Package ‘miaViz’

January 24, 2026

Title Microbiome Analysis Plotting and Visualization
Version 1.19.1

Description The miaViz package implements functions to visualize
TreeSummarizedExperiment objects especially in the context of microbiome
analysis. Part of the mia family of R/Bioconductor packages.

biocViews Microbiome, Software, Visualization
License Artistic-2.0 | file LICENSE

Encoding UTF-8

LazyData false

Depends R (>=4.0), ggplot2, ggraph (>= 2.0), mia (>= 1.13.0),
SummarizedExperiment, TreeSummarizedExperiment

Imports ape, BiocGenerics, BiocParallel, DelayedArray,
DirichletMultinomial, dplyr, ggnewscale, ggrepel, ggtree,
methods, rlang, S4Vectors, scales, scater,
SingleCellExperiment, stats, tibble, tidygraph, tidyr,
tidytext, tidytree, viridis

Suggests beeswarm, BiocStyle, bluster, circlize, ComplexHeatmap,
ggh4x, knitr, mediation, miaTime, patchwork, rmarkdown,
shadowtext, testthat, vegan, vipor

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3
VignetteBuilder knitr

URL https://github.com/microbiome/miaViz

BugReports https://github.com/microbiome/miaViz/issues
git_url https://git.bioconductor.org/packages/miaViz

git_branch devel

git_last commit 894e603

git_last_commit_date 2025-11-09

Repository Bioconductor 3.23

https://github.com/microbiome/miaViz
https://github.com/microbiome/miaViz/issues

Date/Publication 2026-01-23

Author Tuomas Borman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8563-8884>),
Felix G.M. Ernst [aut] (ORCID: <https://orcid.org/0000-0001-5064-0928>),
Leo Lahti [aut] (ORCID: <https://orcid.org/0000-0001-5537-637X>),
Basil Courbayre [ctb],
Giulio Benedetti [ctb] (ORCID: <https://orcid.org/0000-0002-8732-7692>),
Théotime Pralas [ctb],
Chouaib Benchraka [ctb],
Sam Hillman [ctb],
Geraldson Muluh [ctb],
Noah De Gunst [ctb],
Ely Seraidarian [ctb],
Himmi Lindgren [ctb],
Akewak Jeba [ctb] (ORCID: <https://orcid.org/0009-0007-1347-7552>),
Vivian Ikeh [ctb]

Maintainer Tuomas Borman <tuomas.v.borman@utu.fi>

Contents

miaViz-package
deprecate e e
getNeatOrder e
mia-datasets e
mMia-plot-args e e e e e e
plotAbundance
plotAbundanceDensity L
plotBoxplot
plotCCA e
plotColGraph e
plotColTile e e
plotDMNFit
plotHistogram
plotLoadings
plotMediation e e e
PIotNMDS e e
plotRowPrevalence
plotRowTree e
plotScree
plotSeries e e e
rowTreeData o

Index

Contents

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0002-8732-7692
https://orcid.org/0009-0007-1347-7552

miaViz-package 3

miaViz-package miaViz - Microbiome Analysis Plotting and Visualization

Description

The scope of this package is the plotting and visualization of microbiome data. The main class for
interfacing is the TreeSummarizedExperiment class.

Author(s)

Maintainer: Tuomas Borman <tuomas.v.borman@utu. fi> (ORCID)

Authors:

¢ Felix G.M. Ernst (ORCID)
e Leo Lahti <leo.lahti@iki.fi> (ORCID)

Other contributors:

* Basil Courbayre [contributor]

¢ Giulio Benedetti (ORCID) [contributor]
e Théotime Pralas [contributor]

¢ Chouaib Benchraka [contributor]

¢ Sam Hillman [contributor]

¢ Geraldson Muluh [contributor]

¢ Noah De Gunst [contributor]

* Ely Seraidarian [contributor]

* Himmi Lindgren [contributor]

¢ Akewak Jeba (ORCID) [contributor]

¢ Vivian Ikeh [contributor]

See Also

mia class

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0002-8732-7692
https://orcid.org/0009-0007-1347-7552

4 getNeatOrder

deprecate These functions will be deprecated. Please use other functions instead.

Description

These functions will be deprecated. Please use other functions instead.

Usage

plotTaxaPrevalence(x, ...)

S4 method for signature 'ANY'
plotTaxaPrevalence(x, ...)

plotFeaturePrevalence(x, ...)

S4 method for signature 'ANY'

plotFeaturePrevalence(x, ...)
Arguments
X L]
getNeatOrder Sorting by radial theta angle
Description

getNeatOrder sorts already ordinated data by the radial theta angle. This method is useful for
organizing data points based on their angular position in a 2D space, typically after an ordination
technique such as PCA or NMDS has been applied.

The function takes in a matrix of ordinated data, optionally centers the data using specified methods
(mean, median, or NULL), and then calculates the angle (theta) for each point relative to the centroid.
The data points are then sorted based on these theta values in ascending order.

One significant application of this sorting method is in plotting heatmaps. By using radial theta
sorting, the relationships between data points can be preserved according to the ordination method’s
spatial configuration, rather than relying on hierarchical clustering, which may distort these rela-
tionships. This approach allows for a more faithful representation of the data’s intrinsic structure as
captured by the ordination process.

getNeatOrder 5

Usage
getNeatOrder(x, centering = "mean”, ...)

S4 method for signature 'matrix

getNeatOrder(x, centering = "mean”, ...)
Arguments
X A matrix containing the ordinated data to be sorted. Columns should represent

the principal components (PCs) and rows should represent the entities being an-
alyzed (e.g. features or samples). There should be 2 columns only representing
2 PCs.

centering Character scalar. Specifies the method to center the data. Options are "mean”,
"median”, or NULL if your data is already centered. (Default: "mean”)

Additional arguments passed to other methods.

Details

It’s important to note that the sechm package does actually have the functionality for plotting a
heatmap using this radial theta angle ordering, though only by using an MDS ordination.

That being said, the getNeatOrder function is more modular and separate to the plotting, and can
be applied to any kind of ordinated data which can be valuable depending on the use case.

Rajaram & Oono (2010) NeatMap - non-clustering heat map alternatives in R outlines this in more
detail.

Value

A character vector of row indices in the sorted order.

Examples

Load the required libraries and dataset

library(mia)

library(scater)

library(ComplexHeatmap) |> suppressPackageStartupMessages()
library(circlize) |> suppressPackageStartupMessages()
data(peerj13075)

Group data by taxonomic order
tse <- agglomerateByRank(peerj13075, rank = "order"”, onRankOnly = TRUE)

Transform the samples into relative abundances using CLR
tse <- transformAssay(
tse, assay.type = "counts”, method="clr"”, MARGIN = "cols"”,
name="clr", pseudocount = TRUE)

Transform the features (taxa) into zero mean, unit variance
(standardize transformation)
tse <- transformAssay(

https://bioconductor.org/packages/3.18/bioc/vignettes/sechm/inst/doc/sechm.html#row-ordering
https://doi.org/10.1186/1471-2105-11-45

6 mia-datasets

tse, assay.type="clr"”, method="standardize", MARGIN = "rows")

Perform PCA using calculatePCA
res <- calculatePCA(tse, assay.type = "standardize”, ncomponents = 10)

Sort by radial theta and sort the original assay data
sorted_order <- getNeatOrder(res[, c(1,2)], centering = "mean")
tse <- tse[, sorted_order]

Define the color function and cap the colors at [-5, 5]
col_fun <- colorRamp2(c(-5, @, 5), c("blue”, "white", "red"))

Create the heatmap

heatmap <- Heatmap(assay(tse, "standardize"),
name = "NeatMap”,
col = col_fun,
cluster_rows = FALSE, # Do not cluster rows
cluster_columns = FALSE, # Do not cluster columns
show_row_dend = FALSE,
show_column_dend = FALSE,
row_names_gp = gpar(fontsize = 4),
column_names_gp = gpar(fontsize = 6),
heatmap_width = unit(20, "cm"),
heatmap_height = unit(15, "cm")

mia-datasets miaViz example data

Description
These example data objects were prepared to serve as examples. See the details for more informa-
tion.

Usage
data(col_graph)

data(row_graph)
data(row_graph_order)

Format

An object of class tb1l_graph (inherits from igraph) of length 26.
An object of class tb1l_graph (inherits from igraph) of length 996.
An object of class tb1l_graph (inherits from igraph) of length 110.

mia-plot-args 7

Details
For x_graph data:

1. “Jaccard” distances were calculated via calculateDistance(genus, FUN = vegan: :vegdist,
method = "jaccard”,exprs_values = "relabundance”), either using transposed assay data
or not to calculate distances for samples or features. NOTE: the function mia::calculateDistance
is now deprecated.

2. “Jaccard” dissimilarites were converted to similarities and values above a threshold were used
to construct a graph via graph.adjacency(mode = "lower”, weighted = TRUE).

3. The igraph object was converted to tb1l_graph via as_tbl_graph from the tidygraph pack-
age.

mia-plot-args Additional arguments for plotting

Description

To be able to fine tune plotting, several additional plotting arguments are available. These are
described on this page.

Tree plotting
line.alpha: Numeric scalar in [0, 1], Specifies the transparency of the tree edges. (Default:
)

line.width: Numeric scalar. Specifies the default width of an edge. (Default: NULL) to use
default of the ggtree package.

line.width.range: Numeric vector. The range for plotting dynamic edge widths in. (Default:
c(0.5,3))

point.alpha: Numeric scalar in [0, 1]. Specifies the transparency of the tips. (Defaults: 1)
point.size: Numeric scalar. Specifies the default size of tips. (Defaults: 2)

point.size.range: Numeric vector. Specifies the range for plotting dynamic tip sizes in. (De-
faults: c(1,4))

label.font.size: Numeric scalar. Font size for the tip and node labels. (Default: 3)

highlight.font.size: Numeric scalar. Font size for the highlight labels. (Default: 3)

Graph plotting
line.alpha: Numeric scalar in [@, 1]. Specifies the transparency of the tree edges. (Default:
)

line.width: Numeric scalar. Specifies the default width of an edge. (Default: NULL) to use
default of the ggtree package.

line.width.range: Numeric vector. The range for plotting dynamic edge widths in. (Default:
c(0.5,3))

8 mia-plot-args

point.alpha: Numeric scalar in [0, 1]. Specifies the transparency of the tips. (Default: 1)
point.size: Numeric scalar. Specifies the default size of tips. (Default: 2.)

point.size.range: Numeric vector. The range for plotting dynamic tip sizes in. (Default:

c(1,4))

Abundance plotting

flipped: Logical scalar. Should the plot be flipped? (Default: FALSE)

add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

add.x.text: Logical scalar. Should x tick labels be plotted? (Default: FALSE)

add.border: Logical scalar. Should border of bars be plotted? (Default: FALSE)

bar.alpha: Numeric scalarin [@, 1]. Specifies the transparency of the bars. (Default: 1)
point.alpha: Numeric scalar in [@, 1]. Specifies the transparency of the points. (Default: 1)

point.size: Numeric scalar. Specifies the default size of points. (Default: 2)

Abundance density plotting

add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

point.shape: Numeric scalar. Sets the shape of points. (Default: 21)

point.colour: Character scalar. Specifies the default colour of points. (Default: 2)
point.size: Numeric scalar. Specifies the default size of points. (Default: 2)

point.alpha: Numeric scalar in [0, 1]. Specifies the transparency of the points. (Default: 1)
flipped: Logical scalar. Should the plot be flipped? (Default: FALSE)

scales.free: Logical scalar. Should scales ="free" be set for faceted plots? (Default:
TRUE)

angle.x.text: Logical scalar. Should x tick labels be plotted? (Default: FALSE)

Prevalence plotting

flipped: Logical scalar. Specifies whether the plot should be flipped. (Default: FALSE)
add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

point.alpha: Numeric scalarin [@, 1]. Specifies the transparency of the tips. (Default: 1)
point.size: Numeric scalar. Specifies the default size of tips. (Default: 2.)

line.alpha: Numeric scalar in [@, 1]. Specifies the transparency of the tree edges. (Default:

1)
line.type: Numeric scalar. Specifies the default line type. (Default: NULL) to use default of the
ggplot2 package.

line.size: Numeric scalar. Specifies the default width of a line. (Default: NULL) to use default
of the ggplot2 package.

plotAbundance 9

Series plotting

add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

line.alpha: Numeric scalar in [@, 1]. Specifies the transparency of the tree edges. (Default:

)

line.type: Numeric scalar. Specifies the default line type. (Default: NULL) to use default of the
ggplot2 package.

line.width: Numeric scalar. Specifies the default width of a line. (Default: NULL) to use default
of the ggplot2 package.

line.width.range: Numeric vector. The range for plotting dynamic line widths in. (Default:
c(0.5,3))

ribbon.alpha: Numeric scalar in [0, 1]. Specifies the transparency of the ribbon. (Default:
0.3)

Tile plotting
add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

rect.alpha: Numeric scalarin [0, 1]. Specifies the transparency of the areas. (Default: 1)

rect.colour: Character scalar. Specifies the colour to use for colouring the borders of the
areas. (Default: "black")

na.value: Character scalar. Specifies the colour to use for NA values. (Default: "grey80")

plotAbundance Plotting abundance data

Description

plotAbundance() creates a barplot of feature abundances, typically used to visualize the relative
abundance of features at a specific taxonomy rank.

Usage

plotAbundance(x, ...)

S4 method for signature 'SummarizedExperiment'

plotAbundance(
X,
assay.type = assay_name,
assay_name = "counts”,

layout = "bar”,

10 plotAbundance

Arguments

X a SummarizedExperiment object.
additional parameters for plotting.

* group: Character scalar. Specifies the group for agglomeration. Must
be a value from colnames(rowData(x)). If NULL, agglomeration is not
applied. (Default: NULL)

* as.relative: Character scalar. Should the relative values be calcu-
lated? (Default: FALSE)

e col.var: Character scalar. Selects a column from colData to be plot-
ted below the abundance plot. Continuous numeric values will be plotted
as point, whereas factors and character will be plotted as colour-code bar.
(Default: NULL)

e order.row.by: Character scalar. How to order abundance value. By
name ("name”) for sorting the taxonomic labels alphabetically, by abun-
dance ("abund") to sort by abundance values or by a reverse order of abun-
dance values ("revabund"”). (Default: "name")

* row.levels: Character vector. Specifies order of rows in a plot. Can
be combined with order.row.by to control order of only certain rows. If
NULL, the order follows order.row.by. (Default: NULL)

e order.col.by: Character scalar. from the chosen rank of abundance
data or from colData to select values to order the abundance plot by. (De-
fault: NULL)

* col.levels: Character vector. Specifies order of columns in a plot. Can
be combined with order. col.by to control order of only certain columns.
If NULL, the order follows order.col.by. (Default: NULL)

e decreasing: Logical scalar. If the order.col.by is defined and the val-
ues are numeric, should the values used to order in decreasing or increasing
fashion? (Default: FALSE)

* facet.rows: Logical scalar. Should the rows in the plot be spitted into
facets? (Default: FALSE)

» facet.cols: Logical scalar. Should the columns in the plot be spitted
into facets? (Default: FALSE)

* ncol: Numeric scalar. if facets are applied, ncol defines many columns
should be for plotting the different facets. (Default: 2)

e scales Character scalar. Defines the behavior of the scales of each
facet. The value is passed into facet_wrap. (Default: "fixed")

See mia-plot-args for more details i.e. call help(”"mia-plot-args")
assay.type Character scalar value defining which assay data to use. (Default: "relabundance”)
assay_name Deprecate. Use assay. type instead.

layout Character scalar. Either “bar” or “point”.

Details

It is recommended to handle subsetting, agglomeration, and transformation outside this function.
However, agglomeration and relative transformation can be applied using the group and as.relative

plotAbundance 11

parameters, respectively. If one of the TAXONOMY_RANKS is selected via group, mia: : agglomerateByRank ()
is used, otherwise agglomerateByVariable() is applied.

Value

a ggplot object or list of two ggplot objects, if col.var are added to the plot.

Examples

data(GlobalPatterns, package="mia")
tse <- GlobalPatterns

If rank is set to NULL (default), agglomeration is not done. However, note
that there is maximum number of rows that can be plotted. That is why

we take sample from the data.

set.seed(26348)

sample <- sample(rownames(tse), 20)

tse_sub <- tse[sample,]

Apply relative transformation

tse_sub <- transformAssay(tse_sub, method = "relabundance")
plotAbundance(tse_sub, assay.type = "relabundance”)

Plotting counts using the first taxonomic rank as default
plotAbundance(
tse, assay.type="counts”, group = "Phylum”) +
labs(y="Counts")

Using "Phylum” as rank. Apply relative transformation to "counts"” assay.
plotAbundance(
tse, assay.type="counts"”, group = "Phylum”, add_legend = FALSE,
as.relative = TRUE)

Apply relative transform
tse <- transformAssay(tse, method = "relabundance")

A feature from colData or taxon from chosen rank can be used for ordering

samples.

plotAbundance(
tse, assay.type="relabundance”, group = "Phylum”,
order.col.by = "Bacteroidetes”)

col.var from colData can be plotted together with abundance plot.
Returned object is a list that includes two plot; other visualizes
abundance other col.var.
plot <- plotAbundance(

tse, assay.type = "relabundance”, group = "Phylum”,

col.var = "SampleType")

These two plots can be combined with wrap_plots function from patchwork
package

library(patchwork)

wrap_plots(plot, ncol = 1, heights = c(0.95, 0.05))

12 plotAbundanceDensity

Same plot as above but showing sample IDs as labels for the x axis on the
top plot. Moreover, we use facets.
plot <- plotAbundance(
tse, assay.type = "relabundance”,
group = "Phylum”, col.var = "SampleType", add.legend = FALSE,
add.x.text = TRUE, facet.cols = TRUE, scales = "free_x") +
theme(axis.text.x = element_text(angle = 90))
plot

Compositional barplot with top 5 taxa and samples sorted by
"Bacteroidetes”

Getting top taxa on a Phylum level

tse <- transformAssay(tse, method = "relabundance”)

tse_phylum <- agglomerateByRank(tse, rank = "Phylum")

top_taxa <- getTop(tse_phylum, top = 5, assay.type = "relabundance")

Renaming the "Phylum” rank to keep only top taxa and the rest to "Other”
phylum_renamed <- lapply(rowData(tse)$Phylum, function(x){

if (x %in% top_taxa) {x} else {"Other"”}})
rowData(tse)$Phylum <- as.character(phylum_renamed)

Compositional barplot

plotAbundance(
tse, assay.type="relabundance”, group = "Phylum”,
order.row.by="abund”, order.col.by = "Bacteroidetes”)

plotAbundanceDensity Plot abundance density

Description

This function plots abundance of the most abundant taxa.

Usage

plotAbundanceDensity(x, ...)

S4 method for signature 'SummarizedExperiment’
plotAbundanceDensity(

X,

layout = c("jitter"”, "density”, "point"),

assay.type = assay_name,

assay_name = "counts”,

n = min(nrow(x), 25L),

colour.by = colour_by,

colour_by = NULL,

shape.by = shape_by,

plotAbundanceDensity 13

shape_by = NULL,

size.by = size_by,

size_by = NULL,

decreasing = order_descending,
order_descending = TRUE,

)
Arguments
X a SummarizedExperiment object.
additional parameters for plotting.
e xlab Character scalar. Selects the x-axis label. (Default: assay. type)
* ylab Character scalar. Selects the y-axis label. ylab is disabled when
layout = "density”. (Default: "Taxa")
e point.alpha Numeric scalar. From range O to 1. Selects the trans-
parency of colour in jitter and point plot. (Default: 0.6)
* point.shape Positive integer scalar. Value selecting the shape of
point in jitter and point plot. (Default: 21)
* point.sizePositive integer scalar. Selects the size of pointin jitter
and point plot. (Default: 2)
* add_legend Logical scalar. Determines if legend is added. (Default:
TRUE)
* flipped: Logical scalar. Determines if the orientation of plot is changed
so that x-axis and y-axis are swapped. (Default: FALSE)
* add_x_text Logical scalar. Determines if text that represents values is
included in x-axis. (Default: TRUE)
e jitter.height Numeric scalar. Controls jitter in a jitter plot. (Default:
0.25)
e jitter.width Numeric scalar. Controls jitter in a jitter plot. (Default:
NULL)
See mia-plot-args for more details i.e. call help("mia-plot-args”)
layout Character scalar. Selects the layout of the plot. There are three different
options: jitter, density, and point plot. (default: layout = "jitter")
assay.type Character scalar value defining which assay data to use. (Default: "relabundance”)
assay_name Deprecate. Use assay. type instead.
n Integer scalar. Specifies the number of the most abundant taxa to show. (De-
fault: min(nrow(x), 25L))
colour.by Character scalar. Defines a column from colData, that is used to color plot.
Must be a value of colData() function. (Default: NULL)
colour_by Deprecated. Use colour.by instead.
shape.by Character scalar. Defines a column from colData, that is used to group ob-

servations to different point shape groups. Must be a value of colData() func-
tion. shape.by is disabled when layout = "density”. (Default: NULL)

14 plotAbundanceDensity

shape_by Deprecated. Use shape. by instead.

size.by Character scalar. Defines a column from colData, that is used to group ob-
servations to different point size groups. Must be a value of colData() function.
size.by is disabled when layout = "density”. (Default: NULL)

size_by Deprecated. Use size.by instead.

decreasing Logical scalar. Indicates whether the results should be ordered in a descend-
ing order or not. If NA is given the order as found in x for the n most abundant
taxa is used. (Default: TRUE)

order_descending
Deprecated. Use order.descending instead.

Details

This function plots abundance of the most abundant taxa. Abundance can be plotted as a jitter plot,
a density plot, or a point plot. By default, x-axis represents abundance and y-axis taxa. In a jitter and
point plot, each point represents abundance of individual taxa in individual sample. Most common
abundances are shown as a higher density.

A density plot can be seen as a smoothened bar plot. It visualized distribution of abundances where
peaks represent most common abundances.

Value

A ggplot2 object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

scater: :plotExpression

Examples

data("peerj13075", package = "mia")
tse <- peerj13075

Plots the abundances of 25 most abundant taxa. Jitter plot is the default
option.
plotAbundanceDensity(tse, assay.type = "counts")

Counts relative abundances
tse <- transformAssay(tse, method = "relabundance”)

Plots the relative abundance of 10 most abundant taxa.
"nationality” information is used to color the points. X-axis is
log-scaled.
plotAbundanceDensity(
tse, layout = "jitter"”, assay.type = "relabundance”, n = 10,

microbiome.github.io

plotBoxplot

colour.by = "Geographical_location”) +
scale_x_logl10()

Plots the relative abundance of 10 most abundant taxa as a density plot.
X-axis is log-scaled
plotAbundanceDensity(
tse, layout = "density”, assay.type = "relabundance”, n = 10) +
scale_x_logl10()

Plots the relative abundance of 10 most abundant taxa as a point plot.
Point shape is changed from default (21) to 41.
plotAbundanceDensity(
tse, layout = "point"”, assay.type = "relabundance”, n = 10,
point.shape = 41)

Plots the relative abundance of 10 most abundant taxa as a point plot.
In addition to colour, groups can be visualized by size and shape in point
plots, and adjusted for point size
plotAbundanceDensity(
tse, layout = "point”, assay.type = "relabundance”, n = 10,
shape.by = "Geographical_location”, size.by = "Age", point.size=1)

Ordering via decreasing
plotAbundanceDensity(
tse, assay.type = "relabundance”, decreasing = FALSE)

for custom ordering set decreasing = NA and order the input object
to your wishes
plotAbundanceDensity(

tse, assay.type = "relabundance”, decreasing = NA)

Box plots and violin plots are supported by scater::plotExpression.
Plots the relative abundance of 5 most abundant taxa as a violin plot.

library(scater)
top <- getTop(tse, top = 5)
plotExpression(tse, features = top, assay.type = "relabundance”) +

ggplot2::coord_flip()

Plots the relative abundance of 5 most abundant taxa as a box plot.
plotExpression(tse, features = top, assay.type = "relabundance”,
show_violin = FALSE, show_box = TRUE) + ggplot2::coord_flip()

plotBoxplot Create boxplot of assay, rowData or colData.

Description

This methods visualizes abundances or variables from rowData or colData.

16

Usage

plotBoxplot(object,

plotBoxplot

)

S4 method for signature 'SummarizedExperiment'’

plotBoxplot
object,

(

assay.type = NULL,

row.var =

NULL,

col.var = NULL,

x = NULL,
features
group.by

Arguments

object

NULL,
NULL,

a SummarizedExperiment object.

Additional parameters for plotting.

point.offset: Character scalar. Utilized method for offsetting points.

non non

The available options include: "center"”, "compactswarm”, "hex", "square”,

n o n

"swarm” (see beeswarm: :beeswarm() for details), "frowney”, "maxout”,
"minout”, "pseudorandom”, "quasirandom”, "smiley”, "tukey”, "tukeyDense’
(see vipor::offsetSingleGroup() for details), "jitter”, and "none”,

If "none”, ofsetting is not applied. (Default: "jitter")

I

colour.by: NULL or character scalar. Specifies a variable from colData(x)
or rowData(x) which is used to colour observations. (Default: NULL)
fill.by: NULL or character scalar. Specifies a variable from colData(x)
or rowData(x) which is used to colour observations. (Default: NULL)
size.by: NULL or character scalar. Specifies a variable from colData(x)
or rowData(x) which is used to scale observation points. (Default: NULL)
shape.by: NULL or character scalar. Specifies a variable from colData(x)
or rowData(x) which is used to shape observation points. (Default: NULL)
facet.by: NULL or character scalar. Specifies a variable from colData(x)
or rowData(x) which is used to facet or group observations. (Default:
NULL)

pair.by: NULL or character scalar. Specifies a variable from colData(x)
which is used to pair observation points. (Default: NULL)

add.chance: Logical scalar. Whether to visualize chance of paired ob-
servations by the color of line. (Default: FALSE)

add.box: Logical scalar. Whether to add a boxplot layout. (Default:
TRUE)

add.points: Logical scalar. Whether to add a point layout. (Default:
TRUE)

add.proportion: Logical scalar. Whether to add a barplot layout de-
noting the proportion of observations above threshold. (Default: FALSE)

plotBoxplot

assay. type

row.var

col.var

features

group. by

Details

17

¢ add.threshold: Logical scalar. Whether to add a threshold as hori-
zontal line when add. proportion = TRUE is specified. (Default: TRUE)

* threshold: Numeric scalar. Specifies threshold for the barplots. (De-
fault: 0)

e jitter.width: Numeric scalar. Width of jitter. (Default: 0. 3)
e jitter.height: Numeric scalar. Height of jitter. (Default: @)

e dodge.width: Numeric scalar. Width of dodge. How far apart the groups
are plotted? (Default:)

e beeswarm.corral: Character scalar. Beeswarm’s "corral" method. Fed
to function beeswarm: :beeswarm(). (Default: "none")

* scales: Character scalar. Adjust scales of facets. (Default: "fixed")

* box.alpha: Numeric scalar. Transparency of the boxplot layer. (Default:
0.5)

* point.alpha: Numeric scalar. Transparency of the point layer. (Default:
0.65)

e line.alpha: Numeric scalar. Transparency of the line layer. (Default:
0.5)

* point.shape: Numeric scalar. Shape of points. (Default: 21)

* point.size: Numeric scalar. Size of points. (Default: 2)

* point.colour: Character scalar. Colour of points. (Default: "grey70")

e linetype: Numeric scalar. Type of lines. (Default: 1)

e linewidth: Numeric scalar. Width of lines. (Default: 1)

¢ line.colour: Character scalar. Colour of lines. (Default: "grey70")

¢ box.width: Numeric scalar. Width of boxes. (Default: @.75)

e bar.width: Numeric scalar. Width of proportion bars. By default, it is
calculated based so that the width matches with the width of boxes.

NULL or character scalar. Specifies the abundace table to plot. (Default:
NULL)

NULL or character scalar. Specifies a variable from rowData(x) to visualize.
(Default: NULL)

NULL or character scalar Specifies a variable from colData(x) to visualize.
(Default: NULL)

NULL or character vector. Specifies a variable from colData(x) or rowData(x)
to visualize in x axis. (Default: NULL)

NULL or character vector. If assay. type is specified, this specifies rows to
visualize in different facets. If NULL, whole data is visualized as a whole. (De-
fault: NULL)

NULL or character vector. Specifies a variable from colData(x) or rowData(x)
to group observations. (Default: NULL)

A box plot is standard visualization technique to compare numeric values, such as abundance,
between categorical values, such as sample groups. plotBoxplot() streamlines creation of box
plots, and it offers multiple options for visualization.

18 plotBoxplot

Value

A ggplot2 object.

See Also

* scater::plotExpression
e scater::plotRowData

e scater::plotColData

Examples

data("Tito2024QMP")
tse <- Tito2024QMP

tse <- transformAssay(tse, method = "relabundance”)
tse <- addAlpha(tse, index = "shannon")

Visualize alpha diversity
plotBoxplot(tse, col.var = "shannon”, x = "diagnosis")

Visualize relative abundance of top features
tse <- tse[getTop(tse, 6),]

plotBoxplot(
tse, assay.type = "relabundance”,
x = "diagnosis”, fill.by = "diagnosis”,
features = rownames(tse), facet.by = "rownames”
)
Add proportion bar
plotBoxplot(
tse, assay.type = "relabundance”,
x = "diagnosis”, fill.by = "diagnosis”,
features = rownames(tse), facet.by = "rownames”,
add.proportion = TRUE, threshold = 0.1
)
Visualize only with beeswarm
plotBoxplot(
tse, assay.type = "relabundance”,
x = "diagnosis"”, group.by = "diagnosis”,
colour.by = "colonoscopy”,
features = rownames(tse), facet.by = "rownames”,
point.offset = "swarm”, add.box = FALSE
)
Do not add points
plotBoxplot(
tse, assay.type = "relabundance”,

fill.by = "diagnosis”,
features = rownames(tse), facet.by = "rownames”,

plotCCA 19

add.points = FALSE
)

Not run:
library(microbiomeDataSets)

mae <- microbiomeDataSets: :peerj32()

tse <- getWithColData(mae, 1)

tse[["time_point"”]] <- as.character(tse[["time"]1])

Create a plot showing chance between time points in abundance of
Akkermansia

plotBoxplot(
tse, x = "time_point"”, assay.type = "counts"”, fill.by = "group”,
features = "Akkermansia”, pair.by = "subject”,
add.chance = TRUE, scales = "free"

)

End(Not run)

plotCCA Plot RDA or CCA object

Description

plotRDA and plotCCA create an RDA/CCA plot starting from the output of CCA and RDA functions,
two common methods for supervised ordination of microbiome data.

Usage
plotCCA(x, ...)
plotRDA(x, ...)

S4 method for signature 'SingleCellExperiment'’
plotCCA(x, dimred, ...)

S4 method for signature 'matrix'
plotCCA(x, ...)

S4 method for signature 'SingleCellExperiment’
plotRDA(x, dimred, ...)

S4 method for signature 'matrix’
plotRDA(x, ...)

20 plotCCA

Arguments

X a TreeSummarizedExperiment or a matrix of weights. The latter is returned as
output from getRDA.

additional parameters for plotting, inherited from plotReducedDim, geom_label
and geom_label_repel.

e add.ellipse: One of c(TRUE, FALSE, "fill"”, "colour"), indicating whether
ellipses should be present, absent, filled or colored. (default: ellipse.fill
= TRUE)

* ellipse.alpha: Numeric scalar. Between O and 1. Adjusts the opacity
of ellipses. (Default: 0.2)

e ellipse.linewidth: Numeric scalar. Specifies the size of ellipses. (De-
fault: 0.1)

* ellipse.linetype: Integer scalar. Specifies the style of ellipses. (De-
fault: 1)

* confidence.level: Numeric scalar. Between O and 1. Adjusts confi-
dence level. (Default: @.95)

e add.vectors: Logical scalar or character vector. If boolean, should
vectors appear in the plot. If character, selects vectors that are showed. The
matching is done with regular expression. (Default: TRUE)

* vec.size: Numeric scalar. Specifies the size of vectors. (Default: @.5)

* vec.colour: Character scalar. Specifies the colour of vectors. (Default:
"black")

* vec.linetype: Integer scalar. Specifies the style of vector lines. (De-
fault: 1)

e arrow.size: Numeric scalar. Specifies the size of arrows. (Default:
arrow.size =0.25)

* label.size: Numeric scalar. Specifies the size of text and labels. (De-
fault: 4)

e label.colour: Character scalar. Specifies the colour of text and labels.
(Default: "black")

* sep.group: Character scalar. Specifies the separator used in the labels.
(Default: "\U2014")

* repl.underscore: Character scalar. Used to replace underscores in the
labels. (Default: " ")

e vec.text: Logical scalar. Should text instead of labels be used to label
vectors. (Default: TRUE)

* repel.labels: Logical scalar. Should labels be repelled. (Default:
TRUE)

* parse.labels: Logical scalar. Should labels be parsed. (Default: TRUE)

* add.significance: Logical scalar. Should explained variance and p-
value appear in the labels. (Default: TRUE)

* add.expl.var: Logical scalar. Should explained variance appear on the
coordinate axes. (Default: FALSE)

e add.centroids: Logical scalar. Should centroids of variables be added.
(Default: FALSE)

plotCCA

21

* add.species: Logical scalar. Should species scores be added. (Default:

FALSE)

dimred Character scalar or integer scalar. Determines the reduced dimension to
plot. This is the output of addRDA and resides in reducedDim(tse, dimred).

Details

plotRDA and plotCCA create an RDA/CCA plot starting from the output of CCA and RDA functions,

two common methods for supervised ordination of microbiome data. Either a TreeSummarizedExperiment

or a matrix object is supported as input. When the input is a TreeSummarizedExperiment, this
should contain the output of addRDA in the reducedDim slot and the argument dimred needs to
be defined. When the input is a matrix, this should be returned as output from getRDA. However,
the first method is recommended because it provides the option to adjust aesthetics to the colData
variables through the arguments inherited from plotReducedDim.

Value

A ggplot2 object

Examples

Load dataset
data("enterotype”, package = "mia")
tse <- enterotype

Run RDA and store results into TreeSE

tse <- transformAssay(tse, method = "relabundance”)
tse <- addRDA(
tse,
assay.type = "relabundance”,
formula = assay ~ ClinicalStatus + Gender + Age,
distance = "bray”,
na.action = na.exclude
)
suppressWarnings({

Create RDA plot coloured by variable

plotRDA(tse,

Create RDA
plotRDA(tse,

Create RDA
plotRDA(tse,

Create RDA
plotRDA(tse,

Create RDA
plotRDA(tse,

"RDA", colour.by = "ClinicalStatus")

plot with empty ellipses
"RDA", colour.by = "ClinicalStatus”,

plot with text encased in labels
"RDA", colour.by = "ClinicalStatus”,

plot without repelling text
"RDA", colour.by = "ClinicalStatus”,

plot without vectors
"RDA", colour.by = "ClinicalStatus”,

add.ellipse = "colour")

vec.text = FALSE)

repel.labels = FALSE)

add.vectors = FALSE)

22 plotColGraph

Calculate RDA as a separate object
rda_mat <- getRDA(

tse,

assay.type = "relabundance”,

formula = assay ~ ClinicalStatus + Gender + Age,
distance = "bray”,

na.action = na.exclude

)

Create RDA plot from RDA matrix
plotRDA(rda_mat)

»
plotColGraph Plotting igraph objects with information from a
SummarizedExperiment
Description

plotGraph plots an igraph object with additional information matched from a SummarizedExperiment
object for the nodes only. Information on the edges have to provided manually.

Usage
plotColGraph(x, vy, ...)
plotRowGraph(x, vy, ...)

S4 method for signature 'ANY,SummarizedExperiment'’

plotColGraph(
X,
Y,
show.label = show_label,
show_label = FALSE,

add.legend = add_legend,
add_legend = TRUE,

layout = "kk",

edge.type = edge_type,

edge_type = c("fan”, "link", "arc
edge.colour.by = edge_colour_by,
edge_colour_by = NULL,
edge.width.by = edge_width_by,
edge_width_by = NULL,

colour.by = colour_by,

colour_by = NULL,

shape.by = shape_by,

shape_by = NULL,

n

, "parallel”),

plotColGraph 23

size.by = size_by,

size_by = NULL,
assay.type = by_exprs_values,
by_exprs_values = "counts”,

other.fields = other_fields,
other_fields = list(),

)

S4 method for signature 'SummarizedExperiment,missing'
plotColGraph(x, y, name = "graph”, ...)

S4 method for signature 'ANY,SummarizedExperiment'’

plotRowGraph(
X)
Y,
show.label = show_label,
show_label = FALSE,
add.legend = add_legend,
add_legend = TRUE,
layout = "kk",

edge.type = edge_type,

edge_type = c("fan”, "link", "arc
edge.colour.by = edge_colour_by,
edge_colour_by = NULL,
edge.width.by = edge_width_by,
edge_width_by = NULL,

colour.by = colour_by,

colour_by = NULL,

shape.by = shape_by,

shape_by = NULL,

size.by = NULL,

assay.type = by_exprs_values,
by_exprs_values = "counts”,
other.fields = other_fields,
other_fields = list(),

n

, "parallel”),

)

S4 method for signature 'SummarizedExperiment,missing’
plotRowGraph(x, y, name = "graph”, ...)

Arguments

X,y a graph object and a SummarizedExperiment object or just a SummarizedExperiment
For the latter object a graph object must be stored in metadata(x) $name.

additional arguments for plotting. See mia-plot-args for more details i.e. call
help("mia-plot-args")

24

plotColGraph

show. label Logical scalar, integer vector or character vector If a logical scalar is
given, should tip labels be plotted or if a logical vector is provided, which labels
should be shown? If an integer or character vector is provided, it will be
converted to a logical vector. The integer values must be in the range of 1 and
number of nodes, whereas the values of a character vector must match values
of a label or name column in the node data. In case of a character vector
only values corresponding to actual labels will be plotted and if no labels are
provided no labels will be shown. (Default: FALSE)

show_label Deprecated. Use show. 1label instead.

add.legend Logical scalar. Should legends be plotted? (Default: TRUE)

add_legend Deprecated. Use add. legend instead.

layout Character scalar. Layout for the plotted graph. See ggraph for details. (De-
fault: "kk")

edge. type Character scalar. Type of edge plotted on the graph. See geom_edge_fan for

details and other available geoms. (Default: "fan")
edge_type Deprecated. Use edge. type instead.

edge.colour.by Character scalar. Specification of an edge metadata field to use for setting
colours of the edges. (Default: NULL)

edge_colour_by Deprecated. Use edge.colour.by instead.

edge.width.by Character scalar. Specification of an edge metadata field to use for setting
width of the edges. (Default: NULL)

edge_width_by Deprecated. Use edge.width.by instead.

colour.by Character scalar. Specification of a column metadata field or a feature to
colour graph nodes by, see the by argument in ?retrieveCellInfo for possible
values. (Default: NULL)

colour_by Deprecated. Use colour.by instead.

shape.by Character scalar. Specification of a column metadata field or a feature to
shape graph nodes by, see the by argument in ?retrieveCellInfo for possible
values. (Default: NULL)

shape_by Deprecated. Use shape. by instead.

size.by Character scalar. Specification of a column metadata field or a feature to size
graph nodes by, see the by argument in ?retrieveCellInfo for possible values.
(Default: NULL)

size_by Deprecated. Use size.by instead.

assay.type Character scalar. or integer scalar. Specifies which assay to obtain ex-
pression values from, for use in point aesthetics - see the exprs_values argu-
ment in ?retrieveCellInfo. (Default: "counts")

by_exprs_values
Deprecated. Use assay. type instead.

other.fields Additional fields to include in the node information without plotting them.

other_fields Deprecated. Use other.fields instead.

name Character scalar. If x is a SummarizedExperiment the key for subsetting the
metadata(x) to a graph object. (Default: "graph™)

plotColGraph 25

Details

Internally tidygraph and ggraph are used. Therefore, all graph types which can be converted by
tidygraph: :as_tbl_graph can be used.

Value

a ggtree plot

Examples

data setup

library(mia)

data(GlobalPatterns)

data(col_graph)

data(row_graph)

data(row_graph_order)
metadata(GlobalPatterns)$col_graph <- col_graph

genus <- agglomerateByRank(GlobalPatterns, "Genus”, na.rm=TRUE)
metadata(genus)$row_graph <- row_graph

order <- agglomerateByRank(genus, "Order"”,na.rm=TRUE)
metadata(order)$row_graph <- row_graph_order

plot a graph independently
plotColGraph(col_graph,
genus,
colour.by = "SampleType”,
edge.colour.by = "weight",
edge.width.by = "weight”,
show.label = TRUE)

plot the graph stored in the object
plotColGraph(genus,
name = "col_graph”,
colour.by = "SampleType”,
edge.colour.by = "weight",
edge.width.by = "weight")

plot a graph independently
plotRowGraph(row_graph,
genus,
colour.by = "Kingdom”,
edge.colour.by = "weight"”,
edge.width.by = "weight")

plot the graph stored in the object
plotRowGraph(genus,
name = "row_graph”,
colour.by = "Phylum”,
edge.colour.by = "weight"”,
edge.width.by = "weight")

26 plotColTile

plot a graph independently
plotRowGraph(row_graph_order,
order,
colour.by = "Kingdom”,
edge.colour.by = "weight"”,
edge.width.by = "weight")

plot the graph stored in the object and include some labels
plotRowGraph(order,

name = "row_graph”,

colour.by = "Phylum”,

edge.colour.by = "weight",

edge.width.by = "weight”,

show.label = c("Sulfolobales”,"Spirochaetales”,

"Verrucomicrobiales”))

labels can also be included via selecting specific rownames of x/y
plotRowGraph(order,

name = "row_graph”,

colour.by = "Phylum”,

edge.colour.by = "weight",

edge.width.by = "weight”,

show.label = ¢(1,10,50))

labels can also be included via a logical vector, which has the same length
as nodes are present
label_select <- rep(FALSE,nrow(order))
label_select[c(1,10,50)] <- TRUE
plotRowGraph(order,
name = "row_graph”,
colour.by = "Phylum”,
edge.colour.by = "weight"”,
edge.width.by = "weight”,
show.label = label_select)

plotColTile Plot factor data as tiles

Description
Relative relations of two grouping can be visualized by plotting tiles with relative sizes. plotColTile
and plotRowTile can be used for this.

Usage

plotColTile(object, x, vy, ...)

plotDMNFit 27

plotRowTile(object, x, vy, ...)

S4 method for signature 'SummarizedExperiment'’
plotColTile(object, x, vy, ...)

S4 method for signature 'SummarizedExperiment'’

plotRowTile(object, x, vy, ...)
Arguments
object a SummarizedExperiment object.
X Character scalar. Specifies the column-level metadata field to show on the x-

axis. Alternatively, an Asls vector or data.frame, see ?retrieveFeatureInfo
or ?retrieveCellInfo. Must result in a returned character or factor vector.

y Character scalar. Specifies the column-level metadata to show on the y-
axis. Alternatively, an Asls vector or data.frame, see ?retrieveFeaturelInfo
or ?retrieveCellInfo. Must result in a returned character or factor vector.

additional arguments for plotting. See mia-plot-args for more details i.e. call
help("mia-plot-args”)

Value

A ggplot2 object or plotly object, if more than one prevalences was defined.

Examples

data(GlobalPatterns)
se <- GlobalPatterns
plotColTile(se, "SampleType”, "Primer")

plotDMNFit Plotting Dirichlet-Multinomial Mixture Model data

Description

To plot DMN fits generated with mia use plotDMNFit.
Usage
plotDMNFit(x, name = "DMN"”, type = c("laplace”, "AIC", "BIC"), ...)

S4 method for signature 'SummarizedExperiment'’
plotDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"))

28 plotHistogram

Arguments
X a SummarizedExperiment object contain the DMN data in metadata.
name Character scalar. The name to store the result in metadata (Default: "DMN")
type Character scalar. The type of measure for access the goodness of fit. One of
‘laplace’, ‘AIC’ or ‘BIC’.
optional arguments not used.
Value

plotDMNFit returns a ggplot2 plot.

See Also

calculateDMN

Examples

library(mia)
library(bluster)

Get dataset
data("peerj13075", package = "mia")
tse <- peerj13075

Cluster the samples
tse <- addCluster(tse, DmmParam(k = 1:4), name = "DMM", full = TRUE)

Plot the fit
plotDMNFit(tse, name = "DMM", type = "laplace")

plotHistogram Create histogram or barplot of assay, rowData or colData

Description

This methods visualizes abundances or variables from rowData or colData.
Usage

plotHistogram(x, ...)

plotBarplot(x, ...)

S4 method for signature 'SummarizedExperiment'

plotHistogram(
X,

plotHistogram 29

assay.type = NULL,
features = NULL,
row.var = NULL,
col.var = NULL,

)

S4 method for signature 'SummarizedExperiment'
plotBarplot(

X,

assay.type = NULL,

features = NULL,

row.var = NULL,

col.var = NULL,

)
Arguments
X a SummarizedExperiment object.
Additional parameters for plotting.
* layout: Character scalar. Specifies the layout of plot. Must be either
"histogram” or "density”. (Default: "histogram”)
* facet.by: Character vector. Specifies variables from colData(x) or
rowData(x) used for facetting. (Default: NULL)
e fill.by: Character scalar. Specifies variable from colData(x) or rowData(x)
used for coloring. (Default: NULL)
assay.type NULL or character scalar. Specifies the abundace table to plot. (Default:
NULL)
features NULL or character vector. If assay. type is specified, this specifies rows to
visualize in different facets. If NULL, whole data is visualized as a whole. (De-
fault: NULL)
row.var NULL or character vector. Specifies a variable from rowData(x) to visualize.
(Default: NULL)
col.var NULL or character vector Specifies a variable from colData(x) to visualize.
(Default: NULL)
Details

Histogram and bar plot are a basic visualization techniques in quality control. It helps to visu-
alize the distribution of data. plotAbundance allows researcher to visualise the abundance from
assay, or variables from rowData or colData. For visualizing categorical values, one can utilize
plotBarplot.

plotAbundanceDensity function is related to plotHistogram. However, the former visualizes the
most prevalent features, while the latter can be used more freely to explore the distributions.

30 plotLoadings

Value

A ggplot?2 object.

See Also

* plotAbundanceDensity
e scater::plotExpression
e scater::plotRowData

e scater::plotColData

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Visualize the counts data. There are lots of zeroes.
plotHistogram(tse, assay.type = "counts")

Apply transformation

tse <- transformAssay(tse, method = "clr"”, pseudocount = TRUE)
And plot specified rows
plotHistogram(
tse,
assay.type = "clr”,
features = rownames(tse)[1:5],
facet.by = "rownames”
)

Calculate shannon diversity and visualize its distribution with density
plot. Different sample types are separated with color.
tse <- addAlpha(tse, index = "shannon")
plotHistogram(
tse,
col.var = "shannon”,
layout = "density",
fill.by = "SampleType"”

For categorical values, one can utilize a bar plot
plotBarplot(tse, col.var = "SampleType")

plotLoadings Plot feature loadings for TreeSummarizedExperiment objects or fea-
ture loadings numeric matrix.

plotLoadings 31

Description

This function is used after performing a reduction method. If TreeSE is given it retrieves the feature
loadings matrix to plot values. A tree from rowTree can be added to heatmap layout.

Usage
plotLoadings(x, ...)

S4 method for signature 'TreeSummarizedExperiment'’
plotLoadings(

X,

dimred,

layout = "barplot”,

ncomponents = 5,

tree.name = "phylo”,

row.var = NULL,

add.tree = FALSE,

)

S4 method for signature 'SingleCellExperiment'’
plotLoadings(x, dimred, layout = "barplot”, ncomponents =5, ...)

S4 method for signature 'matrix’

plotLoadings(x, layout = "barplot”, ncomponents =5, ...)
Arguments
X a TreeSummarizedExperiment.

additional parameters for plotting.
* n: Integer scalar. Number of features to be plotted. Applicable when
layout="barplot". (Default: min(nrow(x), 10L)))

* absolute.scale: ("barplot", "lollipop") Logical scalar. Specifies whether
a barplot or a lollipop plot should be visualized in absolute scale. (Default:

TRUE)

dimred Character scalar. Determines the reduced dimension to plot.

layout Character scalar. Determines the layout of plot. Must be either "barplot”,
"heatmap”, or "1ollipop”. (Default: "barplot”)

ncomponents Numeric scalar. Number of components must be lower or equal to the number
of components chosen in the reduction method. (Default: 5)

tree.name Character scalar. Specifies a rowTree/colTree from x. (Default: tree.name
= n phylo Il)

row.var NULL or Character scalar. Specifies a variable from rowData to plot with tree

heatmap layout. (Default: NULL)
add. tree Logical scalar. Whether to add tree to heatmap layout. (Default: FALSE)

32 plotMediation

Details

These method visualize feature loadings of dimension reduction results. Inspired by the plotASVcircular
method using phyloseq. TreeSummarizedExperiment object is expected to have content in reducedDim
slot calculated with standardized methods from mia or scater package.

Value

A ggplot2 object.

Examples

library(mia)

library(scater)

data("GlobalPatterns”, package = "mia"
tse <- GlobalPatterns

Calculate PCA

tse <- agglomerateByPrevalence(tse, rank="Phylum”, update.tree = TRUE)
tse <- transformAssay(tse, method = "clr"”, pseudocount = 1)

tse <- runPCA(tse, ncomponents = 5, assay.type = "clr")

Plotting feature loadings

plotLoadings(tse, dimred = "PCA"”, layout = "heatmap”, add.tree = FALSE) |>
Remove this line to see messages
suppressMessages()

Plotting matrix as a barplot
loadings_matrix <- attr(reducedDim(tse, "PCA"), "rotation")
plotLoadings(loadings_matrix)

Plotting more features but less components
plotLoadings(tse, dimred = "PCA", ncomponents = 2, n = 12)

Plotting matrix as heatmap without tree
plotLoadings(loadings_matrix, layout = "heatmap")

Plot with less components
plotLoadings(tse, "PCA"”, layout = "heatmap”, ncomponents = 2)

plotMediation Visualize mediation

Description

plotMediation() generates a heatmap from the results of mediation analysis produced with mia: getMediation()
or mia:addMediation(). It displays effect size and significance of the Actual Causal Mediation
Effect (ACME) and the Actual Direct Effect (ADE) for each mediator included in the object x.

plotMediation 33
Usage
plotMediation(x, ...)

S4 method for signature 'SummarizedExperiment'’
plotMediation(x, name = "mediation”, ...)

S4 method for signature 'data.frame'

plotMediation(x, layout = "heatmap”, ...)
Arguments
X a SummarizedExperiment object or a data.frame, returned as output from

addMediation or getMediation, respectively.
Additional parameters for plotting.

e add.significance: Character scalar. Controls how p-values are dis-
played in the heatmap. Options include "symbol” (p-values displayed as
symbols), "numeric"” (p-values displayed as numeric values) and NULL (p-
values not displayed). (Default: "symbol")

name Character scalar value defining which mediation data to use. (Default: "mediation™)

layout Character scalar Determines the layout of plot. Must be either "heatmap" or
"forest". (Default: "heatmap")

Details

plotMediation creates a heatmap starting from the output of the mediation functions, which are
mia wrappers for the basic mediate function. Either a SummarizedExperiment or a data.frame
object is supported as input. When the input is a SummarizedExperiment, this should contain the
output of addMediation in the metadata slot and the argument name needs to be defined. When the
input is a data.frame, this should be returned as output from getMediation.

Value

A ggplot2 object.

Examples

Not run:
library(mia)
library(scater)

Load dataset
data(hitchip1006, package = "miaTime")
tse <- hitchip1006

Agglomerate features by family (merely to speed up execution)
tse <- agglomerateByRank(tse, rank = "Phylum")

Convert BMI variable to numeric

tse[["bmi_group”]] <- as.numeric(tse[["bmi_group”]])

34 plotNMDS

Apply clr transformation to counts assay
tse <- transformAssay(tse, method = "clr"”, pseudocount = 1)

Analyse mediated effect of nationality on BMI via clr-transformed features
100 permutations were done to speed up execution, but ~1000 are recommended
tse <- addMediation(

tse, name = "assay_mediation”,
outcome = "bmi_group”,

treatment = "nationality”,
assay.type = "clr"”,

covariates = c("sex", "age"),
treat.value = "Scandinavia”,
control.value = "CentralEurope”,

boot = TRUE, sims = 100,
p.adj.method = "fdr”
)

Visualise results as heatmap
plotMediation(tse, "assay_mediation”)

Visualise results as forest plot
plotMediation(tse, "assay_mediation”, layout = "forest")

End(Not run)

plotNMDS Wrapper for scater::plotReducedDim()

Description

Wrapper for scater::plotReducedDim()

Usage
plotNMDS(x, ..., ncomponents = 2)
Arguments
X a SummarizedExperiment object.
additional arguments passed to scater::plotReducedDim().
ncomponents Numeric scalar. indicating the number of dimensions to plot, starting from the

first dimension. Alternatively, a numeric vector specifying the dimensions to be
plotted. (Default: 2)

plotRowPrevalence 35

plotRowPrevalence Plot prevalence information

Description

plotPrevalence and plotRowPrevalence visualize prevalence information.

Usage
plotRowPrevalence(x, ...)
plotPrevalentAbundance(x, ...)
plotPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'’
plotPrevalence(

)

X,

detection = detections,

detections = c(@.01, 0.1, 1, 2, 5, 10, 20),
prevalence = prevalences,

prevalences = seq(@0.1, 1, 0.1),

assay.type = assay_name,

assay_name = "counts”,

rank = NULL,

BPPARAM = BiocParallel::SerialParam(),

S4 method for signature 'SummarizedExperiment'’
plotPrevalentAbundance(

X,

rank = NULL,

assay.type = assay_name,
assay_name = "counts”,
colour.by = colour_by,
colour_by = NULL,

size.by = size_by,
size_by = NULL,
shape.by = shape_by,
shape_by = NULL,
show.label = label,
label = NULL,
facet.by = facet_by,
facet_by = NULL,

36

plotRowPrevalence

S4 method for signature 'SummarizedExperiment'

plotRowPrevalence(
X,
rank = NULL,
assay.type = assay_name,
assay_name = "counts”,
detection = detections,

detections

c(0.01, 0.1, 1, 2, 5, 10, 20),

min.prevalence = min_prevalence,
min_prevalence = 0,
BPPARAM = BiocParallel::SerialParam(),

Arguments

X

detection
detections
prevalence

prevalences
assay.type
assay_name

rank, ...

BPPARAM

colour.by

colour_by
size.by

a SummarizedExperiment object.

Numeric scalar. Detection thresholds for absence/presence. Either an abso-
lutes value compared directly to the values of x or a relative value between 0
and 1, if TRUE.

Deprecated. Use detection instead.
Numeric scalar. Prevalence thresholds (in O to 1). The required prevalence is
strictly greater by default. To include the limit, set include.lowest to TRUE.
Deprecated. Use prevalence instead.
Character scalar. Defines which assay data to use. (Default: "relabundance™)
Deprecated. Use assay . type instead.
additional arguments
e as.relative Logical scalar. Should the relative values be calculated? (De-
fault: FALSE)
¢ ndetection Integer scalar. Determines the number of breaks calculated
detection thresholds when detection=NULL. When TRUE, as_relative is
then also regarded as TRUE. (Default: 20)
e If lis.null(rank) matching arguments are passed on to agglomerateByRank.
See ?agglomerateByRank for more details.
* additional arguments for plotting. See mia-plot-args for more details i.e.
call help("mia-plot-args”)
A BiocParallelParamobject specifying whether the UniFrac calculation should
be parallelized.

Character scalar. Specification of a feature to colour points by, see the by ar-
gument in ?retrieveFeatureInfo for possible values. Only used with layout
= "point". (Default: NULL)

Deprecated. Use colour.by instead.

Character scalar. Specification of a feature to size points by, see the by argu-
ment in ?retrieveFeatureInfo for possible values. Only used with layout =
"point”. (Default: NULL)

plotRowPrevalence 37

size_by Deprecated. Use size.by instead.

shape.by Character scalar. Specification of a feature to shape points by, see the by ar-
gument in ?retrieveFeatureInfo for possible values. Only used with layout
= "point". (Default: NULL)

shape_by Deprecated. Use shape. by instead.

show. label Logical scalar, character scalar or integer vector for selecting labels
from the rownames of x. If rank is not NULL the rownames might change. (De-
fault: NULL)

label Deprecated. Use show. label instead.

facet.by Character scalar. Taxonomic rank to facet the plot by. Value must be of
taxonomyRanks (x) Argument can only be used in function plotPrevalentAbun-
dance.

facet_by Deprecated. Use facet.by instead.

min.prevalence Numeric scalar. Applied as a threshold for plotting. The threshold is applied
per row and column. (Default: 0)

min_prevalence Deprecated. Use min.prevalence instead.

Details

Whereas plotPrevalence produces a line plot, plotRowPrevalence returns a heatmap.
Agglomeration on different taxonomic levels is available through the rank argument.

To exclude certain taxa, preprocess x to your liking, for example with subsetting via getPrevalent
or agglomerateByPrevalence.

Value

A ggplot2 object or plotly object, if more than one prevalence was defined.

See Also

getPrevalence, agglomerateByPrevalence, agglomerateByRank
Examples
data(GlobalPatterns, package = "mia")

Apply relative transformation
GlobalPatterns <- transformAssay(GlobalPatterns, method = "relabundance”)

plotting N of prevalence exceeding taxa on the Phylum level
plotPrevalence(GlobalPatterns, rank = "Phylum")
plotPrevalence(GlobalPatterns, rank = "Phylum”) + scale_x_logl10()

plotting prevalence per taxa for different detection thresholds as heatmap
plotRowPrevalence(GlobalPatterns, rank = "Phylum")

by default a continuous scale is used for different detection levels,

38 plotRowTree

but this can be adjusted

plotRowPrevalence(
GlobalPatterns, rank = "Phylum”, assay.type = "relabundance”,
detection = c(0, ©0.001, 0.01, 0.1, 0.2))

point layout for plotRowPrevalence can be used to visualize by additional
information
plotPrevalentAbundance(
GlobalPatterns, rank = "Family"”, colour.by = "Phylum”) +
scale_x_log10()

When using function plotPrevalentAbundace, it is possible to create facets
with 'facet.by'.
plotPrevalentAbundance(

GlobalPatterns, rank = "Family"”,

colour.by = "Phylum”, facet.by = "Kingdom") +

scale_x_logl10()

plotRowTree Plotting tree information enriched with information

Description

Based on the stored data in a TreeSummarizedExperiment a tree can be plotted. From the rowData,
the assays as well as the colData information can be taken for enriching the tree plots with addi-
tional information.

Usage
plotRowTree(x, ...)
plotColTree(x, ...)

S4 method for signature 'TreeSummarizedExperiment'’
plotColTree(x, tree.name = "phylo”, ...)

S4 method for signature 'TreeSummarizedExperiment'’

plotRowTree(x, tree.name = "phylo"”, ...)
Arguments
X a TreeSummarizedExperiment.

additional arguments for plotting.

* layout: layout for the plotted tree. See ggtree for details.

* relabel.tree: Logical scalar. Should the tip labels be relabelec us-
ing the output of getTaxonomylLabels(x, with_rank = TRUE)? (Default:
FALSE)

plotRowTree 39

* order.tree: Logical scalar. Should the tree be ordered based on alpha-
betic order of taxonomic levels? (Default: FALSE)

e levels.rm: Logical scalar. Should taxonomic level information be re-
moved from labels? (Default: FALSE)

e show.label, show.highlights, show.highlight.label, abbr.label logical
vector, integer vector. or character vector. If a logical scalar is
given, should tip labels be plotted or if a logical vector is provided, which
labels should be shown? If an integer or character vector is provided,
it will be converted to a logical vector. The integer values must be in the
range of 1 and number of nodes, whereas the values of a character vec-
tor must match values of the 1label column in the node data. In case of a
character vector only values corresponding to actual labels will be plotted
and if no labels are provided no labels will be shown. (Default: FALSE)

* add.legend: Logical scalar. Should legends be plotted? (Default: TRUE)

* edge.colour.by: Character scalar. Specification of a column metadata
field or a feature to colour tree edges by. (Default: NULL)

* edge.size.by: Character scalar. Specification of a column metadata
field or a feature to size tree edges by. (Default: NULL)

* colour.by: Character scalar. Specification of a column metadata field
or a feature to colour tree nodes by. (Default: NULL)

* shape.by: Character scalar. Specification of a column metadata field or
a feature to shape tree nodes by. (Default: NULL)

* size.by: Character scalar. Specification of a column metadata field or
a feature to size tree tips by. (Default: NULL)

e show.tips: Logical scalar. Whether to show tip points. (Default: FALSE)

* show.nodes: Logical scalar. Whether to show node points. (Default:
FALSE)

* colour.highlights.by: Logical scalar. Should the highlights be colour
differently? If show.highlights = TRUE, colour_highlights will be set
to TRUE as default. (Default: FALSE)

* assay.type: Character scalar. Specifies which assay to obtain expres-
sion values from, for use in point aesthetics. (Default: "counts")

e other.fields: Character vector. Additional fields to include in the
node information without plotting them. (Default: NULL)

tree.name Character scalar. Specifies a rowTree/colTree from x. (Default: tree.name
= n phylo l’)
Details
If show. label or show.highlight.label have the same length as the number of nodes, the vector
will be used to relabel the nodes.
Value

a ggtree plot

40 plotRowTree

See Also

agglomerateByRanks

Examples

library(scater)
library(mia)
preparation of some data
data(GlobalPatterns)
GlobalPatterns <- agglomerateByRanks(GlobalPatterns)
altExp(GlobalPatterns, "Genus"”) <- addPerFeatureQC(
altExp(GlobalPatterns, "Genus"))
rowData(altExp(GlobalPatterns, "Genus"))$log_mean <- log(
rowData(altExp(GlobalPatterns, "Genus"))$mean)
rowData(altExp(GlobalPatterns, "Genus"))$detected <- rowData(
altExp(GlobalPatterns, "Genus"))$detected / 100
top_genus <- getTop(
altExp(GlobalPatterns, "Genus"),

method = "mean”,
top = 100L,
assay.type = "counts”
)
#
x <- altExp(GlobalPatterns,"Genus")
plotRowTree(
x[rownames(x) %in% top_genus,],
tip.colour.by = "log_mean"”, tip.size.by = "detected”
)
plot with tip labels
plotRowTree(
x[rownames(x) %in% top_genus,],
tip.colour.by = "log_mean”,

tip.size.by = "detected”,
show.label = TRUE

)
plot with selected labels
labels <- c("Genus:Providencia”, "Genus:Morganella”, "0.961.60")
plotRowTree(
x[rownames(x) %in% top_genus,],
tip.colour.by = "log_mean”,
tip.size.by = "detected”,
show.label = labels,
layout = "rectangular”
)

plot with labeled edges
plotRowTree(
x[rownames(x) %in% top_genus,],
edge.colour.by = "Phylum”,
tip.colour.by = "log_mean”

plotScree 41

if edges are sized, colours might disappear depending on plotting device
plotRowTree(

x[rownames(x) %in% top_genus,],

node.colour.by = "Phylum”,

edge.size.by = "detected”,

edge.colour.by = "log_mean”

)

aggregating data over the taxonomic levels for plotting a taxonomic tree
please note that the original tree of GlobalPatterns is dropped by
unsplitByRanks
altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns)
top_phyla <- getTop(
altExp(GlobalPatterns, "Phylum"),
method = "mean”,
top = 10L,
assay.type="counts"”
)
altExps(GlobalPatterns) <- lapply(altExps(GlobalPatterns), addPerFeatureQC)
altExps(GlobalPatterns) <- lapply(
altExps(GlobalPatterns), function(y){
rowData(y)$log_mean <- log(rowData(y)$mean)
rowData(y)$detected <- rowData(y)$detected / 100
return(y)
1)
x <- unsplitByRanks(GlobalPatterns)
X <- addHierarchyTree(x)

highlights <- c(
"Phylum:Firmicutes”, "Phylum:Bacteroidetes”,
"Family:Pseudomonadaceae”, "Order:Bifidobacteriales”)

plotRowTree(
x[rowData(x)$Phylum %in% top_phyla,],
tip.colour.by = "log_mean”,
node.colour.by = "log_mean”,

show.highlights = highlights,
show.highlight.label = highlights,
colour.highlights.by = "Phylum”

)

If you do not want to show internal nodes
plotRowTree(
x[rowData(x)$Phylum %in% top_phyla,],
edge.colour.by = "Phylum”,
edge.size.by = "detected”,
node.colour.by = "log_mean”,
show.nodes = FALSE

plotScree Create a scree plot

42 plotScree

Description

plotScree generates a scree plot to visualize the eigenvalues. The eigenvalues can be provided ei-
ther as a part of a TreeSummarizedExperiment object or as a separate vector. This plot illustrates
the decline in eigenvalues across components, helping to assess the importance of each component.

Usage

plotScree(x, ...)

S4 method for signature 'SingleCellExperiment'’
plotScree(x, dimred, ...)

S4 method for signature 'ANY'

plotScree(x, ...)
Arguments
X a TreeSummarizedExperiment eigenvals or a vector.

additional parameters for plotting

e show.barplot: Logical scalar. Whether to show a barplot. (Default:
TRUE)

* show.points: Logical scalar. Whether to show a points. (Default:
TRUE)

e show.line: Logical scalar. Whether to show a line. (Default: TRUE)

e show.labels: Logical scalar. Whether to show a labels for each point.
(Default: FALSE)

* add.proportion: Logical scalar. Whether to show proportion of ex-
plained variance, i.e., raw eigenvalues. (Default: TRUE)

* add.cumulative: Logical scalar. Whether to show cumulative explained
variance calculated from eigenvalues. (Default: FALSE)

* n: Integer scalar. Number of eigenvalues to plot. If NULL, all eigenvalues
are plotted. (Default: NULL)

e show.names: Logical scalar. Whether to show names of components
in x-axis. If FALSE, the index of component is shown instead of names.
(Default: FALSE)

e eig.name: Character scalar. The name of the attribute in reducedDim(x,
dimred) that contains the eigenvalues. (Default: c("eig"”, "varExplained"))

dimred Character scalar or integer scalar. Determines the reduced dimension to
plot. This is used when x is a TreeSummarizedExperiment to extract the eigen-
values from reducedDim(x, dimred).

Details

plotScree generates a scree plot to visualize the relative importance of components in dimension-
ality reduction techniques such as Principal Component Analysis (PCA) or Principal Coordinate
Analysis (PCoA). If the input is a TreeSummarizedExperiment object, the function extracts eigen-
values from the specified reduced dimension slot, which requires that dimensionality reduction has

plotSeries 43

been performed beforehand using a dedicated function. Alternatively, if the input is a vector or an
eigenvals object, these values are directly used as eigenvalues for the plot.

The plot can include a combination of barplot, points, connecting lines, and labels, which can be
controlled using the show. * parameters.

An option to show cumulative explained variance is also available by setting add.cumulative =
TRUE.

Value

A ggplot?2 object

Examples

library(miaViz)
library(scater)

data("enterotype”, package = "mia")
tse <- enterotype

Run PCA and store results into TreeSE
tse <- transformAssay(tse, method = "clr"”, pseudocount = TRUE)
tse <- runPCA(tse, assay.type = "clr")

Plot scree plot
plotScree(tse, "PCA", add.cumulative = TRUE)

plotSeries Plot Series

Description

This function plots time series data.

Usage

plotSeries(x, ...)

S4 method for signature 'SummarizedExperiment’
plotSeries(

X,

time.col,

assay.type = NULL,

col.var = NULL,

features = NULL,

facet.by = NULL,

44

Arguments

X

time.col

assay. type

col.var

features

facet.by

Details

plotSeries

a SummarizedExperiment object.
additional parameters for plotting.

* rank Character scalar. A taxonomic rank, that is used to agglomerate
the data. (Default: NULL)

¢ colour.byCharacter scalar. A column name from rowData(x) or colData(x),

that is used to divide observations to different colors. If NULL, this is not ap-
plied. (Default: NULL)

e linetype.by Character scalar. A column name from rowData(x) or
colData(x), that is used to divide observations to different line types. If
NULL, this is not applied. (Default: NULL)

e size.by: Character scalar. A column name from rowData(x) or colData(x),

that is used to divide observations to different size types. If NULL, this is not
applied. (Default: NULL)

* ncol: Numeric scalar. if facets are applied, ncol defines many columns
should be for plotting the different facets. (Default: 1L)

e scales Character scalar. Defines the behavior of the scales of each
facet. The value is passed into facet_wrap. (Default: "fixed")

See mia-plot-args for more details i.e. call help("mia-plot-args”)

Character scalar. Selecting the column from colData that will specify values
of x-axis.

Character scalar. Specifies the assay to be plotted.

Character scalar. Selecting the column from colData that will be plotted.
This can be used instead of assay.type for visualizing temporal changes in
sample metadata variable.

Character scalar. Selects the taxa from rownames. This parameter specifies
taxa whose abundances will be plotted.

Character scalar. Specifies a sample grouping. Must be value from rowData
or colData. If NULL, grouping is not applied. (Default: NULL)

This function creates series plot, where x-axis includes e.g. time points, and y-axis abundances of
selected taxa. If there are multiple observations for single system and time point, mean and standard
deviation is plotted.

Value

A ggplot2 object

Examples

Not run:
library(mia)

Load data from miaTime package
library("miaTime")

plotSeries 45

data(SilvermanAGutData)
tse <- SilvermanAGutData

Plots 2 most abundant taxa, which are colored by their family
plotSeries(

tse,

assay.type = "counts”,

time.col = "DAY_ORDER",

features = getTop(tse, 2),

colour.by = "Family”

Counts relative abundances
tse <- transformAssay(tse, method = "relabundance”)

Selects taxa
taxa <- c("seq_1", "seq_2", "seq_3", "seq_4", "seq_5")

Plots relative abundances of phylums

plotSeries(
tse[taxa,],
time.col = "DAY_ORDER",
colour.by = "Family”,
linetype.by = "Phylum”,
assay.type = "relabundance”
)
In addition to 'colour.by' and 'linetype.by', 'size.by' can also be used
to group taxa.
plotSeries(
tse,

time.col = "DAY_ORDER",
features = getTop(tse, 5),
colour.by = "Family",
size.by = "Phylum”,
assay.type = "counts”

If the data includes multiple systems, e.g., patients or bioreactors,
one can plot each system separately

plotSeries(
tse,
time.col = "DAY_ORDER",
assay.type = "relabundance”,

features = getTop(tse, 5),
facet.by = "Vessel”,

colour.by = "rownames”, colour.lab = "Feature”,
linetype.by = "Pre_Post_Challenge",
scales = "free"

One can visualize colData variables by specifying col.var
First calculate alpha diversity index to visualize.

46 rowTreeData

tse <- addAlpha(tse, index = "shannon")
Then create a plot
plotSeries(

tse,

col.var = "shannon",

time.col = "DAY_ORDER",

facet.by = "Vessel”,

End(Not run)

rowTreeData Adding information to tree data in TreeSummarizedExperiment

Description

To facilitate the dressing of the tree data stored in a TreeSummarizedExperiment object, rowTreeData
and colTreeData can be used.

Usage
rowTreeData(x, ...)
colTreeData(x, ...)
rowTreeData(x, tree.name = tree_name, tree_name = "phylo"”) <- value
colTreeData(x, tree.name = tree_name, tree_name = "phylo") <- value

combineTreeData(x, other.fields = other_fields, other_fields = list())

combineTreeData(x, other.fields = other_fields, other_fields = list())
S4 method for signature 'TreeSummarizedExperiment'’

colTreeData(x, tree.name = tree_name, tree_name = "phylo")

S4 method for signature 'TreeSummarizedExperiment'’
rowTreeData(x, tree.name = tree_name, tree_name = "phylo")

S4 replacement method for signature 'TreeSummarizedExperiment'
colTreeData(x, tree.name = tree_name, tree_name = "phylo") <- value

S4 replacement method for signature 'TreeSummarizedExperiment'’
rowTreeData(x, tree.name = tree_name, tree_name = "phylo"”) <- value

S4 method for signature 'phylo'
combineTreeData(x, other.fields = other_fields, other_fields = list())

rowTreeData 47

S4 method for signature 'treedata’
combineTreeData(x, other.fields = other_fields, other_fields = list())

Arguments
X a TreeSummarizedExperiment object.
additional arguments, currently not used.
tree.name Character scalar. Specifies a rowTree/colTree from x. (Default: "phylo”)
tree_name Deprecated. Use tree.name instead.

other.fields, value

a data. frame or coercible to one, with at least one type of id information. See
details.(Default: 1ist())

other_fields Deprecated. Use other.fields instead.

Details

To match information to nodes, the id information in other.fields are used. These can either be
a column, named ‘node’ or ‘label’ (‘node’ taking precedent), or rownames. If all rownames can
be coerced to integer, they are considered as ‘node’ values, otherwise as ‘label’ values. The id
information must be unique and match available values of rowTreeData(c)

The result of the accessors, rowTreeData and colTreeData, contain at least a ‘node’ and ‘label’
column.

Value

a data. frame for the accessor and the modified TreeSummarizedExperiment object

Examples

data(GlobalPatterns)

td <- rowTreeData(GlobalPatterns)

td

td$test <- rnorm(nrow(td))
rowTreeData(GlobalPatterns) <- td
rowTreeData(GlobalPatterns)
combineTreeData(rowTree(GlobalPatterns), td)

Index

* datasets getMediation, 33
mia-datasets, 6 getNeatOrder, 4
?agglomerateByRank, 36 getNeatOrder,matrix-method
?retrieveCelllInfo, 24 (getNeatOrder), 4
?retrieveFeaturelnfo, 36, 37 getPrevalence, 37
getRDA, 20
addMediation, 33 ggplot, 17
addRDA, 21 ggraph, 24
agglomerateByPrevalence, 37 ggtree, 25, 38, 39
agglomerateByRank, 36, 37
agglomerateByRanks, 40 mediate, 33
Asls, 27 mediation, 33
assay, 44 metadata, 28
mia, 3
beeswarm: :beeswarm(), 16 mia-datasets, 6
BiocParallelParam, 36 mia-plot-args, 7

miaViz (miaViz-package), 3

calculateDMN, 28 miaViz-package, 3

col_graph (mia-datasets), 6

colData, 44 plotAbundance, 9
colTreeData (rowTreeData), 46 plotAbundance, SummarizedExperiment-method
colTreeData, TreeSummarizedExperiment-method (plotAbundance), 9

(rowTreeData), 46 plotAbundanceDensity, 12, 29, 30
colTreeData<‘(FOWTFQEDaté)’46) plotAbundanceDensity, SummarizedExperiment-method
colTreeData<-,TreeSummarizedExperiment-method (plotAbundanceDensity), 12

(rowTreeData), 46 plotBarplot (plotHistogram), 28

comb%neTreeData(rowTreeData),46 plotBarplot,SummarizedExperiment-method
combineTreeData, phylo-method (plotHistogram), 28

' (rowTreeData), 46 plotBoxplot, 15
combineTreeData, treedata-method plotBoxplot, SummarizedExperiment-method
(rowTreeData), 46 (plotBoxplot), 15
plotCCA, 19
plotCCA,matrix-method (plotCCA), 19
plotCCA,SingleCellExperiment-method
(plotCCA), 19

deprecate, 4

eigenvals, 42

facet_wrap, 10, 44 plotColGraph, 22
plotColGraph, ANY, SummarizedExperiment-method

geom_edge_fan, 24 (plotColGraph), 22

geom_label, 20 plotColGraph, SummarizedExperiment,missing-method

geom_label_repel, 20 (plotColGraph), 22

48

INDEX 49

plotColTile, 26 plotRowPrevalence, SummarizedExperiment-method
plotColTile, SummarizedExperiment-method (plotRowPrevalence), 35

(plotColTile), 26 plotRowTile (plotColTile), 26
plotColTree (plotRowTree), 38 plotRowTile, SummarizedExperiment-method
plotColTree, TreeSummarizedExperiment-method (plotColTile), 26

(plotRowTree), 38 plotRowTree, 38
plotDMN (plotDMNFit), 27 plotRowTree, TreeSummarizedExperiment-method
plotDMNFit, 27 (plotRowTree), 38
plotDMNFit,SummarizedExperiment-method plotScree, 41

(plotDMNFit), 27 plotScree,ANY-method (plotScree), 42
plotFeaturePrevalence (deprecate), 4 plotScree,SingleCellExperiment-method
plotFeaturePrevalence, ANY-method (plotScree), 42

(deprecate), 4 plotSeries, 43
plotGraph (plotColGraph), 22 plotSeries, SummarizedExperiment-method
plotHistogram, 28 (plotSeries), 43
plotHistogram, SummarizedExperiment-method plotTaxaPrevalence (deprecate), 4

(plotHistogram), 28 plotTaxaPrevalence, ANY-method
(deprecate), 4

plotLoadings, 30
plotTree (plotRowTree), 38

plotLoadings,matrix-method
(plotLoadings), 30
plotLoadings,SingleCellExperiment-method
(plotLoadings), 30
plotLoadings, TreeSummarizedExperiment-method
(plotLoadings), 30
plotMediation, 32
plotMediation,daFa.frame—method rowTreeData, 46
(plotMediation), 32 rowTreeData, TreeSummarizedExperiment-method
plotMediation, SummarizedExperiment-method (rowTreeData), 46
(plotMediation), 32
plotNMDS, 34

retrieveCellInfo, 27
retrieveFeaturelnfo, 27
row_graph (mia-datasets), 6
row_graph_order (mia-datasets), 6
rowData, 44

rownames, 44

rowTreeData<- (rowTreeData), 46
rowTreeData<-,TreeSummarizedExperiment-method

plotPrevalence (plotRowPrevalence), 35 (rowTreeData), 46

plotPrevalence, SummarizedExperiment-method
(plotRowPrevalence), 35 scater::plotColData, /8, 30

plotPrevalentAbundance scater: :plotExpression, /4, 18, 30
(plotRowPrevalence), 35 scater: :plotRowData, /8, 30

plotPrevalentAbundance, SummarizedExperiment-mgdioadrizedExperiment, 10, 13, 16, 23, 24,
(plotRowPrevalence), 35 27-29, 33, 34, 36, 44

plotRDA (plotCCA), 19

plotRDA, matrix-method (plotCCA), 19 treeData (rowTreeData), 46

plotRDA, SingleCellExperiment-method TreeSummarizedExperiment, 20, 21, 31, 38,
(plotCCA), 19 42,47

plotReducedDim, 20, 21

plotRowGraph (plotColGraph), 22

plotRowGraph, ANY, SummarizedExperiment-method
(plotColGraph), 22

plotRowGraph, SummarizedExperiment,missing-method
(plotColGraph), 22

plotRowPrevalence, 35

vipor::offsetSingleGroup(), 16

	miaViz-package
	deprecate
	getNeatOrder
	mia-datasets
	mia-plot-args
	plotAbundance
	plotAbundanceDensity
	plotBoxplot
	plotCCA
	plotColGraph
	plotColTile
	plotDMNFit
	plotHistogram
	plotLoadings
	plotMediation
	plotNMDS
	plotRowPrevalence
	plotRowTree
	plotScree
	plotSeries
	rowTreeData
	Index

