Package ‘hermes’

January 24, 2026

Title Preprocessing, analyzing, and reporting of RNA-seq data
Type Package

Date 2025-09-09

Version 1.15.0

Description Provides classes and functions for quality control,
filtering, normalization and differential expression analysis of
pre-processed “RNA-seq” data. Data can be imported from
*SummarizedExperiment” as well as “matrix” objects and can be
annotated from " BioMart" . Filtering for genes without too low
expression or containing required annotations, as well as filtering
for samples with sufficient correlation to other samples or total
number of reads is supported. The standard normalization methods
including cpm, rpkm and tpm can be used, and 'DESeq2" as well as voom
differential expression analyses are available.

License Apache License 2.0
URL https://insightsengineering.github.io/hermes/

BugReports https://github.com/insightsengineering/hermes/issues
Depends ggfortify, R (>=4.1), SummarizedExperiment (>= 1.16)

Imports assertthat, Biobase, BiocGenerics, biomaRt, checkmate (>=
2.1), circlize, ComplexHeatmap, DESeq?2, dplyr, edgeR, EnvStats,
forcats (>= 1.0.0), GenomicRanges, ggplot2, ggrepel (>=0.9),
IRanges, limma, magrittr, matrixStats (>= 1.5.0), methods,
MultiAssayExperiment, purrr, R6, Rdpack (>= 2.6.2), rlang,
S4Vectors, stats, tidyr, utils

Suggests BiocStyle, DelayedArray, DT, grid, httr, knitr, rmarkdown,
statmod, testthat (>= 3.2.2), vdiffr (>= 1.0.8)

VignetteBuilder knitr
RdMacros Rdpack

biocViews RNASeq, DifferentialExpression, Normalization,
Preprocessing, QualityControl

Config/testthat/edition 3

https://insightsengineering.github.io/hermes/
https://github.com/insightsengineering/hermes/issues

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.0

Collate 'GeneSpec-class.R' 'HermesData-validate.R'
'HermesData-class.R' 'HermesData-methods.R'
'argument_convention.R' 'assertthat.R' 'calc_cor.R'
'checkmate.R' 'connections.R' 'data.R' 'differential. R’
'dplyr_compatibility.R' 'draw_barplot.R' 'draw_boxplot.R'
'draw_heatmap.R' 'draw_scatterplot.R' 'graphs.R' join_cdisc.R’
'normalization.R' 'package.R' 'pca.R' 'pca_cor_samplevar.R'
'quality.R' 'top_genes.R' 'utils.R’

git_url https://git.bioconductor.org/packages/hermes
git_branch devel

git_last_commit da2leaa

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Daniel Sabanés Bové [aut, cre],
Namrata Bhatia [aut],
Stefanie Bienert [aut],
Benoit Falquet [aut],
Haocheng Li [aut],
Jeff Luong [aut],
Lyndsee Midori Zhang [aut],
Alex Richardson [aut],
Simona Rossomanno [aut],
Tim Treis [aut],
Mark Yan [aut],
Naomi Chang [aut],
Chendi Liao [aut],
Carolyn Zhang [aut],
Joseph N. Paulson [aut],
F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Daniel Sabanés Bové <daniel.sabanes_bove@rconis

Contents

.com>

Contents

hermes-package e 4
add_quality_flags 5
all_na . . .o e e 7
annotation,AnyHermesData-method L. 8
ASSEIHIONS v o o e e e e e e e e e e e 9

Contents

3
aSSertion_argUMENES v v v v v e e e e e e e e e e e e e e e e 11
autoplot,AnyHermesData-method 11
calc_pecao e 12
cat_with_newline e 13
chind L e e e e e 14
check_proportion L 15
COIMEANZISCOTES o v v v e i e e e e e e e e e e e e e e 16
colPrinCompl e e 16
col_data_with_genes 17
connect_biomart e e 18
control_normalize e e 19
control_quality L. e e 20
correlate e e 21
correlate,AnyHermesData-method oL 21
correlate,HermesDataPca-method 23
counts,AnyHermesData-method L. 24
cut_quantile e 25
df cols_to_factor e 26
diff_expression L e 27
draw_barplot 29
draw_boxplot e 30
draw_genes_barplot e 32
draw_heatmap L. 33
draw_libsize_densities e e 34
draw_libsize _hist e 35
draw_libsize_qq o . e 36
draw_nonzero_boxplot 36
draw_scatterplot 37
EXPIEeSSION_SEL v v vt i e e e e e e e e e e e e e e e 39
extra_data_names e e e e e e e e 39
filter e e e 40
GEMES . v v e 41
GeneSpec e 42
GEME_SPEC « . v v v e 44
HermesData-class e e 45
hermes_data e e e e e e e 47
h_all_duplicated 48
h_df_factors_with_explicit_na 48
h_diff_expr_deseq2 L e 49
h_diff expr_voom 50
h_ensembl _to_entrez_ids 51
h_get_annotation_biomart L 52
h_get granges_by_id L 53
h_get_size_biomart 54
h_has_req_annotations 54
h_map_pos e e e e 55
h_parens 56

h_pca_df r2_matrix 56

4 hermes-package
h_pca_var_rsquared e e e 58
h_short_list e e e e e e 59
h_strip_prefix e 59
h_unique_labels L 60
inner_join_cdiSC e 61
isEmpty,SummarizedExperiment-method oL 62
lapply,MultiAssayExperiment-method 62
metadata L L L L e e e e e e e e e 63
multi_assay_experiment e e e e e e 64
normalize,AnyHermesData-method 64
prefix . ..o 67
QUETY . v o e e e e e e e e e e e e e e e e 67
bind e e 68
rename,SummarizedExperiment-method 0oL 69
samples,AnyHermesData-method 70
set_tech_failure e 71
show,HermesData-method 72
SUDSEL L e e e e e 73
summarized_experimento e e e e 74
SUMMATY .+« v v v v v e 74
TOP_ZENES . . . o v it e e e e e e e e e e e 75
validate L e e 77
WIAP_IN_MAC . . . v v v v e et it e e e e e e e e e e 78
Do>% e e e e 79

Index 80

hermes-package hermes Package

Description

hermes facilitates preprocessing, analyzing, and reporting of RNA-seq data.

Author(s)

Maintainer: Daniel Sabanés Bové <daniel.sabanes_bove@rconis.com>
Authors:
e Namrata Bhatia

Stefanie Bienert

Benoit Falquet

Haocheng Li

Jeff Luong

Lyndsee Midori Zhang <zhang. lyndsee@gene.com>
Alex Richardson

add_quality_flags 5

* Simona Rossomanno

e Tim Treis

e Mark Yan

* Naomi Chang

¢ Chendi Liao <chendi.liao@roche.com>
* Carolyn Zhang

 Joseph N. Paulson <paulson. joseph@gene.com>
Other contributors:

* F. Hoffmann-La Roche AG [copyright holder, funder]

See Also

Useful links:

* https://insightsengineering.github.io/hermes/

* Report bugs at https://github.com/insightsengineering/hermes/issues

add_quality_flags Add Quality Flags

Description

The function add_quality_flags() adds quality flag information to a AnyHermesData object:

* low_expression_flag: for each gene, counts how many samples don’t pass a minimum
expression Counts per Million (CPM) threshold. If too many, then it flags this gene as a "low
expression" gene.

* tech_failure_flag: first calculates the Pearson correlation matrix of the sample wise CPM
values, resulting in a matrix measuring the correlation between samples. Then compares the
average correlation per sample with a threshold - if it is too low, then the sample is flagged as
a "technical failure" sample.

e low_depth_flag: computes the library size (total number of counts) per sample. If this

number is too low, the sample is flagged as a "low depth" sample.

Separate helper functions are internally used to create the flags, and separate getter functions allow
easy access to the quality control flags in an object.

https://insightsengineering.github.io/hermes/
https://github.com/insightsengineering/hermes/issues

6 add_quality_flags
Usage
add_quality_flags(object, control = control_quality(), overwrite = FALSE)
h_low_expression_flag(object, control = control_quality())
h_low_depth_flag(object, control = control_quality())
h_tech_failure_flag(object, control = control_quality())
get_tech_failure(object)
get_low_depth(object)

get_low_expression(object)

Arguments
object (AnyHermesData)
input.
control (list)
list of settings (thresholds etc.) used to compute the quality control flags, pro-
duced by control_quality().
overwrite (flag)
whether previously added flags may be overwritten.
Details

While object already has the variables mentioned above as part of the rowData and colData (as
this is enforced by the validation method for AnyHermesData), they are usually still NA after the
initial object creation.

Value

The input object with added quality flags.

Functions

* h_low_expression_flag(): creates the low expression flag for genes given control settings.

* h_low_depth_flag(): creates the low depth (library size) flag for samples given control
settings.

* h_tech_failure_flag(): creates the technical failure flag for samples given control settings.
* get_tech_failure(): get the technical failure flags for all samples.
* get_low_depth(): get the low depth failure flags for all samples.

* get_low_expression(): get the low expression failure flags for all genes.

all na

See Also

e control_quality() for the detailed settings specifications;

* set_tech_failure() to manually flag samples as technical failures.

Examples

Adding default quality flags to ~AnyHermesData™ object.
object <- hermes_data

result <- add_quality_flags(object)
which(get_tech_failure(result) != get_tech_failure(object))
head(get_low_expression(result))
head(get_tech_failure(result))

head(get_low_depth(result))

It is possible to overwrite flags if needed, which will trigger a message.
result2 <- add_quality_flags(result, control_quality(min_cpm = 1000), overwrite = TRUE)

Separate calculation of low expression flag.
low_expr_flag <- h_low_expression_flag(

object,

control_quality(min_cpm = 500, min_cpm_prop = 0.9)
)
length(low_expr_flag) == nrow(object)
head(low_expr_flag)

Separate calculation of low depth flag.

low_depth_flag <- h_low_depth_flag(object, control_quality(min_depth = 5))
length(low_depth_flag) == ncol(object)

head(low_depth_flag)

Separate calculation of technical failure flag.

tech_failure_flag <- h_tech_failure_flag(object, control_quality(min_corr = 0.35))
length(tech_failure_flag) == ncol(object)

head(tech_failure_flag)

head(get_tech_failure(object))

head(get_low_depth(object))

head(get_low_expression(object))

all_na Checks Whether All Missing

Description

Internal function to check whether a whole vector is NA.

Usage
all_na(x)

8 annotation,AnyHermesData-method

Arguments
X (vector)
vector to check.
Value
Corresponding flag.

annotation,AnyHermesData-method
Annotation Accessor and Setter

Description

These methods access and set the gene annotations stored in a AnyHermesData object.

Usage

S4 method for signature 'AnyHermesData'
annotation(object, ...)

.row_data_annotation_cols

S4 replacement method for signature 'AnyHermesData,DataFrame'’
annotation(object) <- value

Arguments
object (AnyHermesData)
object to access the annotations from.
not used.
value (DataFrame)
what should the annotations be replaced with.
Format

The annotation column names are available in the exported character vector . row_data_annotation_cols.

Value

The S4Vectors: :DataFrame with the gene annotations:

e symbol
e desc
¢ chromosome

* size

assertions 9

Note

When trying to replace the required annotations with completely missing values for any genes, a
warning will be given and the corresponding gene IDs will be saved in the attribute annotation.missing.genes.
Note also that additional annotations beyond the required ones may be supplied and will be stored.

Examples

object <- hermes_data
head(annotation(object))

assertions Additional Assertions for assert_that

Description

We provide additional assertion functions which can be used together with assertthat: :assert_that().

We provide additional assertion functions which can be used together with the checkmate functions.
These are described in individual help pages linked below.

Usage
is_class(x, class2)
is_hermes_data(x)
is_counts_vector(x)
is_list_with(x, elements)
one_provided(one, two)

is_constant(x)

Arguments
X an object to check.
class2 (character or class definition)
the class to which x could belong.
elements (character)
names of elements which should be in the list x.
one first input.

two second input.

10 assertions

Value

Depending on the function prefix.
* assert_ functions return the object invisibly if successful, and otherwise throw an error mes-
sage.
 check_ functions return TRUE if successful, otherwise a string with the error message.

* test_ functions just return TRUE or FALSE.

Functions

e is_class(): checks the class.

* is_hermes_data(): checks whether x is an AnyHermesData object.

* is_counts_vector(): checks for a vector of counts (positive integers).

e is_list_with(): checks for a list containing elements.

* one_provided(): checks that exactly one of the two inputs one, two is not NULL.

* is_constant(): checks whether the vector x is constant (only supports numeric, factor,
character, logical). NAs are removed first.

See Also

assert_proportion()

Examples

Assert a general class.
a<-5
is_class(a, "character")

Assert a ~AnyHermesData™ object.
is_hermes_data(hermes_data)
is_hermes_data(42)

Assert a counts vector.
a <- 5L
is_counts_vector(a)

Assert a list containing certain elements.
b <- list(a =5, b = 3)

is_list_with(b, c("a", "c"))
is_list_with(b, c("a", "b"))

Assert that exactly one of two arguments is provided.
a<-10

b <-10

one_provided(a, b)

one_provided(a, NULL)

Assert a constant vector.
is_constant(c(1, 2))

assertion_arguments 11

is_constant(c(NA, 1))
is_constant(c("a", "a"))
is_constant(factor(c(”a", "a")))

assertion_arguments Standard Assertion Arguments

Description

The documentation to this function lists all the conventional arguments in additional checkmate

assertions.
Arguments
X an object to check.
null.ok (flag)
whether x may also be NULL.
.var.name (string)

name of the checked object to print in assertions; defaults to the heuristic imple-
mented in checkmate: : vname ().

add (AssertCollection or NULL)
collection to store assertion messages, see checkmate: :AssertCollection.
info (string)
extra information to be included in the message for the testthat reporter, see
testthat: :expect_that().
label (string)

name of the checked object to print in messages. Defaults to the heuristic im-
plemented in checkmate: : vname().

autoplot,AnyHermesData-method
All Standard Plots in Default Setting

Description

This generates all standard plots - histogram and g-q plot of library sizes, density plot of the (log)
counts distributions, boxplot of the number of number of non-zero expressed genes per sample, and
a stacked barplot of low expression genes by chromosome at default setting.

Usage

S4 method for signature 'AnyHermesData'
autoplot(object)

12 calc_pca

Arguments
object (AnyHermesData)
input.
Value

A list with the ggplot objects from draw_libsize_hist(), draw_libsize_qq(), draw_libsize_densities(),
draw_nonzero_boxplot () and draw_genes_barplot() functions with default settings.

Examples

result <- hermes_data
autoplot(result)

calc_pca Principal Components Analysis Calculation

Description

The calc_pca() function performs principal components analysis of the gene count vectors across
all samples.

A corresponding autoplot() method then can visualize the results.

Usage
calc_pca(object, assay_name = "counts”, n_top = NULL)
Arguments
object (AnyHermesData)
input.
assay_name (string)
name of the assay to use.
n_top (count or NULL)
filter criteria based on number of genes with maximum variance.
Details

* PCA should be performed after filtering out low quality genes and samples, as well as normal-
ization of counts.

* In addition, genes with constant counts across all samples are excluded from the analysis
internally in calc_pca(). Centering and scaling is also applied internally.

* Plots can be obtained with the ggplot2: :autoplot () function with the corresponding method
from the ggfortify package to plot the results of a principal components analysis saved in a
HermesDataPca object. See ggfortify: :autoplot.prcomp() for details.

cat_with_newline 13

Value

A HermesDataPca object which is an extension of the stats::prcomp class.

See Also

Afterwards correlations between principal components and sample variables can be calculated, see
pca_cor_samplevar.

Examples

object <- hermes_data %>%
add_quality_flags() %>%
filter() %>%
normalize()

result <- calc_pca(object, assay_name = "tpm")
summary (result)

resultl <- calc_pca(object, assay_name = "tpm”, n_top = 500)
summary (result1)

Plot the results.

autoplot(result)

autoplot(result, x = 2, y = 3)

autoplot(result, variance_percentage = FALSE)
autoplot(result, label = TRUE, label.repel = TRUE)

cat_with_newline Concatenate and Print with Newline

Description

This function concatenates inputs like cat () and prints them with newline.

Usage

cat_with_newline(...)

Arguments

inputs to concatenate.

Value

None, only used for the side effect of producing the concatenated output in the R console.

See Also

This is similar to cli::cat_line().

14 cbind

Examples
cat_with_newline("hello”, "world")
cbind Column Binding of AnyHermesData Objects
Description

This method combines AnyHermesData objects with the same ranges but different samples (columns

in assays).
Arguments
(AnyHermesData)
objects to column bind.
Value

The combined AnyHermesData object.

Note
* Note that this just inherits SummarizedExperiment: :cbind, SummarizedExperiment-method().
When binding a AnyHermesData object with a SummarizedExperiment: : SummarizedExperiment
object, then the result will be a SummarizedExperiment: :SummarizedExperiment object
(the more general class).
* Note that the combined object needs to have unique sample IDs (column names).
See Also

rbind to row bind objects.

Examples

a <- hermes_data[, 1:10]
b <- hermes_datal[, 11:20]
result <- cbind(a, b)
class(result)

check_proportion

15

check_proportion

Check for proportion

Description

Check whether x is a (single) proportion.

Usage

check_proportion(x, null.ok = FALSE)

assert_proportion(

X)

null.ok = FALSE,

.var.name
add = NULL

)

checkmate: :vname(x),

test_proportion(x, null.ok = FALSE)

expect_proportion(x, null.ok = FALSE, info = NULL, label = vname(x))

Arguments

X
null.ok

.var.name

add

info

label

Value

an object to check.

(flag)
whether x may also be NULL.

(string)
name of the checked object to print in assertions; defaults to the heuristic imple-
mented in checkmate: : vname().

(AssertCollection or NULL)
collection to store assertion messages, see checkmate: :AssertCollection.

(string)
extra information to be included in the message for the testthat reporter, see
testthat: :expect_that().

(string)

name of the checked object to print in messages. Defaults to the heuristic im-
plemented in checkmate: : vname().

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

16 colPrinComp 1

Examples

check_proportion(@.25)

colMeanZscores Mean Z-score Gene Signature

Description

This helper function returns the Z-score from an assay stored as a matrix.

Usage
colMeanZscores(x)
Arguments
X (matrix)
containing numeric data with genes in rows and samples in columns, no missing
values are allowed.
Value

A numeric vector containing the mean Z-score values for each column in x.

Examples

object <- hermes_data %>%
add_quality_flags() %>%
filter() %>%
normalize() %>%
assay("counts")

colMeanZscores(object)

colPrinComp1 First Principal Component (PC1) Gene Signature

Description

This helper function returns the first principal component from an assay stored as a matrix.

Usage

colPrinComp1(x, center = TRUE, scale = TRUE)

col_data_with_genes

Arguments

X

center

scale

Value

17

(matrix)
containing numeric data with genes in rows and samples in columns, no missing
values are allowed.

(flag)
whether the variables should be zero centered.

(flag)
whether the variables should be scaled to have unit variance.

A numeric vector containing the principal component values for each column in x.

Examples

object <- hermes_data %>%
add_quality_flags() %>%

filter() %>%

normalize() %>%
assay("counts")

colPrinComp1(object)

col_data_with_genes Sample Variables with Selected Gene Information

Description

This obtains the sample variables of a HermesData object together with selected gene information.

Usage

col_data_with_genes(object, assay_name, genes)

Arguments

object

assay_name

genes

Value

(AnyHermesData)
input experiment.

(string)
which assay to use.

(GeneSpec)
which genes or which gene signature should be extracted.

The combined data set, where the additional attribute gene_cols contains the names of the columns
obtained by extracting the genes information.

18 connect_biomart

Note

The class of the returned data set will depend on the class of colData, so usually will be S4Vectors: :DFrame.

Examples

result <- col_data_with_genes(hermes_data, "counts”, gene_spec("”GenelID:1820"))
tail(names(result))
result$GenelID. 1820

connect_biomart Connection to BioMart

Description

connect_biomart() creates a connection object of class ConnectionBiomart which contains the
biomaRt object of class biomaRt: :Mart and the prefix of the object which is used downstream for
the query.

Usage

connect_biomart(prefix = c("ENSG", "GenelID"), version = NULL)

Arguments
prefix (string)
gene ID prefix.
version (string or NULL)
optional Ensembl version to use. If NULL the latest available release is used.
Details

This connects to the Ensembl data base of BioMart for human genes. A specific version can be
optionally chosen to ensure reproducibility of results once a new release is available, as accessed
data might then change.

Value

ConnectionBiomart object.

Examples

if (interactive()) {
connection <- connect_biomart("ENSG")

}

control_normalize 19

control_normalize Control Settings for Counts Normalization

Description

This control function allows for easy customization of the normalization settings.

Usage

control_normalize(
log = TRUE,
lib_sizes = NULL,
prior_count =1,

fit_type = "parametric”
)
Arguments
log (flag)
whether log? values are returned, otherwise original scale is used.
lib_sizes (NULL or counts)
library sizes, if NULL the vector with the sum of the counts for each of the sam-
ples will be used.
prior_count (non-negative number)
average count to be added to each observation to avoid taking log of zero, used
only when log = TRUE.
fit_type (string)
method to estimate dispersion parameters in Negative Binomial model, used
only when normalize () methods include vst and/or rlog. See estimateDispersions
for details.
Value

List with the above settings used to perform the normalization procedure.

Note

To be used with the normalize() function.

Examples

control_normalize()
control_normalize(log = FALSE, lib_sizes = rep(le6lL, 20))

20

control_quality

control_quality

Control for Specified Quality Flags

Description

Control function which specifies the quality flag settings. One or more settings can be customized.
Not specified settings are left at defaults.

Usage

control_quality(

min_cpm = 1,

min_cpm_prop = 0.25,
min_corr = 0.5,
min_depth = NULL

Arguments

min_cpm

min_cpm_prop

min_corr

min_depth

Value

(non-negative number)

minimum Counts per Million (CPM) for each gene within the sample.
(proportion)

minimum proportion of samples with acceptable CPM of certain gene for low
expression flagging.

(proportion)

minimum Pearson correlation coefficient of CPM between samples for technical
failure flagging.

(non-negative count or NULL)

minimum library depth for low depth flagging. If NULL, this will be calculated
as the first quartile minus 1.5 times the inter-quartile range of the library size
(depth) of all samples. (So anything below the usual lower boxplot whisker
would be too low.)

List with the above criteria to flag observations.

Note

To be used with the add_quality_flags() function.

Examples

Default settings.

control_quality()

One or more settings can be customized.
control_quality(min_cpm = 5, min_cpm_prop = 0.001)

correlate 21

correlate Generic Function for Correlation Calculations

Description

New generic function to calculate correlations for one or two objects.

Usage
correlate(object, ...)
Arguments
object input of which the class will be used to decide the method.
additional arguments.
Value

Corresponding object that contains the correlation results.

See Also

pca_cor_samplevar and calc_cor which are the methods included for this generic function.

Examples

sample_cors <- correlate(hermes_data)
autoplot(sample_cors)

pca_sample_var_cors <- correlate(calc_pca(hermes_data), hermes_data)
autoplot(pca_sample_var_cors)

correlate,AnyHermesData-method
Correlation between Sample Counts of AnyHermesData

Description

The correlate() method can calculate the correlation matrix between the sample vectors of
counts from a specified assay. This produces a HermesDataCor object, which is an extension of
a matrix with additional quality flags in the slot flag_data (containing the tech_failure_flag
and low_depth_flag columns describing the original input samples).

An autoplot () method then afterwards can produce the corresponding heatmap.

22 correlate, AnyHermesData-method

Usage

S4 method for signature 'AnyHermesData'
correlate(object, assay_name = "counts"”, method = "pearson”, ...)

S4 method for signature 'HermesDataCor'

autoplot(
object,
flag_colors = c("FALSE™ = "green"”, “TRUE® = "red"),
cor_colors = circlize::colorRamp2(c(@, 0.5, 1), c("red”, "yellow”, "green")),
)
Arguments
object (AnyHermesData)
object to calculate the correlation.
assay_name (string)
the name of the assay to use.
method (string)
the correlation method, see stats: :cor() for details.
other arguments to be passed to ComplexHeatmap: :Heatmap().
flag_colors (named character)
a vector that specifies the colors for TRUE and FALSE flag values.
cor_colors (function)
color scale function for the correlation values in the heatmap, produced by
circlize::colorRamp2().
Value

A HermesDataCor object.

Functions

e autoplot(HermesDataCor): This autoplot() method uses the ComplexHeatmap: :Heatmap ()
function to plot the correlations between samples saved in a HermesDataCor object.

Examples

object <- hermes_data

Calculate the sample correlation matrix.
correlate(object)

We can specify another correlation coefficient to be calculated.
result <- correlate(object, method = "spearman”)

Plot the correlation matrix.
autoplot(result)

correlate,HermesDataPca-method 23

We can customize the heatmap.
autoplot(result, show_column_names = FALSE, show_row_names = FALSE)

Including changing the axis label text size.
autoplot(
result,
row_names_gp = grid::gpar(fontsize = 8),
column_names_gp = grid::gpar(fontsize = 8)

)

correlate,HermesDataPca-method
Correlation of Principal Components with Sample Variables

Description

This correlate() method analyses the correlations (in R2 values) between all sample variables in
a AnyHermesData object and the principal components of the samples.

A corresponding autoplot() method then can visualize the results in a heatmap.

Usage

S4 method for signature 'HermesDataPca'
correlate(object, data)

S4 method for signature 'HermesDataPcaCor'’

autoplot(
object,
cor_colors = circlize::colorRamp2(c(-1, @, 1), c("blue”, "white"”, "red")),
)
Arguments
object (HermesDataPca)
input. It can be generated using calc_pca() function on AnyHermesData.
data (AnyHermesData)
input that was used originally for the PCA.
cor_colors (function)
color scale function for the correlation values in the heatmap, produced by
circlize::colorRamp2().
other arguments to be passed to ComplexHeatmap: :Heatmap().
Value

A HermesDataPcaCor object with R2 values for all sample variables.

24 counts,AnyHermesData-method

Functions

* autoplot(HermesDataPcaCor): This plot method uses the ComplexHeatmap: :Heatmap ()
function to visualize a HermesDataPcaCor object.

See Also

h_pca_df_r2_matrix() which is used internally for the details.

Examples

object <- hermes_data %>%
add_quality_flags() %>%
filter() %>%
normalize()

Perform PCA and then correlate the prinicipal components with the sample variables.
object_pca <- calc_pca(object)
result <- correlate(object_pca, object)

Visualize the correlations in a heatmap.
autoplot(result)

We can also choose to not reorder the columns.
autoplot(result, cluster_columns = FALSE)

We can also choose break-points for color customization.
autoplot(
result,
cor_colors = circlize::colorRamp2(
c(-0.5, -0.25, @, .25, 0.5, 0.75, 1),
c("blue”, "green", "purple”, "yellow”, "orange", "red", "brown")
)
)

counts,AnyHermesData-method
Counts Accessor and Setter

Description

These methods access and set the counts assay in a AnyHermesData object.

Usage

S4 method for signature 'AnyHermesData'
counts(object, ...)

S4 replacement method for signature 'AnyHermesData,matrix'
counts(object, ..., withDimnames = TRUE) <- value

cut_quantile

Arguments

object

withDimnames

value

Value

The counts assay.

Methods (by class)

25

(AnyHermesData)
object to access the counts from.

not used.

(flag)

setting withDimnames =FALSE in the setter (counts<-) is required when the
dimnames on the supplied counts assay are not identical to the dimnames on
the AnyHermesData object; it does not influence actual assignment of dimnames
to the assay (they’re always stored as-is).

(matrix)
what should the counts assay be replaced with.

e counts(object = AnyHermesData) <- value:

Examples

a <- hermes_data

result <- counts(a)

class(result)
head(result)

counts(a) <- counts(a) + 100L

head(counts(a))

cut_quantile

Cutting a Numeric Vector into a Factor of Quantile Bins

Description

This function transforms a numeric vector into a factor corresponding to the quantile intervals. The
intervals are left-open and right-closed.

Usage

cut_quantile(x,

percentiles = c(1/3, 2/3), digits = @)

26 df cols_to_factor

Arguments
X (numeric)
the continuous variable values which should be cut into quantile bins. NA values
are not taken into account when computing quantiles and are attributed to the NA
interval.
percentiles (proportions)
the required percentiles for the quantile intervals to be generated. Duplicated
values are removed.
digits (integer)
the precision to use when formatting the percentages.
Value

The factor with a description of the available quantiles as levels.

Examples

set.seed(452)
x <= runif(10, -10, 10)
cut_quantile(x, c(0.33333333, 0.6666666), digits = 4)

x[1:4] <= NA
cut_quantile(x)

df_cols_to_factor Conversion of Eligible Columns to Factor Variables in a DataFrame

Description

This utility function converts all eligible character and logical variables in a S4Vectors: :DataFrame
to factor variables. All factor variables get amended with an explicit missing level. This includes
both NA and empty strings.

Usage

df_cols_to_factor(data, omit_columns = NULL, na_level = "<Missing>")
Arguments

data (DataFrame)

input S4Vectors: :DataFrame.

omit_columns (character or NULL)
which columns should be omitted from the possible conversion to factor and
explicit missing level application.

na_level (string)
explicit missing level to be used for factor variables.

diff_expression 27

Value

The modified data.

Note

All required rowData and colData variables cannot be converted to ensure proper downstream
behavior. These are automatically omitted if found in data and therefore do not need to be specified
in omit_columns.

Examples

dat <- colData(summarized_experiment)

any(vapply(dat, is.character, logical(1)))

any(vapply(dat, is.logical, logical(1)))

dat_converted <- df_cols_to_factor(dat)

any(vapply(dat_converted, function(x) is.character(x) || is.logical(x), logical(1)))

diff_expression Differential Expression Analysis

Description

The diff_expression() function performs differential expression analysis using a method of pref-
erence.

A corresponding autoplot () method is visualizing the results as a volcano plot.
Usage
diff_expression(object, group, method = c(”"voom”, "deseq2"), ...)

S4 method for signature 'HermesDataDiffExpr'
autoplot(object, adj_p_val_thresh = 0.05, log2_fc_thresh = 2.5)

Arguments

object (AnyHermesData)
input. Note that this function only uses the original counts for analysis, so this
does not need to be normalized.

group (string)
name of factor variable with 2 levels in colData(object). These 2 levels will
be compared in the differential expression analysis.

method (string)

method for differential expression analysis, see details below.

additional arguments passed to the helper function associated with the selected
method.

28 diff_expression

adj_p_val_thresh
(proportion)
threshold on the adjusted p-values (y-axis) to flag significance.

log2_fc_thresh (number)
threshold on the absolute log2 fold-change (x-axis) to flag up- or down-regulation
of transcription.

Details

Possible method choices are:

e yvoom: uses limma: : voom(), see h_diff_expr_voom() for details.

¢ deseq2: uses DESeq2: :DESeq(), see h_diff_expr_deseq2() for details.

Value

A HermesDataDiffExpr object which is a data frame with the following columns for each gene in
the HermesData object:

* log2_fc (the estimate of the log2 fold change between the 2 levels of the provided factor)

* stat (the test statistic, which one depends on the method used)

e p_val (the raw p-value)

e adj_p_val (the multiplicity adjusted p-value value)

Functions

* autoplot(HermesDataDiffExpr): generates a volcano plot for a HermesDataDiffExpr ob-
ject.

Note

* We provide the df_cols_to_factor() utility function that makes it easy to convert the
colData() character and logical variables to factors, so that they can be subsequently used as
group inputs. See the example.

* In order to avoid a warning when using deseqz2, it can be necessary to specify fitType =
"local” as additional argument. This could e.g. be the case when only few samples are
present in which case the default parametric dispersions estimation will not work.

Examples

object <- hermes_data %>%
add_quality_flags() %>%
filter()

Convert character and logical to factor variables in “colData~,
including the below used “group” variable.

colData(object) <- df_cols_to_factor(colData(object))

res1 <- diff_expression(object, group = "SEX", method = "voom”
head(res1)

draw_barplot 29

res2 <- diff_expression(object, group = "SEX", method = "deseq2")
head(res2)

Pass method arguments to the internally used helper functions.

res3 <- diff_expression(object, group = "SEX", method = "voom”, robust = TRUE, trend = TRUE)
head(res3)

res4 <- diff_expression(object, group = "SEX", method = "deseq2", fitType = "local")
head(res4)

Create the corresponding volcano plots.
autoplot(resi)
autoplot(res3)

draw_barplot Barplot for Gene Expression Percentiles

Description

This produces a barplot of the dichotomized gene expression counts into two or three categories
based on custom defined percentiles.

Usage

draw_barplot(
object,
assay_name,
X_spec,
facet_var = NULL,
fill_var = NULL,
percentiles = c(1/3, 2/3)

)
Arguments
object (AnyHermesData)
input.
assay_name (string)
selects assay from input.
X_spec (GeneSpec)
gene specification for the x-axis.
facet_var (string or NULL)
optional faceting variable, taken from input sample variables.
fill_var (string or NULL)
optional fill variable, taken from input sample variables.
percentiles (vector)

lower and upper percentiles to dichotomize the gene counts into two or three
categories.

30 draw_boxplot

Value

The ggplot barplot.

Examples

object <- hermes_data
g <- genes(object)

draw_barplot(
object,
assay_name = "counts”,
x_spec = gene_spec(g[1]),
facet_var = "SEX",
fill_var = "AGE18"

)

draw_barplot(
object,
assay_name = "counts”,
x_spec = gene_spec(g[1:3], colMedians, "Median"),
facet_var = "SEX",
fill_var = "AGE18"
)

draw_barplot(
object,
assay_name = "counts”,
x_spec = gene_spec(g[1:3], colMeans, "Mean"),
facet_var = "SEX",
fill_var = "AGE18",
percentiles = c(0.1, 0.9)

draw_boxplot Boxplot for Gene Expression Values

Description

This produces boxplots of the gene expression values of a single gene, multiple genes or a gene
signature.

Usage

draw_boxplot(
object,
assay_name,
genes,
x_var = NULL,

draw_boxplot 31

color_var = NULL,
facet_var = NULL,
violin = FALSE,
jitter = FALSE

)

h_draw_boxplot_df (object, assay_name, genes, x_var, color_var, facet_var)

Arguments
object (AnyHermesData)
input.
assay_name (string)
selects assay from input for the y-axis.
genes (GeneSpec)
for which genes or which gene signature to produce boxplots.
x_var (string or NULL)
optional stratifying variable for the x-axis, taken from input sample variables.
color_var (string or NULL)
optional color variable, taken from input sample variables.
facet_var (string or NULL)
optional faceting variable, taken from input sample variables.
violin (flag)
whether to draw a violin plot instead of a boxplot.
jitter (flag)
whether to add jittered original data points.
Value
The ggplot boxplot.
Functions

e h_draw_boxplot_df (): Helper function to prepare the data frame required for plotting.

Examples

object <- hermes_data
draw_boxplot(
object,
assay_name = "counts”,
genes = gene_spec(c(A = genes(object)[1])),
violin = TRUE
)

object2 <- object %>%
add_quality_flags() %>%
filter() %>%

32

normalize()
draw_boxplot(

object2,

assay_name = "tpm”,
x_var = "SEX",

genes = gene_spec(setNames(genes(object2)[1:10], 1:10), fun = colMeans),
facet_var = "RACE",
color_var = "AGE18",

jitter = TRUE

draw_boxplot(

object,

assay_name = "counts”,

x_var = "SEX",

genes = gene_spec(genes(object)[1:3]),
jitter = TRUE,

facet_var = "AGE18"

draw_boxplot(

object,

assay_name = "counts”,
genes = gene_spec(c(A = "GenelID:11185", B = "GenelD:10677")),

violin = TRUE

draw_genes_barplot

draw_genes_barplot

Stacked Barplot of Low Expression Genes by Chromosome

Description

This creates a barplot of chromosomes for the AnyHermesData object with the proportions of low

expression genes.

Usage

draw_genes_barplot(

object,

chromosomes

= c(seq_len(22), "X", "Y", "MT"),

include_others = TRUE

Arguments

object

chromosomes

(AnyHermesData)
input.

(character)

names of the chromosomes which should be displayed.

draw_heatmap 33

include_others (flag)
option to show the chromosomes not in chromosomes as "Others".
Value

The ggplot object with the histogram.

Examples

object <- hermes_data
Display chromosomes 1-22, X, Y, and MT. Other chromosomes are displayed in "Others”.
To increase readability, we can have flip the coordinate axes.

draw_genes_barplot(object) + coord_flip()

Alternatively we can also rotate the x-axis tick labels.
draw_genes_barplot(object) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

Display chromosomes 1 and 2. Other chromosomes are displayed in "Others".
draw_genes_barplot(object, chromosomes = c("1", "2"))

Display chromosomes 1 and 2 only.

draw_genes_barplot(object, chromosomes = c("1", "2"), include_others = FALSE)
draw_heatmap Heatmap for Gene Expression Counts
Description

This produces a heatmap of the chosen assay and groups by various sample variables.

Usage

draw_heatmap(
object,
assay_name,
color_extremes = c(0.01, 0.99),
col_data_annotation = NULL,

)
Arguments
object (AnyHermesData)
input.
assay_name (string)

selects assay from input.

34 draw_libsize_densities

color_extremes (numeric)

min and max percentiles to inform the color scheme of the heatmap as blue and
red respectively.

col_data_annotation
(character or NULL)
optional grouping variable(s), taken from input sample variables.

additional arguments to pass to ComplexHeatmap: :Heatmap().

Value

The ComplexHeatmap: :Heatmap heatmap

Examples

result <- hermes_data %>%
normalize(methods = "voom") %>%
add_quality_flags() %>%
filter(what = "genes")

draw_heatmap(
object = result[1:10, 1,
assay_name = "counts”,
col_data_annotation = "COUNTRY"
)

draw_heatmap(
object = result[1:10, 1,
assay_name = "counts”,
color_extremes = c(0.001, ©0.999),
col_data_annotation = "AGEGRP"

)

draw_libsize_densities
Density Plot of (Log) Counts Distributions

Description

This creates a density plot of the (log) counts distributions of the AnyHermesData object where
each line on the plot corresponds to a sample.

Usage

draw_libsize_densities(object, log = TRUE)

draw_libsize_hist 35

Arguments
object (AnyHermesData)
input.
log (flag)
should the counts be log transformed (log?2).
Value

The ggplot object with the density plot.

Examples

result <- hermes_data
draw_libsize_densities(result)
draw_libsize_densities(result, log = FALSE)

draw_libsize_hist Histogram of Library Sizes

Description

This creates a histogram of the library sizes of the AnyHermesData object.

Usage
draw_libsize_hist(object, bins = 30L, fill = "darkgrey")

Arguments
object (AnyHermesData)
input.
bins (count)
number of evenly distributed groups desired.
fill (string)
color of the bars filling.
Value

The ggplot object with the histogram.

Examples

result <- hermes_data
draw_libsize_hist(result)
draw_libsize_hist(result, bins = 10L, fill = "blue")

36 draw_nonzero_boxplot

draw_libsize_qq Q-0 Plot of Library Sizes

Description

This creates a Q-Q plot of the library sizes of the AnyHermesData object.

Usage

draw_libsize_qqg(object, color = "grey”, linetype = "dashed")

Arguments
object (AnyHermesData)
input.
color (string)
color of Q-Q line.
linetype (string)
line type of Q-Q line.
Value

The ggplot object with the Q-Q Plot.

Examples

result <- hermes_data
draw_libsize_qq(result)
draw_libsize_qgq(result, color = "blue", linetype = "solid")

We can also add sample names as labels.

library(ggrepel)
draw_libsize_qq(result) + geom_text_repel(label = colnames(result), stat = "qq")

draw_nonzero_boxplot Boxplot of Non-Zero Genes

Description

This draws a boxplot, with overlaid data points, of the number of non-zero expressed genes per
sample.

Usage

draw_nonzero_boxplot(object, position = position_jitter(0.2), alpha = 0.25)

draw_scatterplot

Arguments
object (AnyHermesData)
input.
position (Position)
specifies x-axis position of points, e.g. for jittering.
alpha (proportion)
specifies transparency of points.
Value

The ggplot object with the boxplot.

Examples

Default boxplot.
result <- hermes_data
draw_nonzero_boxplot(result)

Reusing the same position for labeling.

library(ggrepel)

pos <- position_jitter(@.5)

draw_nonzero_boxplot(result, position = pos) +
geom_text_repel (aes(label = samples(result)), position =

pos)

37

draw_scatterplot Scatterplot for Gene Expression Values

Description

This produces a scatterplot of two genes or gene signatures.

Usage

draw_scatterplot(
object,
assay_name,
X_spec,
y_spec,
color_var = NULL,
facet_var = NULL,
smooth_method = c("1Im"”, "loess"”, "none")

38 draw_scatterplot

Arguments

object (AnyHermesData)

input.
assay_name (string)

selects assay from input.
X_spec (GeneSpec)

gene specification for the x-axis.
y_spec (GeneSpec)

gene specification for the y-axis.
color_var (string or NULL)

optional color variable, taken from input sample variables.
facet_var (string or NULL)

optional faceting variable, taken from input sample variables.

smooth_method (string)
smoothing method to use, either linear regression line (1m), local polynomial
regression (loess) or none.

Value

The ggplot scatterplot.

Examples

object <- hermes_data
g <- genes(object)

draw_scatterplot(
object,
assay_name = "counts”,
facet_var = NULL,
x_spec = gene_spec(c(A = g[11)),
y_spec = gene_spec(g[2]),
color = "RACE"
)

object2 <- object %>%
add_quality_flags() %>%
filter() %>%
normalize()

g2 <- genes(object2)

draw_scatterplot(
object2,
assay_name = "tpm",
facet_var = "SEX",
x_spec = gene_spec(g2[1:10], colMeans, "Mean"),
y_spec = gene_spec(g2[11:20], colMedians, "Median"),
smooth_method = "loess”

expression_set 39

expression_set Example ExpressionSet Data

Description

This example data can be used to try out conversion of a Biobase: :ExpressionSet object into a
HermesData object.

Usage

expression_set

Format

A Biobase: :ExpressionSet object with 20 samples covering 5085 features (Entrez gene IDs).

Source

This is an artificial dataset designed to resemble real data.

See Also

e SummarizedExperiment: :makeSummarizedExperimentFromExpressionSet() to convertinto

a SummarizedExperiment: :SummarizedExperiment.

* summarized_experiment which contains similar data already as a SummarizedExperiment: : SummarizedExperiment

extra_data_names Extra Variable Names Accessor Methods

Description

The methods access the names of the variables in colData() and rowData() of the object which
are not required by design. So these can be additional sample or patient characteristics, or gene
characteristics.

Usage

extraColDataNames(x, ...)

S4 method for signature 'AnyHermesData'
extraColDataNames(x, ...)

extraRowDataNames(x, ...)

S4 method for signature 'AnyHermesData'
extraRowDataNames(x, ...)

40 filter

Arguments
X (AnyHermesData)
object.
not used.
Value

The character vector with the additional variable names in either colData() or rowData().

Examples

object <- hermes_data
extraColDataNames(object)
extraRowDataNames (object)

filter Filter AnyHermesData on Subset Passing Default QC Flags

Description

This filters a AnyHermesData object using the default QC flags and required annotations.

Usage

filter(object, ...)

S4 method for signature 'AnyHermesData'
filter(object, what = c("genes”, "samples”), annotation_required = "size")

S4 method for signature 'data.frame'
filter(object, ...)

S4 method for signature 'ts'

filter(object, ...)
Arguments
object (AnyHermesData)

object to filter.

additional arguments.
what (character)

specify whether to apply the filter on genes and / or samples.
annotation_required

(character)

names of required annotation columns for genes. Only used when genes are
filtered.

genes 41

Details

* Only genes without low expression (low_expression_flag) and samples without low depth
(Low_depth_flag) or technical failure (tech_failure_flag) remain in the returned filtered
object.

* Also required gene annotation columns can be specified, so that genes which are not complete
for these columns are filtered out. By default this is the size column, which is needed for
default normalization of the object.

Value

The filtered AnyHermesData object.

Note
The internal implementation cannot use the subset () method since that requires non-standard eval-
uation of arguments.

Examples

a <- hermes_data
dim(a)

Filter genes and samples on default QC flags.
result <- filter(a)
dim(result)

Filter only genes without low expression.
result <- filter(a, what = "genes")

Filter only samples with low depth and technical failure.
result <- filter(a, what = "samples”)

Filter only genes, and require certain annotations to be present.

result <- filter(a, what = "genes"”, annotation_required = c("size"))
genes Gene IDs Accessor
Description

Access the gene IDs, i.e. row names, of a AnyHermesData object with a nicely named accessor
method.

Usage

genes(object)

S4 method for signature 'AnyHermesData'
genes(object)

42 GeneSpec

Arguments
object (AnyHermesData)
input.
Value

The character vector with the gene IDs.

See Also

samples() to access the sample IDs.

Examples

a <- hermes_data
genes(a)

GeneSpec R6 Class Representing a Gene (Signature) Specification

Description

A GeneSpec consists of the gene IDs (possibly named with labels), the summary function and the
name of the summary function.

Methods

Public methods:

¢ GeneSpec$new()

* GeneSpec$get_genes()

¢ GeneSpec$get_gene_labels()

* GeneSpec$returns_vector()

* GeneSpec$get_label()

* GeneSpec$extract()

e GeneSpec$extract_data_frame()
* GeneSpec$clone()

Method new(): Creates a new GeneSpec object.
Usage:
GeneSpec$new(genes = NULL, fun = NULL, fun_name = deparse(substitute(fun)))
Arguments:

genes (named character or NULL)
the gene IDs, where the names are used as labels if available.

GeneSpec 43

fun (function or NULL)
summary function. If NULL is used then multiple genes are not summarized but returned as
a matrix from the extract method.

fun_name (string)
name of the summary function.

Returns: A new GeneSpec object.

Method get_genes(): Returns the genes.
Usage:
GeneSpec$get_genes()
Method get_gene_labels(): Returns the gene labels (substituted by gene IDs if not available).
Usage:
GeneSpec$get_gene_labels(genes = self$get_genes())
Arguments:
genes (character)

for which subset of genes the labels should be returned.
Method returns_vector(): Predicate whether the extract returns a vector or not.
Usage:
GeneSpec$returns_vector()
Method get_label(): Returns a string which can be used e.g. for plot labels.
Usage:
GeneSpec$get_label(genes = self$get_genes())
Arguments:

genes (character)
for which subset of genes the labels should be returned.

Method extract(): Extract the gene values from an assay as specified.
Usage:
GeneSpec$extract(assay)
Arguments:

assay (matrix)
original matrix with rownames containing the specified genes.

Returns: Either a vector with one value per column, or a matrix with multiple genes in the
rows.
Method extract_data_frame(): Extract the gene values as a data. frame.
Usage:
GeneSpec$extract_data_frame(assay)
Arguments:

assay (matrix)
original matrix with rownames containing the specified genes.

44

gene_spec

Returns: A data.frame with the genes in the columns and the samples in the rows.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GeneSpec$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Minimal specification if only one gene is used.
x_spec <- gene_spec("GenelD:1820")

Using multiple genes with a signature.

x_spec <- gene_spec(c("GenelD:1820", "GeneID:52"), fun
x_spec <- gene_spec(c("GeneID:1820", "GeneID:52"), fun
x_spec$returns_vector()

x_spec$get_genes()

x_spec$get_gene_labels()

x_spec$get_label()

colMeans)
colPrinComp1)

Using multiple genes with partial labels, without a signature.

x_spec <- gene_spec(c(A = "GeneID:1820", "GeneID:52"))
x_spec$returns_vector()
x_spec$get_gene_labels()

Use the gene specification to extract genes from a matrix.

mat <- matrix(
data = rpois(15, 10),
nrow = 3, ncol =5,

dimnames = list(c("GeneID:1820", "GeneID:52", "GeneID:523"), NULL)

)

x_spec$extract(mat)

We can also extract these as a “data.frame”.
x_spec$extract_data_frame(mat)

gene_spec GeneSpec Constructor

Description

Creates a new GeneSpec object.

Usage

gene_spec(genes = NULL, fun = NULL, fun_name = deparse(substitute(fun)))

HermesData-class 45

Arguments
genes (named character or NULL)
the gene IDs, where the names are used as labels if available.
fun (function or NULL)
summary function. If NULL is used then multiple genes are not summarized but
returned as a matrix from the extract method.
fun_name (string)
name of the summary function.
Value

A new GeneSpec object.

Examples

gene_spec("GeneID:11185")
gene_spec(c("GenelID:11185", "GeneID:10677", "GenelD:101928428"), fun = colMeans)

HermesData-class HermesData and RangedHermesData

Description

The HermesData class is an extension of SummarizedExperiment: : SummarizedExperiment with
additional validation criteria.

Usage
HermesData(object)
HermesDataFromMatrix(counts, ...)
Arguments
object (SummarizedExperiment)
input to create the HermesData object from. If this is a RangedSummarizedExperiment,
then the result will be RangedHermesData.
counts (matrix)

counts to create the HermesData object from.

additional arguments, e.g. rowData, colData, etc. passed to SummarizedExperiment: : SummarizedExpe
internally. Note that if rowRanges is passed instead of rowData, then the result
will be a RangedHermesData object.

46 HermesData-class

Details

The additional criteria are:

» The first assay must be counts containing non-missing, integer, non-negative values. Note
that rename () can be used to edit the assay name to counts if needed.

* The following columns must be in rowData:

symbol (also often called HGNC or similar, example: "INMT")

desc (the gene name, example: "indolethylamine N-methyltransferase")

chromosome (the chromosome as string, example: "7")

size (the size of the gene in base pairs, e.g 5468)

low_expression_flag (can be populated with add_quality_flags())
* The following columns must be in colData:

— low_depth_flag (can be populated with add_quality_flags())
— tech_failure_flag (can be populated with add_quality_flags())
* The object must have unique row and column names. The row names are the gene names and

the column names are the sample names.

Analogously, RangedHermesData is an extension of SummarizedExperiment: :RangedSummarizedExperiment
and has the same additional validation requirements. Methods can be defined for both classes at the
same time with the AnyHermesData signature.

A Biobase: :ExpressionSet object can be imported by using the SummarizedExperiment: :makeSummarizedExperimentF
function to first convert it to a SummarizedExperiment: :SummarizedExperiment object before
converting it again into a HermesData object.

Value

An object of class AnyHermesData (HermesData or RangedHermesData).

Slots

prefix common prefix of the gene IDs (row names).

Note

* Note that we use S4Vectors: :setValidity2() to define the validity method, which allows
us to turn off the validity checks in internal functions where intermediate objects may not be
valid within the scope of the function.

* It can be helpful to convert character and logical variables to factors in colData() (before
or after the HermesData creation). We provide the utility function df _cols_to_factor() to
simplify this task, but leave it to the user to allow for full control of the details.

See Also

rename () for renaming columns of the input data.

hermes_data 47

Examples

Convert an “ExpressionSet™ to a “RangedSummarizedExperiment~.
ranged_summarized_experiment <- makeSummarizedExperimentFromExpressionSet(expression_set)

Then convert to “RangedHermesData.
HermesData(ranged_summarized_experiment)

Create objects starting from a ~SummarizedExperiment-.
hermes_data <- HermesData(summarized_experiment)
hermes_data

Create objects from a matrix. Note that additional arguments are not required but possible.
counts_matrix <- assay(summarized_experiment)
counts_hermes_data <- HermesDataFromMatrix(counts_matrix)

hermes_data Example HermesData Data

Description

This example HermesData is created from the underlying SummarizedExperiment: : SummarizedExperiment
object by renaming descriptors to align with standard specification. It already contains the required
columns in rowData and colData.

Usage

hermes_data

Format

A HermesData object with 20 samples covering 5085 features (Entrez gene IDs).

Source

This is an artificial dataset designed to resemble real data.

See Also

summarized_experiment for the underlying SummarizedExperiment::SummarizedExperiment
object.

48 h_df_factors_with_explicit_na

h_all_duplicated Finding All Duplicates in Vector

Description

The difference here to BiocGenerics: :duplicated() is that also the first occurrence of a duplicate
is flagged as TRUE.

Usage
h_all_duplicated(x)

Arguments

X a (generalized, see is.vector) vector, a data frame, an array or NULL.

Value

Logical vector flagging all occurrences of duplicate values as TRUE.

Examples

h_all_duplicated(c(”a”, "a", "b"))
duplicated(c("a", "a", "b"))

h_df_factors_with_explicit_na
Conversion to Factors with Explicit Missing Level in a data.frame

Description

This helper function converts all character and logical variables to factor variables in a data. frame.
It also sets an explicit missing data level for all factor variables that have at least one NA. Empty
strings are handled as NA.

Usage
h_df_factors_with_explicit_na(data, na_level = "<Missing>")
Arguments
data (data.frame)
input data with at least one column.
na_level (string)

explicit missing level to be used.

h_diff _expr_deseq2 49

Value

The modified data.

Examples

dat <- data.frame(

= c(WA, 2),
= c("A", NA),
= cgich. D",

factor(c(NA, "X")),
= factor(c("Y", "Z"))

T QO 0 T O

)
h_df_factors_with_explicit_na(dat)

h_diff_expr_deseq?2 DESeq?2 Differential Expression Analysis

Description

This helper functions performs the differential expression analysis with DESeq2: :DESeq() for a
given AnyHermesData input and design matrix.

Usage
h_diff_expr_deseq2(object, design, ...)
Arguments
object (HermesData)
input.
design (matrix)
design matrix.
additional arguments internally passed to DESeq2: :DESeq() (fitType, sfType,
minReplicatesForReplace, useT, minmu).
Value

A data frame with columns log2_fc (estimated log2 fold change), stat (Wald statistic), p_val
(raw p-value), adj_p_pval (Benjamini-Hochberg adjusted p-value).

References

Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2.” Genome Biology, 15(12), 550. doi:10.1186/s1305901405508.

https://doi.org/10.1186/s13059-014-0550-8

50 h_diff_expr_voom

Examples

object <- hermes_data

Create the design matrix corresponding to the factor of interest.
design <- model.matrix(~SEX, colData(object))

Then perform the “DESeq2” differential expression analysis.
result <- h_diff_expr_deseg2(object, design)
head(result)

Change of the ~fitType™ can be required in some cases.
result2 <- h_diff_expr_deseq2(object, design, fitType = "local")
head(result2)

h_diff_expr_voom limma/voom Differential Expression Analysis

Description

This helper functions performs the differential expression analysis with the voom method from the
limma package (via limma: :voom(), limma: : ImFit() and limma: :eBayes()) for given counts in
a AnyHermesData object and a corresponding design matrix.

Usage
h_diff_expr_voom(object, design, ...)
Arguments
object (AnyHermesData)
input.
design (matrix)
design matrix.
additional arguments internally passed to limma: :eBayes() (robust, trend,
proportion, winsor.tail.p, stdev.coef.1lim).
Value

A data frame with columns log2_fc (estimated log2 fold change), stat (moderated t-statistic),
p_val (raw p-value), adj_p_pval (Benjamini-Hochberg adjusted p-value).

References

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research,
43(7), e47. doi:10.1093/nar/gkv007.

Law CW, Chen Y, Shi W, Smyth GK (2014). “voom: precision weights unlock linear model analysis
tools for RNA-seq read counts.” Genome Biology, 15(2), R29. doi:10.1186/gb2014152r29.

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/gb-2014-15-2-r29

h _ensembl to _entrez ids 51

Examples

object <- hermes_data

Create the design matrix corresponding to the factor of interest.
design <- model.matrix(~SEX, colData(object))

Then perform the differential expression analysis.
result <- h_diff_expr_voom(object, design)
head(result)

Sometimes we might want to specify method details.
result2 <- h_diff_expr_voom(object, design, trend = TRUE, robust = TRUE)
head(result2)

h_ensembl_to_entrez_ids
Translation of Ensembl to Entrez Gene IDs

Description

This helper function queries BioMart to translate Ensembl to Entrez Gene IDs.

Usage

h_ensembl_to_entrez_ids(gene_ids, mart)

Arguments
gene_ids (character)
Ensembl gene IDs.
mart (Mart)
given biomaRt: :Mart object.
Value

Character vector of Entrez gene IDs.

Examples

if (interactive()) {
mart <- biomaRt::useMart("ensembl”, dataset = "hsapiens_gene_ensembl”)
h_ensembl_to_entrez_ids(c("ENSG00Q00135407", "ENSGO0000241644"), mart)
3

52 h_get_annotation_biomart

h_get_annotation_biomart
Get Annotations from BioMart

Description

Helper function to query annotations from biomaRt, for cleaned up gene IDs of a specific ID vari-
able and given biomaRt: :Mart.

Usage

h_get_annotation_biomart(gene_ids, id_var, mart)

Arguments
gene_ids (character)
gene IDs, e.g. 10329, i.e. already without the Entrez GeneID prefix, or ENSG00000241644
for Ensembl gene ID.
id_var (string)
corresponding gene ID variable name in BioMart, i.e. entrezgene_id or ensembl_gene_id.
mart (Mart)
given biomaRt: :Mart object.
Value

A data frame with columns:

* id_var (depending on what was used)
¢ hgnc_symbol

* entrezgene_description

* chromosome_name

* size

e refseg_mrna

e refseq_peptide

Examples

if (interactive()) {
mart <- biomaRt::useMart("ensembl”, dataset = "hsapiens_gene_ensembl”)
h_get_annotation_biomart(c(”11185", "10677"), id_var = "entrezgene_id", mart = mart)

3

h_get_granges_by_id

h_get_granges_by_id Conversion of BioMart Coordinates into GRanges

Description

This function extracts the chromosome number, the start position and the end position of transcripts
in given data.frame with coordinates as returned by biomaRt: :getBM() and converts them to a

GRanges object.

Usage

h_get_granges_by_id(coords, id)

Arguments
coords (data.frame)
as returned by biomaRt: : getBM(), containing the columns ensembl_gene_id,
chromosome_name, exon_chrom_start, exon_chrom_end.
id (string)
single Ensembl gene ID to convert the coordinates for.
Value

GRange objects for the respective single gene ID.

Examples

if (interactive()) {
mart <- biomaRt::useMart(”ensembl”, dataset = "hsapiens_gene_ensembl")
attrs <- c(
"ensembl_gene_id",
"ensembl_exon_id",
"chromosome_name”,
"exon_chrom_start”,
"exon_chrom_end"
)
coords <- biomaRt::getBM(
filters = "entrezgene_id",
attributes = attrs,
values = c("11185", "10677"),
mart = mart
)
h_get_granges_by_id(coords, "ENSG0Q000135407")
3

54 h_has_req_annotations

h_get_size_biomart Total Length of All Exons for Genes

Description
This helper function queries BioMart for lengths of genes by adding up all exon lengths after
reducing overlaps.

Usage

h_get_size_biomart(gene_ids, id_var, mart)

Arguments
gene_ids (character)
gene IDs, e.g. 10329, i.e. already without the Entrez GeneID prefix, or ENSG00000241644
for Ensembl gene ID.
id_var (string)
corresponding gene ID variable name in BioMart, i.e. entrezgene_id or ensembl_gene_id.
mart (Mart)
given biomaRt: :Mart object.
Value

Named integer vector indicating the gene lengths.

Examples

if (interactive()) {
mart <- biomaRt::useMart("ensembl”, dataset = "hsapiens_gene_ensembl")
h_get_size_biomart("”11185"”, "entrezgene_id", mart)
h_get_size_biomart("ENSGO0000215417", "ensembl_gene_id", mart)
h_get_size_biomart(c(”11185", "10677"), "entrezgene_id", mart)
h_get_size_biomart(c(”"ENSGO000Q135407", "ENSGOQ000215417"), "ensembl_gene_id", mart)

h_has_reqg_annotations Predicate for Required Annotations

Description

This helper function determines for each gene in the object whether all required annotation columns
are filled.

h_map_pos 55

Usage

h_has_reg_annotations(object, annotation_required)

Arguments

object (AnyHermesData)
input object.
annotation_required
(character)
names of required annotation columns for genes.

Value

Named logical vector with one value for each gene in object, which is TRUE if all required annota-
tion columns are filled, and otherwise FALSE.

See Also

filter () where this is used internally.

Examples

object <- hermes_data

result <- h_has_reg_annotations(object, "size")
all(result)

rowData(object)$size[1] <- NA # nolint
which(!h_has_req_annotations(object, "size"))

h_map_pos Helper Function For Matching Map Values to Names

Description

This is used by the rename method. It wraps the assertions and the matching used several times.

Usage

h_map_pos(names, map)

Arguments
names (character)
original names.
map (named character)

the mapping vector from old (value) to new (name) names. All values must be
included in names.

56 h_pca_df_r2_matrix

Value

Integer vector of the positions of the map values in the names.

Examples

h_map_pos(c("a", "b”), C(d - nbn))

h_parens Parenthesize a Character Vector

Description

This helper function adds parentheses around each element of a character vector.

Usage

h_parens(x)

Arguments
X (character)
inputs which should be parenthesized.
Value

Character vector with parentheses, except when x is a blank string in which case it is returned
unaltered.

Examples

h_parens("bla")
h_parens("")
h_parens(c("bla”, "bli"))

h_pca_df_r2_matrix Calculation of R2 Matrix between Sample Variables and Principal
Components

Description
This function processes sample variables from AnyHermesData and the corresponding principal
components matrix, and then generates the matrix of R2 values.

Usage
h_pca_df_r2_matrix(pca, df)

h_pca_df_r2_matrix

57

Arguments
pca (matrix)
comprises principal components generated by calc_pca().
df (data.frame)
from the SummarizedExperiment: :colData() of a AnyHermesData object.
Details

* Note that only the df columns which are numeric, character, factor or logical are in-
cluded in the resulting matrix, because other variable types are not supported.

¢ In addition, df columns which are constant, all NA, or character or factor columns with too
many levels are also dropped before the analysis.

Value

A matrix with R2 values for all combinations of sample variables and principal components.

See Also

h_pca_var_rsquared() which is used internally to calculate the R2 for one sample variable.

Examples

object <- hermes_data %>%
add_quality_flags() %>%

filter() %>%
normalize()

Obtain the principal components.
pca <- calc_pca(object)$x

Obtain the “colData” as a “data.frame-.
df <- as.data.frame(colData(object))

Correlate them.
r2_all <- h_pca_df_r2_matrix(pca, df)
str(r2_all)

We can see that only about half of the columns from ~df" were

used for the correlations.
ncol(r2_all)
ncol (df)

58 h_pca_var_rsquared

h_pca_var_rsquared Calculation of R2 between Sample Variable and Principal Compo-
nents

Description

This helper function calculates R2 values between one sample variable from AnyHermesData and
all Principal Components (PCs) separately (one linear model is fit for each PC).

Usage

h_pca_var_rsquared(pca, x)

Arguments
pca (matrix)
principal components matrix generated by calc_pca().
X (vector)
values of one sample variable from a AnyHermesData object.
Details
Note that in case there are estimation problems for any of the PCs, then NA will be returned for
those.
Value

A vector with R2 values for each principal component.

Examples

object <- hermes_data %>%
add_quality_flags() %>%
filter() %>%
normalize()

Obtain the principal components.
pca <- calc_pca(object)$x

Obtain the sample variable.
x <- colData(object)$AGE18

Correlate them.
r2 <- h_pca_var_rsquared(pca, x)

h_short_list 59

h_short_list Make a Short List of a Character Vector

Description

This helper function makes a short list string, e.g. "a, b, ..., z" out of a character vector, e.g. letters.

Usage
h_short_list(x, sep = ", ", thresh = 3L)
Arguments
X (character)
input which should be listed.
sep (string)
separator to use.
thresh (count)
threshold to use, if the length of x is larger then the list will be shortened using
the . .. ellipsis.
Value

String with the short list.

Examples

h_short_list(letters)
h_short_list(letters[1:3])

h_short_list(LETTERS[1:5], sep = ";", thresh = 5L)
h_strip_prefix Stripping Prefix from Gene IDs
Description

This helper function removes the prefix and possible delimiter from a vector of gene IDs, such that
only the digits are returned.

Usage

h_strip_prefix(gene_ids, prefix)

60 h_unique_labels

Arguments
gene_ids (character)
original gene IDs including prefix and optional delimiter before the digits.
prefix (string)
common prefix to be stripped away from gene_ids.
Value

Character vector that contains only the digits for each gene ID.

Note
This is currently used to strip away the GeneID prefix from Entrez gene IDs so that they can be

queried from BioMart

Examples

h_strip_prefix(c("GeneID:11185", "GeneID:10677"), prefix = "GeneIlD")

h_unique_labels Creation of Unique Labels

Description
This helper function generates a set of unique labels given unique IDs and not necessarily unique
names.

Usage

h_unique_labels(ids, nms = NULL)

Arguments
ids (character or NULL)
unique IDs.
nms (character or NULL)
not necessarily unique names if provided.
Value

Character vector where empty names are replaced by the IDs and non-unique names are made
unique by appending the IDs in parentheses.

Examples

h_unique_labels(c(n1ﬁ’ 112“, VI3II), C(HA“, IIBII, IIAII))
h_unique_labels(NULL)
h_unique_labels(c("1", "2", "3"))

inner_join_cdisc 61

inner_join_cdisc Inner Joining a Genes with a CDISC Data Set

Description

This is a useful function when trying to join genetic with CDISC data sets.

Usage

inner_join_cdisc(
gene_data,
cdisc_data,
patient_key = "USUBJID",
additional_keys = character()

)
Arguments
gene_data (data.frame or DataFrame)
genetic data.
cdisc_data (data.frame)

CDISC data (typically patient level data).

patient_key (string)
patient identifier.
additional_keys
(character)
potential additional keys for the two data sets.

Value

A data. frame which contains columns from both data sets merged by the keys.

Note

Columns which are contained in both data sets but are not specified as keys are taken from gene_data
and not from cdisc_data.

Examples

gene_data <- col_data_with_genes(hermes_data, "counts”, gene_spec("”GenelD:1820"))
cdisc_data <- data.frame(
USUBJID = head(gene_data$USUBJID, 10),
extra = 1:10
)
result <- inner_join_cdisc(gene_data, cdisc_data)
result

62 lapply,MultiAssayExperiment-method

isEmpty, SummarizedExperiment-method
Checking for Empty SummarizedExperiment

Description

This method checks whether a SummarizedExperiment: : SummarizedExperiment object is empty.

Usage
S4 method for signature 'SummarizedExperiment'
isEmpty(x)
Arguments
X (SummarizedExperiment)
object to check.
Value

Flag whether the object is empty.

Examples

isEmpty(summarized_experiment)
isEmpty(summarized_experiment[NULL, 1)
isEmpty(hermes_data)

lapply,MultiAssayExperiment-method
lapply method for MultiAssayExperiment

Description

Apply a function on all experiments in an MAE.

Usage

S4 method for signature 'MultiAssayExperiment'’
lapply(X, FUN, safe = TRUE, ...)

metadata
Arguments
X (MultiAssayExperiment)
input.
FUN (function) to be applied to each experiment in X.
safe (flag)
whether this method should skip experiments where the function fails.
additional arguments passed to FUN.
Value

MultiAssayExperiment object with specified function applied.

Examples

object <- multi_assay_experiment

result <- lapply(object, normalize, safe = TRUE)

Similarly, all experiments in an MAE can be converted to HermesData class:
result <- lapply(object, HermesData, safe = TRUE)

63

metadata Metadata Accessor and Setter

Description

These methods access or set the metadata in a AnyHermesData object.

Arguments
X (AnyHermesData)
object to access the metadata from.
value (list)
the list to replace the current metadata with.
Value

The metadata which is a list.

Note

Note that this just inherits S4Vectors: :metadata,Annotated-method().

Examples

a <- hermes_data

metadata(a)

metadata(a) <- list(new = "my metadata")
metadata(a)

64 normalize,AnyHermesData-method

multi_assay_experiment
Example MultiAssayExperiment Data

Description

This example MultiAssayExperiment: :MultiAssayExperiment can be used as test data.

Usage

multi_assay_experiment

Format
A MultiAssayExperiment: :MultiAssayExperiment object with 3 separate HermesData objects.

* The first object contains 5 samples and covers 1000 features (Entrez gene IDs).
* The second object contains 9 samples with 2500 features.

* The third object contains 6 samples with 1300 features.

Source

This is an artificial dataset designed to resemble real data.

normalize,AnyHermesData-method
Normalization of AnyHermesData Objects

Description

The normalize () method is normalizing the input AnyHermesData according to one or more spec-
ified normalization methods. The results are saved as additional assays in the object.

Possible normalization methods (which are implemented with separate helper functions):

e cpm: Counts per Million (CPM). Separately by sample, the original counts of the genes are
divided by the library size of this sample, and multiplied by one million. This is the appropriate
normalization for between-sample comparisons.

* rpkm: Reads per Kilobase of transcript per Million reads mapped (RPKM). Each gene count
is divided by the gene size (in kilobases) and then again divided by the library sizes of each
sample (in millions). This allows for within-sample comparisons, as it takes into account the
gene sizes - longer genes will always have more counts than shorter genes.

 tpm: Transcripts per Million (TPM). This addresses the problem of RPKM being inconsistent
across samples (which can be seen that the sum of all RPKM values will vary from sample
to sample). Therefore here we divide the RPKM by the sum of all RPKM values for each
sample, and multiply by one million.

normalize,AnyHermesData-method 65

* voom: VOOM normalization. This is essentially just a slight variation of CPM where a prior_count
of 0.5 is combined with 1ib_sizes increased by 1 for each sample. Note that this is not re-
quired for the corresponding differential expression analysis, but just provided as a comple-
mentary experimental normalization approach here.

e vst: Variance stabilizing transformation. This is to transform the normalized count data for
all genes into approximately homoskedastic values (having constant variance).

* rlog: The transformation to the log2 scale values with approximately homoskedastic values.

Usage

S4 method for signature 'AnyHermesData'
normalize(
object,
methods = c("cpm”, "rpkm", "tpm
control = control_normalize(),

n

n n n n
, "voom", "vst"),

h_cpm(object, control = control_normalize())
h_rpkm(object, control = control_normalize())
h_tpm(object, control = control_normalize())
h_voom(object, control = control_normalize())
h_vst(object, control = control_normalize())

h_rlog(object, control = control_normalize())

Arguments
object (AnyHermesData)
object to normalize.
methods (character)
which normalization methods to use, see details.
control (named list)
settings produced by control_normalize().
not used.
Value

The AnyHermesData object with additional assays containing the normalized counts. The control
is saved in the metadata of the object for future reference.

Functions

* h_cpm(): calculates the Counts per Million (CPM) normalized counts.

66 normalize,AnyHermesData-method

e h_rpkm(): calculates the Reads per Kilobase per Million (RPKM) normalized counts.
e h_tpm(): calculates the Transcripts per Million (TPM) normalized counts.

* h_voom(): calculates the VOOM normalized counts. [Experimental]

* h_vst(): variance stabilizing transformation (vst) from DESeq2 package.

* h_rlog(): regularized log transformation (rlog) from DESeq2 package.

See Also

control_normalize() to define the normalization method settings.

Examples

a <- hermes_data

By default, log values are used with a prior count of 1 added to original counts.
result <- normalize(a)

assayNames(result)

tpm <- assay(result, "tpm")

tpm[1:3, 1:3]

We can also work on original scale.

result_orig <- normalize(a, control = control_normalize(log = FALSE))
tpm_orig <- assay(result_orig, "tpm")

tpm_orig[1:3, 1:3]

Separate calculation of the CPM normalized counts.
counts_cpm <- h_cpm(a)
str(counts_cpm)

Separate calculation of the RPKM normalized counts.
counts_rpkm <- h_rpkm(a)
str(counts_rpkm)

Separate calculation of the TPM normalized counts.
counts_tpm <- h_tpm(a)
str(counts_tpm)

Separate calculation of the VOOM normalized counts.
counts_voom <- h_voom(a)
str(counts_voom)

Separate calculation of the vst transformation.
counts_vst <- h_vst(a)
str(counts_vst)

Separate calculation of the rlog transformation.
counts_rlog <- h_rlog(a)
str(counts_rlog)

prefix 67

prefix Prefix Accessor

Description

Generic function to access the prefix from an object.

Usage
prefix(object, ...)
Arguments
object (AnyHermesData)
input.
additional arguments.
Value

The prefix slot contents.

Examples

a <- hermes_data
prefix(a)

query Query Gene Annotations from a Connection

Description
The generic function query () is the interface for querying gene annotations from a data base con-
nection.

Usage

query(genes, connection)

S4 method for signature 'character,ConnectionBiomart'
query(genes, connection)

Arguments
genes (character)
gene IDs.
connection (connection class)

data base connection object.

68 rbind

Details

* A method is provided for the ConnectionBiomart class. However, the framework is exten-
sible: It is simple to add new connections and corresponding query methods for other data
bases, e.g. company internal data bases. Please make sure to follow the required format of the
returned value.

* The BioMart queries might not return information for all the genes. This can be due to differ-
ent versions being used in the gene IDs and the queried Ensembl data base.

Value

A S4Vectors: :DataFrame with the gene annotations. It is required that:

* The rownames are identical to the input genes.
* The colnames are equal to the annotation columns . row_data_annotation_cols.

» Therefore, missing information needs to be properly included in the DataFrame with NA en-
tries.

Examples

if (interactive()) {
object <- hermes_data
connection <- connect_biomart(prefix(object))
result <- query(genes(object), connection)

head(result)
head(annotation(object))
3
rbind Row Binding of AnyHermesData Objects
Description

This method combines AnyHermesData objects with the same samples but different features of
interest (rows in assays).
Arguments
(AnyHermesData)
objects to row bind.
Value

The combined AnyHermesData object.

rename,SummarizedExperiment-method 69

Note

* Note that this just inherits SummarizedExperiment: :rbind, SummarizedExperiment-method().
When binding a AnyHermesData object with a SummarizedExperiment: : SummarizedExperiment
object, then the result will be a SummarizedExperiment: :SummarizedExperiment object
(the more general class).

* Note that we need to have unique gene IDs (row names) and the same prefix across the com-
bined object.

See Also

cbind to column bind objects.

Examples

a <- hermes_data[1:2542,]

b <- hermes_data[2543:5085,]
result <- rbind(a, b)
class(result)

rename, SummarizedExperiment-method
Renaming Contents of SummarizedExperiment Objects

Description

This method renames columns of the rowData and colData, as well as assays, of SummarizedExperiment: : SummarizedExp
objects. This increases the flexibility since renaming can be done before conversion to a HermesData

object.
Usage
S4 method for signature 'SummarizedExperiment'’
rename (
X’
row_data = character(),
col_data = character(),

assays = character(),

S4 method for signature 'data.frame'
rename(x, ...)

70

Arguments

X

row_data

col_data

assays

Value

samples,AnyHermesData-method

(SummarizedExperiment)
object to rename contents in.

(named character)
mapping from existing (right-hand side values) to new (left-hand side names)
column names of rowData.

(named character)
mapping from existing (right-hand side values) to new (left-hand side names)
column names of colData.

(named character)
mapping from existing (right-hand side values) to new (left-hand side names)
assay names.

additional arguments (not used here).

The SummarizedExperiment: : SummarizedExperiment object with renamed contents.

Examples

X <- summarized_experiment
Use deliberately a non-standard assay name in this example.
assayNames(x) <- "count”

Rename “HGNC™ to “symbol™ in the “rowData".
X <- rename(x, row_data = c(symbol = "HGNC"))
head(names(rowData(x)))

Rename ~LowDepthFlag™ to ~low_depth_flag™ in “colData".
X <- rename(x, col_data = c(low_depth_flag = "LowDepthFlag"))
tail(names(colData(x)))

Rename assay “count”™ to “counts”.
x <- rename(x, assays = c(counts = "count"))

assayNames(x)

samples, AnyHermesData-method

Sample IDs Accessor

Description

Access the sample IDs, i.e. col names, of a AnyHermesData object with a nicely named accessor

method.

set_tech_failure 71

Usage
S4 method for signature 'AnyHermesData'
samples(object)
Arguments
object (AnyHermesData)
input.
Value

The character vector with the sample IDs.

See Also

genes() to access the gene IDs.

Examples

a <- hermes_data
samples(a)

set_tech_failure Set Technical Failure Flags

Description

Setter function which allows the user to define a sample manually as a technical failure.

Usage

set_tech_failure(object, sample_ids)

Arguments
object (AnyHermesData)
input.
sample_ids (character)
sample IDs to be flagged as technical failures.
Value

AnyHermesData object with modified technical failure flags.

See Also

add_quality_flags() which automatically sets all (gene and sample) quality flags, including
these technical failure flags.

72 show,HermesData-method

Examples

Manually flag technical failures in a ~AnyHermesData™ object.

object <- hermes_data

get_tech_failure(object)["06520101B0017R"]

result <- set_tech_failure(object, c("06520101B0@17R", "06520047C0017R"))
get_tech_failure(result)["06520101B0017R"]

show,HermesData-method
Show Method for AnyHermesData Objects

Description

A show method that displays high-level information of AnyHermesData objects.

Usage

S4 method for signature 'HermesData'
show(object)

S4 method for signature 'RangedHermesData'

show(object)
Arguments
object (AnyHermesData)
input.
Value

None (invisible NULL), only used for the side effect of printing to the console.

Note

The same method is used for both HermesData and RangedHermesData objects. We need to define
this separately to have this method used instead of the one inherited from SummarizedExperiment: : SummarizedExperiment

Examples

object <- hermes_data
object

subset 73

subset Subsetting AnyHermesData Objects

Description

This method subsets AnyHermesData objects, based on expressions involving the rowData columns
and the colData columns.

Arguments
X (AnyHermesData)
object to subset from.
subset (expression)
logical expression based on the rowData columns to select genes.
select (expression)
logical expression based on the colData columns to select samples.
Value

The subsetted AnyHermesData object.

Note

Note that this just inherits SummarizedExperiment: : subset, SummarizedExperiment-method().

Examples

a <- hermes_data
a

Subset both genes and samples.
subset(a, subset = low_expression_flag, select = DISCSTUD == "N")

Subset only genes.
subset(a, subset = chromosome == "2")

Subset only samples.
subset(a, select = AGE > 18)

74 summary

summarized_experiment Example SummarizedExperiment Data

Description
This example SummarizedExperiment: : SummarizedExperiment can be used to create a HermesData
object. It already contains the required columns in rowData and colData.

Usage

summarized_experiment

Format
A SummarizedExperiment::SummarizedExperiment object with 20 samples covering 5085 features
(Entrez gene IDs).

Source

This is an artificial dataset designed to resemble real data.

See Also

expression_set which contains similar data as a Biobase: :ExpressionSet.

summary Summary Method for AnyHermesData Objects

Description

Provides a concise summary of the content of AnyHermesData objects.

Usage

summary (object, ...)

S4 method for signature 'AnyHermesData'
summary (object)

S4 method for signature 'HermesDataSummary'
show(object)

Arguments

object (HermesDataSummary)
result from the summary method applied to AnyHermesData object.

not used.

top_genes 75

Value

An object of the corresponding summary class, here HermesDataSummary.

Methods (by class)

e summary (AnyHermesData): A summary method for AnyHermesData object that creates a
HermesDataSummary object.

* show(HermesDataSummary): A show method prints summary description of HermesDataSummary
object generated by the summary () method.

Examples

object <- hermes_data
object_summary <- summary(object)

We can access parts of this S4 object with the “slot™ function.
str(object_summary)

slotNames(object_summary)

slot(object_summary, "lib_sizes")

Just calling the summary method like this will use the ~show()~ method.
summary (object)

top_genes Derivation of Top Genes

Description

top_genes() creates a HermesDataTopGenes object, which extends data. frame. It contains two
columns:

e expression: containing the statistic values calculated by summary_fun across columns.

e name: the gene names.

The corresponding autoplot() method then visualizes the result as a barplot.

Usage

top_genes(
object,
assay_name = "counts"”,
summary_fun = rowMeans,
n_top = if (is.null(min_threshold)) 10L else NULL,
min_threshold = NULL

S4 method for signature 'HermesDataTopGenes'
autoplot(

76

object,

top_genes

x_lab = "HGNC gene names",

y_lab = paste@(object@summary_fun_name, "(", object@assay_name, ")"),
title = "Top most expressed genes”
)
Arguments
object (AnyHermedData)
input.
assay_name (string)

summary_fun

n_top

min_threshold

x_lab

y_lab

title

Details

name of the assay to use for the sorting of genes.

(function)
summary statistics function to apply across the samples in the assay resulting in
a numeric vector with one value per gene.

(count or NULL)
selection criteria based on number of entries.

(number or NULL)
selection criteria based on a minimum summary statistics threshold.

(string)
x-axis label.

(string)
y-axis label.

(string)
plot title.

* The data frame is sorted in descending order of expression and only the top entries according
to the selection criteria are included.

* Note that exactly one of the arguments n_top and min_threshold must be provided.

Value

A HermesDataTopGenes object.

Functions

* autoplot(HermesDataTopGenes): Creates a bar plot from a HermesDataTopGenes object,
where the y axis shows the expression statistics for each of the top genes on the x-axis.

Examples

object <- hermes_data

Default uses average of raw counts across samples to rank genes.

top_genes(object)

validate 77

Instead of showing top 10 genes, can also set a minimum threshold on average counts.
top_genes(object, n_top = NULL, min_threshold = 50000)

We can also use the maximum of raw counts across samples, by specifying a different
summary statistics function.
result <- top_genes(object, summary_fun = rowMax)

Finally we can produce barplots based on the results.
autoplot(result, title = "My top genes")
autoplot(result, y_lab = "Counts”, title = "My top genes")

validate Internal Helper Functions for Validation of AnyHermesData Objects

Description

These functions are used internally only and therefore not exported. They work on SummarizedExperiment: : SummarizedEx
objects, and AnyHermesData objects are defined by successfully passing these validation checks.

Usage
validate_counts(object)
validate_cols(required, actual)
validate_row_data(object)
validate_col_data(object)
validate_names(object)

validate_prefix(object)

Arguments
object (SummarizedExperiment)
object to validate.
required (character)
required column names.
actual (actual)
actual column names.
Value

A character vector with the validation failure messages, or NULL in case validation passes.

78 wrap_in_mae

Functions

* validate_counts(): validates that the first assay is counts containing non-missing, integer,
non-negative values.

* validate_cols(): validates that required column names are contained in actual column
names.

* validate_row_data(): validates that the object contains rowData with required columns.
* validate_col_data(): validates that the object contains colData with required columns.
* validate_names(): validates that the object contains row and column names.

* validate_prefix(): validates that the object prefix is a string and only contains alphabetic
characters.

wrap_in_mae Wrap in MAE

Description
This helper function wraps SummarizedExperiment objects into an a MultiAssayExperiment
(MAE) object.

Usage

wrap_in_mae(x, name = deparse(substitute(x)))

Arguments
X (SummarizedExperiment)
input to create the MAE object from.
name (string)
experiment name to use in the MAE for x.
Value

The MAE object with the only experiment being x having the given name.

Examples

mae <- wrap_in_mae(summarized_experiment)
mae[["summarized_experiment”]]

%>%

79

%>% Pipe operator

Description

See magrittr: :%>% for details.

Usage
lhs %>% rhs

Value

The result of the corresponding function call.

Examples

hermes_data %>%
filter() %>%
normalize() %>%
summary ()

Index

+ datasets
annotation,AnyHermesData-method, 8
expression_set, 39
hermes_data, 47
multi_assay_experiment, 64
summarized_experiment, 74

* internal
%>%, 19

.ConnectionBiomart (connect_biomart), 18

.HermesData (HermesData-class), 45

.HermesDataCor

(correlate,AnyHermesData-method),
21
.HermesDataDiffExpr (diff_expression),
27
.HermesDataPca (calc_pca), 12
.HermesDataPcaCor
(correlate,HermesDataPca-method),
23

.HermesDataSummary (summary), 74

.HermesDataTopGenes (top_genes), 75

.RangedHermesData (HermesData-class), 45

.row_data_annotation_cols, 68

.row_data_annotation_cols

(annotation, AnyHermesData-method),

8
%>%, 79, 19

add_quality_flags, 5
add_quality_flags(), 20, 46, 71
all_na, 7

annotation, 40, 55

annotation

(annotation, AnyHermesData-method),

8
annotation,AnyHermesData-method, 8

annotation<-,AnyHermesData,DataFrame-method

(annotation, AnyHermesData-method),

8

80

AnyHermesData, 5, 6, 8, 10, 14, 23, 24, 32,
34-36, 40, 41, 46, 49, 50, 56-58
63-65, 68-75, 77
AnyHermesData (HermesData-class), 45
AnyHermesData-class (HermesData-class),
45
assert_proportion (check_proportion), 15
assert_proportion(), 10
assertion_arguments, 11
assertions, 9, 15
assertthat::assert_that(), 9
autoplot,AnyHermesData-method, 11
autoplot,HermesDataCor-method
(correlate, AnyHermesData-method),
21
autoplot,HermesDataDiffExpr-method
(diff_expression), 27
autoplot,HermesDataPcaCor-method
(correlate,HermesDataPca-method),
23
autoplot,HermesDataTopGenes-method
(top_genes), 75

Biobase: :ExpressionSet, 39, 46, 74
BiocGenerics: :duplicated(), 48
biomaRt: :Mart, I8, 51, 52, 54

calc_cor, 21

calc_cor
(correlate,AnyHermesData-method),
21

calc_pca, 12

calc_pca(), 23, 57, 58

cat(), 13

cat_with_newline, 13

cbind, 14, 69

check_proportion, 15

checkmate: :AssertCollection, /1, 15

checkmate: :vname(), 11, 15

circlize::colorRamp2(), 22, 23

INDEX

cli::cat_line(), I3
col_data_with_genes, 17
colMeanZscores, 16
colPrinComp1, 16
ComplexHeatmap: :Heatmap (), 22-24, 34
connect_biomart, 18
ConnectionBiomart, I8, 68
ConnectionBiomart (connect_biomart), 18
ConnectionBiomart-class
(connect_biomart), 18
control_normalize, 19
control_normalize(), 65, 66
control_quality, 20
control_quality(), 6, 7
correlate, 21
correlate,AnyHermesData-method, 21
correlate,HermesDataPca-method, 23
counts (counts, AnyHermesData-method), 24
counts,AnyHermesData-method, 24
counts<-,AnyHermesData,matrix-method
(counts,AnyHermesData-method),
24
cut_quantile, 25

data.frame, 75

DESeq2: :DESeq(), 28, 49
df_cols_to_factor, 26
df_cols_to_factor(), 28, 46
diff_expression, 27
draw_barplot, 29
draw_boxplot, 30
draw_genes_barplot, 32
draw_genes_barplot(), 12
draw_heatmap, 33
draw_libsize_densities, 34
draw_libsize_densities(), /2
draw_libsize_hist, 35
draw_libsize_hist(), 12
draw_libsize_qq, 36
draw_libsize_qq(), 12
draw_nonzero_boxplot, 36
draw_nonzero_boxplot(), 12
draw_scatterplot, 37

estimateDispersions, 19
expect_proportion (check_proportion), 15
expression_set, 39, 74
extra_data_names, 39

extraColDataNames (extra_data_names), 39

81

extraColDataNames, AnyHermesData-method
(extra_data_names), 39

extraRowDataNames (extra_data_names), 39

extraRowDataNames, AnyHermesData-method
(extra_data_names), 39

filter, 40

filter(), 55
filter,AnyHermesData-method (filter), 40
filter,data.frame-method (filter), 40
filter,ts-method (filter), 40

gene_spec, 44

genes, 41

genes(), 71

genes, AnyHermesData-method (genes), 41

GeneSpec, 42,42, 4345

get_low_depth (add_quality_flags), 5

get_low_expression (add_quality_flags),
5

get_tech_failure (add_quality_flags), 5

ggfortify: :autoplot.prcomp(), /2

ggplot2: :autoplot(), 12

h_all_duplicated, 48
h_cpm (normalize,AnyHermesData-method),
64
h_df_factors_with_explicit_na, 48
h_diff_expr_deseq2, 49
h_diff_expr_deseq2(), 28
h_diff_expr_voom, 50
h_diff_expr_voom(), 28
h_draw_boxplot_df (draw_boxplot), 30
h_ensembl_to_entrez_ids, 51
h_get_annotation_biomart, 52
h_get_granges_by_id, 53
h_get_size_biomart, 54
h_has_reqg_annotations, 54
h_low_depth_flag (add_quality_flags), 5
h_low_expression_flag
(add_quality_flags), 5
h_map_pos, 55
h_parens, 56
h_pca_df_r2_matrix, 56
h_pca_df_r2_matrix(), 24
h_pca_var_rsquared, 58
h_pca_var_rsquared(), 57
h_rlog

(normalize, AnyHermesData-method),

64

82

h_rpkm
(normalize,AnyHermesData-method),
64

h_short_list, 59

h_strip_prefix, 59

h_tech_failure_flag
(add_quality_flags), 5

h_tpm (normalize, AnyHermesData-method),

64

h_unique_labels, 60

h_voom
(normalize,AnyHermesData-method),
64

h_vst (normalize, AnyHermesData-method),
64

hermes (hermes-package), 4

hermes-package, 4

hermes_data, 47

HermesData, 28, 39, 4547, 64, 69, 72, 74

HermesData (HermesData-class), 45

HermesData-class, 45

HermesDataCor, 21, 22

HermesDataCor
(correlate,AnyHermesData-method),
21

HermesDataCor-class
(correlate,AnyHermesData-method),
21

HermesDataDiffExpr, 28

HermesDataDiffExpr (diff_expression), 27

HermesDataDiffExpr-class
(diff_expression), 27

HermesDataFromMatrix
(HermesData-class), 45

HermesDataPca, 12, 13

HermesDataPca (calc_pca), 12

HermesDataPca-class (calc_pca), 12

HermesDataPcaCor, 23, 24

HermesDataPcaCor
(correlate,HermesDataPca-method),
23

HermesDataPcaCor-class
(correlate,HermesDataPca-method),
23

HermesDataSummary, 75

HermesDataSummary (summary), 74

HermesDataSummary-class (summary), 74

HermesDataTopGenes, 75, 76

INDEX

HermesDataTopGenes (top_genes), 75
HermesDataTopGenes-class (top_genes), 75

inner_join_cdisc, 61

is.vector, 48

is_class (assertions), 9

is_constant (assertions), 9

is_counts_vector (assertions), 9

is_hermes_data (assertions), 9

is_list_with (assertions), 9

isEmpty
(isEmpty, SummarizedExperiment-method),
62

isEmpty, SummarizedExperiment-method,
62

lapply
(lapply,MultiAssayExperiment-method),
62
lapply,MultiAssayExperiment-method, 62
limma: :eBayes(), 50
limma: :1mFit (), 50
limma: :voom(), 28, 50

matrix, 21/

metadata, 63

multi_assay_experiment, 64

MultiAssayExperiment: :MultiAssayExperiment
64

normalize
(normalize, AnyHermesData-method),
64
normalize(), 19
normalize,AnyHermesData-method, 64

one_provided (assertions), 9

pca_cor_samplevar, 13, 21

pca_cor_samplevar
(correlate,HermesDataPca-method),
23

plot_all
(autoplot,AnyHermesData-method),
11

prefix, 67

query, 67
query,character,ConnectionBiomart-method
(query), 67

INDEX

RangedHermesData, 45, 46, 72

RangedHermesData (HermesData-class), 45

RangedHermesData-class
(HermesData-class), 45

rbind, /4, 68

rename, 55

rename

(rename, SummarizedExperiment-method),

69
rename(), 46
rename,data.frame-method

(rename, SummarizedExperiment-method),

69
rename, SummarizedExperiment-method, 69

S4Vectors: :DataFrame, 8, 26, 68

S4Vectors: :DFrame, 18

S4Vectors: :setValidity2(), 46

samples (samples, AnyHermesData-method),
70

samples(), 42

samples, AnyHermesData-method, 70

set_tech_failure, 71

set_tech_failure(), 7

show (show,HermesData-method), 72

show,HermesData-method, 72

show, HermesDataSummary-method
(summary), 74

show,RangedHermesData-method
(show,HermesData-method), 72

stats::cor(), 22

stats: :prcomp, /13

subset, 73

subset(), 41

summarized_experiment, 39, 47, 74

SummarizedExperiment: :colData(), 57

test_proportion (check_proportion), 15
testthat::expect_that(), 11, 15
top_genes, 75

validate, 77

validate_col_data (validate), 77
validate_cols (validate), 77
validate_counts (validate), 77
validate_names (validate), 77
validate_prefix (validate), 77
validate_row_data (validate), 77

wrap_in_mae, 78

SummarizedExperiment: :makeSummarizedExperimentFromExpressionSet(),

39,46

SummarizedExperiment: :RangedSummarizedExperiment

46

SummarizedExperiment: : SummarizedExperiment,

14, 39,4547, 62, 69, 70,72, 74,77

SummarizedExperiment: :SummarizedExperiment(),

45

summary, 74

summary (), 75

summary, AnyHermesData-method (summary),
74

83

	hermes-package
	add_quality_flags
	all_na
	annotation,AnyHermesData-method
	assertions
	assertion_arguments
	autoplot,AnyHermesData-method
	calc_pca
	cat_with_newline
	cbind
	check_proportion
	colMeanZscores
	colPrinComp1
	col_data_with_genes
	connect_biomart
	control_normalize
	control_quality
	correlate
	correlate,AnyHermesData-method
	correlate,HermesDataPca-method
	counts,AnyHermesData-method
	cut_quantile
	df_cols_to_factor
	diff_expression
	draw_barplot
	draw_boxplot
	draw_genes_barplot
	draw_heatmap
	draw_libsize_densities
	draw_libsize_hist
	draw_libsize_qq
	draw_nonzero_boxplot
	draw_scatterplot
	expression_set
	extra_data_names
	filter
	genes
	GeneSpec
	gene_spec
	HermesData-class
	hermes_data
	h_all_duplicated
	h_df_factors_with_explicit_na
	h_diff_expr_deseq2
	h_diff_expr_voom
	h_ensembl_to_entrez_ids
	h_get_annotation_biomart
	h_get_granges_by_id
	h_get_size_biomart
	h_has_req_annotations
	h_map_pos
	h_parens
	h_pca_df_r2_matrix
	h_pca_var_rsquared
	h_short_list
	h_strip_prefix
	h_unique_labels
	inner_join_cdisc
	isEmpty,SummarizedExperiment-method
	lapply,MultiAssayExperiment-method
	metadata
	multi_assay_experiment
	normalize,AnyHermesData-method
	prefix
	query
	rbind
	rename,SummarizedExperiment-method
	samples,AnyHermesData-method
	set_tech_failure
	show,HermesData-method
	subset
	summarized_experiment
	summary
	top_genes
	validate
	wrap_in_mae
	>
	Index

