

Package ‘pqsfinder’

January 24, 2026

Type Package

Title Identification of potential quadruplex forming sequences

Version 2.27.0

Date 2021-11-21

URL <https://pqsfinder.fi.muni.cz>

Author Jiri Hon, Dominika Labudova, Matej Lexa and Tomas Martinek

Maintainer Jiri Hon <jiri.hon@gmail.com>

Description Pqsfinder detects

DNA and RNA sequence patterns that are likely to fold into an intramolecular G-quadruplex (G4). Unlike many other approaches, pqsfinder is able to detect G4s folded from imperfect G-runs containing bulges or mismatches or G4s having long loops. Pqsfinder also assigns an integer score to each hit that was fitted on G4 sequencing data and corresponds to expected stability of the folded G4.

License BSD_2_clause + file LICENSE

biocViews MotifDiscovery, SequenceMatching, GeneRegulation

LazyData TRUE

Depends Biostrings

Imports Rcpp (>= 0.12.3), GenomicRanges, IRanges, S4Vectors, methods

Suggests BiocStyle, knitr, rmarkdown, Gviz, rtracklayer, ggplot2, BSgenome.Hsapiens.UCSC.hg38, testthat, stringr, stringi

LinkingTo Rcpp, BH (>= 1.78.0)

SystemRequirements GNU make, C++11

VignetteBuilder knitr

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation yes

git_url <https://git.bioconductor.org/packages/pqsfinder>

git_branch devel
git_last_commit 8870134
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-23

Contents

as.character,PQSViews-method	2
density,PQSViews-method	3
maxScores	3
maxScores,PQSViews-method	4
pqsfinder	4
PQSViews	7
PQSViews-class	8
score,PQSViews-method	9
show,PQSViews-method	9
strand,PQSViews-method	10

Index

11

as.character,PQSViews-method
Coerce to character vector

Description

Coerce to character vector

Usage

```
## S4 method for signature 'PQSViews'
as.character(x)
```

Arguments

x PQSViews object.

Value

Character vector representing PQS.

density,PQSViews-method
Get density vector

Description

Desity vector represents numbers of PQS (potential quadruplex forming sequences) overlapping at each position in input sequence.

Usage

```
## S4 method for signature 'PQSViews'  
density(x)
```

Arguments

x PQSViews object.

Value

Density vector.

Examples

```
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTGGGTGGGAAAA"))  
density(pqs)
```

maxScores *Get vector of maximal scores*

Description

Get vector of maximal scores for a given object.

Usage

```
maxScores(x, ...)
```

Arguments

x An object.
... Additional arguments, for use in specific methods.

Value

Vector of maximal scores.

Examples

```
showMethods("maxScores")
```

maxScores, PQSViews-method

Get vector of maximal scores

Description

For each sequence position it gives the maximal score of all PQS conformations which overlap that position.

Usage

```
## S4 method for signature 'PQSViews'
maxScores(x)
```

Arguments

x PQSViews object.

Value

Vector of maximal scores.

Examples

```
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTGGGTGGGAAAA"))
maxScores(pqs)
```

pqsfinder

Identify potential quadruplex forming sequences.

Description

Function for identification of all potential intramolecular quadruplex patterns (PQS) in DNA or RNA sequence.

Usage

```
  pqsfinder(  
    subject,  
    strand = "*",  
    overlapping = FALSE,  
    max_len = 50L,  
    min_score = 47L,  
    run_min_len = 2L,  
    run_max_len = 11L,  
    loop_min_len = 0L,  
    loop_max_len = 30L,  
    max_bulges = 3L,  
    max_mismatches = 3L,  
    max_defects = 3L,  
    tetrad_bonus = 40L,  
    mismatch_penalty = 28L,  
    bulge_penalty = 20L,  
    bulge_len_factor = 0.2,  
    bulge_len_exponent = 1,  
    loop_mean_factor = 6.6,  
    loop_mean_exponent = 0.8,  
    run_re = "G{1,10}.{0,9}G{1,10}",  
    custom_scoring_fn = NULL,  
    use_default_scoring = TRUE,  
    deep = FALSE,  
    verbose = FALSE  
)
```

Arguments

subject	DNAString or RNAString object.
strand	Strand specification. Allowed values are "+", "-" or "*", where the last one represents both strands. Implicitly, the input DNAString object is assumed to encode the "+" strand.
overlapping	If true, than all overlapping PQS will be reported.
max_len	Maximal length of PQS.
min_score	Minimal PQS score. The default value 52 shows the best balanced accuracy on G4 sequencing data provided by Chambers et al. 2015.
run_min_len	Minimal length of quadruplex run.
run_max_len	Maximal length of quadruplex run.
loop_min_len	Minimal length of quadruplex loop. Unless the default scoring system is disabled, at most one loop can have zero length.
loop_max_len	Maximal length of quadruplex loop.
max_bulges	Maximal number of runs with bulge.
max_mismatches	Maximal number of runs with mismatch.

max_defects Maximum number of defects in total (`max_bulges + max_mismatches`).

tetrad_bonus Score bonus for one complete G tetrad.

mismatch_penalty Penalization for a mismatch in tetrad.

bulge_penalty Penalization for a bulge in quadruplex run.

bulge_len_factor Penalization factor for a bulge length.

bulge_len_exponent Exponent of bulge length.

loop_mean_factor Penalization factor of loop length mean.

loop_mean_exponent Exponent of loop length mean.

run_re Regular expression specifying one run of quadruplex.

custom_scoring_fn Custom quadruplex scoring function. It takes the following 10 arguments: `subject` - Input DNAString or RNAString object, `score` - implicit PQS score, `start` - PQS start position, `width` - PQS width, `loop_1` - start pos. of loop #1, `run_2` - start pos. of run #2, `loop_2` - start pos. of loop #2, `run_3` - start pos. of run #3, `loop_3` - start pos. of loop #3, `run_4` - start pos. of run #4. Return value of the function has to be new score represented as a single integer value. Please note that if `use_default_scoring` is enabled, the custom scoring function is evaluated AFTER the default scoring system but ONLY IF the default scoring system resulted in non-zero score (for performance reasons). On the other hand, when `use_default_scoring` is disabled, custom scoring function is evaluated on every PQS.

use_default_scoring Enables default internal scoring system. This option is particularly useful in case you intend to radically change the default behavior and specify your own scoring function. By disabling the default scoring you will get a full control above the underlying detection algorithm.

deep Perform deep search. With this option enabled, `maxScores` and `density` vectors are computed. Deep search is much more computationally demanding.

verbose Enables detailed output. Turn it on if you want to see all possible PQS found at each positions and not just the best one. It is highly recommended to use this option for debugging custom quadruplex scoring function. Each PQS is reported on separate row in the following format: `start cnt pqS_sequence score`, where `start` is the PQS starting position, `pqS_sequence` shows the PQS sequence structure with each run surrounded by square brackets and `score` is the score assigned to the particular PQS by all applied scoring functions.

Details

Use `elementMetadata` function to get extra PQS features like number of tetrads (nt), bulges (nb), mismatches (nm) or loop lengths (ll1, ll2, ll3).

Value

[PQSViews](#) object

Examples

```
pv <- pqsfinder(DNAString("CCCCCCCCGGTGGGTGGGTGGTAAAA"))
pv
elementMetadata(pv)
```

PQSViews

PQSViews class constructor

Description

User friendly constructor for `PQSViews` class representing potential quadruplex forming sequences (PQS). `PQSViews` is a subclass of [XStringViews](#) class and adds two more slots to store PQS density and PQS score distribution.

Usage

```
PQSViews(
  subject,
  start,
  width,
  strand,
  score,
  density,
  max_scores,
  nt,
  nb,
  nm,
  rl1,
  rl2,
  rl3,
  ll1,
  ll2,
  ll3
)
```

Arguments

subject	DNAString or RNAString object.
start	Start positions.
width	Lengths.
strand	Strand specifications.

score	Scores.
density	Numbers of PQS overlapping at each position in subject.
max_scores	Score of the best PQS found at each position.
nt	Tetrad numbers.
nb	Bulge counts.
nm	Mismatch counts.
r11	Run 1 lengths.
r12	Run 2 lengths.
r13	Run 3 lengths.
l11	Loop 1 lengths.
l12	Loop 2 lengths.
l13	Loop 3 lengths.

Details

Use [elementMetadata](#) function to get extra PQS features like number of tetrads, bulges, mismatches or loop lengths.

Value

PQSViews object.

Examples

```
pv <- PQSViews(DNAString("GGTGGTGGTGG"), 1, 11, "+", 33, as.integer(rep(1, 11)),
                  as.integer(rep(33, 11)), 2, 0, 0, 2, 2, 2, 1, 1, 1)
start(pv)
width(pv)
strand(pv)
score(pv)
density(pv)
maxScores(pv)
elementMetadata(pv)
```

Description

Represents potential quadruplex forming sequences found by [pqsfinder](#) function. This is a sub-class of [XStringViews-class](#) class and adds one more slot.

Slots

`density` Numbers of PQS (potential quadruplex forming sequences) overlapping at each position in input sequence.
`max_scores` Score of the best PQS found at each position.

`score`,PQSViews-method *Get PQS score vector*

Description

Get PQS score vector

Usage

```
## S4 method for signature 'PQSViews'  
score(x)
```

Arguments

`x` PQSViews object.

Value

Score vector.

Examples

```
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTGGGTGGGAAAA"))  
score(pqs)
```

`show`,PQSViews-method *Show method*

Description

Show method

Usage

```
## S4 method for signature 'PQSViews'  
show(object)
```

Arguments

`object` PQSViews object.

Value

PQSViews object printed.

strand,PQSViews-method

Get PQS strand vector

Description

Get PQS strand vector

Usage

```
## S4 method for signature 'PQSViews'  
strand(x)
```

Arguments

x PQSViews object.

Value

Strand vector.

Examples

```
pqs <- pqsfinder(DNAString("CCCCCCGGGTGGGTGGGTGGGAAAA"))  
strand(pqs)
```

Index

.PQSViews (PQSViews-class), 8
as.character, PQSViews-method, 2
density, 6
density, PQSViews-method, 3
elementMetadata, 6, 8
maxScores, 3, 6
maxScores, PQSViews-method, 4
pqsfinder, 4, 8
PQSViews, 7, 7
PQSViews-class, 8
score, PQSViews-method, 9
show, PQSViews-method, 9
strand, PQSViews-method, 10
XStringViews, 7