reads, unless filtered
by the user before using recoup), 1 for removing unlocalized regions (e.g. chrU, hap, random etc.),
2 for removing reads of level 1 plus mitochondrial reads (chrM) and 3 for removing reads of level
2 plus using unique reads only. The default is level @ (no filtering).

Regarding the heatmapFactor option of plotParams, it controls the color scale of the heatmap as
follows: the default value (1) causes the extremes of the heatmap colors to be linearly and equally
distributed across the actual coverage profile values. If set smaller than 1, the the upper extreme of
the coverage values (which by default maps to the upper color point) is multiplied by this factor and
this new value is set as the upper color break (limit). This has the effect of decreasing the brightness
of the heatmap as color is saturated before reaching the maximum coverage value. If set greater than
1, then the heatmap brightness is increased. Regarding the correlation option of plotParams,
if TRUE then recoup calculates average coverage values for each reference region (row-wise in the
profile matrices) instead of the average coverage in each base of the reference regions (column-wise
in the profile matrices). This is particularly useful for checking whether total genome profiles for
some biological factor/condition correlate with each other. This potential correlation is becoming
even clearer when orderBy$what is not "none”. Regarding the corrScale option of plotParams,
it controls whether the average coverage curves over the set of reference genomic regions (one
average coverage vale per genomic region, note the difference with the profiles where the coverage
is calculated over the genomic locations themselves) should be normalized to a 0-1 scale or not.
This is particularly useful when plotting data from different libraries (e.g. Polll and H3K27mel
occupancy over gene bodies) where other types of normalization (e.g. read downsampling cannot be
applied). Regarding the corrSmoothPar option of plotParams, it controls the smoothing parameter
for coverage correlation curves. If design is present, spline smoothing is applied (smooth.spline)
with spar=0.5 else lowess smoothing is applied (lowess) with f=0.1. corrSmoothPar controls
the spar and f respectively.

Regarding the usage of saveParams argument, this is useful for several purposes: one is for re-using
recoup without re-reading BAM/BED/BigWig files. If the ranges are present in the input object to

recoup 33

recoup, they are not re-calculated. If not stored, the memory/storage usage is reduced but the object
can be used only for simply replotting the profiles using recoupProfile and/or recoupHeatmap
functions.

As a note regarding parallel calculations, the number of cores assigned to recoup depends both
on the number of cores and the available RAM in your system. The most RAM expensive part of
recoup is currently the construction of binned profile matrices. If you have a lot of cores (e.g. 16)
but less than 128Gb of RAM for this number of cores, you should avoid using all cores, especially
with large BAM files. Half of them would be more appropriate.

Finally, the output list of recoup can be provided as input again to recoup with some input pa-
rameters changed. recoup will then automatically recognize what has been changed and recalcu-
late some, all or none of the genomic region profiles, depending on what input parameters have
changed. For example, if any of the ordering options change (e.g. from no profile ordering to
k-means clustering), then no recalculations are performed and the process is very fast. If region
binning is changed (binParams$flankBinSize or binParams$regionBinSize), then only profile
matrices are recalculated and coverages are maintained. If any of the preprocessParams changes,
this causes all object including the short reads to be reimported and profiles recalculated from the
beginning.

Value

a named list with five members:

e data: the input argument if it was a list or the resulting list from the unexported internal
readConfig function, with the ranges, coverage and profile fields filled according to
saveParams. This data member can be used again as an argument to recoup. The coverage
and profile fields will be recalculated according to recoup parameters but the ranges will
be resued if the input files are not changed.

* design: the design data frame which is used to facet the profiles.
* plots: the ggplot2 and/or Heatmap objects created by recoup.

* callopts: the majority of recoup call parameters. Their storage serves the reuse of a recoup
list object so that only certain elements of plots are recalculated.

Author(s)

Panagiotis Moulos

Examples

Load some sample data
data("recoup_test_data”,package="recoup”)

Note: the figures that will be produced will not look

realistic and will be "bumpy”. This is because package
size limitations posed by Bioconductor guidelines do not
allow for a full test dataset. Have a look at the

vignette on how to test with more realistic data.

TSS high resolution profile with no design
test.tss <- recoup(

34 recoup-deprecated

test.input,
design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(2000,2000),
selector=NULL,
rc=0.1

)

Genebody low resolution profile with 2-factor design,
wide genebody and more narrow flanking
test.gb <- recoup(
test.input,
design=test.design,
region="genebody",
type="chipseq”,
genome=test.genome,
flank=c (2000, 2000),
binParams=1ist(flankBinSize=50,regionBinSize=150),
orderBy=list(what="hc1"),
selector=NULL,
rc=0.1

recoup-defunct Defunct functions in package ‘recoup’

Description

These functions are provided for compatibility with older versions of ‘recoup’ only, and will be
defunct at the next release.

Details

The following functions are defunct and will be made defunct; use the replacement indicated below:

» coverageRnaRef: coverageRef

recoup-deprecated Deprecated functions in package ‘recoup’

Description

These functions are provided for compatibility with older versions of ‘recoup’ only, and will be
defunct at the next release.

recoupCorrelation 35

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

¢ buildAnnotationStore: buildAnnotationDatabase

recoupCorrelation Plot (faceted) average genomic coverage correlations

Description

This function takes as input argument and output object from recoup and creates the average
genomic curve correlations according to the options present in the input object. It can be used
with saved recoup outputs so as to recreate the plots without re-reading BAM/BED files and re-
calculating coverages.

Usage
recoupCorrelation(recoupObj, samples = NULL, rc = NULL)
Arguments
recoupObj a list object created from recoup.
samples which samples to plot. Either numeric (denoting the sample indices) or sample
ids. Defaults to NULL for all samples.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
Value

The function returns the recoupObj with the slot for the correlation plot filled. See also the
recoupPlot, getr and setr function.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data"”,package="recoup")

Calculate coverages

test.tss <- recoup(
test.input,
design=NULL,
region="tss",
type="chipseq”,

36 recoupHeatmap

genome=test.genome,

flank=c(2000,2000),

selector=NULL,

plotParams=1ist(profile=FALSE, correlation=TRUE,
heatmap=FALSE),

rc=0.1

)

Plot coverage correlations
recoupCorrelation(test.tss,rc=0.1)

recoupHeatmap Plot genomic coverage heatmaps

Description

This function takes as input argument and output object from recoup and creates heatmaps depict-
ing genomic coverages using the ComplexHeatmap package and the options present in the input
object. It can be used with saved recoup outputs so as to recreate the plots without re-reading
BAM/BED files and re-calculating coverages.

Usage
recoupHeatmap(recoupObj, samples = NULL, rc = NULL)
Arguments
recoupObj a list object created from recoup.
samples which samples to plot. Either numeric (denoting the sample indices) or sample
ids. Defaults to NULL for all samples.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
Value

The function returns the recoupObj with the slot for the profile plot filled. See also the recoupPlot,
getr and setr function.

Author(s)

Panagiotis Moulos

recoupPlot

Examples

Load some data

data("recoup_test_data”,package="recoup”)

Calculate coverages
test.tss <- recoup(

test.input,

design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(2000,2000),
selector=NULL,

plotParams=list(profile=FALSE, heatmap=FALSE),

rc=0.1

)

Plot coverage profiles
recoupHeatmap(test.tss,rc=0.1)

37

recoupPlot

Plot list objects returned by recoup

Description

This function takes as input argument an output object from recoup and plots the ggplot2 and

ComplexHeatmap objects stored there.

recoupPlot(recoupObj, what
"correlation”), device
"bmp”, "pdf”, "ps"), outputDir =

c("profile”, "heatmap”,
C(”X‘]‘I”, Hpnglﬁ, Iljpgll’ "tiff“y

non

outputBase = paste(vapply(recoupObj,
function(x) return(x$data$id), character(1)),

Usage
sep =
Arguments
recoupObj
what
device
outputDir

n on

_"), mainh = 1,

)

a list object created from recoup.

one or more of "profile”, "heatmap"” or "correlation”. See the plotParams
in the main recoup function. A minimum valid version is provided for default

plotting.

a valid R graphics device. See the plotParams in the main recoup function.

a valid directory when device is not "x11".

recoup function.

See the plotParams in the main

38

outputBase

mainh

Value

recoupProfile

a valid file name to be used as basis when device is not "x11". See the plotParams
in the main recoup function. Defaults to a concatenation of sample ids.

the reference heatmap for ordering operations. Normally, calculated in recoup.
See also the draw function in the ComplexHeatmap package. Deafults to the first
heatmap.

further parameters passed either to ggsave or the base graphics devices of R.

This function does not returns anything, just plots the recoup plots.

Author(s)

Panagiotis Moulos

Examples

Load some data

data("recoup_test_data"”,package="recoup")

Calculate coverages
test.tss <- recoup(

test.input,
design=NULL,
region="tss",

type="chipseq”,

genome=test.genome,

flank=c(2000,2000),

selector=NULL,

plotParams=1ist(plot=FALSE,profile=TRUE,
heatmap=TRUE,device="x11"),

rc=0.1

)

Plot coverage profiles
recoupPlot(test.tss)

recoupProfile

Plot (faceted) average genomic coverage profiles

Description

This function takes as input argument and output object from recoup and creates the average ge-
nomic curve profiles according to the options present in the input object. It can be used with saved
recoup outputs so as to recreate the plots without re-reading BAM/BED files and re-calculating

coverages.

recoup_test_data 39

Usage
recoupProfile(recoupObj, samples = NULL, rc = NULL)
Arguments
recoupObj a list object created from recoup.
samples which samples to plot. Either numeric (denoting the sample indices) or sample
ids. Defaults to NULL for all samples.
rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).
Value

The function returns the recoupObj with the slot for the profile plot filled. See also the recoupPlot,
getr and setr function.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data"”,package="recoup"”)

Calculate coverages

test.tss <- recoup(
test.input,
design=NULL,
region="tss",
type="chipseq”,
genome=test.genome,
flank=c(2000,2000),
selector=NULL,
plotParams=1ist(profile=FALSE, heatmap=FALSE),
rc=0.1

)

Plot coverage profiles
recoupProfile(test.tss,rc=0.1)

recoup_test_data Reference and genomic sample regions for recoup testing

40 removeData

Description

The testing data package containes a small gene set, a design data frame, some genomic regions
and an input object for testing of recoup with ChIP-Seq and RNA-Seq data. Specifically:

* test.input: A small data set which contains 10000 reads from H4K20mel ChIP-Seq data
from WT adult mice and Set8 (Pr-Set7) KO mice. The tissue is liver.

* test.genome: A small gene set (100 genes) and their coordinates from mouse mm9 chromo-
some 12.

* test.design: A data frame containing the 100 above genes categorized according to expression
and strand.

* test.exons: A GRangesList containing the exons of the 100 above genes for use with recoup
RNA-Seq mode.

Format

data.frame and list objects whose format is accepted by recoup.

Author(s)

Panagiotis Moulos

Source

Personal communication with the Talianids lab at BSRC ’Alexander Fleming’. Unpublished data.

removeData Remove data from recoup list object

Description

This function clears members of the recoup output object that must be cleared in order to apply a
new set of parameters without completely rerunning recoup.

Usage
removeData(input, type = c("ranges”, "coverage",
"profile”, "reference"))
Arguments
input a list object created from recoup or its data member.

non non non

type one of "ranges”, "coverage"”, "profile”, "reference”.

rpMatrix 41

Details

This function clears members of the recoup output object which typically take some time to be
calculated but it is necessary to clean them if the user wants to change input parameters that cause
recalculations of these members. For example, if the user changes the binParams, the profile
matrices ("profile” object member) have to be recalculated.

type controls what data will be removed. "ranges” removes the reads imported from BAM/BED
files. This is useful when for example the normalization method is changed. "coverage"” removes
the calculated coverages over the reference genomic regions. This is required again when the nor-
malization method changes. "profile” removes the profile matrices derived from coverages. This
is required for example when the binParams main argument changes. Finally, "reference” re-
moves the genomic loci over which the calculations are taking place. This is required when the
genome, refdb or version main arguments change.

Value
A list which is normally the output of recoup without the members that have been removed from
it.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data”,package="recoup”)

Before removing
names(test.input)

Remove a member
test.input <- removeData(test.input,"ranges”)

Removed
names(test.input)

rpMatrix Reads per million profile matrices for plotting

Description

This function fills the profile field in the main input argument in recoup function by calculating
profile matrices using reads per million (rpm) or reads per kb per million reads (rpkm) over binned
genomic areas of interest, instead of genomic coverage signals. The profile matrices are used for
later plotting.

42 rpMatrix

Usage
rpMatrix(input, mainRanges, flank, binParams,
strandedParams = list(strand = NULL, ignoreStrand = TRUE),
rc = NULL)
Arguments
input an input list as in recoup but with the ranges field of each member filled (e.g.
after using preprocessRanges.
mainRanges the genome from recoup as a GRanges object (e.g. the output from makeGRangesFromDataFrame).
flank see the flank argument in the main recoup function.
binParams see the binParams argument in the main recoup function.

strandedParams see the strandedParams argument in the main recoup function.

rc fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).

Details

Regarding the calculation of rpm and rpkm values, the calculations slightly differ from the default
defintions of these measurements in the sense that they are also corrected for the bin lengths so as
to acquire human-friendly values for plotting.

Note that the genomic ranges (BAM/BED files) must be imported before using this function (as per
the default recoup pipeline). We plan to support streaming directly from BAM files in the future.

Value

Same as input with the profile fields filled.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data”,package="recoup”)
Do some work
testGenomeRanges <- makeGRangesFromDataFrame(df=test.genome,
keep.extra.columns=TRUE)
w <- width(testGenomeRanges)
testGenomeRanges <- promoters(testGenomeRanges,upstream=2000,downstream=0)
testGenomeRanges <- resize(testGenomeRanges,width=w+4000)
test.input <- rpMatrix(
test.input,
mainRanges=testGenomeRanges,
flank=c(2000,2000),
binParams=1list(flankBinSize=50,regionBinSize=150,binType="fixed",
sumStat="mean",interpolation="spline"),

simpleGetSet 43

rc=0.1

simpleGetSet Get and set some reusable objects from a recoup object

Description

The getr and setr functions are used to get several reusable/changeable objects of recoup or
replcace them (e.g. when the user wishes to change some ggplot or ComplexHeatmap parameters
manually in a plot, or change the heatmap profile ordering mode).

Usage
getr(obj, key = c("design”, "profile”, "heatmap”,
"correlation”, "orderBy", "kmParams"”, "plotParams"))
setr(obj, key, value = NULL)
Arguments
obj a list object created from recoup.
key one of "design”, "profile”, "heatmap"”, "correlation”, orderBy, kmParams,
plotParams. For "profile”, "heatmap”, the respective plots are retrieved or
changed according to which function is called. For setr it can (and preferably)
be a named list of arguments to be changed in the recoup list object. The list
names are the same as above. For the rest, see the main recoup man page.
value avalid ggplot or HeatmapList object created from recoupProfile or recoupHeatmap
recoupCorrelation when changing plots. Values for all other types are also
checked for validity.
Value

For getr, the object asked to be retrieved. For setr, the obj with the respective slots filled or
replaced with value.

Author(s)

Panagiotis Moulos

Examples

Load some data
data("recoup_test_data"”,package="recoup"”)

Calculate coverages

test.tss <- recoup(
test.input,
design=NULL,

44 sliceObj

region="tss",

type="chipseq”,

genome=test.genome,

flank=c(2000,2000),

selector=NULL,

plotParams=1list(plot=FALSE,profile=TRUE,
heatmap=TRUE,device="x11"),

rc=0.1

)
Plot coverage profiles

Get the curve profile plot
pp <- getr(test.tss,"profile”)

Change some ggplot parameter
pp <- pp *
theme(axis.title.x=element_text(size=14))

Store the new plot

test.tss <- setr(test.tss,"profile”,pp)

or even better

test.tss <- setr(test.tss,list(profile=pp))

sliceObj Subset recoup output list objects

Description

This function takes as input argument an output object from recoup and subsets it according to the
inputs i, j,k. The attached plots may or may not be recalculated. Other input parameters stores
in obj$callopts are not changed apart from any selector option which is dropped. Note that
when slicing vertically (by j), the $coverage member of the input data (if present) is not sliced,
but remains as is. You can drop it using removeData as it is used to recalculate profile matrices only
if bin sizes are changed in a recoup call.

Usage
sliceObj(obj, i = NULL, j = NULL, k = NULL,
dropPlots = FALSE, rc = NULL)
Arguments
obj a list object created from recoup.
i vector of numeric or character indices, corresponding to the index or rownames

or names of reference genomic regions. The design object member will also
be subset. If there is a selector attached to the input object (see recoup argu-
ments) it will be dropped.

sliceObj

dropPlots

rc

Value

45

vector of numeric indices corresponding to the profile matrix vertical index (or
base pair position or bin of base pairs) so as to subset the profile. The function
will do its best to "guess" new plotting x-axis labels.

vector of numeric or character indices corresponding to sample index or sample
names. These will be returned.

if profile and/or heatmap plots are attached to the input object, they will be
recalculated if dropPlots=="TRUE" (default) or dropped otherwise

fraction (0-1) of cores to use in a multicore system. It defaults to NULL (no
parallelization).

A recoup list object, susbet according to i, j.

Author(s)

Panagiotis Moulos

Examples

Load some data

data("recoup_test_data”,package="recoup”)

Calculate coverages
test.tss <- recoup(

test.input,
design=NULL,
region="tss",

type="chipseq”,

genome=test.genome,

flank=c(2000,2000),

selector=NULL,

plotParams=list(plot=FALSE,profile=TRUE,
heatmap=TRUE,device="x11"),

rc=0.1

)

Plot coverage profiles
0 <- sliceObj(test.tss,i=1:10,k=1)

Index

x datasets
recoup_test_data, 39

approx, 31/

buildAnnotationDatabase, 3, 5, 16, 29, 35
buildAnnotationStore, 4, 30
buildCustomAnnotation, 6, /4

calcCoverage, 8
colors, 30
coverageRef, 9, 10, 20, 34
coverageRnaRef, 10

data.frame, 6, 16
draw, 38

findOverlaps, 29

getAnnotation, 11
getBiotypes, 12
getInstalledAnnotations, 13
getr (simpleGetSet), 43
ggplot, 29

GRanges, 26

Heatmap, 29
importCustomAnnotation, 13

kmeans, 28
kmeansDesign, 15

loadAnnotation, 16
lowess, 32

makeGRangesFromDataFrame, 9, 30, 42
mergeRuns, 17

preprocessRanges, 9, 10, 18, 19, 20, 42
profileMatrix, 20

46

recoup, 3, 5,8-12, 15-17, 19, 20, 21, 3544
recoup-defunct, 34
recoup-deprecated, 34
recoup_test_data, 39
recoupCorrelation, 35, 43
recoupHeatmap, 28, 33, 36, 43
recoupPlot, 28, 37
recoupProfile, 28, 33, 38, 43
removeData, 40, 44

rpMatrix, 41

setr (simpleGetSet), 43
simpleGetSet, 43
sliceObj, 44
smooth.spline, 32
sort, 30

spline, 31

test.design (recoup_test_data), 39
test.exons (recoup_test_data), 39
test.genome (recoup_test_data), 39
test.input (recoup_test_data), 39

	buildAnnotationDatabase
	buildAnnotationStore
	buildCustomAnnotation
	calcCoverage
	coverageRef
	coverageRnaRef
	getAnnotation
	getBiotypes
	getInstalledAnnotations
	importCustomAnnotation
	kmeansDesign
	loadAnnotation
	mergeRuns
	preprocessRanges
	profileMatrix
	recoup
	recoup-defunct
	recoup-deprecated
	recoupCorrelation
	recoupHeatmap
	recoupPlot
	recoupProfile
	recoup_test_data
	removeData
	rpMatrix
	simpleGetSet
	sliceObj
	Index

