Package ‘randRotation’

January 24, 2026

Title Random Rotation Methods for High Dimensional Data with Batch
Structure

Version 1.23.0

Description A collection of methods for performing random rotations on high-
dimensional, normally distributed data (e.g. microarray or RNA-seq data) with batch structure.
The random rotation approach allows exact testing of dependent test statistics with linear mod-
els following arbitrary batch effect correction methods.

License GPL-3

biocViews Software, Sequencing, BatchEffect, Biomedicallnformatics,
RNASeq, Preprocessing, Microarray, DifferentialExpression,
GeneExpression, Genetics, MicroRNA Array, Normalization,
StatisticalMethod

Encoding UTF-8

LazyData false

RdMacros Rdpack

Imports methods, graphics, utils, stats, Rdpack (>=0.7)
RoxygenNote 7.2.3

Suggests knitr, BiocParallel, Ime4, nlme, rmarkdown, BiocStyle,
testthat (>= 2.1.0), limma, sva

VignetteBuilder knitr
URL https://github.com/phettegger/randRotation

BugReports https://github.com/phettegger/randRotation/issues
git_url https://git.bioconductor.org/packages/randRotation

git_branch devel

git_last_commit 58e9564

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Peter Hettegger [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8557-588X>)

Maintainer Peter Hettegger <p.hettegger@gmail.com>

1

https://github.com/phettegger/randRotation
https://github.com/phettegger/randRotation/issues
https://orcid.org/0000-0001-8557-588X

2

randRotation-package

Contents
randRotation-package 2
fdrqu . . e e 3
contrastModel e 4
dim,initRandrot-method 5
dimnames,initRandrot-method 5
initBatchRandrot-class 6
initRandrot e e e e 6
initRandrot-class L. e e 10
initRandrotW e e e 11
PEAr . . e 12
qqunif . . .o e 15
randorth e e 16
randpermut e e e e e 17
randrot L e e e e 18
randRotation-defuncto 20
rotateStat L e e e e e e e 20
rotateStat-class L e e e 22
show,initRandrot-method 23
weights,initRandrot-method o Lo 24
X decomp 24
Index 26

randRotation-package randRotation: Random Rotation Methods for High Dimensional Data

with Batch Structure

Description

A collection of methods for performing random rotations on high-dimensional, normally distributed
data (e.g. microarray or RNA-seq data) with batch structure. The random rotation approach allows
exact testing of dependent test statistics with linear models following arbitrary batch effect correc-
tion methods.

Details

Please refer to the package vignette for further details on usage and for a "quick start". rotateStat
is the central function of the package. Methods are described in (Hettegger et al. 2021).

Author(s)

Maintainer: Peter Hettegger <p.hettegger@gmail.com> (ORCID)

https://orcid.org/0000-0001-8557-588X

fdr.qu 3

References

Hettegger P, Vierlinger K, Weinhaeusel A (2021). “Random rotation for identifying differentially
expressed genes with linear models following batch effect correction.” Bioinformatics. ISSN 1367-
4803. doi:10.1093/bioinformatics/btab063.

See Also

Useful links:

e https://github.com/phettegger/randRotation
* Report bugs at https://github.com/phettegger/randRotation/issues

.fdr.qu Internal functions for p-value and FDR estimation

Description

Internal functions for p-value and FDR estimation

Usage

.fdr.qu(
S0,
stats,
beta = 0.05,
na.rm = FALSE,

ref.vector = sort(s@, decreasing = TRUE, na.last = TRUE)
)
.fdr.q(

S0,

stats,

beta = 0.05,

na.rm = FALSE,
ref.vector = sort(s@, decreasing = TRUE, na.last = TRUE)
)

.pFdr(s@, stats, method, pooled, na.rm, beta)

Arguments
s0 numeric vector of original (non-rotated) statistics.
stats numeric matrix of rotated statistics.
beta numeric between 0 and 1. See (Yekutieli and Benjamini 1999).

na.rm logical. Should missing values be removed ?

https://doi.org/10.1093/bioinformatics/btab063
https://github.com/phettegger/randRotation
https://github.com/phettegger/randRotation/issues

4 contrastModel

ref.vector Reference vector defining at which grid points of s@ and (stats) the FDRs are
approximated. All other points are approximated by spline interpolation. NAs
are removed from ref.vector

method A p-value or FDR adjustment method, see pFdr.

pooled logical. TRUE if marginal distributions are exchangeable for all features so that
rotated stats can be pooled, see pFdr.

Value

numeric vector of (adjusted) p-value or FDR estimations for s@.

References

Yekutieli D, Benjamini Y (1999). “Resampling-based false discovery rate controlling multiple
test procedures for correlated test statistics.” Journal of Statistical Planning and Inference, 82(1-
2), 171-196. ISSN 03783758. doi:10.1016/S03783758(99)000415. http://www.ncbi.nlm.nih.

gov/pubmed/83580500015.

contrastModel Create transformed model matrix for contrast rotation

Description

This function takes a model matrix X and a contrast matrix C and creates a transformed model matrix
corresponding to a transformed set of coefficients.

Usage
contrastModel (X, C, coef.h = seq_len(ncol(C)))

Arguments
X (numeric) model matrix with dimensions samples x coefficients.
C (numeric) contrast matrix with dimensions coefficients x contrasts. The
contrast matrix must have full column rank.
coef.h column numbers of contrasts (in C) which should be set as coef. h in the trans-
formed model, see initRandrot. All columns are set as coef . h by default.
Details

The last n coefficients of the transformed model matrix correspond to the n contrasts. By default,
all contrasts are set as coef . h. See package vignette for examples of data rotations with contrasts.

Value

A transformed model matrix with coef . h set as attribute.

https://doi.org/10.1016/S0378-3758%2899%2900041-5
http://www.ncbi.nlm.nih.gov/pubmed/83580500015
http://www.ncbi.nlm.nih.gov/pubmed/83580500015

dim,initRandrot-method

Author(s)

Peter Hettegger

Examples

group <- c("A", "A", "B", "B")
X <- model.matrix(~@+group)

C <- cbind(contrast1 = c(1, -1))
X2 <- contrastModel(X, C)

dim,initRandrot-method
Dimensions of an Object

Description

Retrieve the dimensions of an object.

Usage

S4 method for signature 'initRandrot'
dim(x)

S4 method for signature 'initBatchRandrot'
dim(x)

Arguments

X An object of class initRandrot-class or initBatchRandrot-class.

Value

Vector of length two with number of features and number of samples. See also initRandrot.

dimnames, initRandrot-method
Dimnames of an Object

Description

Retrieve the dimnames of an object.

6 initRandrot

Usage

S4 method for signature 'initRandrot'
dimnames(x)

S4 method for signature 'initBatchRandrot'
dimnames(x)

Arguments

X An object of class initRandrot-class or initBatchRandrot-class.

Value

A list with names of features and samples, see initRandrot.

initBatchRandrot-class
Initialised random rotation batch object

Description
This class contains initRandrot or initRandrotW class objects for each batch. See also descrip-
tions in initRandrot and initRandrot-class.

Components

batch.obj List of initRandrot or initRandrotW class objects for each batch.

split.by List of sample indices for each batch.

Author(s)

Peter Hettegger

initRandrot Initialisation of a random rotation Object

Description

Initialization of a linear model for subsequent generation of randomly rotated data (randrot) asso-
ciated with the null hypothesis Hy : Scocr.n = 0. Basics of rotation tests are found in (Hettegger et
al. 2021) and (Langsrud 2005).

initRandrot 7

Usage
initRandrot(Y = NULL, X = NULL, coef.h = NULL, weights = NULL, cormat = NULL)

initBatchRandrot(
Y = NULL,
X = NULL,
coef.h = NULL,
batch = NULL,
weights = NULL,
cormat = NULL

)

S4 method for signature 'list'
initBatchRandrot(

Y = NULL,

X = Y$design,

coef.h = NULL,

batch = NULL,

weights = Y$weights,

cormat = NULL
)

S4 method for signature 'list'
initRandrot(

Y = NULL,

X = Y$design,

coef.h = NULL,

weights = Y$weights,

cormat = NULL

Arguments

Y a data matrix with features x samples dimensions or a list with elements E,
design and weights (see Details). Missing values (NA) are allowed but e.g.
lead to NAs for all samples of the respective features in the rotated dataset and
should thus be avoided. We highly recommend avoiding missing values by e.g.
replacing them by imputation or removing features containing NAs.

X the design matrix of the experiment with samples x coefficients dimensions.
For initBatchRandrot, specify the design matrix without the batch variable. A
warning is generated if X[, coef.d] does not have full rank, see Details.

coef.h single integer or vector of integers specifying the "hypothesis coefficients" (H0O
coefficients). coef . h should correspond to the last columns in X (see Details).
If available, attr(X, "coef.h") is used, see contrastModel. By default, all
coefficients are set as HO coefficients. If coef. h is set -1, no coefficient is set as
HO coefficient.

weights numerical matrix of finite positive weights > 0 (as in weighted least squares
regression. Dimensions must be equal to dimensions of Y.

8 initRandrot

cormat the sample correlation matrix with samples x samples dimensions. Must be
a real symmetric positive-definite square matrix. See Details for usage in
initBatchRandrot.
batch Batch covariate of the same length as ncol(Y).
Details

This function performs basic initial checks and preparatory calculations for random rotation data
generation. Nomenclature of variables is mainly as in (Langsrud 2005) and (Hettegger et al. 2021).
See also package vignette for application examples.

Y can also be a list with elements E, design and weights. Y$E is thereby used as Y, Y$design is
used as X and Y$weights is used as weights. By this, the functions are compatible with results
from e.g. voom (1imma package), see Examples.

coef.h specifies the model coefficients associated with the null hypothesis ("hypothesis coeffi-
cients"). All other model coefficients are considered as "determined coefficients" coef.d (Langsrud
2005). The design matrix is rearranged so that coef.h correspond to the last columns of the de-
sign matrix and coef . d correspond to the first columns of the design matrix. This is necessary for
adequate transformation of the combined null-hypothesis Hy : Bcoer.n, = 0 by QR decomposition.
If X[, coef.d] does not have full rank, a warning is generated and coef.d is set to coef.d <-
seqg_len(gr(X[,coef.d])$rank).

Weights must be finite positive numerics greater zero. This is necessary for model (QR) decompo-
sition and for back transformation of the rotated data into the original variance structure, see also
randrot. Weights as estimated e.g. by voom (Law et al. 2014) are suitable and can be used with-
out further processing. Note that due to the whitening transformation (i.e. by using the arguments
weights and/or cormat) the rank of the transformed (whitened) design matrix X could change (be-
come smaller), which could become dangerous for the fitting procedures. If you get errors using
weights and/or cormat, try the routine without using weights and/or cormat to exclude this source
of errors.

The following section provides a brief summary how rotations are calculated. A more general
introduction is given in (Langsrud 2005). For reasons of readability, we omit writing %*% for matrix
multiplication and write * for transposed matrix. The rotation is done by multiplying the features
x samples data matrix Y with the transpose of the restricted random rotation matrix Rt

Rt = Xd Xd* + [Xh Xe] R [Xh Xe]*

with R being a (reduced) random rotation matrix and Xd, Xh and Xe being columns of the full QR
decomposition of the design matrix X. [Xd Xh Xe] = qr.Q(qgr(X), complete = TRUE), where Xd
correspond to columns coef . d, Xh to columns coef'. h and Xe to the remaining columns.

If weights and/or cormat are specified, each feature Y[1i,] and the design matrix X are whiten-
ing transformed before rotation. The whitening matrix T is defined as T = solve(C) w, where
solve(C) is the inverse Cholesky decompostion of the correlation matrix (cormat = CC*) and
w is a diagonal matrix of the square roots of the sample weights for the according feature (w =
diag(sgrt(weights[i,1))).

The rotated data for one feature y.r[i,] is thus calculated as
y.rfi,]=(solve(T) Rt T (y[i,1)*)* and [Xd Xh Xe] =qr.Q(gr(TX), complete = TRUE)
For weights = NULL and cormat = NULL, T is the identity matrix.

initRandrot 9

Note that a separate QR decomposition is calculated for each feature if weights are specified. The
restricted random orthogonal matrix Rt is calculated with the same reduced random orthogonal
matrix R for all features.

When using initBatchRandrot, initRandrot is called for each batch separately. When using
initBatchRandrot with cormat, cormat needs to be a list of correlation matrices with one matrix
for each batch. Note that this implicitly assumes a block design of the sample correlation matrix,
where sample correlation coefficients between batches are zero. For a more general sample cor-
relation matrix, allowing non-zero sample correlation coefficients between batches, see package
vignette. Batches are split according to split(seg_along(batch), batch).

Value

An initialised initRandrot, initRandrotW or initBatchRandrot object.

Author(s)

Peter Hettegger

References

Hettegger P, Vierlinger K, Weinhaeusel A (2021). “Random rotation for identifying differentially
expressed genes with linear models following batch effect correction.” Bioinformatics. ISSN 1367-
4803. doi:10.1093/bioinformatics/btab063.

Langsrud O (2005). “Rotation tests.” Statistics and Computing, 15(1), 53—-60. ISSN 09603174.
doi:10.1007/s1122200547895.

Law CW, Chen Y, Shi W, Smyth GK (2014). “Voom: Precision weights unlock linear model anal-
ysis tools for RNA-seq read counts.” Genome Biology, 15(2), 1-17. ISSN 1474760X. doi:10.1186/
gb2014152129. http://www.ncbi.nlm.nih.gov/pubmed/24485249.

See Also

randrot, rotateStat

Examples

For further examples see '?rotateStat' and package vignette.
Example 1: Compatibility with limma::voom

Not run:

v <- voom(counts, design)

ir <- initRandrot(v)

End(Not run)

Example 2:

#set.seed(Q)

https://doi.org/10.1093/bioinformatics/btab063
https://doi.org/10.1007/s11222-005-4789-5
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pubmed/24485249

10 initRandrot-class

Dataframe of phenotype data (sample information)
We simulate 2 sample classes processed in 3 batches
pdata <- data.frame(batch = rep(1:3, c(10,10,10)),
phenotype = rep(c(”"Control”, "Cancer"), c(5,5)))
features <- 100

Matrix with random gene expression data
edata <- matrix(rnorm(features * nrow(pdata)), features)
rownames(edata) <- paste(”feature”, 1:nrow(edata))

mod1 <- model.matrix(~phenotype, pdata)

Initialisation of the random rotation class

init1 <- initBatchRandrot(Y = edata, X = modl1, coef.h = 2, batch = pdata$batch)
init1

See '?rotateStat'’

initRandrot-class Initialised random rotation class

Description

List-based S4 class containing all information necessary to generate randomly rotated data with
the randrot method. initRandrot and initRandrotW objects are created with the initRandrot
method.

initRandrotW is organised as its base class initRandrot, altough some components are changed
or added.

Components
The following components are included as list elements:

X Original (non-transformed) design matrix.
Xhe, Xhe.Y.w, Yd Pre-multiplied matrix products needed for generation of rotated data (randrot).

coef.h, coef.d Indices of Hy coefficients (coef . h or "hypothesis coefficients") and indices of all
other coefficients (coef.d or "determined coefficients").

cormat Correlation matrix, see initRandrot.
tcholC Cholesky decomposition of cormat: cormat = crossprod(tcholC).
rank Rank of the qr decomposition of (transformed/whitened) X

The following components are changed or added in initRandrotW-class as compared to initRandrot-class:

decomp.list List containing Xd, Xhe and rank of the transformed/whitened design matrix for each
feature, see also X_decomp.

w Numeric matrix with dimensions features x samples containing component wise square root
of the weight matrix, see initRandrot.

Author(s)

Peter Hettegger

initRandrotW

11

initRandrotW

Internal function

Description

Internal function

Usage

initRandrotW(Y, X, coef.h, coef.d, weights, cormat, cholCinv, tcholC)

Arguments

Y

coef.h

coef.d

weights

cormat

cholCinv

tcholC

Value

a data matrix with features x samples dimensions or a list with elements E,
design and weights (see Details). Missing values (NA) are allowed but e.g.
lead to NAs for all samples of the respective features in the rotated dataset and
should thus be avoided. We highly recommend avoiding missing values by e.g.
replacing them by imputation or removing features containing NAs.

the design matrix of the experiment with samples x coefficients dimensions.
For initBatchRandrot, specify the design matrix without the batch variable. A
warning is generated if X[, coef.d] does not have full rank, see Details.

single integer or vector of integers specifying the "hypothesis coefficients" (HO
coefficients). coef . h should correspond to the last columns in X (see Details).
If available, attr(X, "coef.h") is used, see contrastModel. By default, all
coefficients are set as HO coefficients. If coef. h is set -1, no coefficient is set as
HO coefficient.

Determined coefficients. These are all other coefficients that are not hypothesis
coefficients (see also initRandrot).

numerical matrix of finite positive weights > 0 (as in weighted least squares
regression. Dimensions must be equal to dimensions of Y.

the sample correlation matrix with samples x samples dimensions. Must be
a real symmetric positive-definite square matrix. See Details for usage in
initBatchRandrot.

Inverse of the Cholesky factorisation of cormat.

Transposed of the Cholesky factorisation of cormat.

An initialised initRandrotW object.

Author(s)

Peter Hettegger

12 pFdr

Examples

For further examples see '?rotateStat' and package vignette.
#set.seed(Q)

Dataframe of phenotype data (sample information)

We simulate 2 sample classes processed in 3 batches

pdata <- data.frame(phenotype = rep(c("Control”, "Cancer”), c(5,5)))
features <- 100

Matrix with random gene expression data
edata <- matrix(rnorm(features * nrow(pdata)), features)
rownames(edata) <- paste("feature”, 1:nrow(edata))

mod1 <- model.matrix(~phenotype, pdata)

Simulate weights
weights <- matrix(rbeta(features * nrow(pdata), 2, 2)+0.1, features)

Initialisation of the random rotation class

init1 <- initRandrot(Y = edata, X = modl, coef.h = 2,
weights = weights)

init1

pFdr Calculate resampling based p-values and FDRs

Description

This function calculates either (1) resampling based p-values with subsequent p-value adjustment
using stats::p.adjust or (2) resampling based false-discovery-rates (FDRs) for rotated statistics
from a rotateStat object.

Usage

pFdr(obj, method = "none"”, pooled = TRUE, na.rm = FALSE, beta = 0.05)

Arguments
obj A rotateStat object as returned by rotateStat.
method Can be either "none” (default), "fdr.q", "fdr.qu” or any term that can be
passed as method argument to stats::p.adjust, see Details. If method =
"none”, resampling based p-values without further adjustment are calculated.
pooled logical. TRUE (default) if marginal distributions are exchangeable for all fea-

tures so that rotated stats can be pooled, see Details.

pFdr 13

na.rm logical. NA values are ignored if set TRUE. NA values should be avoided and
could e.g. be removed by imputation in original data or by removing features
that contain NA values. Few NA values do not have a large effect, but many NA
values can lead to wrong estimations of p-values and FDRs. We highly recom-
mend avoiding NA values.

beta numeric between @ and 1. Corresponds to beta in (Yekutieli and Benjamini
1999).

Details

Larger values of obj$s0 are considered more significant when compared to the empirical distri-
bution. E.g. for calculation of resampling based p-values (with pooled = FALSE) we in principle
use p.val <- (rowSums(obj$stats >=obj$s@)+1)/(ncol(obj$stats)+1) according to (Phip-
son and Smyth 2010).

method = "fdr.q" and method = "fdr.qu" are resampling based fdr estimates and can only be
used with pooled = TRUE. method = "fdr.q" is the FDR local estimator and method = "fdr.qu" is
the FDR upper limit, see (Reiner et al. 2003; Yekutieli and Benjamini 1999). For all other method
arguments resampling based p-values are calculated and passed to stats::p.adjust for p-value
adjustment. So these methods provide resampling based p-values with (non-resampling based) p-
value adjustment. method = "fdr.q" and method = "fdr.qu" were adapted from package fdrame
(Benjamini et al. 2019; Reiner et al. 2003).

When pooled = TRUE, marginal distributions of the test statistics are considered exchangeable for
all features. The resampling based p-values of each feature are then calculated from all rotated
statistics (all features, all rotations). For these cases, if the number of features is reasonably large,
usually only few resamples (argument R in rotateStat) are required. We want to emphasize that
in order for the marginal distributions to be exchangeable, the statistics must be a pivotal quantity
(i.e. it must be scale independent). Pivotal quantities are e.g. t values. Using e.g. linear models
with coef as statistics is questionable if the different features are measured on different scales. The
resampled coefficients then have different variances and pooled = TRUE is not applicable. We thus
highly recommend using pivotal quantities as statistics in rotateStat if possible.

When pooled = FALSE the resampling based p-values are calculcated for each feature separately.
This is required if one expects the resampling based statistics to be distributed differently for in-
dividual features. For most common applications this should not be the case and the marginal
distribution are exchangeable for all features, hence pooled = TRUE by default.

If method = "fdr.q" or method = "fdr.qu" and weights were specified when initialising the ran-
dom rotation object (see parameter initialised.obj in rotateStat), a warning is displayed. The
correlation structure (dependence structure) of linear model coefficients between different features
is not generally preserved if different weights are used for different features. Methods fdr.q and
fdr. qu rely on preserved correlation structure of dependent statistics and thus should not be used if
statistics based on model coefficients (e.g. t statistics of model coefficients) are used in combination
with different weights.

P-values and FDRs are calculated for each column of obj$s@ separately.

Value

A numeric matrix of corrected p-values or FDRs with dimension dim(obj$s@).

14 pFdr

Author(s)

Peter Hettegger

References

Benjamini Y, Kenigsberg E, Reiner A, Yekutieli D (2019). fdrame: FDR adjustments of Microarray
Experiments (FDR-AME). R package version 1.56.0.

Phipson B, Smyth GK (2010). “Permutation P-values should never be zero: Calculating exact
P-values when permutations are randomly drawn.” Statistical Applications in Genetics and Molecu-
lar Biology, 9(1). ISSN 15446115. doi:10.2202/15446115.1585. 1603.05766, http://www.ncbi.
nlm.nih.gov/pubmed/21044043.

Reiner A, Yekutieli D, Benjamini Y (2003). “Identifying differentially expressed genes using
false discovery rate controlling procedures.” Bioinformatics, 19(3), 368-375. ISSN 13674803.
doi:10.1093/bioinformatics/btf877. http://www.ncbi.nlm.nih.gov/pubmed/12584122.

Yekutieli D, Benjamini Y (1999). “Resampling-based false discovery rate controlling multiple
test procedures for correlated test statistics.” Journal of Statistical Planning and Inference, 82(1-
2), 171-196. ISSN 03783758. doi:10.1016/S03783758(99)000415. http://www.ncbi.nlm.nih.
gov/pubmed/83580500015.

See Also

rotateStat

Examples

See also '?rotateStat':
#set.seed(Q)

Dataframe of phenotype data (sample information)
We simulate 2 sample classes processed in 3 batches
pdata <- data.frame(batch = rep(1:3, c(10,10,10)),
phenotype = rep(c(”Control”, "Cancer"”), c(5,5)))
features <- 100

Matrix with random gene expression data
edata <- matrix(rnorm(features x nrow(pdata)), features)
rownames(edata) <- paste(”feature”, 1:nrow(edata))

mod1 <- model.matrix(~phenotype, pdata)

Initialisation of the random rotation class

init1 <- initBatchRandrot(Y = edata, X = modl1, coef.h = 2, batch = pdata$batch)
initl

Definition of the batch effect correction procedure with subsequent calculation
of two-sided test statistics

https://doi.org/10.2202/1544-6115.1585
http://www.ncbi.nlm.nih.gov/pubmed/21044043
http://www.ncbi.nlm.nih.gov/pubmed/21044043
https://doi.org/10.1093/bioinformatics/btf877
http://www.ncbi.nlm.nih.gov/pubmed/12584122
https://doi.org/10.1016/S0378-3758%2899%2900041-5
http://www.ncbi.nlm.nih.gov/pubmed/83580500015
http://www.ncbi.nlm.nih.gov/pubmed/83580500015

qqunif 15

statistic <- function(., batch, mod, coef){

The "capture.output” and "suppressMessages” simply suppress any output
capture.output (suppressMessages(
Y.tmp <- sva::ComBat(., batch = batch, mod)

)

fitl <- 1m.fit(mod, t(Y.tmp))
abs(coef (fit1)[coef,])
}

We calculate test statistics for the second coefficient

resl <- rotateStat(initialised.obj = init1,
R =10,
statistic = statistic,
batch = pdata$batch, mod = mod1, coef = 2)

hist(pFdr(res1))

gqunif Quantile-Quantile plot of data sample against uniform theoretical
quantiles

Description

gqunif produces a QQ plot of the values in ps against the theoretical quantiles of the uniform
distribution.

Usage

gqunifi(
ps,
log = "xy",
pch = 20,
xlab = "theoretical quantiles”,
ylab = "sample quantiles”,
plot.it = TRUE,

)
Arguments
ps numeric vector of values (e.g. p-values). Values must be between O and 1.
Values like NA, NaN, Inf etc. produce an error.
log character indicating whether axis should be plotted in log scale. Either "",

nyn o non

x","y" or "xy".

pch Point symbol, see par.

16 randorth

x1lab Label for the x axis.
ylab Label for the y axis.
plot.it logical whether the result should be plotted.

Graphical parameters forwarded to qgplot

Details

This function can e.g. be used for comparing p-values against the uniform distribution. The log
scale of the x and y axes allow a closer look at low p-values.

This function is a modified version of the examples in the qgnorm documentation page.

Value

A list of x and y coordinates, as in qgplot.

Examples

qqunif(runif(100))

randorth Random orthogonal matrix

Description

Generation of a random orthogonal n x n matrix.

Usage

randorth(n, type = c("orthonormal”, "unitary"), I.matrix = FALSE)

Arguments
n numeric of length 1 defining the dimensions of the n x n square matrix.
type Either "orthonormal” or "unitary” defining whether a real orthonormal ma-
trix or a complex unitary matrix should be returned.
I.matrix If TRUE, the identity matrix is returned.
Details

A random orthogonal matrix R is generated in order that t (R) (for "orthonormal”) or Conj(t(R))
(for "unitary") equals the inverse matrix of R.

This function was adapted from the pracma package (pracma: : randortho).

The random orthogonal matrices are distributed with Haar measure over 0(n), where 0(n) is the
set of orthogonal matrices of order n. The random orthogonal matrices are basically distributed
"uniformly" in the space of random orthogonal matrices of dimension n x n. See also the Examples
and (Stewart 1980; Mezzadri 2007).

randpermut 17

Value

A random orthogonal matrix of dimension n x n.

Author(s)

Peter Hettegger

References

Mezzadri F (2007). “How to generate random matrices from the classical compact groups.” No-
tices of the American Mathematical Society, 54(5), 592-604. ISSN 1088-9477. 0609050, http:
//arxiv.org/abs/math-ph/0609050.

Stewart GW (1980). “The Efficient Generation of Random Orthogonal Matrices with an Applica-
tion to Condition Estimators.” SIAM Journal on Numerical Analysis. ISSN 0036-1429. doi:10.1137/
0717034.

Examples

The following example shows the orthogonality of the random orthogonal matrix:
R1 <- randorth(4)
zapsmall(t(R1) %*% R1)

R1 <- randorth(4, "unitary")
zapsmall(Conj(t(R1)) %x% R1)

The following example shows the distribution of 2-dimensional random orthogonal vectors
on the unit circle.

tmp1 <- vapply(1:400, function(i)randorth(2)[,1], numeric(2))

plot(t(tmp1), xlab = "x", ylab = "y")

randpermut Generate random permutation matrix for n samples

Description

Generate a random permutation matrix for n samples.

Usage

randpermut(n)

Arguments

n Number of samples

http://arxiv.org/abs/math-ph/0609050
http://arxiv.org/abs/math-ph/0609050
https://doi.org/10.1137/0717034
https://doi.org/10.1137/0717034

18

randrot

Details

This methods generates an orthogonal matrix with only one entry in each row and column being 1,
all other entries being 0.

Value

A random permutation matrix of dimension n x n

Author(s)

Peter Hettegger

Examples

tmp1 <- randpermut(5)
t(tmp1) %*% tmpl

randrot Random rotation of initialised object

Description

Perform random data rotation of a previously initialised object (see initRandrot) associated with
the null hypothesis Hy : Beoef.nn = 0.

Usage

randrot(object, ...)

S4 method for signature 'initRandrot'
randrot(object, ...)

S4 method for signature 'initRandrotW'
randrot(object, ...)

S4 method for signature 'initBatchRandrot'

randrot(object, ...)
Arguments
object An initialised object of class initRandrot-class or initBatchRandrot-class.

further arguments passed to randorth

randrot 19

Details

This function generates a randomly rotated dataset from an initialised randrot object (see initRandrot).
See also package vignette for application examples. Only the numerical matrix of rotated data is
returned, no design matrix, weights or other info is return for efficiency purposes. Please consider
that, if you e.g. use weights or if you use rotateStat, you may need to forward the design matrix

X, weights etc. to subsequent analyses. See the example in rotateStat.

Details on the calculation of a rotated dataset are given in initRandrot, (Langsrud 2005) and
(Hettegger et al. 2021).
Value

numeric matrix of rotated data under the specified combined null hypothesis.

Author(s)

Peter Hettegger

References

Hettegger P, Vierlinger K, Weinhaeusel A (2021). “Random rotation for identifying differentially
expressed genes with linear models following batch effect correction.” Bioinformatics. ISSN 1367-
4803. doi:10.1093/bioinformatics/btab063.

Langsrud O (2005). “Rotation tests.” Statistics and Computing, 15(1), 53—-60. ISSN 09603174.
doi:10.1007/s1122200547895.

Examples

For further examples see '?rotateStat' and package vignette.
#tset.seed(Q)

Dataframe of phenotype data (sample information)
We simulate 2 sample classes processed in 3 batches
pdata <- data.frame(batch = rep(1:3, c(10,10,10)),
phenotype = rep(c(”"Control”, "Cancer"), c(5,5)))
features <- 100

Matrix with random gene expression data
edata <- matrix(rnorm(features * nrow(pdata)), features)
rownames(edata) <- paste(”feature”, 1:nrow(edata))

mod1 <- model.matrix(~phenotype, pdata)

Initialisation of the random rotation class

init1 <- initBatchRandrot(Y = edata, X = modl1, coef.h = 2,
batch = pdata$batch)

init1

Fit model to original data

https://doi.org/10.1093/bioinformatics/btab063
https://doi.org/10.1007/s11222-005-4789-5

20 rotateStat

fit.orig <- Im.fit(mod1, t(edata))
head(t(coef(fit.orig)))

Fit model to rotated data

edata.rot <- randrot(init1)
fit.rot <- 1Im.fit(mod1, t(edata.rot))
head(t(coef(fit.rot)))

Note that the coefficients stay equal if we regress only on the
non-hypothesis coefficients

mod@ <- model.matrix(~1, pdata)
fit.origd <- Im.fit(mod@, t(edata))
fit.rot@ <- Im.fit(mod@, t(edata.rot))
head(t(coef(fit.origd)))
head(t(coef(fit.rot@)))

randRotation-defunct Defunct functions in package ‘randRotation’

Description

These functions are defunct and no longer available.

Details

Defunct functions are: df _estimate

rotateStat Generate data rotations and calculate statistics on it

Description

This function generates rotations of data and calculates the provided statistic on each rotation
and the non-rotated (original) data. This is the central function of the package.

Usage

rotateStat(
initialised.obj,
R =10,
statistic,

parallel = FALSE,
BPPARAM = BiocParallel: :bpparam()

rotateStat 21

Arguments

initialised.obj
An initialised random rotation object as returned by initRandrot and initBatchRandrot.

R The number of resamples/rotations. Single numeric larger than 1.

statistic A function which takes a data matrix (same dimensions as Y - see also initRandrot)

as first argument and returns a statistic of interest. Any further arguments are
passed to it with the . .. argument. We highly recommend using pivotal quanti-
ties as statistic if possible (see also Details in pFdr). Note that pFdr consid-
ers larger values of statistics as more significant, so one-tailed tests may require
reversal of the sign and two-tailed tests may require taking absolute values, see
Examples. The results of statistic for each resample are finally combined
with as.matrix and cbind, so ensure that statistic returns either a vector or
a matrix. Results with multiple columns are possible and handled adequately in
subsequent functions (e.g. pFdr). Note that statistic must not necessarily be
of the same length as nrow(Y), but can also be e.g. a summary statistic of genes
(like in gene set testing).

Further named arguments for statistic which are passed unchanged each time
it is called. Avoid partial matching to arguments of rotateStat. See also the
Examples.

parallel logical if parallel computation should be performed, see details for use of
parallel computing.

BPPARAM An optional BiocParallelParaminstance, see documentation of BiocParallel
package of Bioconductor.

Details

The function takes an initialised randrot object (initRandrot) and a function that calculates a
statistic on the data. The statistic function thereby takes the a matrix Y as first argument. Any
further arguments are passed to it by

Together with pFdr, this function implements the workflow described in (Hettegger et al. 2021).

Be aware that only data is rotated (see also randrot), so any additional information including
weights, X etc. need to be provided to statistic. See also package vignette and Examples.

Parallel processing is implemented with the BiocParallel package of Bioconductor. The default
argument BiocParallel: :bpparam() for BPPARAM returns the registered default backend. See
package documentation for further information and usage options. If parallel = TRUE the function

calls in statistic need to be called explicitly with package name and "::". So e.g. calling ImFit
from the 1imma package is done with limma::1mFit(...), see also the examples in the package
vignette.

Value

An object of class rotateStat.

Author(s)

Peter Hettegger

22 rotateStat-class

References

Hettegger P, Vierlinger K, Weinhaeusel A (2021). “Random rotation for identifying differentially
expressed genes with linear models following batch effect correction.” Bioinformatics. ISSN 1367-
4803. doi:10.1093/bioinformatics/btab063.

Examples

#set.seed(Q)

Dataframe of phenotype data (sample information)
We simulate 2 sample classes processed in 3 batches
pdata <- data.frame(batch = rep(1:3, c(10,10,10)),
phenotype = rep(c(”"Control”, "Cancer"), c(5,5)))
features <- 100

Matrix with random gene expression data
edata <- matrix(rnorm(features * nrow(pdata)), features)
rownames (edata) <- paste("”feature”, 1:nrow(edata))

mod1 <- model.matrix(~phenotype, pdata)

Initialisation of the random rotation class
init1 <- initBatchRandrot(Y = edata, X = mod1, coef.h = 2, batch = pdata$batch)
init1

Definition of the batch effect correction procedure with subsequent calculation
of two-sided test statistics
statistic <- function(., batch, mod, coef){

The "capture.output” and "suppressMessages” simply suppress any output
capture.output (suppressMessages(

Y.tmp <- sva::ComBat(., batch = batch, mod)
D)

fitl <= Im.fit(mod, t(Y.tmp))
abs(coef (fit1)[coef,])
3

We calculate test statistics for the second coefficient
resl <- rotateStat(initialised.obj = init1,

R =10,

statistic = statistic,

batch = pdata$batch, mod = mod1, coef = 2)

hist(pFdr(res1))

rotateStat-class Rotated object containing rotated and non-rotated statistics

https://doi.org/10.1093/bioinformatics/btab063

show,initRandrot-method 23

Description

This list based class contains calculated statistics for the original data (s@) and rotated data (stats).
See also rotateStat.

Components

s@ Calculated statistics for original (non-rotated) data as returned by the statistic function (rotateStat).

stats List of length ncol.s containing statistics on rotated data for each column returned by the
statistic function.

ncol.s Number of columns returned by the statistic function.

R Number of resamples/rotations.

Author(s)

Peter Hettegger

show, initRandrot-method
Show an Object

Description

Display the object by printing structured summary information.

Usage
S4 method for signature 'initRandrot'
show(object)

S4 method for signature 'initBatchRandrot'
show(object)

S4 method for signature 'rotateStat'
show(object)

Arguments

object An object of class initRandrot-class, initRandrotW-class or initBatchRandrot-class.

Details
The show method always displays the original design matrix (X), not the transformed (whitened)
versions.

Value

show returns an invisible NULL.

24 X_decomp

weights,initRandrot-method
Extract model weights

Description

weights is a generic function which extracts fitting weights from objects returned by modeling
functions. NOTE: This man page is for the weights S4 generic function defined in the randRotation
package.

Usage
S4 method for signature 'initRandrot'
weights(object, ...)

S4 method for signature 'initBatchRandrot'

weights(object, ...)
Arguments
object An object of class initRandrot-class, initRandrotW-class or initBatchRandrot-class.

Kept for compatibility with the default method, see ?stats::weights. For
objects defined in package randRotation, this argument is currently not needed.

Value

Weights extracted from the object object. NULL if no weights were specified. See ?stats: :weights
for the value returned by the default method.

Examples

weights
showMethods ("weights")
selectMethod("weights”, "ANY") # the default method

X_decomp Decomposition of the design matrix for random rotation generation

Description

Full QR decomposition of the design matrix X. No argument checks are performed, see Details.

Usage
X_decomp(X = NULL, coef.d = seq_len(ncol(X) - 1))

X_decomp 25

Arguments
X Design matrix as generated by model.matrix.
coef.d Non-H@ coefficients.

Details

The design matrix X is QR decomposed into X = Xq Xr. By performing a full QR decomposition,
Xq is automatically extended to a full basis. Xq is further split into Xd and Xhe, where Xd corre-
sponds to columns coef.d (non-H@ or non-Null-Hypothesis columns) and Xhe correspond to all
other columns (H@ and error columns), see initRandrot. No argument checks are performed for
reasons of performance as this function is called frequently by initRandrot when weights are
used. See (Hettegger et al. 2021) and (Langsrud 2005) for further details.

Value

A list object containing matrices Xd, Xhe and rank of the qr decomposition.

Author(s)

Peter Hettegger

References

Hettegger P, Vierlinger K, Weinhaeusel A (2021). “Random rotation for identifying differentially
expressed genes with linear models following batch effect correction.” Bioinformatics. ISSN 1367-
4803. doi:10.1093/bioinformatics/btab063.

Langsrud O (2005). “Rotation tests.” Statistics and Computing, 15(1), 53—60. ISSN 09603174.
doi:10.1007/s1122200547895.
Examples

design <- cbind(1, rep(@:1, 5))
X_decomp(design)

https://doi.org/10.1093/bioinformatics/btab063
https://doi.org/10.1007/s11222-005-4789-5

Index

* internal
.fdr.qu, 3
initRandrotW, 11
.fdr.q(.fdr.qu), 3
.fdr.qu, 3
.pFdr (.fdr.qu), 3

BiocParallel: :bpparam(), 2/
BiocParallelParam, 2/

contrastModel, 4, 7, 11

df_estimate (randRotation-defunct), 20
dim,initBatchRandrot-method
(dim, initRandrot-method), 5
dim,initRandrot-method, 5
dimnames, initBatchRandrot-method
(dimnames, initRandrot-method),
5
dimnames,initRandrot-method, 5

initBatchRandrot, 9, 2/
initBatchRandrot (initRandrot), 6
initBatchRandrot,list-method
(initRandrot), 6
initBatchRandrot-class, 6
initRandrot, 4-6,6,9-11, 18, 19, 21, 25
initRandrot,list-method (initRandrot), 6
initRandrot-class, 10
initRandrotW, 9, 11, 11
initRandrotW-class (initRandrot-class),
10

list, 25
model.matrix, 25
NA, 7, 11

par, 15
pFdr, 4, 12, 21

pracma: :randortho, 16

qggnorm, 16
qgplot, 16
qqunif, 15

randorth, 16, /18

randpermut, 17

randrot, 6, 8~10, 18, 21

randrot,initBatchRandrot-method
(randrot), 18

randrot, initRandrot-method (randrot), 18

randrot, initRandrotW-method (randrot),
18

randRotation, 24

randRotation (randRotation-package), 2

randRotation-defunct, 20

randRotation-package, 2

rotateStat, 2, 9, 12-14, 19, 20, 21, 23

rotateStat-class, 22

show, initBatchRandrot-method

(show, initRandrot-method), 23
show, initRandrot-method, 23
show, rotateStat-method

(show, initRandrot-method), 23
stats::p.adjust, 12, I3

weights, 24

weights,initBatchRandrot-method
(weights,initRandrot-method),
24

weights,initRandrot-method, 24

X_decomp, 10, 24

	randRotation-package
	.fdr.qu
	contrastModel
	dim,initRandrot-method
	dimnames,initRandrot-method
	initBatchRandrot-class
	initRandrot
	initRandrot-class
	initRandrotW
	pFdr
	qqunif
	randorth
	randpermut
	randrot
	randRotation-defunct
	rotateStat
	rotateStat-class
	show,initRandrot-method
	weights,initRandrot-method
	X_decomp
	Index

