
Package ‘multicrispr’
January 24, 2026

Title Multi-locus multi-purpose Crispr/Cas design

Version 1.21.0

Encoding UTF-8

Description This package is for designing Crispr/Cas9 and Prime Editing experiments.
It contains functions to (1) define and transform genomic targets, (2) find spacers
(4) count offtarget (mis)matches, and (5) compute Doench2016/2014 targeting efficiency.
Care has been taken for multicrispr to scale well towards large target sets,
enabling the design of large Crispr/Cas9 libraries.

License GPL-2

LazyData true

RoxygenNote 7.3.2

Depends R (>= 4.0)

Imports BiocGenerics, Biostrings, BSgenome, CRISPRseek, data.table,
Seqinfo, GenomicFeatures, GenomicRanges, ggplot2, grid,
karyoploteR, magrittr, methods, parallel, plyranges, Rbowtie,
reticulate, rtracklayer, stats, stringi, tidyr, tidyselect,
utils

Suggests AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm10,
BSgenome.Scerevisiae.UCSC.sacCer1, ensembldb, IRanges,
GenomeInfoDb, knitr, magick, rmarkdown, testthat,
TxDb.Mmusculus.UCSC.mm10.knownGene

VignetteBuilder knitr

biocViews CRISPR, Software

BugReports https://github.com/bhagwataditya/multicrispr/issues

URL https://github.com/bhagwataditya/multicrispr

git_url https://git.bioconductor.org/packages/multicrispr

git_branch devel

git_last_commit 67e223f

git_last_commit_date 2025-10-29

1

https://github.com/bhagwataditya/multicrispr/issues
https://github.com/bhagwataditya/multicrispr

2 Contents

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Aditya Bhagwat [aut, cre],
Richie ´Cotton [aut],
Rene Wiegandt [ctb],
Mette Bentsen [ctb],
Jens Preussner [ctb],
Michael Lawrence [ctb],
Hervé Pagès [ctb],
Johannes Graumann [sad],
Mario Looso [sad, rth]

Maintainer Aditya Bhagwat <aditya.bhagwat@uni-marburg.de>

Contents

add_genome_matches . 3
add_inverse_strand . 4
add_seq . 5
add_target_matches . 6
bed_to_granges . 7
char_to_granges . 8
double_flank . 8
extend_for_pe . 10
extend_pe_to_gg . 11
extract_matchranges . 12
extract_subranges . 13
find_gg . 13
find_primespacers . 14
find_spacers . 16
genes_to_granges . 18
gr2dt . 19
has_been_indexed . 19
index_genome . 20
index_targets . 21
plot_intervals . 22
plot_karyogram . 23
score_ontargets . 24
up_flank . 26
write_ranges . 28

Index 29

add_genome_matches 3

add_genome_matches Add genome matches

Description

Add genome matches

Usage

add_genome_matches(
spacers,
bsgenome = getBSgenome(genome(spacers)[1]),
mismatches = 2,
pam = "NGG",
offtargetmethod = c("bowtie", "pdict")[1],
outdir = OUTDIR,
indexedgenomesdir = INDEXEDGENOMESDIR,
verbose = TRUE

)

Arguments

spacers GRanges

bsgenome BSgenome

mismatches number

pam string
offtargetmethod

’bowtie’ or ’pdict’

outdir bowtie output directory
indexedgenomesdir

directory with indexed genomes

verbose TRUE (default) or FALSE

Value

GRanges

Examples

require(magrittr)
file <- system.file('extdata/SRF.bed', package='multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
targets0 <- bed_to_granges(file, 'mm10')
targets <- extend(targets0)
spacers <- find_spacers(targets, bsgenome, complement = FALSE,

ontargetmethod = NULL, offtargetmethod = NULL)

4 add_inverse_strand

spacers %<>% extract(1:100)
spacers %<>% add_genome_matches(bsgenome)

add_inverse_strand Add inverse strand

Description

Add inverse strand

Usage

add_inverse_strand(gr, verbose = FALSE, plot = FALSE, ...)

Arguments

gr GRanges-class

verbose TRUE or FALSE (default)

plot TRUE or FALSE (default)

... plot_intervals arguments

Value

GRanges-class

Examples

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
add_inverse_strand(gr, plot = TRUE)

TFBS example
#-------------

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, genome = 'mm10')
add_inverse_strand(gr)

add_seq 5

add_seq Add sequence to GRanges

Description

Add sequence to GRanges

Usage

add_seq(gr, bsgenome, verbose = FALSE, as.character = TRUE)

Arguments

gr GRanges-class

bsgenome BSgenome-class

verbose TRUE or FALSE (default)

as.character TRUE (default) or FALSE

Value

GRanges-class

Examples

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
(gr %<>% add_seq(bsgenome))

TFBS example
#-------------

bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, 'mm10')
(gr %<>% add_seq(bsgenome))

6 add_target_matches

add_target_matches Add target matches

Description

Add target matches

Usage

add_target_matches(
spacers,
targets,
bsgenome,
mismatches = 2,
pam = "NGG",
outdir = OUTDIR,
verbose = TRUE

)

Arguments

spacers GRanges

targets GRanges

bsgenome BSgenome

mismatches number

pam string

outdir bowtie output directory

verbose TRUE (default) or FALSE

Value

GRanges

Examples

require(magrittr)
file <- system.file('extdata/SRF.bed', package='multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
targets0 <- bed_to_granges(file, 'mm10')
targets <- extend(targets0)
spacers <- find_spacers(targets, bsgenome, complement = FALSE,

ontargetmethod = NULL, offtargetmethod = NULL)
spacers %<>% add_target_matches(targets, bsgenome)

bed_to_granges 7

bed_to_granges Read bedfile into GRanges

Description

Read bedfile into GRanges

Usage

bed_to_granges(
bedfile,
genome,
txdb = NULL,
do_order = TRUE,
plot = TRUE,
verbose = TRUE

)

Arguments

bedfile file path

genome string: UCSC genome name (e.g. ’mm10’)

txdb NULL (default) or TxDb-class (used for gene annotation)

do_order TRUE (default) or FALSE: order on seqnames and star?

plot TRUE (default) or FALSE: plot karyogram?

verbose TRUE (default) or FALSE

Value

GRanges-class

See Also

char_to_granges, genes_to_granges

Examples

bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
(gr <- bed_to_granges(bedfile, genome='mm10'))

8 double_flank

char_to_granges Convert character vector into GRanges

Description

Convert character vector into GRanges

Usage

char_to_granges(x, bsgenome)

Arguments

x character vector

bsgenome BSgenome-class

Value

GRanges-class

See Also

bed_to_granges, genes_to_granges

Examples

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
x <- c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+') # ins

gr <- char_to_granges(x, bsgenome)
plot_intervals(gr, facet_var = c('targetname', 'seqnames'))

double_flank Double flank

Description

Double flank

double_flank 9

Usage

double_flank(
gr,
upstart = -200,
upend = -1,
downstart = 1,
downend = 200,
strandaware = TRUE,
plot = FALSE,
linetype_var = "set",
...

)

Arguments

gr GRanges-class

upstart upstream flank start in relation to start(gr)

upend upstream flank end in relation to start(gr)

downstart downstream flank start in relation to end(gr)

downend downstream flank end in relation to end(gr)

strandaware TRUE (default) or FALSE

plot TRUE or FALSE (default)

linetype_var gr var mapped to linetype

... passed to plot_intervals

Value

GRanges-class

Examples

Prime Editing example
#----------------------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
double_flank(gr, -10, -1, +1, +20, plot = TRUE)

TFBS example
#-------------

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, genome = 'mm10', plot = FALSE)
double_flank(gr, plot = TRUE)

10 extend_for_pe

extend_for_pe Extend ranges for prime editing

Description

Extend target ranges to span in which to look for spacer-pam seqs

Usage

extend_for_pe(
gr,
bsgenome,
nrt = 16,
spacer = strrep("N", 20),
pam = "NGG",
plot = FALSE

)

Arguments

gr GRanges-class

bsgenome BSgenome-class

nrt number: reverse transcription length

spacer string: spacer pattern in extended IUPAC alphabet

pam string: pam pattern in extended IUPAC alphabet

plot TRUE (default) or FALSE

Details

Extend target ranges to find nearby spacers for prime editing

Value

GRanges-class

Examples

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome = bsgenome)
find_primespacers(gr, bsgenome)
(grext <- extend_for_pe(gr))
find_spacers(grext, bsgenome, complement = FALSE)

extend_pe_to_gg 11

extend_pe_to_gg Extend prime editing target to find GG sites

Description

Extend prime editing target to find GG sites in accessible neighbourhood

Usage

extend_pe_to_gg(gr, nrt = 16, plot = FALSE)

Arguments

gr target GRanges-class

nrt n RT nucleotides (default 16, recommended 10-16)

plot TRUE or FALSE (default)

Details

Extends each target range to the area in which to search for a prime editing GG duplet, as shown in
the sketch below.

===============> —-GG———> —-GG———> ** <———GG— <———GG—- <===============

Value

GRanges-class

Examples

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
extend_pe_to_gg(gr, plot = TRUE)

12 extract_matchranges

extract_matchranges Extract matching subranges

Description

Extract subranges that match pattern

Usage

extract_matchranges(gr, bsgenome, pattern, plot = FALSE)

Arguments

gr GRanges-class

bsgenome BSgenome{BSgenome-class}

pattern string: search pattern in extended IUPAC alphabet

plot TRUE or FALSE (default)

Value

GRanges-class

Examples

PE example
#------------
require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
gr %<>% extend_for_pe()
pattern <- strrep('N',20) %>% paste0('NGG')
extract_matchranges(gr, bsgenome, pattern, plot = TRUE)

TFBS examples
#--------------
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, 'mm10') %>% extend()
extract_matchranges(gr, bsgenome, pattern = strrep('N',20) %>% paste0('NGG'))

extract_subranges 13

extract_subranges Extract subranges

Description

Extract subranges from a GRanges-class object

Usage

extract_subranges(gr, ir, plot = FALSE)

Arguments

gr GRanges-class

ir IRanges-class: subranges to be extracted

plot TRUE or FALSE (default)

Value

GRanges-class.

Examples

Extract a subrange
gr <- GenomicRanges::GRanges(c(A = 'chr1:1-100:+', B = 'chr1:1-100:-'))
gr$targetname <- 'AB'
ir <- IRanges::IRanges(c(A = '1-10', A = '11-20', B = '1-10', B = '11-20'))
extract_subranges(gr, ir, plot = TRUE)

Return empty GRanges for empty IRanges
extract_subranges(GenomicRanges::GRanges('chr1:345-456'), IRanges::IRanges())

find_gg Find GG

Description

Find GG

Usage

find_gg(gr)

Arguments

gr GRanges-class

14 find_primespacers

Value

GRanges-class

Examples

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
gr %<>% extend_pe_to_gg(plot = TRUE) %>% add_seq(bsgenome)
find_gg(gr)

find_primespacers Find prime editing spacers

Description

Find prime editing spacers around target ranges

Usage

find_primespacers(
gr,
bsgenome,
edits = get_plus_seq(bsgenome, gr),
nprimer = 13,
nrt = 16,
ontargetmethod = c("Doench2014", "Doench2016")[1],
offtargetmethod = c("bowtie", "pdict")[1],
mismatches = 0,
nickmatches = 2,
indexedgenomesdir = INDEXEDGENOMESDIR,
outdir = OUTDIR,
verbose = TRUE,
plot = TRUE,
...

)

Arguments

gr GRanges-class

bsgenome BSgenome-class

find_primespacers 15

edits character vector: desired edits on ’+’ strand. If named, names should be identi-
cal to those of gr

nprimer n primer nucleotides (default 13, max 17)

nrt n rev transcr nucleotides (default 16, recomm. 10-16)

ontargetmethod ’Doench2014’ or ’Doench2016’: on-target scoring method
offtargetmethod

’bowtie’ or ’pdict’

mismatches no of primespacer mismatches (default 0, to suppress offtarget analysis: -1)

nickmatches no of nickspacer offtarget mismatches (default 2, to suppresses offtarget analy-
sis: -1)

indexedgenomesdir

directory with indexed genomes (as created by index_genome)

outdir directory whre offtarget analysis output is written

verbose TRUE (default) or FALSE

plot TRUE (default) or FALSE

... passed to plot_intervals

Details

Below the architecture of a prime editing site. Edits can be performed anywhere in the revtranscript
area.

spacer pam ——————–=== primer revtranscript ————-================ 1..............17....GG..........
.....................CC.......... ———-extension———-

Value

GRanges-class with prime editing spacer ranges and following mcols: * crisprspacer: N20 spac-
ers * crisprpam: NGG PAMs * crisprprimer: primer (on PAM strand) * crisprtranscript: reverse
transcript (on PAM strand) * crisprextension: 3’ extension of gRNA contains: reverse transcrip-
tion template + primer binding site sequence can be found on non-PAM strand * crisprextrange:
genomic range of crispr extension * Doench2016|4: on-target efficiency scores * off0, off1, off2:
number of offtargets with 0, 1, 2 mismatches * off: total number of offtargets: off = off0 + off1 + ...
* nickrange: nickspacer range * nickspacer: nickspacer sequence * nickDoench2016|4: nickspacer
Doench scores * nickoff: nickspacer offtarget counts

See Also

find_spacers to find standard crispr sites

Examples

Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(

PRNP = 'chr20:4699600:+', # snp: prion disease
HBB = 'chr11:5227002:-', # snp: sickle cell anemia

16 find_spacers

HEXA = 'chr15:72346580-72346583:-', # del: tay sachs disease
CFTR = 'chr7:117559593-117559595:+'), # ins: cystic fibrosis
bsgenome)

spacers <- find_primespacers(gr, bsgenome)
spacers <- find_spacers(extend_for_pe(gr), bsgenome, complement = FALSE)

Edit PRNP locus for resistance against prion disease (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+'), bsgenome)
find_primespacers(gr, bsgenome)
find_primespacers(gr, bsgenome, edits = 'T')

find_spacers Find crispr spacers in targetranges

Description

Find crispr spacers in targetranges

Usage

find_spacers(
gr,
bsgenome,
spacer = strrep("N", 20),
pam = "NGG",
complement = TRUE,
ontargetmethod = c("Doench2014", "Doench2016")[1],
offtargetmethod = c("bowtie", "pdict")[1],
offtargetfilterby = character(0),
subtract_targets = FALSE,
mismatches = 2,
indexedgenomesdir = INDEXEDGENOMESDIR,
outdir = OUTDIR,
verbose = TRUE,
plot = TRUE,
...

)

Arguments

gr GRanges-class

bsgenome BSgenome-class

spacer string: spacer pattern in extended IUPAC alphabet

pam string: pam pattern in extended IUPAC alphabet

complement TRUE (default) or FALSE: also search in compl ranges?

ontargetmethod ’Doench2016’,’Doench2016’ or NULL (no on-target score)

find_spacers 17

offtargetmethod

’bowtie’, ’pdict’, or NULL (no offtarget analysis)
offtargetfilterby

filter for best off-target counts by this variable
subtract_targets

TRUE or FALSE (default): whether to subtract target (mis)matches from offtar-
get counts

mismatches 0-3: allowed mismatches in offtargetanalysis (choose mismatch=-1 to suppress
offtarget analysis)

indexedgenomesdir

directory with Bowtie-indexed genomes (as produced with index_genome)

outdir directory where bowtie analysis results are written to

verbose TRUE (default) or FALSE

plot TRUE (default) or FALSE

... passed to plot_intervals

Value

GRanges-class

See Also

find_primespacers to find prime editing spacers

Examples

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
plot_intervals(gr)
find_primespacers(gr, bsgenome)
find_spacers(extend_for_pe(gr), bsgenome, complement=FALSE, mismatches=0)

complement = FALSE because extend_for_pe already
adds reverse complements and does so in a strand-specific
manner

TFBS example
#-------------

bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, 'mm10') %>% extend()
gr %<>% extract(1:100)
find_spacers(gr, bsgenome, subtract_targets = TRUE)

18 genes_to_granges

genes_to_granges Convert geneids into GRanges

Description

Convert geneids into GRanges

Usage

genes_to_granges(geneids, txdb, complement = TRUE, plot = TRUE, verbose = TRUE)

genefile_to_granges(file, txdb, complement = TRUE, plot = TRUE)

Arguments

geneids Gene identifier vector
txdb TxDb-class or EnsDb-class
complement TRUE (default) or FALSE: add complementary strand?
plot TRUE (default) or FALSE
verbose TRUE (default) or FALSE
file Gene identifier file (one per row)

Value

GRanges-class

See Also

char_to_granges, bed_to_granges

Examples

Entrez
#-------

genefile <- system.file('extdata/SRF.entrez', package='multicrispr')
geneids <- as.character(read.table(genefile)[[1]])
txdb <- getFromNamespace('TxDb.Mmusculus.UCSC.mm10.knownGene',

'TxDb.Mmusculus.UCSC.mm10.knownGene')
(gr <- genes_to_granges(geneids, txdb))
(gr <- genefile_to_granges(genefile, txdb))

Ensembl
#--------

txdb <- AnnotationHub::AnnotationHub()[["AH75036"]]
genefile <- system.file('extdata/SRF.ensembl', package='multicrispr')
geneids <- as.character(read.table(genefile)[[1]])
(gr <- genes_to_granges(geneids, txdb))
(gr <- genefile_to_granges(genefile, txdb))

gr2dt 19

gr2dt GRanges <-> data.table

Description

GRanges <-> data.table

Usage

gr2dt(gr)

dt2gr(dt, seqinfo)

Arguments

gr GRanges-class

dt data.table

seqinfo Seqinfo-class

Value

data.table (gr2dt) or GRanges (dt2gr)

Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
(dt <- gr2dt(gr))
(gr <- dt2gr(dt, BSgenome::seqinfo(bsgenome)))

has_been_indexed Has been indexed?

Description

Has been indexed?

Usage

has_been_indexed(bsgenome, indexedgenomesdir = INDEXEDGENOMESDIR)

20 index_genome

Arguments

bsgenome BSgenome
indexedgenomesdir

directory with indexed genomes

Value

TRUE or FALSE

Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
has_been_indexed(bsgenome)

index_genome Index genome

Description

Bowtie index genome

Usage

index_genome(
bsgenome,
indexedgenomesdir = INDEXEDGENOMESDIR,
download = TRUE,
overwrite = FALSE

)

Arguments

bsgenome BSgenome-class

indexedgenomesdir

string: directory with bowtie-indexed genome

download TRUE (default) or FALSE: whether to download pre-indexed version if available

overwrite TRUE or FALSE (default)

Details

Checks whether already available locally. If not, checks whether indexed version can be down-
loaded from our s3 storage. If not, builds the index with bowtie. This can take a few hours, but is a
one-time operation.

Value

invisible(genomdir)

index_targets 21

Examples

bsgenome <- BSgenome.Scerevisiae.UCSC.sacCer1::Scerevisiae
index_genome(bsgenome, indexedgenomesdir = tempdir())

index_targets Index targets

Description

Bowtie index targets

Usage

index_targets(
targets,
bsgenome = getBSgenome(genome(targets)[1]),
outdir = OUTDIR,
verbose = TRUE

)

Arguments

targets GRanges-class

bsgenome BSgenome-class

outdir string: output directory

verbose TRUE (default) or FALSE

Value

invisible(targetdir)

Examples

require(magrittr)
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
targets <- extend(bed_to_granges(bedfile, genome = 'mm10'))
index_targets(targets, bsgenome)

22 plot_intervals

plot_intervals Interval plot GRanges

Description

Interval plot GRanges

Usage

plot_intervals(
gr,
xref = "targetname",
y = default_y(gr),
nperchrom = 2,
nchrom = 4,
color_var = "targetname",
facet_var = "seqnames",
linetype_var = default_linetype(gr),
size_var = default_size_var(gr),
alpha_var = default_alpha_var(gr),
title = NULL,
scales = "free"

)

Arguments

gr GRanges-class

xref gr var used for scaling x axis

y ’names’ (default) or name of gr variable

nperchrom number (default 1): n head (and n tail) targets shown per chromosome

nchrom number (default 6) of chromosomes shown

color_var ’seqnames’ (default) or other gr variable

facet_var NULL(default) or gr variable mapped to facet

linetype_var NULL (default) or gr variable mapped to linetype

size_var NULL (default) or gr variable mapped to size

alpha_var NULL or gr variable mapped to alpha

title NULL or string: plot title

scales ’free’, ’fixed’, etc

Value

ggplot object

plot_karyogram 23

See Also

plot_karyogram

Examples

SRF sites
require(magrittr)
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
targets <- bed_to_granges(bedfile, 'mm10', plot = FALSE)
plot_intervals(targets)

PE targets
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',

HBB = 'chr11:5227002:-',
HEXA = 'chr15:72346580-72346583:-',
CFTR = 'chr7:117559593-117559595:+'),

bsgenome)
spacers <- find_primespacers(gr, bsgenome, plot = FALSE)
plot_intervals(gr)
plot_intervals(extend_for_pe(gr))
plot_intervals(spacers)

Empty gr
plot_intervals(GenomicRanges::GRanges())

plot_karyogram Karyo/Interval Plot GRanges(List)

Description

Karyo/Interval Plot GRanges(List)

Usage

plot_karyogram(grlist, title = unique(genome(grlist)))

Arguments

grlist GRanges-class

title plot title

Value

list

24 score_ontargets

See Also

plot_intervals

Examples

Plot GRanges
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
gr <- bed_to_granges(bedfile, 'mm10', plot = FALSE)
plot_karyogram(gr)

Plot GRangesList
flanks <- up_flank(gr, stranded=FALSE)
grlist <- GenomicRanges::GRangesList(sites = gr, flanks = flanks)
plot_karyogram(grlist)

score_ontargets Add on-target efficiency scores

Description

Add Doench2014 or Doench2016 on-target efficiency scores

Usage

score_ontargets(
spacers,
bsgenome,
ontargetmethod = c("Doench2014", "Doench2016")[1],
chunksize = 10000,
verbose = TRUE,
plot = TRUE,
...

)

Arguments

spacers GRanges-class: spacers

bsgenome BSgenome-class

ontargetmethod ’Doench2014’ (default) or ’Doench2016’ (requires non-NULL argument python,
virtualenv, or condaenv)

chunksize Doench2016 is executed in chunks of chunksize

verbose TRUE (default) or FALSE

plot TRUE (default) or FALSE

... passed to plot_intervals

score_ontargets 25

Details

add_ontargets adds efficiency scores filter_ontargets adds efficiency scores and filters on
them

Value

numeric vector

References

Doench 2014, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactiva-
tion. Nature Biotechnology, doi: 10.1038/nbt.3026

Doench 2016, Optimized sgRNA design to maximize activity and minimize off-target effects of
CRISPR-Cas9. Nature Biotechnology, doi: 10.1038/nbt.3437

Python module azimuth: github/MicrosoftResearch/azimuth

Examples

Install azimuth
#----------------

With reticulate
require(reticulate)
conda_create('azienv', c('python=2.7'))
use_condaenv('azienv')
py_install(c('azimuth', 'scikit-learn==0.17.1', 'biopython=='1.76'),
'azienv', pip = TRUE)

Directly
conda create --name azienv python=2.7
conda activate azienv
pip install scikit-learn==0.17.1
pip install biopython==1.76
pip install azimuth

PE example
#-----------

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
targets <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'), # ins

bsgenome)
spacers <- find_primespacers(targets, bsgenome, ontargetmethod=NULL,

offtargetmethod=NULL)
spacers %<>% score_ontargets(bsgenome, 'Doench2014')
reticulate::use_condaenv('azienv')
reticulate::import('azimuth')
spacers %<>% score_ontargets(bsgenome, 'Doench2016')

TFBS example

26 up_flank

#-------------
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10
targets <- extend(bed_to_granges(bedfile, 'mm10'))
spacers <- find_spacers(targets, bsgenome, ontargetmethod=NULL,

offtargetmethod=NULL)
spacers %<>% score_ontargets(bsgenome, 'Doench2014')
reticulate::use_condaenv('azienv')
reticulate::import('azimuth')
spacers %>% score_ontargets(bsgenome, 'Doench2016')

up_flank Extend or Flank GRanges

Description

Returns extensions, upstream flanks, or downstream flanks

Usage

up_flank(
gr,
start = -200,
end = -1,
strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,
plot = FALSE,
linetype_var = "set",
...

)

down_flank(
gr,
start = 1,
end = 200,
strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,
plot = FALSE,
linetype_var = "set",
...

)

extend(
gr,
start = -22,
end = 22,

up_flank 27

strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,
plot = FALSE,
linetype_var = "set",
...

)

Arguments

gr GRanges-class

start number or vector (same length as gr): start definition, relative to gr start (up_flank,
extend) or gr end (down_flank).

end number or vector (same length as gr): end definition, relative to gr start (up_flank)
or gr end (extend, down_flank).

strandaware TRUE (default) or FALSE: consider strand information?

bsgenome NULL (default) or BSgenome-class. Required to update gr$seq if present.

verbose TRUE or FALSE (default)

plot TRUE or FALSE (default)

linetype_var string: gr var mapped to linetype

... passed to plot_intervals

Details

up_flank returns upstream flanks, in relation to start(gr). down_flank returns downstream flanks,
in relation to end(gr). extend returns extensions, in relation to start(gr) and end(gr)

Value

a GRanges-class

Examples

PE example
#-----------
require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+', # snp

HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+'),# ins

bsgenome = bsgenome)
gr %>% up_flank(-22, -1, plot=TRUE)
gr %>% up_flank(c(-10,-20,-30,-40), -1, plot=TRUE)
gr %>% up_flank(-22, -1, plot=TRUE, strandaware=FALSE)

gr %>% down_flank(+1, +22, plot=TRUE)
gr %>% down_flank(+1, c(10, 20, 30, 40), plot=TRUE)

28 write_ranges

gr %>% down_flank(+1, +22, plot=TRUE, strandaware=FALSE)

gr %>% extend(-10, +20, plot=TRUE)
gr %>% extend(-10, +20, plot=TRUE, strandaware=FALSE)

TFBS example
#-------------

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, genome = 'mm10')
gr %>% extend(plot = TRUE)
gr %>% up_flank(plot = TRUE)
gr %>% down_flank(plot = TRUE)

write_ranges Write GRanges to file

Description

Write GRanges to file

Usage

write_ranges(gr, file, verbose = TRUE)

read_ranges(file, bsgenome)

Arguments

gr GRanges-class

file file
verbose TRUE (default) or FALSE
bsgenome BSgenome-class

Value

GRanges-class for read_ranges

Examples

Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(

PRNP = 'chr20:4699600:+', # snp: prion disease
HBB = 'chr11:5227002:-', # snp: sickle cell anemia
HEXA = 'chr15:72346580-72346583:-', # del: tay sachs disease
CFTR = 'chr7:117559593-117559595:+'), # ins: cystic fibrosis
bsgenome)

file <- file.path(tempdir(), 'gr.txt')
write_ranges(gr, file)
read_ranges(file, bsgenome)

Index

add_genome_matches, 3
add_inverse_strand, 4
add_seq, 5
add_target_matches, 6

bed_to_granges, 7, 8, 18
BSgenome, 12

char_to_granges, 7, 8, 18

double_flank, 8
down_flank (up_flank), 26
dt2gr (gr2dt), 19

extend (up_flank), 26
extend_for_pe, 10
extend_pe_to_gg, 11
extract_matchranges, 12
extract_subranges, 13

find_gg, 13
find_primespacers, 14, 17
find_spacers, 15, 16

genefile_to_granges (genes_to_granges),
18

genes_to_granges, 7, 8, 18
gr2dt, 19

has_been_indexed, 19

index_genome, 15, 17, 20
index_targets, 21

plot_intervals, 4, 22, 24, 27
plot_karyogram, 23, 23

read_ranges (write_ranges), 28

score_ontargets, 24

up_flank, 26

write_ranges, 28

29

	add_genome_matches
	add_inverse_strand
	add_seq
	add_target_matches
	bed_to_granges
	char_to_granges
	double_flank
	extend_for_pe
	extend_pe_to_gg
	extract_matchranges
	extract_subranges
	find_gg
	find_primespacers
	find_spacers
	genes_to_granges
	gr2dt
	has_been_indexed
	index_genome
	index_targets
	plot_intervals
	plot_karyogram
	score_ontargets
	up_flank
	write_ranges
	Index

