Package ‘geomeTriD’

January 24, 2026

Type Package

Title A R/Bioconductor package for interactive 3D plot of epigenetic
data or single cell data

Version 1.5.1

Description
The geomeTriD (Three-Dimensional Geometry) Package provides interactive 3D visualiza-
tion of chromatin structures using the WebGL-based 'three.js' (https://threejs.org/) or the rgl ren-
dering library. It is designed to identify and explore spatial chromatin patterns within ge-
nomic regions. The package generates dynamic 3D plots and HTML widgets that integrate seam-
lessly with Shiny applications, enabling researchers to visualize chromatin organization, de-
tect spatial features, and compare structural dynamics across different conditions and data types.

License MIT + file LICENSE
Depends R (>=4.4.0)

Imports aricode, BiocGenerics, Biostrings, clue, cluster, dbscan,
future.apply, Seqinfo, GenomicRanges, graphics, grDevices,
grid, htmlwidgets, igraph, InteractionSet, IRanges, MASS,
Matrix, methods, plotrix, progressr, RANN, rgl, rjson,
S4Vectors, scales, stats, trackViewer

Suggests RUnit, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene,
BSgenome.Hsapiens.UCSC.hg19, manipulateWidget, shiny,
BiocStyle, knitr, rmarkdown, testthat

biocViews Visualization
VignetteBuilder knitr
RoxygenNote 7.3.3
Encoding UTF-8

URL https://github.com/jianhong/geomeTriD

BugReports https://github.com/jianhong/geomeTriD/issues
git_url https://git.bioconductor.org/packages/geomeTriD
git_branch devel

git_last_commit f2c4160

https://github.com/jianhong/geomeTriD
https://github.com/jianhong/geomeTriD/issues

geomeTriD-package

git_last_commit_date 2025-11-24

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Jianhong Ou [aut, cre] (ORCID: <https://orcid.org/0000-0002-8652-2488>),

Kenneth Poss [aut, fnd]

Maintainer Jianhong Ou <jou@morgridge.org>

Contents
geomeTriD-package 2
alignCoor L e 3
autoK . . oL e 4
availableGeometries Lo 5
cellClusters e e e e e e e e e 5
create3dGenomicSignals Lo 7
createTADGeometrieso 9
extractBackbonePositions oL o 10
fill.NA . e 10
gaussianBluro oL 11
loopBouquetPlot 12
mdsPlot 14
pointCluSter e e e e e e e e 16
rglVIEWeT e e e 17
SDC . . o 17
smooth3dPoints e e 18
spatialDistanceMatrix L. 19
SRD . 21
threeJsGeometry-class 22
threeJsViewer L 23
threeJsViewer-shiny L o 25
view3dCells e e e e 26
view3dStructure e 27

Index 30

geomeTriD-package Interactive 3D plot of epigenetic data or single cell data
Description

The geomeTriD (Three-Dimensional Geometry) Package provides interactive 3D visualization of
chromatin structures using the WebGL-based three.js or the rgl rendering library. It is designed
to identify and explore spatial chromatin patterns within genomic regions. The package generates
dynamic 3D plots and HTML widgets that integrate seamlessly with Shiny applications, enabling
researchers to visualize chromatin organization, detect spatial features, and compare structural dy-
namics across different conditions and data types.

https://orcid.org/0000-0002-8652-2488

alignCoor

Author(s)

Maintainer: Jianhong Ou <jou@morgridge.org> (ORCID)
Authors:

¢ Kenneth Poss <kposs@morgridge.org> [funder]

See Also
Useful links:

e https://github.com/jianhong/geomeTriD
* Report bugs at https://github.com/jianhong/geomeTriD/issues

Examples

if(interactive()){

quick start from a simple data

library(geomeTriD)

set.seed(123)

obj <- GRanges("1", IRanges(seq.int(10), width = 1),
x = sample.int(10, 10),
y = sample.int(10, 10),
z = sample.int(10, 10)

)
feature.gr <- GRanges("1", IRanges(c(3, 7), width = 3),
label = c("genel”, "gene2"),
col = c("red"”, "blue"),

type = "gene"
)
view3dStructure(obj, feature.gr,
renderer = "threejs”,
coor_mark_interval = 5, coor_tick_unit = 2
)
3
alignCoor Aligns two sets of genomic with x,y,z
Description

Aligns two sets of points via rotations and translations by Kabsch Algorithm.

Usage

alignCoor(query, subject)

Arguments

query, subject GRanges objects to alignment.

https://orcid.org/0000-0002-8652-2488
https://github.com/jianhong/geomeTriD
https://github.com/jianhong/geomeTriD/issues

4 autoK

Value

A GRanges object of query aligned to subject.

Examples

x <- readRDS(system.file("extdata”, "4DNFITUEG1HD.chr21.FLAMINGO.res.rds",

package = "geomeTriD"
))
res <- alignCoor(x, x)
A <- view3dStructure(x, k = 3, renderer = "none")
B <- view3dStructure(res, k = 3, renderer = "none")

B <- lapply(B, function(.ele) {
.ele$side <- "right”
.ele

»
threeJsViewer(c(A, B))

autoK Automate Cluster Number Selection

Description

Automate cluster number selection using Silhouette Width

Usage

autoK(d, hc, max_k)

Arguments

d A dist object.
hc A hclust object.

max_k The maximal k.

Value

The best k number.

Examples

x <- matrix(rnorm(100), nrow = 5)
d <- dist(x)

hc <- hclust(d)

autoK(d, hc)

availableGeometries

availableGeometries Available Geometries

Description

The Geometries supported by threeJsGeometry class

Usage

availableGeometries

Format

An object of class character of length 18.

Examples

availableGeometries

cellClusters cluster single cell 3D structures

Description

Perform Hierarchical clustering for given 3D structures.

Calculate distance for each pair of cells after alignment.

Usage

cellClusters(
Xyzs,
TADs,
distance_method = "NID",
cluster_method = "ward.D2",
rescale = TRUE,
quite = FALSE,
parallel = FALSE,

)

cellDistance(
Xyzs,
TADs,

distance_method = c(”NID”, "RMSD”, "SRD", "DSDC”, "NMI", "ARI"

eps,

, “AMI“),

K,

cellClusters

rescale = TRUE,
quite = FALSE,
parallel = FALSE,

Arguments

Xyzs
TADs

distance_method

cluster_method
rescale
quite

parallel

eps

Value

A list of data.frame with x, y, z coordinates or output of cellDistance.

A list of index vectors, where each vector represents a TAD. For example, if the
first TAD spans the 2nd to 4th coordinates and the second spans the 8th to 10th
coordinates, the list would be: list(c(2, 3, 4), c(8, 9, 10)).

’SRD’, ’DSDC’, 'RMSD’, 'NMTI’, ART’, "NID’, or ’AMI’. SRD method will
first perform clustering and then calculate the Sequence Relabeling Distance
SRD. DSDC method will calculate the Euclidean distance of SDC. RMSD method
will first do alignment for each cell x, y, z coordinates and the calculate Root
Mean Square Deviation (RMSD, the square root of the mean of squared Eu-
clidean distance between corresponding points). ARI, NID, NMI, and AMI
method will first perform clustering and then calculate the Adjusted Rand Index
(ARI), Normalized information distance (NID), Normalized Mutal Information
(NMI), Adjusted Mutual Information (AMI).

The agglomeration method to be used for hclust. Default is *'ward.D2’.
Re-scale the object to similar size.

Print the message or not.

Run parallel by future or not.

not used.

numeric or auto’. The size (radius) of the epsilon neighborhood. If eps is set,
use DBSCAN to cluster the points for each cell.

numeric or ’auto’. The number of groups. If k is set, use hclust to cluster the
points for each cell.

cellClusters return an object of class hclust.

cellDistance return distance matrix as an object of dist’

Examples

set.seed(1)

xyzs <- lapply(seq.int(20), function(i){
matrix(sample.int (100, 60, replace = TRUE),
nrow=20, dimnames=list(NULL, c('x', 'y', 'z"')))

b

cd <- cellDistance(xyzs, distance_method='RMSD')
cc <- cellClusters(cd)

create3dGenomicSignals 7

plot(cc)
cutree(cc, k=3)
cd2 <- cellDistance(xyzs, distance_method='SRD', eps=40)

create3dGenomicSignals
create 3d Geometry by given genomic signals

Description

Create a 3d Geometry by given genomic signals for target 3d positions.

Usage

create3dGenomicSignals(
GenoSig,
targetObj,
signalTransformFun,
positionTransformFun,
genomicScoreRange,
reverseGenomicSigs,
type = "segment”,
tag,
name,
color = c("gray30", "darkred"),
rotation = c(0, 0, 0),

)
Arguments
GenoSig The Genomic signals. An object of GRanges, Pairs, or GInteractions with scores
or an object of track.
targetObj The GRanges object with mcols x0, y0, z0, x1, y1, and z1
signalTransformFun

The transformation function for genomic signals.

positionTransformFun
The transformation function for the coordinates. The function must have input
as a data.frame with colnames x0, y0, z0, x1, y1, and z1. And it must have
output as same dimension data.frame.

genomicScoreRange
The genomic signals range.

reverseGenomicSigs
Plot the genomic signals in reverse values.

type The Geometry type.See threeJsGeometry

create3dGenomicSignals

The tag used to group geometries.
The prefix for the name of the geometries.

The color of the signal. If there is metadata *color’ in GenoSig this parameter
will be ignored.

The rotations in the x, y and z axis in radians.

the parameters for each different type of geometries. If type is ’segments’,
lwd.maxGenomicSigs (the maximal lwd of the line) is required. If type is cir-
cle’, radius (the radius of the circle) and the maxVal (the value for 2*pi) is
required. If type is ’sphere’, ’dodecahedron’, ’icosahedron’, ’octahedron’, or
"tetrahedron’, radius is required. If type is "box’, ’capsule’, ’cylinder’, ’cone’,
or ’torus’, if the properties of correspond geometry is not set, they will be set
to the transformed score value. If type is ’json’, please refer the documentation
about BufferGeometryLoader at threejs.org If input *GenoSig’ is an object of
Pairs or GInteractions, the type will be set to ’polygon’ and topN is used to set
how many top events will be plot.

threeJsGeometry objects or NULL

8
tag
name
color
rotation
Value
Examples

library(GenomicRanges)
GenoSig <- GRanges("chr1"”, IRanges(seq(1, 100, by = 10), width = 10),
score = seq.int(10)

)

pos <- matrix(rnorm(303), ncol = 3)

pos <- chind(

X0 = pos[seq.
x1 = pos[seq.
y0 = pos[seq.

y1 = pos[seq.
z0 = pos[seq.
z1 = pos[seq.

)

int(100), 11,
int(101)[-11, 11,
int(100), 21,
int(101)[-11, 21,
int(100), 31,
int(101)[-11, 3]

targetObj <- GRanges("chr1”, IRanges(seq.int(100), width = 1))

mcols(targetObj

) <- pos

ds <- create3dGenomicSignals(GenoSig, targetObj,
signalTransformFun = function(x) {

log2(x + 1)
})

reverseGenomicSigs = FALSE,
type = "segment”,

1wd.maxGenomicSigs

name = "test”
tag = "test”
)

8’

’

threeJsViewer(ds)

createTADGeometries

createTADGeometries create 3d Geometry by given TADs

Description

Create a 3d Geometry by given TADs for target 3d positions.

Usage
createTADGeometries(
tad,
targetObj,
type = "sphere”,
name = "TAD_",
tag = "TAD",
alpha = 0.2,
lwd = 3,
)
Arguments
tad The TAD. An object of GRanges.
targetObj The GRanges object with mcols x0, y0, z0, x1, y1, and z1
type The Geometry type. default is sphere. Possible types are sphere or segment.
name The prefix for the name of the geometries.
tag The tag used to group geometries.
alpha alpha value. default is 0.2
lwd line width for segment.
other properties.
Value

threeJsGeometry objects

Examples

library(GenomicRanges)

obj <- readRDS(system.file("extdata”, "4DNFITUEGTHD.chr21.FLAMINGO.res.rds",
package = "geomeTriD"

))

tjg <- view3dStructure(obj, renderer = "none")

pc <- pointCluster(as.data.frame(mcols(obj)))

tads <- split(obj, pc$cluster)

tads <- tads[names(tads)!="0"] # cluster @ is noise

tads <- unlist(range(GRangesList(tads)))

10 fill NA

backbone <- extractBackbonePositions(tjg)
tad_geometries <- createTADGeometries(tads, backbone)
threeJsViewer(tjg, tad_geometries)

extractBackbonePositions
Extract the backbone coordinates from output of mdsPlot

Description

Extract the positions from output of mdsPlot and used as the "targetObj’ for function create3dGenomicSignals

Usage
extractBackbonePositions(v3d_output, n = "backbone”)
Arguments
v3d_output The output of mdsPlot or view3dStructure for k=3.
n The backbone name of in the inputs.
Value

An GRanges object with positions of x0, x1, y0, y1, z0 and z1.

Examples

library(GenomicRanges)

gi_nij <- readRDS(system.file("extdata”, "nij.chr6.51120000.53200000.gi.rds",
package = "geomeTriD"))

range_chr6 <- GRanges("chr6"”, IRanges(51120000, 53200000))

geos <- mdsPlot(gi_nij, range = range_chr6, k = 3, render = "none")

extractBackbonePositions(geos)

fill_NA fill NA values by upstream and downstream points

Description

Fill NA values by previous and next points coordinates.

Usage
fill_NA(xyz)

gaussianBlur

Arguments

LI N R}

Xyz A matrix or data.frame with columns ’x’,’y’,

Value

A matrix or data.frame.

Examples

xyz <- matrix(seq.int(21), ncol=3, dimnames=list(NULL, c('x
xyz[e(1, 5, 7), 1 <= NA
fill_NA(xyz)

i

z

'
’

'y,

'z')))

11

gaussianBlur Gaussian blur

Description

Do Gaussian for the distance matrix.

Usage

gaussianBlur(mat, size = 5, sigma =1, ...)
Arguments

mat A matrix.

size The kernel size

sigma The strength of the blur.

Not used.

Value

A matrix.
Examples

mat <- matrix(runif(100), 10, 10)
blurred_mat <- gaussianBlur(mat, size = 5, sigma = 1)

12

loopBouquetPlot

loopBouquetPlot plot Glnteractions

Description

plot graph for GInteractions

Usage
lo

opBouquetPlot(

gi,

range,

feature.gr,

genomicSigs,

signalTransformFun = function(x) {
log2(x + 1)

b

label_region = FALSE,

show_edges = TRUE,

show_cluster = TRUE,

lwd.backbone = 2,

col.backbone = "gray"”,
lwd.maxGenomicSigs = 8,
reverseGenomicSigs = TRUE,
col.backbone_background = "gray70",
alpha.backbone_background = 0.5,
lwd.gene = 2,
lwd.nodeCircle
col.nodeCircle
lwd.edge = 2,
col.edge = "gray80",
coor_mark_interval = 1e+05,
col.coor = "black”,
show_coor = TRUE,
coor_tick_unit = 1000,
label_gene = TRUE,
col.tension_line = "black”,
lwd. tension_line = 1,
length.arrow = NULL,
safe_text_force = 3,

T,
"#DDDDDD25",

method = 1,
doReduce = FALSE,
)
Arguments
gi An object of Glnteractions

loopBouquetPlot 13

range The region to plot. an object of GRanges

feature.gr The annotation features to be added. An object of GRanges.

genomicSigs The genomic signals. An object of GRanges with scores or an object of track.
signalTransformFun

The transformation function for genomic signals.
label_region Label the region node or not.
show_edges Plot the interaction edges or not.

show_cluster Plot the cluster background or not.
1lwd.backbone, 1lwd.gene, lwd.nodeCircle, lwd.edge, lwd.tension_line,
1lwd.maxGenomicSigs
Line width for the linker, gene, interaction node circle, the dashed line of inter-
action edges, the tension line and the maximal reversed genomic signal.
col.backbone, col.backbone_background, col.nodeCircle, col.edge,
col.tension_line, col.coor
Color for the DNA chain, the compact DNA chain, the node circle, the linker,
the tension line and the coordinates marker.
reverseGenomicSigs
Plot the Genomic signals in reverse values.
alpha.backbone_background
Alpha channel for transparency of backbone background.
coor_mark_interval
The coordinates marker interval. Numeric(1). Set to O to turn it off. The default
value 1e5 means show coordinates every 0.1M bp.
show_coor Show coordinates or not.
coor_tick_unit The bps for every ticks. Default is 1K.
label_gene Show gene symbol or not.

length.arrow Length of the edges of the arrow head (in inches).
safe_text_force
The loops to avoid the text overlapping.

method Plot method. Could be 1 or 2.
doReduce Reduce the Glnteractions or not.

Parameter will be passed to layout_with_fr.

Value

A invisible list with the key points of the plot.

Examples

library(InteractionSet)

gi <- readRDS(system.file("extdata”, "gi.rds"”, package = "trackViewer"))
range <- GRanges("chr2", IRanges(234500000, 235000000))
library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(org.Hs.eg.db)

14 mdsPlot

feature.gr <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
feature.gr <- subsetByOverlaps(feature.gr, range(regions(gi)))
symbols <- mget(feature.gr$gene_id, org.Hs.egSYMBOL, ifnotfound = NA)
feature.gr$label[lengths(symbols) == 1] <- unlist(symbols[lengths(symbols) == 1])
feature.gr$col <- sample(1:7, length(feature.gr), replace = TRUE)
feature.gr$type <- sample(c("cRE", "gene"),

length(feature.gr),

replace = TRUE,

prob = c(0.1, 0.9)

)
feature.gr$pch <- rep(NA, length(feature.gr))
feature.gr$pch[feature.gr$type == "cRE"] <- 11

loopBouquetPlot(gi, range, feature.gr)

mdsPlot Plot genomic interactions by multi-dimensional scaling plot

Description

This function will convert the interactions scores into a distance matrix and then plot the matrix by
multi-dimensional scaling plot.

Usage

mdsPlot(
gi,
range,
feature.gr,
k =2,
genomicSigs,
signalTransformFun = function(x) {

log2(x + 1)

1
lwd.backbone = 2,
col.backbone = "gray"”,
lwd.maxGenomicSigs = 8,
reverseGenomicSigs = TRUE,
col.backbone_background = if (k == 2) "gray70" else c("white", "darkred"),
alpha.backbone_background = 0.5,

lwd.gene = 3,
coor_mark_interval = 5e+05,
col.coor = "black"”,

show_coor = TRUE,
coor_tick_unit = 50000,
label_gene = TRUE,
col.tension_line = "black”,
lwd. tension_line = 1,
length.arrow = NULL,

mdsPlot 15

safe_text_force = 3,
square = TRUE,

renderer = c("rgl”, "threejs”, "none"”, "granges"),
)
Arguments
gi An object of Glnteractions
range The region to plot. an object of GRanges
feature.gr The annotation features to be added. An object of GRanges.
k The dimension of plot. 2: 2d, 3: 3d.
genomicSigs The genomic signals. An object of GRanges with scores or an object of track.
signalTransformFun

The transformation function for genomic signals.
1lwd.backbone, 1wd. gene, 1wd. tension_line, lwd.maxGenomicSigs

Line width for the linker, gene, interaction node circle, the dashed line of inter-
action edges, the tension line and the maximal reversed genomic signal.

col.backbone, col.backbone_background, col.tension_line, col.coor
Color for the DNA chain, the compact DNA chain, the node circle, the linker,
the tension line and the coordinates marker.
reverseGenomicSigs
Plot the genomic signals in reverse values.
alpha.backbone_background
Alpha channel for transparency of backbone background.
coor_mark_interval
The coordinates marker interval. Numeric(1). Set to O to turn it off. The default
value 1e5 means show coordinates every 0.1M bp.
show_coor Plot ticks in the line to show the DNA compact tension.
coor_tick_unit The bps for every ticks. Default is 1K.
label_gene Show gene symbol or not.

length.arrow Length of the edges of the arrow head (in inches).
safe_text_force
The loops to avoid the text overlapping.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. See grid.curve.

renderer The renderer of the 3D plots. Could be rgl or threejs. The threejs will create a
htmlwidgets. If *none’ is set, a list of object will be returned. If *granges’ is set,
A GRanges with coordinates will be returned.

Parameter will be passed to isoMDS.

Value

Coordinates for 2d or 3d.

16 pointCluster

Examples

library(InteractionSet)
gi <- readRDS(system.file("extdata”, "nij.chr6.51120000.53200000.gi.rds",
package = "geomeTriD"
)
range <- GRanges("chr6"”, IRanges(51120000, 53200000))
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
feature.gr <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
feature.gr <- subsetByOverlaps(feature.gr, range(regions(gi)))
symbols <- mget(feature.gr$gene_id, org.Hs.egSYMBOL, ifnotfound = NA)
feature.gr$label[lengths(symbols) == 1] <- unlist(symbols[lengths(symbols) == 1])
feature.gr$col <- sample(1:7, length(feature.gr), replace = TRUE)
feature.gr$type <- sample(c("cRE", "gene"),
length(feature.gr),
replace = TRUE,
prob = c(0.1, 0.9)
)
mdsPlot(gi, range, feature.gr)

pointCluster Perform DBSCAN clustering

Description

Perform DBSCAN clustering for given 3D coordinates.

Usage

pointCluster(xyz, eps = "auto”, quite = FALSE, ...)
Arguments

Xyz A data.frame with x, y, z coordinates

eps The size (radius) of the epsilon neighborhood. Default *auto’.

quite Print message or not.

other parameters could be used by dbscan function except x and eps.

Value

An object of class dbscan_fast.

Examples

xyz <- readRDS(system.file('extdata', '4DNFITUEGTHD.chr21.FLAMINGO.res.rds"',
package="'geomeTriD"'))
pc <- pointCluster(xyz)

rglViewer

17

rglViewer rgl Viewer View the 3d structure by rgl.

Description

rgl Viewer View the 3d structure by rgl.

Usage
rglViewer(..., background = "gray")

Arguments

objects of threeJsGeometry.

background background of the main camera.

Value

MULL

Examples

obj <- readRDS(system.file("extdata”, "4DNFITUEG1HD.chr21.FLAMINGO.res.rds",

package = "geomeTriD"

)

feature.gr <- readRDS(system.file("extdata”, "4DNFITUEGIHD.feature.gr.rds”,
package = "geomeTriD"

)

tjg <- view3dStructure(obj,
k = 3, feature.gr = feature.gr, renderer = "none"”,
length.arrow = grid::unit(0.000006, "native")

)

if(interactive()){
rglViewer(tjg, background = 'white')

3

SDC Distance to centroid
Description

Calculates the mean of distance from each point to the geometric center (centroid)

Usage
SDC(xyz)

18 smooth3dPoints

Arguments

Xyz A data.frame with x, y, z coordinates.

Value

The mean of squared Euclidean distance to the centroid.

Examples

xyz <- matrix(seq.int(12), ncol = 3, dimnames=list(NULL, c('x"', 'y', 'z")))
SDC(xyz)

smooth3dPoints Calculate the smoothed curve for input GRanges

Description

This function will do smooth for given resolution (tile) for inputs and it is important step to prepare
the inputs for create3dGenomicSignals and view3dStructure.

Usage
smooth3dPoints(obj, resolution = 30, ...)
Arguments
obj GRanges object with mcols x, y, and z
resolution number of points at which to evaluate the smooth curve.
parameters passed to splinefun
Value

GRanges object with smoothed points of x0, y0, z0, x1, y1, and z1.

Examples

library(GenomicRanges)

obj <- GRanges("1", IRanges(seq.int(5) * 10, width = 10),
x = seq.int(5), y = seq.int(5), z = seq.int(5)

)

smooth3dPoints(obj, 5)

spatialDistanceMatrix 19

spatialDistanceMatrix Create the spatial distance matrix

Description

Create the spatial distance matrix for given 3D coordinates.

boundaryScore calculate the boundary score for a distance matrix. Please note that, this bound-
ary score is the reverse of insulation score because we are using the distance matrix but not the
interaction matrix.

boundaryScoreTAD assign the TAD boundaries via boundary score.
hierarchicalClusteringTAD assign the TAD boundaries via hierarchical clustering.
compartment calculate the compartment by principal component analysis.

spatialDistanceHeatmap will use base R to plot the spatial distance matrix.

Usage
spatialDistanceMatrix(xyz, output = "matrix”, fill_NA = FALSE, ...)
boundaryScore(spatialDistances, window = 5, background = 10, ...)
boundaryScoreTAD(
spatialDistances,
bin_size,

window = 5,
Z_cutoff = 2.3,
norm = FALSE,
boundaryScores,

hierarchicalClusteringTAD(spatialDistances, bin_size, window = 5, k, ...)
compartment(xyz.gr, genome, minWidth = 1)

spatialDistanceHeatmap(
spatialDistances,
components = c(”compartment”, "boundaryScoreTAD", "hierarchicalClusteringTAD"),
col = hcl.colors(n = 12, "OrRd"),
at = seq(@, 1, length.out = 2),
label_unit = "M",
window = 5,
background = 10,
d_cutoff = Inf,
Z_cutoff = 2.3,
norm = FALSE,

20 spatialDistanceMatrix

Gaussian_blur = FALSE,
useRaster = FALSE,

Arguments
Xyz A GRanges object with x, y, z coordinates
output "matrix" or "dist".
fill_NA Fill the missing value or not.
Parameters could be used by downstream function.
spatialDistances
The output of spatialDistanceMatrix or the input of spatialDistanceMatrix.
window The window size for boundary score.
background The background window size for local background.
bin_size The bin size.
Z_cutoff The Z_cutoff value for boundary.
norm Normalize the boundary score or not.

boundaryScores The output of boundaryScore.

k The cluster number. The final TAD numbers will be no greater than this number.

Xyz.gr A GRanges object with x,y,z coordinates.

genome A BSgenome object

minWidth The minimal width of input region.

components The components to plot.

col a list of colors such as that generated by hcl.colors, gray.colors or similar func-
tions.

at The label position of X, and Y axis.

label_unit unit for labels. "M’, 1e6; 'K, 1e3, °G’, 1e9.

d_cutoff The maximal cutoff value of distance matrix.

Gaussian_blur Do Gaussian blur or not.

useRaster logical; if TRUE a bitmap raster is used to plot the image instead of polygons.

Value

A matrix of Euclidean distance with fixed bins.

boundaryScore return a data frame with the boundary score and the Z scores.
boundaryScoreTAD return a list of the index or the positions of coordinates.
hierarchicalClusteringTAD return a list of the index or the positions of coordinates.

compartment return a GRanges object with A,B annotations.

SRD

Examples

xyz.gr <- readRDS(system.file('extdata', '4DNFITUEGTHD.chr21.FLAMINGO.res.rds"',

package="'geomeTriD"))

bin_size <- 5000 #width(xyz.gr)[1]

sdm <- spatialDistanceMatrix(xyz.gr)
spatialDistanceHeatmap(sdm)

head(boundaryScoreTAD(sdm, bin_size=bin_size))
head(hierarchicalClusteringTAD(sdm, bin_size=bin_size))
library(BSgenome.Hsapiens.UCSC.hg19)
compartment(xyz.gr, genome=BSgenome.Hsapiens.UCSC.hg19)

21

SRD Sequence Relabeling Distance

Description

Compares two cluster sequences after best label alignment.

Usage

SRD(c1, c2, noise = @)

Arguments

cl, c2 The cluster sequence 1 and 2.

noise The noise cluster name. Default is O.
Value

The mean value of hamming distance after label alignment.

Examples

cl <- ¢c(-1, 0, 1, 1, -1, 3, 3
c2 <-c(-1, 4, 4, 4, -1, 2, 2,
SRD(c1, c2, noise=-1)

, 5, 5) # -1° is noise
2) # "-1° 1is noise

22 threeJsGeometry-class

threeJsGeometry-class Class "threeJsGeometry”

Description

An object of class "threeJsGeometry" represents ‘three.js‘ geometry.

Usage

threeJsGeometry(...)

S4 method for signature 'threeJsGeometry'
x$name

S4 replacement method for signature 'threeJsGeometry'
x$name <- value

S4 method for signature 'threeJsGeometry'

show(object)
Arguments
Each argument in ... becomes an slot in the new threeJsGeometry.
X an object of threeJsGeometry
name slot name of threeJsGeometry
value value to be assigned
object an object of threeJsGeometry
Slots

X,Y,z "numeric”, specify the x, y, and z coordinates.

rotation "numeric”, specify the rotations in the X, y and z axis in radians.
colors "character”, the colors for each geometry.

type "charater”, the type of the geometry. See availableGeometries.
side 'character', the side for side by side plot in threeJsViewer.

layer 'character', the two layer plot in threeJsViewer.

tag 'character'’, the tag used to group geometries.

properties A "list", the properties to control the geometry.

Examples

tjg <- threeJsGeometry()

threeJsViewer 23

threeJsViewer threeJs Viewer The htmlwidgets viewer for threelJs.

Description

threeJs Viewer The htmlwidgets viewer for threels.

Usage
threeJsViewer(
background = c("#33333388", "#444444DD", "#444444DD", "#33333388"),

maxRadius = 1,
maxLineWidth = 50,

title = NULL,

width = NULL,

height = NULL
)

Arguments
objects of threeJsGeometry.

background background of the main camera (left and right).
maxRadius max value of the controls for radius.

maxLineWidth max value of the controls for line width.
title the titles of the plot.
width, height width and height of the widgets.

Details

We convert data frames to JSON by getOption("shiny.json.digits", 7) to avoid the error "Uncaught
SyntaxError: Expected ’,’ or '] after array element in JSON" for json parse process when handling
big data. User can change the option ’shiny.json.digits’ larger or smaller number to increase or
decrease the digits when converting numbers.

Value

A htmlwidgets widget.

Examples

library(GenomicRanges)

flamingo <- system.file("extdata”, "4DNFITUEGTHD.chr21.FLAMINGO.res.rds", package = "geomeTriD")
x <- readRDS(flamingo[[1]1])

resize to bigger value to get better init view

mcols(x) <- as.data.frame(mcols(x)) * 1e5

24

set.seed(1)
line <- threeJsGeometry(
x = x$x, y = x$y, z = x$z,

colors = sample(palette(), length(x), replace = TRUE),

type = "line”,
properties = list(size = 4)

)

sphere <- x[sample.int(length(x), 100)]

sphere <- threeJsGeometry(

x = sphere$x, y = sphere$y, z = sphere$z,

colors = "red",
type = "sphere”,

properties = list(radius = 0.08)

)

torus <- x[sample.int(length(x), 100)]

torus <- threeJsGeometry(

x = torus$x, y = torus$y, z = torus$z,

colors = "blue”,
type = "torus”,
properties = list(
radius = 0.08,
tube = 0.03
)
)

cylinder <- x[sample.int(length(x), 100)]

cylinder <- threeJsGeometry(

x = cylinder$x, y = cylinder$y, z

colors = "green”,

type = "cylinder”,

properties = list(
"height” = 0.07,
"radiusTop” = 0.05,
"radiusBottom” = 0.09

)

)

labels <- x[sample.int(length(x), 5)]
fontURL <- paste@('https://raw.githubusercontent.com/mrdoob/three.js/refs/',

"heads/dev/examples/fonts/helvetiker_regular.typeface.json")

labels <- threeJsGeometry(

cylinder$z,

x = labels$x, y = labels$y, z = labels$z,

colors = "black”,
type = "text”,
properties = list(
"label” = "text",
"font" = readLines(fontURL),
"size" = .5,
"depth” = .1
)

)

threeJsViewer(line, sphere, torus, cylinder)

threeJsViewer

threeJsViewer-shiny 25

threeJsViewer-shiny Shiny bindings for threeJsViewer

Description

Output and render functions for using threeJsViewer within Shiny applications and interactive Rmd
documents.

Usage

threejsOutput (outputId, width = "100%", height = "600px")

renderthreeJsViewer(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '600px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a threeJsViewer
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

Value

An output or render function that enables the use of the threeJsViewer widget.

Examples

if (interactive()) {
library(GenomicRanges)
flamingo <- system.file("extdata”, "4DNFITUEGTHD.chr21.FLAMINGO.res.rds", package = "geomeTriD")
x <- readRDS(flamingo[[1]1]1)
resize to bigger value to get better init view
mcols(x) <- as.data.frame(mcols(x)) * 1eb
line <- threeJsGeometry(
x = x$x, y = x$y, z = x$z,
colors = sample(palette(), length(x), replace = TRUE),
type = "line",
properties = list(size = 4)
)
library(shiny)
runApp(list(
ui = bootstrapPage(
threejsOutput(”"plot”)
),

server = function(input, output) {

26 view3dCells

output$plot <- renderthreeJsViewer ({

threeJsViewer(line)
b
}
D)
3
view3dCells Plot cell xyz data in 2d or 3d
Description

Plot cell xyz data with grid or rgl package.

Usage

view3dCells(
cells,
X!
Y,
z,
color = "blue”,
colorFun = function(x, pal = seq.int(8)) {
if (is.character(x))
X <-
as.numeric(factor(x))
limits <- range(x)
pal[findInterval(x, seq(limits[1],
limits[2], length.out = length(pal) + 1), all.inside = TRUE)]

1
shape = "sphere”,
radius = 0.1,
tag = "cell”,
renderer = c("rgl”, "threejs”, "none"),
)
Arguments
cells A data.frame.
X, Y, Z Column names of X, y, z.

color, shape, radius
The column names for color, shape, radius or the value(length=1) of them.

colorFun The function to map values into colors.
tag The tag for controller.
renderer The renderer of the 3D plots. Could be rgl or threejs. The threejs will create a

htmlwidgets. If "none’ is set, a list of object will be returned.
Not used.

view3dStructure

Value

A list of threeJsGeometry objects or a htmlwidget.

Examples
cells <- readRDS(system.file("extdata”, "pbmc_small.3d.rds",
package = "geomeTriD"
)
view3dCells(cells,
X = "umap_1", y = "umap_2", z = "umap_3",
color = "nCount_RNA",
renderer = "threejs”
)
view3dStructure Plot GRanges xyz data in 2d or 3d
Description

Plot GRanges xyz data with grid or rgl package.

Usage

view3dStructure(
obj,
feature.gr,
genomicSigs,
region,
signalTransformFun = function(x) {
log2(x + 1)
1
k = 3,
renderer = c("rgl”, "threejs”, "none"),
lwd.backbone = 2,
col.backbone = "gray"”,
lwd.maxGenomicSigs = 8,
reverseGenomicSigs = TRUE,
col.backbone_background = if (k == 2) "gray70" else c("gray30", "darkred"),
alpha.backbone_background = 0.5,

lwd.gene = 3,
coor_mark_interval = 5e+05,
col.coor = "black”,

show_coor = TRUE,
coor_tick_unit = 50000,
label_gene = TRUE,
col.tension_line = "black”,
lwd. tension_line 1,

28

view3dStructure

length.arrow = unit(abs(diff(obj$x))/20, "native"),
safe_text_force = 3,

square = TRUE,

cluster3Dpoints = FALSE,

Arguments

obj GRanges object with mcols x, y, and/or z
feature.gr The annotation features to be added. An object of GRanges.
genomicSigs The Genomic signals. An object of GRanges with scores or an object of track.

region A GRanges object with the region to be plot.

signalTransformFun
The transformation function for genomic signals.

k The dimension of plot. 2: 2d, 3: 3d.

renderer The renderer of the 3D plots. Could be rgl or threejs. The threejs will create a
htmlwidgets. If *none’ is set, a list of object will be returned.

lwd.backbone, 1wd. gene, 1wd. tension_line, 1wd.maxGenomicSigs

Line width for the linker, gene, interaction node circle, the dashed line of inter-
action edges, the tension line and the maximal reversed genomic signal.

col.backbone, col.backbone_background, col.tension_line, col.coor
Color for the DNA chain, the compact DNA chain, the node circle, the linker,
the tension line and the coordinates marker.
reverseGenomicSigs
Plot the genomic signals in reverse values.
alpha.backbone_background
Alpha channel for transparency of backbone background.
coor_mark_interval
The coordinates marker interval. Numeric(1). Set to O to turn it off. The default
value 1e5 means show coordinates every 0.1M bp.
show_coor Plot ticks in the line to show the DNA compact tension.
coor_tick_unit The bps for every ticks. Default is 1K.
label_gene Show gene symbol or not.

length.arrow Length of the edges of the arrow head (in inches).

safe_text_force
The loops to avoid the text overlapping.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. See grid.curve.

cluster3Dpoints
A logical value that controls whether cluster the points in 3D. It will be ignored
when k=2.

Parameters for create3dGenomicSignals.

view3dStructure 29

Value

Coordinates for 2d or a list of threeJsGeometry objects or a htmlwidget.

Examples

obj <- readRDS(system.file("extdata”, "4DNFITUEGTHD.chr21.FLAMINGO.res.rds",

package = "geomeTriD"

)

feature.gr <- readRDS(system.file("extdata”, "4DNFITUEGIHD.feature.gr.rds",
package = "geomeTriD"

))

tjg <- view3dStructure(obj,
k = 3, feature.gr = feature.gr, renderer = "none”,

length.arrow = grid::unit(0.000006, "native")
)

Index

+ datasets
availableGeometries, 5
+ package
geomeTriD-package, 2
$, threeJsGeometry-method
(threeJsGeometry-class), 22
$<-,threeJsGeometry-method
(threeJsGeometry-class), 22

alignCoor, 3
autokK, 4
availableGeometries, 5, 22

boundaryScore (spatialDistanceMatrix),
19

boundaryScoreTAD
(spatialDistanceMatrix), 19

cellClusters, 5

cellDistance (cellClusters), 5
compartment (spatialDistanceMatrix), 19
create3dGenomicSignals, 7, 18, 28
createTADGeometries, 9

extractBackbonePositions, 10
fill_NA, 10

gaussianBlur, 11

geomeTriD (geomeTriD-package), 2
geomeTriD-package, 2
GInteractions, 7, 12,15
GRanges, 7,9, 13, 15, 28
grid.curve, 15,28

hclust, 6
hierarchicalClusteringTAD
(spatialDistanceMatrix), 19

isoMDS, 15

layout_with_fr, I3

loopBouquetPlot, 12
mdsPlot, /0, 14

Pairs, 7
pointCluster, 16

renderthreeJsViewer
(threeJsViewer-shiny), 25
rglViewer, 17

SDC, 6, 17

show, threeJsGeometry-method
(threeJsGeometry-class), 22

smooth3dPoints, 18

spatialDistanceHeatmap
(spatialDistanceMatrix), 19

spatialDistanceMatrix, 19

splinefun, 18

SRD, 6, 21

threeJsGeometry, 5, 7-9
threeJsGeometry

(threeJsGeometry-class), 22
threeJsGeometry-class, 22
threejsOutput (threeJsViewer-shiny), 25
threeJsViewer, 22, 23
threeJsViewer-shiny, 25
track, 7, 13, 15,28

view3dCells, 26
view3dStructure, 10, 18,27

	geomeTriD-package
	alignCoor
	autoK
	availableGeometries
	cellClusters
	create3dGenomicSignals
	createTADGeometries
	extractBackbonePositions
	fill_NA
	gaussianBlur
	loopBouquetPlot
	mdsPlot
	pointCluster
	rglViewer
	SDC
	smooth3dPoints
	spatialDistanceMatrix
	SRD
	threeJsGeometry-class
	threeJsViewer
	threeJsViewer-shiny
	view3dCells
	view3dStructure
	Index

