
Package ‘gDRcore’
January 23, 2026

Type Package

Title Processing functions and interface to process and analyze drug
dose-response data

Version 1.9.3

Date 2025-11-27

Description This package contains core functions to process and analyze drug re-
sponse data. The package provides tools for normalizing, averaging,
and calculation of gDR metrics data. All core functions are wrapped into the pipeline function al-
lowing analyzing the data in a straightforward way.

License Artistic-2.0

Depends R (>= 4.2)

Imports BumpyMatrix, BiocParallel, checkmate, futile.logger, gDRutils
(>= 1.7.1), MultiAssayExperiment, purrr, stringr, S4Vectors,
SummarizedExperiment, data.table

Suggests BiocStyle, gDRstyle (>= 1.7.1), gDRimport (>= 1.7.1),
gDRtestData (>= 1.7.1), IRanges, knitr, pkgbuild, qs, testthat,
yaml

VignetteBuilder knitr

URL https://github.com/gdrplatform/gDRcore,

https://gdrplatform.github.io/gDRcore/

BugReports https://github.com/gdrplatform/gDRcore/issues

biocViews Software, ShinyApps

ByteCompile TRUE

DeploySubPath gDRcore

Encoding UTF-8

LazyLoad yes

NeedsCompilation yes

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

1

https://github.com/gdrplatform/gDRcore
https://gdrplatform.github.io/gDRcore/
https://github.com/gdrplatform/gDRcore/issues

2 Contents

SwitchrLibrary gDRcore

git_url https://git.bioconductor.org/packages/gDRcore

git_branch devel

git_last_commit e12da0a

git_last_commit_date 2025-11-28

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Bartosz Czech [aut] (ORCID: <https://orcid.org/0000-0002-9908-3007>),
Arkadiusz Gladki [cre, aut] (ORCID:

<https://orcid.org/0000-0002-7059-6378>),
Marc Hafner [aut] (ORCID: <https://orcid.org/0000-0003-1337-7598>),
Pawel Piatkowski [aut],
Natalia Potocka [aut],
Dariusz Scigocki [aut],
Janina Smola [aut],
Sergiu Mocanu [aut],
Marcin Kamianowski [aut],
Allison Vuong [aut]

Maintainer Arkadiusz Gladki <gladki.arkadiusz@gmail.com>

Contents
gDRcore-package . 4
.map_references . 5
add_intermediate_data . 5
annotate_dt_with_cell_line . 6
annotate_dt_with_drug . 7
annotate_mae_with_cell_line . 7
annotate_mae_with_drug . 8
annotate_se_with_cell_line . 9
annotate_se_with_drug . 10
assert_cell_line_annotation . 10
assert_drug_annotation . 11
average_SE . 11
calculate_excess . 16
calculate_GR_value . 18
calculate_matrix_metric . 20
calculate_score . 21
cleanup_metadata . 22
convert_mae_to_raw_data . 23
convert_se_to_raw_data . 23
data_model . 24
data_model.character . 24
data_model.data.table . 25
do_skip_step . 25

https://orcid.org/0000-0002-9908-3007
https://orcid.org/0000-0002-7059-6378
https://orcid.org/0000-0003-1337-7598

Contents 3

fit_SE.combinations . 26
generateCodilution . 27
generateCodilutionSmall . 27
generateComboMatrix . 28
generateComboMatrixSmall . 28
generateComboNoNoiseData . 28
generateComboNoNoiseData2 . 29
generateComboNoNoiseData3 . 29
generateLigandData . 29
generateMediumData . 30
generateNoiseRawData . 30
generateNoNoiseRawData . 30
generateTripleComboMatrix . 31
get_assays_per_pipeline_step . 31
get_cellline_annotation_from_dt . 32
get_cell_line_annotation . 32
get_default_nested_identifiers . 33
get_drug_annotation . 34
get_drug_annotation_from_dt . 35
get_mae_from_intermediate_data . 35
get_pipeline_steps . 36
get_relevant_ids . 36
grr_matches . 37
identify_data_type . 38
identify_keys . 40
is_preceding_step . 41
map_df . 41
map_ids_to_fits . 43
map_untreated . 44
merge_data . 44
order_result_df . 45
prepare_input . 45
prepare_input.data.table . 46
prepare_input.MultiAssayExperiment . 47
process_perturbations . 48
read_intermediate_data . 49
replace_conc_with_standardized_conc . 50
save_intermediate_data . 51
split_raw_data . 51
test_synthetic_data . 53
validate_data_models_availability . 54

Index 55

4 gDRcore-package

gDRcore-package gDRcore: Processing functions and interface to process and analyze
drug dose-response data

Description

This package contains core functions to process and analyze drug response data. The package
provides tools for normalizing, averaging, and calculation of gDR metrics data. All core functions
are wrapped into the pipeline function allowing analyzing the data in a straightforward way.

Value

package help page

Note

To learn more about functions start with help(package = "gDRcore")

Author(s)

Maintainer: Arkadiusz Gladki <gladki.arkadiusz@gmail.com> (ORCID)

Authors:

• Bartosz Czech <bartosz.czech@contractors.roche.com> (ORCID)

• Marc Hafner (ORCID)

• Pawel Piatkowski

• Natalia Potocka

• Dariusz Scigocki

• Janina Smola

• Sergiu Mocanu

• Marcin Kamianowski

• Allison Vuong

See Also

Useful links:

• https://github.com/gdrplatform/gDRcore

• https://gdrplatform.github.io/gDRcore/

• Report bugs at https://github.com/gdrplatform/gDRcore/issues

https://orcid.org/0000-0002-7059-6378
https://orcid.org/0000-0002-9908-3007
https://orcid.org/0000-0003-1337-7598
https://github.com/gdrplatform/gDRcore
https://gdrplatform.github.io/gDRcore/
https://github.com/gdrplatform/gDRcore/issues

.map_references 5

.map_references Map references

Description

Map references

Usage

.map_references(
mat_elem,
rowData_colnames = c(gDRutils::get_env_identifiers("duration"), paste0(c("drug",

"drug_name", "drug_moa"), "3"))
)

Arguments

mat_elem input data frame
rowData_colnames

character vector of variables for the mapping of reference treatments

Details

Using the given rownames, map the treated and reference conditions.

Value

list

add_intermediate_data add intermediate data (qs files) for given ma

Description

add intermediate data (qs files) for given ma

Usage

add_intermediate_data(mae, data_dir, steps = get_pipeline_steps())

Arguments

mae mae with dose-response data

data_dir output directory

steps character vector with pipeline steps for which intermediate data should be saved

6 annotate_dt_with_cell_line

Value

NULL

annotate_dt_with_cell_line

annotate_dt_with_cell_line

Description

Annotate cell line data with the provided annotation table

Usage

annotate_dt_with_cell_line(data, cell_line_annotation, fill = "unknown")

Arguments

data data.table with dose-response data

cell_line_annotation

data.table with cell line annotations

fill string indicating how unknown cell lines should be filled in the DB

Value

data.table with annotated cell lines

Examples

data <- data.table::data.table(
clid = c("CL1", "CL2", "CL3"),
Gnumber = c("D1", "D2", "D3")

)
cell_line_annotation <- get_cell_line_annotation(data)
annotated_metadata <- annotate_dt_with_cell_line(data, cell_line_annotation)

annotate_dt_with_drug 7

annotate_dt_with_drug annotate_dt_with_drug

Description

Annotate drug data with the provided annotation table

Usage

annotate_dt_with_drug(data, drug_annotation, fill = "unknown")

Arguments

data data.table with dose-response data
drug_annotation

data.table with drug annotations

fill string indicating how unknown drugs should be filled in the DB

Value

data.table with annotated drugs

Examples

data <- data.table::data.table(
clid = c("CL1", "CL2", "CL3"),
Gnumber = c("D1", "D2", "D3")

)
drug_annotation <- get_drug_annotation(data)
annotated_metadata <- annotate_dt_with_drug(data, drug_annotation)

annotate_mae_with_cell_line

annotate_mae_with_cell_line

Description

Annotate MultiAssayExperiment object with cell line annotations

Usage

annotate_mae_with_cell_line(mae, cell_line_annotation, fill = "unknown")

8 annotate_mae_with_drug

Arguments

mae MultiAssayExperiment object containing dose-response data
cell_line_annotation

data.table with cell line annotations

fill string indicating how unknown cell lines should be filled in the DB

Value

MultiAssayExperiment object with annotated cell lines

Examples

mae <- MultiAssayExperiment::MultiAssayExperiment(
experiments = list(exp1 = SummarizedExperiment::SummarizedExperiment(

rowData = data.table::data.table(clid = c("CL1", "CL2", "CL3"))
))

)
cell_line_annotation <- get_cell_line_annotation(data.table::as.data.table(

SummarizedExperiment::rowData(
MultiAssayExperiment::experiments(mae)[[1]])))

annotated_mae <- annotate_mae_with_cell_line(mae, cell_line_annotation)

annotate_mae_with_drug

annotate_mae_with_drug

Description

Annotate MultiAssayExperiment object with drug annotations

Usage

annotate_mae_with_drug(mae, drug_annotation, fill = "unknown")

Arguments

mae MultiAssayExperiment object containing dose-response data
drug_annotation

data.table with drug annotations

fill string indicating how unknown drugs should be filled in the DB

Value

MultiAssayExperiment object with annotated drugs

annotate_se_with_cell_line 9

Examples

mae <- MultiAssayExperiment::MultiAssayExperiment(
experiments = list(exp1 = SummarizedExperiment::SummarizedExperiment(
rowData = data.table::data.table(Gnumber = c("D1", "D2", "D3"))

))
)
drug_annotation <- get_drug_annotation(data.table::as.data.table(

SummarizedExperiment::rowData(
MultiAssayExperiment::experiments(mae)[[1]])))

annotated_mae <- annotate_mae_with_drug(mae, drug_annotation)

annotate_se_with_cell_line

annotate_se_with_cell_line

Description

Annotate SummarizedExperiment object with cell line annotations

Usage

annotate_se_with_cell_line(se, cell_line_annotation, fill = "unknown")

Arguments

se SummarizedExperiment object containing dose-response data

cell_line_annotation

data.table with cell line annotations

fill string indicating how unknown cell lines should be filled in the DB

Value

SummarizedExperiment object with annotated cell lines

Examples

se <- SummarizedExperiment::SummarizedExperiment(
rowData = data.table::data.table(clid = c("CL1", "CL2", "CL3"))

)
cell_line_annotation <- get_cell_line_annotation(data.table::as.data.table(SummarizedExperiment::rowData(se)))
annotated_se <- annotate_se_with_cell_line(se, cell_line_annotation)

10 assert_cell_line_annotation

annotate_se_with_drug annotate_se_with_drug

Description

Annotate SummarizedExperiment object with drug annotations

Usage

annotate_se_with_drug(se, drug_annotation, fill = "unknown")

Arguments

se SummarizedExperiment object containing dose-response data
drug_annotation

data.table with drug annotations

fill string indicating how unknown drugs should be filled in the DB

Value

SummarizedExperiment object with annotated drugs

Examples

se <- SummarizedExperiment::SummarizedExperiment(
rowData = data.table::data.table(Gnumber = c("D1", "D2", "D3"))

)
drug_annotation <- get_drug_annotation(data.table::as.data.table(SummarizedExperiment::rowData(se)))
annotated_se <- annotate_se_with_drug(se, drug_annotation)

assert_cell_line_annotation

Assert cell line annotation

Description

Validates that the cell line annotation data.table has the required columns.

Usage

assert_cell_line_annotation(cell_line_annotation)

Arguments

cell_line_annotation

data.table with cell line annotations

assert_drug_annotation 11

assert_drug_annotation

Assert drug annotation

Description

Validates that the drug annotation data.table has the required columns.

Usage

assert_drug_annotation(drug_annotation)

Arguments

drug_annotation

data.table with drug annotations

average_SE Run drug response processing pipeline

Description

Run different components of the gDR drug response processing pipeline. Either: create a Summa-
rizedExperiment and normalize raw treated and control data (create_and_normalize_SE), average
data (average_SE), or fit the processed data (fit_SE). See details for more in-depth explanations.

Usage

average_SE(
se,
data_type,
series_identifiers = NULL,
normalized_assay = "Normalized",
averaged_assay = "Averaged"

)

create_SE(
df_,
data_type,
readout = "ReadoutValue",
nested_identifiers = NULL,
nested_confounders = intersect(names(df_), gDRutils::get_env_identifiers("barcode")),
override_untrt_controls = NULL

)

12 average_SE

fit_SE(
se,
data_type = "single-agent",
nested_identifiers = NULL,
averaged_assay = "Averaged",
metrics_assay = "Metrics",
n_point_cutoff = 4,
range_conc = c(0.005, 5),
force_fit = FALSE,
pcutoff = 0.05,
cap = 0.1,
curve_type = c("GR", "RV")

)

normalize_SE(
se,
data_type,
nested_identifiers = NULL,
nested_confounders = gDRutils::get_SE_identifiers(se, "barcode", simplify = TRUE),
control_mean_fxn = function(x) {

mean(x, trim = 0.25)
},
control_assay = "Controls",
raw_treated_assay = "RawTreated",
normalized_assay = "Normalized",
ndigit_rounding = 4

)

create_and_normalize_SE(
df_,
data_type,
readout = "ReadoutValue",
control_mean_fxn = function(x) {

mean(x, trim = 0.25)
},
nested_identifiers = NULL,
nested_confounders = intersect(names(df_), gDRutils::get_env_identifiers("barcode")),
override_untrt_controls = NULL,
ndigit_rounding = 4,
control_assay = "Controls",
raw_treated_assay = "RawTreated",
normalized_assay = "Normalized"

)

runDrugResponseProcessingPipeline(
x,
readout = "ReadoutValue",
control_mean_fxn = function(x) {

average_SE 13

mean(x, trim = 0.25)
},
nested_identifiers_l = NULL,
nested_confounders = gDRutils::get_env_identifiers("barcode"),
override_untrt_controls = NULL,
ndigit_rounding = 4,
n_point_cutoff = 4,
control_assay = "Controls",
raw_treated_assay = "RawTreated",
normalized_assay = "Normalized",
averaged_assay = "Averaged",
metrics_assay = "Metrics",
split_data = TRUE,
data_dir = NULL,
partial_run = FALSE,
start_from = get_pipeline_steps()[1],
selected_experiments = NULL

)

Arguments

se SummarizedExperiment object.

data_type single-agent vs combination
series_identifiers

character vector of identifiers in measured or metric which define a unique data
point.

normalized_assay

string of the assay name containing the normalized data. Defaults to "Normalized".

averaged_assay string of the name of the averaged assay in the SummarizedExperiment. De-
faults to "Averaged".

df_ data.table of raw drug response data containing both treated and untreated val-
ues. If a column called "BackgroundValue" exists in df_, it will be removed
from the readout column.

readout string of the name containing the cell viability readout values.
nested_identifiers

character vector with the nested_identifiers for the given SE with a given data_type
nested_confounders

Character vector of the nested_confounders for a given assay. nested_keys is
character vector of column names to include in the data.tables in the assays of the
resulting SummarizedExperiment object. Defaults to the nested_identifiers
and nested_confounders if passed through create_and_normalize_SE or
runDrugResponseProcessingPipeline.

override_untrt_controls

named list containing defining factors in the treatments. Defaults to NULL.

metrics_assay string of the name of the metrics assay to output in the returned SummarizedEx-
periment Defaults to "Metrics".

14 average_SE

n_point_cutoff integer of how many points should be considered the minimum required to try
to fit a curve. Defaults to 4.

range_conc vector of concetrations range values.

force_fit boolean indicating whether or not to force the fit.

pcutoff numeric cutoff value.

cap numeric value representing the value to cap the highest allowed relative viability
at.

curve_type vector of curve type values.
control_mean_fxn

function indicating how to average controls. Defaults to mean(x, trim = 0.25).

control_assay string containing the name of the assay representing the controls in the se. De-
faults to "Controls".

raw_treated_assay

string containing the name of the assay representing the raw treated data in the
se. Defaults to "RawTreated".

ndigit_rounding

integer indicating number of digits to round to in calculations. Defaults to 4.

x data.table of MAE with drug response data
nested_identifiers_l

list with the nested_identifiers(character v ectors) for single-agent and (op-
tionally) for combination data

split_data boolean indicating whether data provided as the MultiAssayExperiment should
be split again into appropriate data types

data_dir string with the path to the directory with intermediate data of experiments (qs
files). If set to NULL (default) intermediate data is not saved/read in.

partial_run logical flag indicating if the pipeline should be run partially (from the step de-
fined with start_from)

start_from string indicating the pipeline step from which partial run should be launched
selected_experiments

character vector with experiments for which pipeline should be run. This option
works only for the pipeline being run partially (i.e. with partial_run flag set
to TRUE)

Details

runDrugResponseProcessingPipeline is made up of 3 separate steps:

• "create_and_normalize_SE"

• "average_SE"

• "fit_SE"

For create_and_normalize_SE, this creates a SummarizedExperiment object from a data.table, where
the data.table contains treatments on rows, and conditions on columns. A SummarizedExperiment
object containing two asssays is created: treated readouts will live in an assay called "RawTreated",

average_SE 15

and reference readouts live in an assay called "Controls". Subsequently, the treated and control
elements will be normalized to output two metrics:

For average_SE, take the normalized assay and average the nested DataFrames across uniquenested_identifiers.

For fit_SE, take the averaged assay and fit curves to obtain metrics, one set of metrics for each
normalization type set.

Pipeline can be run partially with partial_run flag set to TRUE. The start_from string defines
the step from which the pipeline will be launched. However, partial run of the pipeline is possible
only if the whole pipeline was launched at least once with defined data_dir and intermediate data
was saved as qs files into data_dir.

Pipeline can be run for the selected experiments by changing the default value of selected_experiments
param. This scenario only works when partial_run is enabled.

Value

MAE object

Examples

d <- rep(seq(0.1, 0.9, 0.1), each = 4)
v <- rep(seq(0.1, 0.4, 0.1), 9)
df <- S4Vectors::DataFrame(

Concentration = d,
normalization_type = rep(c("GR", "RV"), length(v) * 2),
x = rep(v, 2)

)
normalized <- BumpyMatrix::splitAsBumpyMatrix(row = 1, column = 1, x = df)

keys <- list(Trt = "Concentration")
assays <- list("Normalized" = normalized)
se <- SummarizedExperiment::SummarizedExperiment(assays = assays)
se <- gDRutils::set_SE_keys(se, keys)
se <- gDRutils::set_SE_identifiers(se, gDRutils::get_env_identifiers())
se1 <- average_SE(

se,
data_type = "single-agent",
normalized_assay = "Normalized",
averaged_assay = "Averaged"

)

td <- gDRimport::get_test_data()
l_tbl <- gDRimport::load_data(

manifest_file = gDRimport::manifest_path(td),
df_template_files = gDRimport::template_path(td),
results_file = gDRimport::result_path(td)

)
imported_data <- merge_data(

l_tbl$manifest,
l_tbl$treatments,
l_tbl$data

16 calculate_excess

)

se <- purrr::quietly(create_SE)(imported_data, data_type = "single-agent")

td <- gDRimport::get_test_data()
l_tbl <- gDRimport::load_data(

manifest_file = gDRimport::manifest_path(td),
df_template_files = gDRimport::template_path(td),
results_file = gDRimport::result_path(td)

)
imported_data <- merge_data(

l_tbl$manifest,
l_tbl$treatments,
l_tbl$data

)

inl <- prepare_input(imported_data)
se <- create_SE(
inl$df_list[["single-agent"]],
data_type = "single-agent",
nested_confounders = inl$nested_confounders)

normalize_SE(se, data_type = "single-agent")
p_dir <- file.path(tempdir(), "pcheck")
dir.create(p_dir)
td <- gDRimport::get_test_data()
l_tbl <- gDRimport::load_data(

manifest_file = gDRimport::manifest_path(td),
df_template_files = gDRimport::template_path(td),
results_file = gDRimport::result_path(td)

)
imported_data <- merge_data(

l_tbl$manifest,
l_tbl$treatments,
l_tbl$data

)
runDrugResponseProcessingPipeline(

imported_data,
data_dir = p_dir

)

calculate_excess Calculate the difference between values in two data.tables

Description

Calculate the difference between values, likely representing the same metric, from two data.tables.

calculate_excess 17

Usage

calculate_excess(
metric,
measured,
series_identifiers,
metric_col,
measured_col

)

Arguments

metric data.table often representing readouts derived by calculating some metric. Ex-
amples of this could include hsa or bliss calculations from single-agent data.

measured data.table often representing measured data from an experiment.
series_identifiers

character vector of identifiers in measured or metric which define a unique data
point.

metric_col string of the column in metric to use in excess calculation.

measured_col string of the column in measured to use in excess calculation.

Value

data.table of measured, now with an additional column named excess (positive values for syn-
ergy/benefit).

Examples

metric <- data.table::data.table(
Concentration = c(1, 2, 3, 1, 2, 3),
Concentration_2 = c(1, 1, 1, 2, 2, 2),
GRvalue = c(100, 200, 300, 400, 500, 600)

)
measured <- data.table::data.table(

Concentration = c(3, 1, 2, 2, 1, 3),
Concentration_2 = c(1, 1, 1, 2, 2, 2),
testvalue = c(200, 0, 100, 400, 300, 500)

)
series_identifiers <- c("Concentration", "Concentration_2")
metric_col <- "GRvalue"
measured_col <- "testvalue"
calculate_excess(

metric,
measured,
series_identifiers,
metric_col,
measured_col

)

18 calculate_GR_value

calculate_GR_value Calculate a GR value.

Description

Calculate a GR value for a given set of dose response values.

Usage

calculate_GR_value(
rel_viability,
corrected_readout,
day0_readout,
untrt_readout,
ndigit_rounding,
duration,
ref_div_time,
cap = 1.25

)

calculate_time_dep_GR_value(
corrected_readout,
day0_readout,
untrt_readout,
ndigit_rounding

)

calculate_endpt_GR_value(
rel_viability,
duration,
ref_div_time,
cap = 1.25,
ndigit_rounding

)

Arguments

rel_viability numeric vector representing the Relative Viability.
corrected_readout

numeric vector containing the corrected readout.

day0_readout numeric vector containing the day 0 readout.

untrt_readout numeric vector containing the untreated readout.
ndigit_rounding

integer specifying the number of digits to use for calculation rounding.

duration numeric value specifying the length of time the cells were treated (in hours).

calculate_GR_value 19

ref_div_time numeric value specifying the reference division time for the cell line in the ex-
periment.

cap numeric value representing the value to cap the highest allowed relative viability
at.

Details

Note that this function expects that all numeric vectors are of the same length. calculate_GR_value
will try to greedily calculate a GR value. If no day 0 readouts are available, the duration and
ref_div_time will be used to try to back-calculate a day 0 value in order to produce a GR value.

In the case of calculating the reference GR value from multiple reference readout values, the vec-
torized calculation is performed and then the resulting vector should be averaged outside of this
function.

Note that it is expected that the ref_div_time and duration are reported in the same units.

Value

numeric vector containing GR values, one value for each element of the input vectors.

See Also

normalize_SE2

Examples

duration <- 144
rv <- seq(0.1, 1, 0.1)
corrected <- seq(41000, 50000, 1000)
day0 <- seq(91000, 95500, 500)
untrt <- rep(c(115000, 118000), 5)

calculate_GR_value(
rel_viability = rv,
corrected_readout = corrected,
day0_readout = day0,
untrt_readout = untrt,
ndigit_rounding = 4,
duration = duration,
ref_div_time = duration / 2

)

readouts <- rep(10000, 5)
calculate_time_dep_GR_value(readouts, readouts * 1.32, readouts * 2, 2)

readouts <- rep(10000, 5)
calculate_endpt_GR_value(readouts, 72, 1, ndigit_rounding = 2)

20 calculate_matrix_metric

calculate_matrix_metric

Calculate a metric for combination data.

Description

Calculate a metric based off of single-agent values in combination screens.

Usage

calculate_HSA(sa1, series_id1, sa2, series_id2, metric)

calculate_Bliss(
sa1,
series_id1,
sa2,
series_id2,
metric,
measured_col = "smooth"

)

.calculate_matrix_metric(
sa1,
series_id1,
sa2,
series_id2,
metric,
FXN,
measured_col = "x"

)

Arguments

sa1 data.table containing single agent data where entries in series_id2 are all 0.
Columns of the data.table include identifiers and the metric of interest. Metric
is stored in the ’x’ column.

series_id1 String representing the column within sa1 that represents id1.

sa2 data.table containing single agent data where entries in series_id1 are all 0.
Columns of the data.table include identifiers and the metric of interest.n Metric
is stored in the ’x’ column.

series_id2 String representing the column within sa2 that represents id2.

metric String specifying the metric of interest. Usually either ’GRvalue’ or ’Relative-
Viability’.

measured_col String specyfying the measured colname.

FXN Function to apply to the single-agent fits to calculate a metric.

calculate_score 21

Details

calculate_HSA takes the minimum of the two single agents readouts. calculate_Bliss performs
Bliss additivity calculation based on the single agent effects, defined as 1-x for the corresponding
normalization. See https://www.sciencedirect.com/science/article/pii/S1359644619303460?via%3Dihub#tb0005
for more details.

Value

data.table containing a single row for every unique combination of the two series identifiers and the
corresponding calculated metric for each row.

Examples

n <- 10
sa1 <- data.table::data.table(conc = seq(n), conc2 = rep(0, n), smooth = seq(n))
sa2 <- data.table::data.table(conc = rep(0, n), conc2 = seq(n), smooth = seq(n))
calculate_HSA(sa1, "conc", sa2, "conc2", "smooth")
n <- 10
sa1 <- data.table::data.table(conc = seq(n), conc2 = rep(0, n), smooth = seq(n))
sa2 <- data.table::data.table(conc = rep(0, n), conc2 = seq(n), smooth = seq(n))
calculate_Bliss(sa1, "conc", sa2, "conc2", "smooth")

calculate_score Calculate score for HSA and Bliss

Description

Calculate score for HSA and Bliss

Usage

calculate_score(excess)

Arguments

excess numeric vector with excess

Value

numeric vector with calculated score

Examples

metric <- data.table::data.table(
Concentration = c(1, 2, 3, 1, 2, 3),
Concentration_2 = c(1, 1, 1, 2, 2, 2),
GRvalue = c(100, 200, 300, 400, 500, 600)

)
measured <- data.table::data.table(

22 cleanup_metadata

Concentration = c(3, 1, 2, 2, 1, 3),
Concentration_2 = c(1, 1, 1, 2, 2, 2),
testvalue = c(200, 0, 100, 400, 300, 500)

)
series_identifiers <- c("Concentration", "Concentration_2")
metric_col <- "GRvalue"
measured_col <- "testvalue"
x <- calculate_excess(

metric,
measured,
series_identifiers,
metric_col,
measured_col

)
calculate_score(x$x)

cleanup_metadata cleanup_metadata

Description

Cleanup a data.table with metadata

Usage

cleanup_metadata(df_metadata)

Arguments

df_metadata a data.table with metadata

Details

Adds annotations and check whether user provided correct input data.

Value

a data.table with cleaned metadata

Examples

df <- data.table::data.table(
clid = "CELL_LINE",
Gnumber = "DRUG_1",
Concentration = c(0, 1),
Duration = 72

)
cleanup_df <- cleanup_metadata(df)

convert_mae_to_raw_data 23

convert_mae_to_raw_data

Transform mae into raw data

Description

Transform mae into raw data

Usage

convert_mae_to_raw_data(mae)

Arguments

mae MultiAssayExperiment object with SummarizedExperiments containing "RawTreated"
and "Controls" assays

Value

data.table with raw data

Examples

mae <- gDRutils::get_synthetic_data("finalMAE_small")
convert_mae_to_raw_data(mae)

convert_se_to_raw_data

Transform se into raw_data

Description

Transform se into raw_data

Usage

convert_se_to_raw_data(se)

Arguments

se SummarizedExperiment object with "RawTreated" and "Controls" assays

Value

data.table with raw data

24 data_model.character

Examples

mae <- gDRutils::get_synthetic_data("finalMAE_small")
se <- mae[[1]]
convert_se_to_raw_data(se)

data_model Detect model of data

Description

Detect model of data

Usage

data_model(x)

Arguments

x data.table with raw data or SummarizedExperiment object with gDR assays

Value

string with the information of the raw data follows single-agent or combination data model

Examples

data_model("single-agent")

data_model.character Detect model of data from experiment name

Description

Detect model of data from experiment name

Usage

S3 method for class 'character'
data_model(x)

Arguments

x character with experiment name

Value

string with the information of the raw data follows single-agent or combination data model

data_model.data.table 25

data_model.data.table Detect model of data in data.table

Description

Detect model of data in data.table

Usage

S3 method for class 'data.table'
data_model(x)

Arguments

x data.table of raw drug response data containing both treated and untreated val-
ues.

Value

string with the information of the raw data follows single-agent or combination data model

do_skip_step check if the given step can be skipped if partial run is chosen

Description

check if the given step can be skipped if partial run is chosen

Usage

do_skip_step(current_step, start_from, steps = get_pipeline_steps())

Arguments

current_step string with the step to be evaluated

start_from string indicating the pipeline step from which partial run should be launched

steps charvect with all available steps

Value

logical

26 fit_SE.combinations

fit_SE.combinations fit_SE for combination screens

Description

Perform fittings for combination screens.

Usage

fit_SE.combinations(
se,
data_type = gDRutils::get_supported_experiments("combo"),
series_identifiers = NULL,
normalization_types = c("GR", "RV"),
averaged_assay = "Averaged",
metrics_assay = "Metrics",
score_FUN = calculate_score

)

Arguments

se SummarizedExperiment object with a BumpyMatrix assay containing averaged
data.

data_type single-agent vs combination

series_identifiers

character vector of the column names in the nested DFrame corresponding to
nested identifiers.

normalization_types

character vector of normalization types used for calculating combo matrix.

averaged_assay string of the name of the averaged assay to use as input. in the se.

metrics_assay string of the name of the metrics assay to output in the returned SummarizedEx-
periment. whose combination represents a unique series for which to fit curves.

score_FUN function used to calculate score for HSA and Bliss

Details

This function assumes that the combination is set up with both concentrations nested in the assay.

Value

A SummarizedExperiment object with an additional assay containing the combination metrics.

generateCodilution 27

Examples

fmae_cms <- gDRutils::get_synthetic_data("finalMAE_combo_matrix_small")

se1 <- fmae_cms[[gDRutils::get_supported_experiments("combo")]]
SummarizedExperiment::assays(se1) <-

SummarizedExperiment::assays(se1)["Averaged"]
fit_SE.combinations(se1[1, 1])

generateCodilution generateCodilution

Description

generateCodilution

Usage

generateCodilution(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateCodilutionSmall

generateCodilutionSmall

Description

generateCodilutionSmall

Usage

generateCodilutionSmall(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

28 generateComboNoNoiseData

generateComboMatrix generateComboMatrix

Description

generateComboMatrix

Usage

generateComboMatrix(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateComboMatrixSmall

generateComboMatrixSmall

Description

generateComboMatrixSmall

Usage

generateComboMatrixSmall(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateComboNoNoiseData

generateComboNoNoiseData

Description

generateComboNoNoiseData

Usage

generateComboNoNoiseData(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateComboNoNoiseData2 29

generateComboNoNoiseData2

generateComboNoNoiseData2

Description

generateComboNoNoiseData2

Usage

generateComboNoNoiseData2(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateComboNoNoiseData3

generateComboNoNoiseData3

Description

generateComboNoNoiseData3

Usage

generateComboNoNoiseData3(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateLigandData generateLigandData

Description

generateLigandData

Usage

generateLigandData(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

30 generateNoNoiseRawData

generateMediumData generateMediumData

Description

generateMediumData

Usage

generateMediumData(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateNoiseRawData generateNoiseRawData

Description

generateNoiseRawData

Usage

generateNoiseRawData(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateNoNoiseRawData

generateNoNoiseRawData

Description

generateNoNoiseRawData

Usage

generateNoNoiseRawData(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

generateTripleComboMatrix 31

generateTripleComboMatrix

generateTripleComboMatrix

Description

generateTripleComboMatrix

Usage

generateTripleComboMatrix(cell_lines, drugs, save = TRUE)

Value

data.table with raw input data or MAE with processed data

get_assays_per_pipeline_step

get info about created/present assays in SE at the given pipeline step

Description

get info about created/present assays in SE at the given pipeline step

Usage

get_assays_per_pipeline_step(
step,
data_model,
status = c("created", "present")

)

Arguments

step string with pipeline step

data_model single-agent vs combination

status string return vector of assays created or present at the given step?

Value

assay

32 get_cell_line_annotation

get_cellline_annotation_from_dt

Retrieve the cell line annotation from the annotated dt input

Description

Retrieve the cell line annotation from the annotated dt input

Usage

get_cellline_annotation_from_dt(dt)

Arguments

dt annotated data.table

Value

data.table with cell line annotation

Examples

dt <- data.table::data.table(Gnumber = "A",
clid = "CL123",
CellLineName = "cl name",
Tissue = "Bone",
parental_identifier = "some cl",
subtype = "cortical",
ReferenceDivisionTime = 5)
get_cellline_annotation_from_dt(dt)

get_cell_line_annotation

get_cell_line_annotation

Description

Get cell line annotation data table

get_default_nested_identifiers 33

Usage

get_cell_line_annotation(
data,
fname = "cell_lines.csv",
fill = "unknown",
annotation_package = if ("gDRinternal" %in% .packages(all.available = TRUE)) {

"gDRinternal"
} else {

"gDRtestData"
}

)

Arguments

data data.table with cell line identifiers to be matched

fname string with file name containing the annotation

fill string indicating how unknown cell lines should be filled in the DB
annotation_package

string indicating name of the package containing cell line annotation

Value

data.table with cell line annotations

Examples

data <- data.table::data.table(clid = c("CL1", "CL2", "CL3"))
cell_line_annotation <- get_cell_line_annotation(data)

get_default_nested_identifiers

Get default nested identifiers

Description

Get default nested identifiers

Usage

get_default_nested_identifiers(x, data_model = NULL)

S3 method for class 'data.table'
get_default_nested_identifiers(x, data_model = NULL)

S3 method for class 'SummarizedExperiment'
get_default_nested_identifiers(x, data_model = NULL)

34 get_drug_annotation

Arguments

x data.table with raw data or SummarizedExperiment object with gDR assays

data_model single-agent vs combination

Value

vector of nested identifiers

Examples

get_default_nested_identifiers(data.table::data.table())

get_drug_annotation get_drug_annotation

Description

Get drug annotation data table

Usage

get_drug_annotation(
data,
fname = "drugs.csv",
fill = "unknown",
annotation_package = if ("gDRinternal" %in% .packages(all.available = TRUE)) {

"gDRinternal"
} else {

"gDRtestData"
}

)

Arguments

data data.table with drug identifiers to be matched

fname string with file name containing the annotation

fill string indicating how unknown drugs should be filled in the DB
annotation_package

string indicating name of the package containing drug annotation

Value

data.table with drug annotations

get_drug_annotation_from_dt 35

Examples

data <- data.table::data.table(Gnumber = c("drug1", "drug2", "drug3"))
drug_annotation <- get_drug_annotation(data)

get_drug_annotation_from_dt

Retrieve the drug annotation from the annotated dt input

Description

Retrieve the drug annotation from the annotated dt input

Usage

get_drug_annotation_from_dt(dt)

Arguments

dt annotated data.table

Value

data.table with drug annotation

Examples

dt <- data.table::data.table(Gnumber = "A",
DrugName = "drugA",
drug_moa = "drug_moa_A")
get_drug_annotation_from_dt(dt)

get_mae_from_intermediate_data

get mae dataset from intermediate data

Description

get mae dataset from intermediate data

Usage

get_mae_from_intermediate_data(data_dir)

Arguments

data_dir directory with intermediate data

36 get_relevant_ids

Value

MAE object

get_pipeline_steps get pipeline steps

Description

get pipeline steps

Usage

get_pipeline_steps()

Value

vector with steps

get_relevant_ids Function to get relevant identifiers from the environment

Description

Function to get relevant identifiers from the environment

Usage

get_relevant_ids(identifiers, dt)

Arguments

identifiers A character vector of identifier names to fetch from the environment

dt A data.table containing the columns to be checked against the identifiers

Value

A character vector of relevant identifiers that are present in the data.table

grr_matches 37

grr_matches Value Matching

Description

Returns a lookup table or list of the positions of ALL matches of its first argument in its second and
vice versa. Similar to match, though that function only returns the first match.

Usage

grr_matches(
x,
y,
all.x = TRUE,
all.y = TRUE,
list = FALSE,
indexes = TRUE,
nomatch = NA

)

Arguments

x vector. The values to be matched. Long vectors are not currently supported.

y vector. The values to be matched. Long vectors are not currently supported.

all.x logical; if TRUE, then each value in x will be included even if it has no matching
values in y

all.y logical; if TRUE, then each value in y will be included even if it has no matching
values in x

list logical. If TRUE, the result will be returned as a list of vectors, each vector being
the matching values in y. If FALSE, result is returned as a data.table with repeated
values for each match.

indexes logical. Whether to return the indices of the matches or the actual values.

nomatch the value to be returned in the case when no match is found. If not provided and
indexes=TRUE, items with no match will be represented as NA. If set to NULL,
items with no match will be set to an index value of length+1. If indexes=FALSE,
they will default to NA.

Details

This behavior can be imitated by using joins to create lookup tables, but matches is simpler and
faster: usually faster than the best joins in other packages and thousands of times faster than the
built in merge.

all.x/all.y correspond to the four types of database joins in the following way:

left all.x=TRUE, all.y=FALSE

38 identify_data_type

right all.x=FALSE, all.y=TRUE

inner all.x=FALSE, all.y=FALSE

full all.x=TRUE, all.y=TRUE

Note that NA values will match other NA values.

Source of the function: https://github.com/cran/grr/blob/master/R/grr.R

Value

data.table

Examples

mat_elem <- data.table::data.table(
DrugName = rep(c("untreated", "drugA", "drugB", "untreated"), 2),
DrugName_2 = rep(c("untreated", "vehicle", "drugA", "drugB"), 2),
clid = rep(c("C1", "C2"), each = 4)

)
untreated_tag <- gDRutils::get_env_identifiers("untreated_tag")
ref_idx <- which(

mat_elem$DrugName %in% untreated_tag |
mat_elem$DrugName_2 %in% untreated_tag

)
ref <- mat_elem[ref_idx,]
treated <- mat_elem[-ref_idx,]
valid <- c("DrugName", "DrugName_2")
trt <- lapply(valid, function(x) {

colnames <- c("clid", x)
treated[, colnames, with = FALSE]

})
trt <- do.call(paste,

do.call(rbind, lapply(trt, function(x) setNames(x, names(trt[[1]]))))
)
ref <- lapply(valid, function(x) {

colnames <- c("clid", x)
ref[, colnames, with = FALSE]

})
ref <- do.call(paste,

do.call(rbind, lapply(ref, function(x) setNames(x, names(ref[[1]]))))
)
grr_matches(trt, ref, list = FALSE, all.y = FALSE)

identify_data_type Identify type of data

Description

Identify type of data

identify_data_type 39

Usage

identify_data_type(dt, codilution_conc = 2, matrix_conc = 1)

Arguments

dt data.table of raw drug response data containing both treated and untreated values

codilution_conc

integer of maximum number of concentration ratio of co-treatment to classify as
codilution data type; defaults to 2

matrix_conc integer of minimum number of concentration pairs of co-treatment to classify as
co-treatment or matrix data type; defaults to 1

Value

data.table of raw drug response data with additional column type with the info of data type for a
given row of data.table

Author(s)

Bartosz Czech bartosz.czech@contractors.roche.com

Examples

conc <- rep(seq(0, 0.3, 0.1), 2)
ctrl_dt <- S4Vectors::DataFrame(

ReadoutValue = c(2, 2, 1, 1, 2, 1),
Concentration = rep(0, 6),
masked = FALSE,
DrugName = rep(c("DRUG_10", "vehicle", "DRUG_8"), 2),
CellLineName = "CELL1"

)

trt_dt <- S4Vectors::DataFrame(
ReadoutValue = rep(seq(1, 4, 1), 2),
Concentration = conc,
masked = rep(FALSE, 8),
DrugName = c("DRUG_10", "DRUG_8"),
CellLineName = "CELL1"

)
input_dt <- data.table::as.data.table(rbind(ctrl_dt, trt_dt))
input_dt$Duration <- 72
input_dt$CorrectedReadout2 <- input_dt$ReadoutValue
identify_data_type(input_dt)

mailto:bartosz.czech@contractors.roche.com

40 identify_keys

identify_keys identify_keys

Description

Group columns from a data.table that correspond to different

Usage

identify_keys(
df_,
nested_keys = NULL,
override_untrt_controls = NULL,
identifiers = gDRutils::get_env_identifiers()

)

Arguments

df_ a data.table to identify keys for.

nested_keys character vector of keys to exclude from the returned list. The keys discarded
should be identical to the keys in the third dimension of the SummarizedExper-
iment. Defaults to the "Barcode" and the masked identifier.

override_untrt_controls

named list containing defining factors in the treatments. Defaults to NULL.

identifiers named list containing all identifiers to use during processing. By default, this
value will be obtained by the environment.

Details

This is most likely to be used for provenance tracking and will be placed on the SummarizedExper-
iment metadata for downstream analyses to reference.

Value

named list of key types and their corresponding key values.

See Also

map_df, create_SE

Examples

n <- 64
md_df <- data.table::data.table(

Gnumber = rep(c("vehicle", "untreated", paste0("G", seq(2))), each = 16),
DrugName = rep(c("vehicle", "untreated", paste0("GN", seq(2))), each = 16),
clid = paste0("C", rep_len(seq(4), n)),
CellLineName = paste0("N", rep_len(seq(4), n)),

is_preceding_step 41

replicates = rep_len(paste0("R", rep(seq(4), each = 4)), 64),
drug_moa = "inhibitor",
ReferenceDivisionTime = rep_len(c(120, 60), n),
Tissue = "Lung",
parental_identifier = "CL12345",
Duration = 160

)
md_df <- unique(md_df)
ref <- md_df$Gnumber %in% c("vehicle", "untreated")
trt_df <- md_df[!ref,]
identify_keys(trt_df)

is_preceding_step check if the given step is preceding the step chosen in the partial run

Description

check if the given step is preceding the step chosen in the partial run

Usage

is_preceding_step(current_step, start_from, steps = get_pipeline_steps())

Arguments

current_step string with the step to be evaluated

start_from string indicating the pipeline step from which partial run should be launched

steps charvect with all available steps

Value

logical

map_df Map treated conditions to their respective references.

Description

Map treated conditions to their respective Day0, untreated, or single-agent references using condi-
tion metadata.

42 map_df

Usage

map_df(
trt_md,
ref_md,
override_untrt_controls = NULL,
ref_cols,
ref_type = c("Day0", "untrt_Endpoint")

)

Arguments

trt_md data.table of treated metadata.

ref_md data.table of untreated metadata.
override_untrt_controls

named list indicating what treatment metadata fields should be used as a control.
Defaults to NULL.

ref_cols character vector of the names of reference columns to include. Likely obtained
from identify_keys().

ref_type string of the reference type to map to. Should be one of c("Day0", "untrt_Endpoint",
"ref_Endpoint").

Details

If override_untrt_controls is specified, TODO: FILL ME!

Value

named list mapping treated metadata to untreated metadata.

See Also

identify_keys

Examples

n <- 64
md_df <- data.table::data.table(

Gnumber = rep(c("vehicle", "untreated", paste0("G", seq(2))), each = 16),
DrugName = rep(c("vehicle", "untreated", paste0("GN", seq(2))), each = 16),
clid = paste0("C", rep_len(seq(4), n)),
CellLineName = paste0("N", rep_len(seq(4), n)),
replicates = rep_len(paste0("R", rep(seq(4), each = 4)), 64),
drug_moa = "inhibitor",
ReferenceDivisionTime = rep_len(c(120, 60), n),
Tissue = "Lung",
parental_identifier = "CL12345",
Duration = 160

)
md_df <- unique(md_df)

map_ids_to_fits 43

ref <- md_df$Gnumber %in% c("vehicle", "untreated")
ref_df <- md_df[ref,]
trt_df <- md_df[!ref,]
Keys <- identify_keys(trt_df)
ref_type <- "untrt_Endpoint"
map_df(

trt_df,
ref_df,
ref_cols = Keys[[ref_type]],
ref_type = ref_type

)

map_ids_to_fits Get predicted values for a given fit and input.

Description

Map fittings to identifiers and compute the predicted values for corresponding fits.

Usage

map_ids_to_fits(pred, match_col, fittings, fitting_id_col)

Arguments

pred numeric vector for which you want predictions.

match_col vector to match on fittings to get the correct fit.

fittings data.table of fit metrics.

fitting_id_col string of the column name in fittings that should be used to match with
match_col .

Value

Numeric vector of predicted values given pred inputs and fittings values.

Examples

pred <- c(1, 5, 5)
match_col <- c(1, 1, 2)
fitting_id_col <- "match_on_me"

fit1 <- data.table::data.table(h = 2.09, x_inf = 0.68, x_0 = 1, ec50 = 0.003)
fit2 <- data.table::data.table(h = 0.906, x_inf = 0.46, x_0 = 1, ec50 = 0.001)
fittings <- do.call(rbind, list(fit1, fit2))
fittings[[fitting_id_col]] <- c(1, 2)

map_ids_to_fits(pred, match_col, fittings, fitting_id_col)

44 merge_data

map_untreated Identify untreated rows based on Drug treatment alone

Description

Identify untreated rows based on Drug treatment alone

Usage

map_untreated(mat_elem)

Arguments

mat_elem input data frame

Details

Using the given rownames, map the untreated conditions

Value

list

merge_data merge_data

Description

Merge all the input data into a single data.table

Usage

merge_data(manifest, treatments, data)

Arguments

manifest a data.table with a manifest info

treatments a data.table with a treaatments info

data a data.table with a raw data info

Value

a data.table with merged data and metadata.

order_result_df 45

Examples

td <- gDRimport::get_test_data()
l_tbl <- gDRimport::load_data(

manifest_file = gDRimport::manifest_path(td),
df_template_files = gDRimport::template_path(td),
results_file = gDRimport::result_path(td)

)
merge_data(

l_tbl$manifest,
l_tbl$treatments,
l_tbl$data

)

order_result_df Order_result_df

Description

Order a data.table with results

Usage

order_result_df(df_)

Arguments

df_ a data.table with results

Value

a ordered data.table with results

prepare_input Prepare input data common for all experiments

Description

Current steps

• refining nested confounders

• refining nested identifiers

• splitting df_ into (per experiment) df_list

Usage

prepare_input(x, ...)

46 prepare_input.data.table

Arguments

x data.table with raw data or MAE object with dose-response data
... additional parameters

Value

list of input data

Examples

td <- gDRimport::get_test_data()
l_tbl <- gDRimport::load_data(

manifest_file = gDRimport::manifest_path(td),
df_template_files = gDRimport::template_path(td),
results_file = gDRimport::result_path(td)

)
df_ <- merge_data(

l_tbl$manifest,
l_tbl$treatments,
l_tbl$data

)
nested_confounders = intersect(

names(df_),
gDRutils::get_env_identifiers("barcode")

)
prepare_input(df_, nested_confounders, NULL)

prepare_input.data.table

Prepare input data common for all experiments

Description

Current steps

• refining nested confounders
• refining nested identifiers
• splitting df_ into (per experiment) df_list

Usage

S3 method for class 'data.table'
prepare_input(
x,
nested_confounders = gDRutils::get_env_identifiers("barcode"),
nested_identifiers_l = .get_default_nested_identifiers(),
...

)

prepare_input.MultiAssayExperiment 47

Arguments

x data.table with raw data
nested_confounders

Character vector of the nested_confounders for a given assay. nested_keys is
character vector of column names to include in the data.tables in the assays of the
resulting SummarizedExperiment object. Defaults to the nested_identifiers
and nested_confounders if passed through

nested_identifiers_l

list with the nested_identifiers(character vectors) for single-agent and (op-
tionally) for combination data

... additional parameters

Value

list of input data

prepare_input.MultiAssayExperiment

Prepare input data common for all experiments

Description

Current steps

• refining nested confounders

• refining nested identifiers

• splitting df_ into (per experiment) df_list

Usage

S3 method for class 'MultiAssayExperiment'
prepare_input(
x,
nested_confounders = gDRutils::get_SE_identifiers(x[[1]], "barcode"),
nested_identifiers_l = .get_default_nested_identifiers(x[[1]]),
raw_data_field = "experiment_raw_data",
split_data = TRUE,
...

)

48 process_perturbations

Arguments

x MAE object with dose-response data
nested_confounders

Character vector of the nested_confounders for a given assay. nested_keys is
character vector of column names to include in the data.tables in the assays of the
resulting SummarizedExperiment object. Defaults to the nested_identifiers
and nested_confounders if passed through

nested_identifiers_l

list with the nested_identifiers(character vectors) for single-agent and (op-
tionally) for combination data

raw_data_field metadata field with raw data

split_data Boolean indicating need of splitting the data into experiment types

... additional parameters

Value

list of input data

process_perturbations Cleanup additional perturbations in the data.table

Description

This function processes drug and concentration columns in a data.table. It checks if there is only
one unique drug (excluding a specified untreated tag) and if there are exactly two doses (one of
which is 0). If these conditions are met, it creates a new column named after the drug and fills it
with the doses, then removes the original drug and concentration columns.

Usage

process_perturbations(
dt,
drugs_cotrt_ids,
conc_cotrt_ids,
untreated_tag = "vehicle"

)

Arguments

dt A data.table containing the data.
drugs_cotrt_ids

A vector of column names related to drugs.

conc_cotrt_ids A vector of column names related to concentrations.

untreated_tag A string representing the untreated tag (default is "vehicle").

read_intermediate_data 49

Value

A modified data.table with new columns for the drugs and removed original drug and concentration
columns.

Examples

dt <- data.table::data.table(
drug1 = c("vehicle", "drugA", "drugA"),
conc1 = c(0, 10, 0),
drug2 = c("vehicle", "drugB", "drugB"),
conc2 = c(0, 20, 0)

)
drugs_cotrt_ids <- c("drug1", "drug2")
conc_cotrt_ids <- c("conc1", "conc2")
dt <- process_perturbations(dt, drugs_cotrt_ids, conc_cotrt_ids)
print(dt)

read_intermediate_data

read intermediate data for the given experiment and step to qs file

Description

read intermediate data for the given experiment and step to qs file

Usage

read_intermediate_data(path, step, experiment)

Arguments

path string with the input directory of the qs file

step string with the step name

experiment string with the experiment name

Value

se

50 replace_conc_with_standardized_conc

replace_conc_with_standardized_conc

Standardize concentrations.

Description

Utilize a map to standardize concentrations.

Usage

replace_conc_with_standardized_conc(
original_concs,
conc_map,
original_conc_col,
standardized_conc_col

)

Arguments

original_concs numeric vector of concentrations to replace using conc_map.

conc_map data.table of two columns named original_conc_col and standardized_conc_col.
original_conc_col

string of the name of the column in conc_map containing the original concen-
trations to replace.

standardized_conc_col

string of the name of the column in conc_map containing the standardized con-
centrations to use for replacement.

Value

numeric vector of standardized concentrations.

See Also

map_conc_to_standardized_conc

Examples

conc_map <- data.table::data.table(
orig = c(0.99, 0.6, 0.456, 0.4),
std = c(1, 0.6, 0.46, 0.4)

)
original_concs <- c(0.456, 0.456, 0.4, 0.99)
exp <- c(0.46, 0.46, 0.4, 1)
obs <- replace_conc_with_standardized_conc(

original_concs,
conc_map,
original_conc_col = "orig",

save_intermediate_data 51

standardized_conc_col = "std"
)

save_intermediate_data

save intermediate data for the given experiment and step to qs file

Description

save intermediate data for the given experiment and step to qs file

Usage

save_intermediate_data(path, step, experiment, se)

Arguments

path string with the save directory for the qs file

step string with the step name

experiment string with the experiment name

se output se

Value

NULL

split_raw_data Split raw data into list based on the data types

Description

Split raw data into list based on the data types

Usage

split_raw_data(dt, type_col = "type")

Arguments

dt data.table of raw drug response data containing both treated and untreated values
with column specified in type_col argument.

type_col string with column names in dt with info about data type. Defaults to "type".

Value

list with split data based on its data type

52 split_raw_data

Author(s)

Bartosz Czech bartosz.czech@contractors.roche.com

Examples

cell_lines <- gDRtestData::create_synthetic_cell_lines()
drugs <- gDRtestData::create_synthetic_drugs()
dt_layout <- drugs[4:6, as.list(cell_lines[7:8,]), names(drugs)]
dt_layout <- gDRtestData::add_data_replicates(dt_layout)
dt_layout <- gDRtestData::add_concentration(

dt_layout,
concentrations = 10 ^ (seq(-3, .5, .5))

)

dt_2 <-
drugs[c(21, 26), as.list(cell_lines[which(cell_lines$clid %in% dt_layout$clid)]), names(drugs)]

dt_2 <- gDRtestData::add_data_replicates(dt_2)
dt_2 <- gDRtestData::add_concentration(

dt_2,
concentrations = 10 ^ (seq(-3, .5, .5))

)
colnames(dt_2)[colnames(dt_2) %in% c(colnames(drugs), "Concentration")] <-

paste0(
colnames(dt_2)[colnames(dt_2) %in% c(colnames(drugs), "Concentration")],
"_2"

)
dt_layout_2 <- dt_layout[dt_2, on = intersect(names(dt_layout), names(dt_2)),

allow.cartesian = TRUE]
dt_merged_data <- gDRtestData::generate_response_data(dt_layout_2, 0)
dt <- identify_data_type(dt_merged_data)
split_raw_data(dt)

conc <- rep(seq(0, 0.3, 0.1), 2)
ctrl_dt <- S4Vectors::DataFrame(

ReadoutValue = c(2, 2, 1, 1, 2, 1),
Concentration = rep(0, 6),
masked = FALSE,
DrugName = rep(c("DRUG_10", "vehicle", "DRUG_8"), 2),
CellLineName = "CELL1"

)

trt_dt <- S4Vectors::DataFrame(
ReadoutValue = rep(seq(1, 4, 1), 2),
Concentration = conc,
masked = rep(FALSE, 8),
DrugName = c("DRUG_10", "DRUG_8"),
CellLineName = "CELL1"

)
input_dt <- data.table::as.data.table(rbind(ctrl_dt, trt_dt))
input_dt$Duration <- 72
input_dt$CorrectedReadout2 <- input_dt$ReadoutValue
split_dt <- identify_data_type(input_dt)

mailto:bartosz.czech@contractors.roche.com

test_synthetic_data 53

split_raw_data(split_dt)

test_synthetic_data Testing synthetic data form gDRtestData package

Description

Testing synthetic data form gDRtestData package

Usage

test_synthetic_data(
original,
data,
dataName,
override_untrt_controls = NULL,
assays = c("Normalized", "Averaged", "Metrics"),
tolerance = 0.001

)

Arguments

original original MAE assay

data datase MAE or data.table

dataName dataset name
override_untrt_controls

named list containing defining factors in the treatments

assays assays to test

tolerance tolerance factor

Value

NULL

Examples

set.seed(2)
cell_lines <- gDRtestData::create_synthetic_cell_lines()
drugs <- gDRtestData::create_synthetic_drugs()
data <- "finalMAE_small"
original <- gDRutils::get_synthetic_data(data)
test_synthetic_data(original, original, "test")

54 validate_data_models_availability

validate_data_models_availability

Validate availability of data models

Description

Validate availability of data models

Usage

validate_data_models_availability(d_types, s_d_models)

Arguments

d_types character vector with experiment names in MultiAssayExperiment object

s_d_models character vector with names of supported experiment

Index

∗ annotation
annotate_dt_with_cell_line, 6
annotate_dt_with_drug, 7
annotate_mae_with_cell_line, 7
annotate_mae_with_drug, 8
annotate_se_with_cell_line, 9
annotate_se_with_drug, 10
get_cell_line_annotation, 32
get_cellline_annotation_from_dt,

32
get_drug_annotation, 34
get_drug_annotation_from_dt, 35

∗ calculate_GR
calculate_GR_value, 18

∗ combinations
calculate_excess, 16
calculate_matrix_metric, 20
calculate_score, 21

∗ convert_to_raw_data
convert_mae_to_raw_data, 23
convert_se_to_raw_data, 23

∗ data_type
identify_data_type, 38
process_perturbations, 48
split_raw_data, 51

∗ internal
add_intermediate_data, 5
assert_cell_line_annotation, 10
assert_drug_annotation, 11
do_skip_step, 25
gDRcore-package, 4
generateCodilution, 27
generateCodilutionSmall, 27
generateComboMatrix, 28
generateComboMatrixSmall, 28
generateComboNoNoiseData, 28
generateComboNoNoiseData2, 29
generateComboNoNoiseData3, 29
generateLigandData, 29

generateMediumData, 30
generateNoiseRawData, 30
generateNoNoiseRawData, 30
generateTripleComboMatrix, 31
get_mae_from_intermediate_data, 35
get_pipeline_steps, 36
get_relevant_ids, 36
is_preceding_step, 41
read_intermediate_data, 49
save_intermediate_data, 51
validate_data_models_availability,

54
∗ map_df

.map_references, 5
map_df, 41
map_ids_to_fits, 43
map_untreated, 44

∗ merge_data
merge_data, 44

∗ prepare_input
prepare_input, 45
prepare_input.data.table, 46
prepare_input.MultiAssayExperiment,

47
∗ runDrugResponseProcessingPipeline

average_SE, 11
fit_SE.combinations, 26

∗ test_utils
test_synthetic_data, 53

∗ utils
cleanup_metadata, 22
data_model, 24
data_model.character, 24
data_model.data.table, 25
get_assays_per_pipeline_step, 31
get_default_nested_identifiers, 33
grr_matches, 37
identify_keys, 40
order_result_df, 45

55

56 INDEX

replace_conc_with_standardized_conc,
50

.calculate_matrix_metric
(calculate_matrix_metric), 20

.map_references, 5

add_intermediate_data, 5
annotate_dt_with_cell_line, 6
annotate_dt_with_drug, 7
annotate_mae_with_cell_line, 7
annotate_mae_with_drug, 8
annotate_se_with_cell_line, 9
annotate_se_with_drug, 10
assert_cell_line_annotation, 10
assert_drug_annotation, 11
average_SE, 11

calculate_Bliss
(calculate_matrix_metric), 20

calculate_endpt_GR_value
(calculate_GR_value), 18

calculate_excess, 16
calculate_GR_value, 18
calculate_HSA

(calculate_matrix_metric), 20
calculate_matrix_metric, 20
calculate_score, 21
calculate_time_dep_GR_value

(calculate_GR_value), 18
cleanup_metadata, 22
convert_mae_to_raw_data, 23
convert_se_to_raw_data, 23
create_and_normalize_SE (average_SE), 11
create_SE (average_SE), 11

data_model, 24
data_model.character, 24
data_model.data.table, 25
do_skip_step, 25

fit_SE (average_SE), 11
fit_SE.combinations, 26

gDRcore (gDRcore-package), 4
gDRcore-package, 4
generateCodilution, 27
generateCodilutionSmall, 27
generateComboMatrix, 28
generateComboMatrixSmall, 28

generateComboNoNoiseData, 28
generateComboNoNoiseData2, 29
generateComboNoNoiseData3, 29
generateLigandData, 29
generateMediumData, 30
generateNoiseRawData, 30
generateNoNoiseRawData, 30
generateTripleComboMatrix, 31
get_assays_per_pipeline_step, 31
get_cell_line_annotation, 32
get_cellline_annotation_from_dt, 32
get_default_nested_identifiers, 33
get_drug_annotation, 34
get_drug_annotation_from_dt, 35
get_mae_from_intermediate_data, 35
get_pipeline_steps, 36
get_relevant_ids, 36
grr_matches, 37

identify_data_type, 38
identify_keys, 40
is_preceding_step, 41

map_df, 41
map_ids_to_fits, 43
map_untreated, 44
match, 37
merge, 37
merge_data, 44

normalize_SE (average_SE), 11

order_result_df, 45

prepare_input, 45
prepare_input.data.table, 46
prepare_input.MultiAssayExperiment, 47
process_perturbations, 48

read_intermediate_data, 49
replace_conc_with_standardized_conc,

50
runDrugResponseProcessingPipeline

(average_SE), 11
runDrugResponseProcessingPipelineFxns

(average_SE), 11

save_intermediate_data, 51
split_raw_data, 51
SummarizedExperiment, 13, 14, 26

INDEX 57

test_synthetic_data, 53

validate_data_models_availability, 54

	gDRcore-package
	.map_references
	add_intermediate_data
	annotate_dt_with_cell_line
	annotate_dt_with_drug
	annotate_mae_with_cell_line
	annotate_mae_with_drug
	annotate_se_with_cell_line
	annotate_se_with_drug
	assert_cell_line_annotation
	assert_drug_annotation
	average_SE
	calculate_excess
	calculate_GR_value
	calculate_matrix_metric
	calculate_score
	cleanup_metadata
	convert_mae_to_raw_data
	convert_se_to_raw_data
	data_model
	data_model.character
	data_model.data.table
	do_skip_step
	fit_SE.combinations
	generateCodilution
	generateCodilutionSmall
	generateComboMatrix
	generateComboMatrixSmall
	generateComboNoNoiseData
	generateComboNoNoiseData2
	generateComboNoNoiseData3
	generateLigandData
	generateMediumData
	generateNoiseRawData
	generateNoNoiseRawData
	generateTripleComboMatrix
	get_assays_per_pipeline_step
	get_cellline_annotation_from_dt
	get_cell_line_annotation
	get_default_nested_identifiers
	get_drug_annotation
	get_drug_annotation_from_dt
	get_mae_from_intermediate_data
	get_pipeline_steps
	get_relevant_ids
	grr_matches
	identify_data_type
	identify_keys
	is_preceding_step
	map_df
	map_ids_to_fits
	map_untreated
	merge_data
	order_result_df
	prepare_input
	prepare_input.data.table
	prepare_input.MultiAssayExperiment
	process_perturbations
	read_intermediate_data
	replace_conc_with_standardized_conc
	save_intermediate_data
	split_raw_data
	test_synthetic_data
	validate_data_models_availability
	Index

