Package ‘flowMatch’

January 23, 2026
Type Package

Title Matching and meta-clustering in flow cytometry
Version 1.47.0

Date 2015-03-26

Author Ariful Azad

Maintainer Ariful Azad <azad@lbl.gov>

Description Matching cell populations and building meta-clusters and
templates from a collection of FC samples.

License Artistic-2.0

LazyLoad yes

Depends R (>=3.0.0), Rcpp (>= 0.11.0), methods, flowCore
LinkingTo Rcpp

Imports Biobase

Suggests healthyFlowData

RcppModules flowMatch_module

biocViews ImmunoOncology, Clustering, FlowCytometry
git_url https://git.bioconductor.org/packages/flowMatch
git_branch devel

git_last_commit 58dd401

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents

flowMatch-package
Cluster-class o e
ClusteredSample-class e
ClusterMatch-class e

2 flowMatch-package
create.template L e e e e e e e 11
dist.cluster 13
distmatrixX e e 15
dist.sample L e e e e 17
disttemplate e e e e e 19
mahalanobis.dist 20
match.clusters 22
MetaCluster-class e e e 25
symmetric. KL00 28
Template-class 30
template.tree L e 33

Index 35

flowMatch-package Matching cell populations and building meta-clusters and templates
from a collection of FC samples.

Description

Matching cell populations and building meta-clusters and templates from a collection of FC sam-
ples.
Details
Package: flowMatch
Type: Package
Version: 1.0
Date: 2013-08-01
License: GPL (>=2)
LazylLoad: yes

Author(s)

Ariful Azad <aazad @purdue.edu>
References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl
2), S10.

Azad, Ariful and Langguth, Johannes and Fang, Youhan and Qi, Alan and Pothen, Alex (2010),
Identifying rare cell populations in comparative flow cytometry; Algorithms in Bioinformatics,
Springer, 162-175.

Cluster-class 3

Examples

B oo
load data
R e e e

library(healthyFlowData)
data(hd)

#H# - e
Retrieve each sample, clsuter it and store the
clustered samples in a list
B m o
set.seed(1234) # for reproducable clustering
cat('Clustering samples: ')
clustSamples = list()
for(i in 1:length(hd.flowSet))
{
cat(i, " ")
samplel = exprs(hd.flowSet[[i]])
clust1 = kmeans(samplel, centers=4, nstart=20)
cluster.labels1l = clusti$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

oo
Create a template from the list of clustered samples and plot functions
e L LR R e

template = create.template(clustSamples)
summary (template)

plot the tree denoting the hierarchy of the samples in a template
tree = template.tree(template)

plot the template in terms of the meta-clusters
option-1 (default): plot contours of each cluster of the meta-clusters
plot(template)

Cluster-class Cluster: A class representing a cell population in FC

Description

An object of class "Cluster" represents a cluster or a cell population. We model a cluster with a
normal distribution. An object of class "Cluster" therefore represents a cluster with a mean vector,
a covariance matrix and the size of the cluster.

4 Cluster-class

Creating Object

An object of class Cluster is usually created when constructing an object of class ClusteredSample.
Unless you know exactly what you are doing, creating an object of class "Cluster" using new or
using the constructor is discouraged.

An object of class "Cluster" can be created using the following constructor
Cluster(size, center, cov, cluster.id =NA_integer_, sample.id=NA_integer_)

The arguments of the constructor bear usual meaning as described in the value section above.

Slots

An object of class "Cluster" contains the following slots:

An integer denoting the number of points (cells) present in the cluster.
steecter: A numeric vector denoting the center of the cluster.
cov: A matrix denoting the covariances of the underlying normal distribution of the cluster.

cluster.id: The index of the cluster (relative to other clusters in same sample). Default is
NA_integer_.

sample.id: The index of sample in which the cluster belongs to. Default is NA_integer_ .

Accessors
All the slot accessor functions take an object of class Cluster. I show usage of the first
accessor function. Other functions can be called similarly.

Returns the number of cells in the cluster.
Usage: get.size(object)
here object is a Cluster object.
get.sped:. center: Returns the center of the cluster.
get.cov: Returns the covariances matrix of the cluster.
get.cluster.id: Returns the index of the cluster (relative to other clusters in same sample).
get.sample.id: Returns the index of sample in which the cluster belongs to.

sample.id<-: Set the index of sample in which the cluster belongs to.

Methods

show Display details about the Cluster object.

summary Return descriptive summary for each Cluster object.
Usage: summary(Cluster)

Author(s)
Ariful Azad

ClusteredSample-class 5

See Also

ClusteredSample

Examples

An object of class "Cluster”" is usually created when constructing a "ClusteredSample”.
Unless you know exactly what you are doing, creating an object of class "Cluster”
using new or using the constructor is discouraged.

B oo
load data and retrieve a sample
B o

library(healthyFlowData)
data(hd)
sample = exprs(hd.flowSet[[1]1])

-
cluster sample using kmeans algorithm

and retrive the parameters of the first cluster
et

km = kmeans(sample, centers=4, nstart=20)

center1 = km$centers[1,]

compute the covariance matrix of the first cluster
covl = cov(sample[km$cluster==1,1])

sizel = length(which(km$cluster==1))

oo
Create an object of class "Cluster”

and show summary

#H# - e

clust = Cluster(size=sizel, center=centerl, cov=covl)
summary (clust)

ClusteredSample-class ClusteredSample: A class representing a clustered FC Sample

Description

An object of class "ClusteredSample" represents a partitioning of a sample into clusters. We model
a flow cytometry sample with a mixture of cell populations where a cell population is a normally
distributed cluster. An object of class "ClusteredSample" therefore stores a list of clusters and
other necessary parameters.

6 ClusteredSample-class

Creating Object

An object of class "ClusteredSample" can be created using the following constructor

ClusteredSample(labels, centers=1list(), covs=list(), sample=NULL, sample.id=NA_integer_)

* labels A vector of integers (from 1:num.clusters) indicating the cluster to which each
point is allocated. This is usually obtained from a clustering algorithm.

centers A list of length num. clusters storing the centers of the clusters. The ith entry of

the list centers[[i]] stores the center of the ith cluster. If not specified, the constructor

estimates centers from sample.

* covs A list of length num.clusters storing the covariance matrices of the clusters. The ith
entry of the list cov[[i]] stores the covariance matrix of the ith cluster. If not specified, the
constructor estimates cov from sample.

* sample A matrix, data frame of observations, or object of class flowFrame. Rows correspond

to observations and columns correspond to variables. It must be passed to the constructor if

either centers or cov is unspecified; then centers or cov is estimated from sample.

sample.id The index of the sample (relative to other samples of a cohort).

Slots

An object of class "ClusteredSample" contains the following slots:

The number of clusters in the sample.

num.clustéebels A vector of integers (from range 1:num.clusters) indicating the cluster to
which each point is assigned to. For example, 1labels[i]=j means that the ith element (cell)
is assigned to the jth cluster.

dimension Dimensionality of the sample (number of columns in data matrix).

clusters A list of length num. clusters storing the cell populations. Each cluster is stored as an
object of class Cluster.

size Number of cells in the sample (summation of all cluster sizes).

sample.id integer, denoting the index of the sample (relative to other samples of a cohort). Default
is NA_integer_

Accessors

All the slot accessor functions take an object of class ClusteredSample. I show usage of the
first accessor function. Other functions can be called similarly.

Returns the number of cells in the sample (summation of all cluster sizes).
Usage: get.size(object)
here object is a ClusteredSample object.
get.sged:. num.clusters Returns the number of clusters in the sample.
get.labels Returns the cluster labels for each cell. For example, labels[i]=j means that the
ith element (cell) is assigned to the jth cluster.
get.dimension Returns the dimensionality of the sample (number of columns in data matrix).
get.clusters Returns the list of clusters in this sample. Each cluster is stored as an object of class
Cluster.
get.sample.id Returns the index of the sample (relative to other samples of a cohort).

ClusteredSample-class 7

Methods

show Display details about the ClusteredSample object.

summary Return descriptive summary for the ClusteredSample object.
Usage: summary (ClusteredSample)

plot We plot a sample by bivariate scatter plots where different clusters are shown in different col-
ors.

Usage:
plot(sample, ClusteredSample, ...)
the arguments of the plot function are:

e sample: A matrix, data.frame or an object of class flowFrame representing an FC sam-

ple.

* ClusteredSample: An object of class ClusteredSample storing the clustering of the
sample.

e ... Other usual plotting related parameters.

Author(s)
Ariful Azad

See Also

Cluster

Examples

e
load data and retrieve a sample
B m o

library(healthyFlowData)
data(hd)
sample = exprs(hd. flowSet[[1]])

B m oo
cluster sample using kmeans algorithm

B —m o
km = kmeans(sample, centers=4, nstart=20)
cluster.labels = km$cluster

#H# -
Create ClusteredSample object (Option 1)

without specifying centers and covs

we need to pass FC sample for paramter estimation
#H - e

clustSample = ClusteredSample(labels=cluster.labels, sample=sample)

8 ClusterMatch-class

Create ClusteredSample object (Option 2)

specifying centers and covs

no need to pass the sample
e e

centers = list()
covs = list()
num.clusters = nrow(km$centers)
for(i in 1:num.clusters)
{
centers[[i]] = km$centers[i,]
covs[[i]] = cov(sample[cluster.labels==i,])
3
Now we do not need to pass sample
ClusteredSample(labels=cluster.labels, centers=centers, covs=covs)

et
Show summary and plot a clustered sample
H m o

summary(clustSample)
plot(sample, clustSample)

ClusterMatch-class ClusterMatch: A class representing matching of cluster/meta-clusters
across a pair of FC samples/templates

Description

An object of class "ClusterMatch" represents matching of cluster/meta-clusters across a pair of
FC samples/templates. A cluster (meta-cluster) from a sample (template) can match to zero, one or
more than one cluster (meta-clusters) in another sample (template).

Creating Object

An object of class "ClusterMatch" is usually created by calling the function match.clusters:
match.clusters(object1, object2, dist.type='Mahalanobis', unmatch.penalty=999999).

Here, object1 and object2 are two objects of class ClusteredSample or Template between
which the clusters or meta-clusters are matched. See the example section and also the match.clusters
function for more details.

Unless you know exactly what you are doing, creating an object of class "ClusterMtach" using
new or using the constructor is discouraged.

ClusterMatch-class 9

Slots

Let S1 and S2 be two FC samples or templates with k1 and k2 clusters or meta-clusters re-
spectively. Then the matching of clusters (meta-clusters) across S1 and S2 is represented by
an object of class "ClusterMatch" that contains the following slots:

A list of length k1 where match12[[i]] stores the indices of clusters (meta-clusters) from S2
matched to the i-th clustrer (meta-cluster) of S1. match12[[i]]=NULL if the i-th cluster
(meta-cluster) of S1 remains unmatched, otherwise, it stores a vector of matched clusters
(meta-clusters) from S2.

matcibzxch21: A list of length k2 where match21[[i]] stores the indices of clusters (meta-clusters)
from S1 matched to the i-th clustrer (meta-cluster) of S2. match21[[i]]=NULL if the i-th
cluster (meta-cluster) of S2 remains unmatched, otherwise, it stores a vector of matched clus-
ters (meta-clusters) from S1.

matching.cost: The cost of matching clusters (meta-clusters) across the samples. It is equal to
the summation of dissimilarities of the matched clusters (meta-clusters) and penalty for the
unmatched clusters (meta-clusters).

unmatch.penalty: A numeric value denoting the penalty for leaving a cluster (meta-cluster) un-
matched. If we set it to a a very large value then no cluster (meta-cluster) remains unmatched
giving an edge cover solution.

Accessors

All the slot accessor functions take an object of class ClusterMatch. I show usage of the first
accessor function. Other functions can be called similarly.

Returns the matching from cluster in sample 1 to clusters in sample 2. See the slot description
for details. Usage: get.match12(object)

here object is a ClusterMatch object.

get.matclgk2:. match21: Returns the matching from cluster in sample 2 to clusters in sample 1.
See the slot description for details.

get.matching.cost: Returns the total cost of matching clusters (meta-clusters) across the pair
samples/templates.

get.unmatch.penalty: Returns the penalty for leaving a cluster (meta-cluster) unmatched.

Methods

show Display details about the ClusterMatch object.

summary Return descriptive summary of the matching of clusters (meta-clusters) across a pair of
samples (templates). Shows both list and matrix format.

Usage: summary(ClusterMatch)

Author(s)
Ariful Azad

See Also

match.clusters, ClusteredSample, Template

10 ClusterMatch-class

Examples

B oo
load data and retrieve two samples
HHE mm

library(healthyFlowData)
data(hd)

samplel = exprs(hd.flowSet[[1]])
sample2 = exprs(hd.flowSet[[2]])

B o
cluster sample using kmeans algorithm
HHE m

clustl = kmeans(samplel, centers=4, nstart=20)
clust2 = kmeans(sample2, centers=4, nstart=20)
cluster.labelsl = clusti$cluster
cluster.labels2 = clust2$cluster

B m o

Create ClusteredSample object

and compute mahalanobis distance between two clsuters
H m o

clustSamplel = ClusteredSample(labels=cluster.labels1, sample=samplel)
clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)
compute the dissimilarity matrix

DM = dist.matrix(clustSamplel, clustSample2, dist.type='Mahalanobis')

H m o
Computing matching of clusteres

An object of class "ClusterMatch” is returned
-

mec = match.clusters(clustSamplel, clustSample2, dist.type="Mahalanobis”, unmatch.penalty=99999)
show the matching
summary (mec)

#it * * *

Fxkxxkxkkxkkxxx Now matching meta-clusters across templates xxxxkxxxxkx
Fr R R R R R R R R R R R B R R R R S S P P T T e e e

B o
Retrieve each sample, clsuter it and store the
clustered samples in a list

#H# -

cat('Clustering samples: ')
clustSamples = list()
for(i in 1:10) # read 10 samples and cluster them

{

create.template 11

cat(i, ' ")

samplel = exprs(hd.flowSet[[i]])

clustl = kmeans(samplel, centers=4, nstart=20)

cluster.labels1l = clusti$cluster

clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

Create two templates each from five samples
o

templatel = create.template(clustSamples[1:5])
template2 = create.template(clustSamples[6:10])

H m o
Match meta-clusters across templates
e e e

mec = match.clusters(templatel, template2, dist.type="Mahalanobis"”, unmatch.penalty=99999)
summary (mec)

B e
Another example of matching meta-clusters & clusters
across a template and a sample
o

mec = match.clusters(templatel, clustSamplel, dist.type="Mahalanobis”, unmatch.penalty=99999)
summary (mec)

create.template Creating a template of a collection of FC samples

Description

Create an object of class Template summarizes a group of samples belonging to same biological-
class with a class-template. A template is represented by a collection of meta-clusters (MetaCluster)
created from samples of same class. An object of class Template therefore stores a list of MetaCluster
objects and other necessary parameters.

Usage

create.template(clustSamples, dist.type = "Mahalanobis”, unmatch.penalty=999999, template.id = NA_in

Arguments

clustSamples A list of ClusteredSample objects from which the template is created. The
working examples describe how this objects are created by clustering FC sam-
ples.

12 create.template

dist.type character, indicating the method with which the dissimilarity between a pair
of clusters is computed. Supported dissimilarity measures are: ’Mahalanobis’,
"KL and ’Euclidean’. If this argument is not passed then ’Mahalanobis’ distance
is used by default.

unmatch.penalty
A numeric value denoting the penalty for leaving a cluster unmatched. This
parameter should be already known or be estimated empirically estimated from
data (see the reference for a discussion). Default is set to a very high value so
that no cluster remains unmatched.

template.id integer, denoting the index of the template (relative to other template). Default
is NA_integer_
Details

An object of class Template summarizes a group of samples belonging to same biological-class
with a class-specific template. A template is represented by a collection of meta-clusters (MetaCluster)
created from samples of same class. An object of class Template therefore stores a list of MetaCluster
objects and other necessary parameters.

Value

dist.sample returns a numeric value representing dissimilarity between a pair of samples. This
value is equal to the summation of dissimilarities of the matched clusters and penalty for the un-
matched clusters.

Author(s)
Ariful Azad

References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl
2), S10.

See Also

Template, MetaCluster

Examples

Bt m oo
load data
B —m oo

library(healthyFlowData)
data(hd)

et
Retrieve each sample, clsuter it and store the

dist.cluster 13

clustered samples in a list
et
set.seed(1234) # for reproducable clustering
cat('Clustering samples: ')
clustSamples = list()
for(i in 1:length(hd.flowSet))
{
cat(i, " ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labels1l = clustli$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

B m o
Create a template from the list of clustered samples and plot functions
R e

template = create.template(clustSamples)
summary (template)

plot the tree denoting the hierarchy of the samples in a template
tree = template.tree(template)

plot the template in terms of the meta-clusters
option-1 (default): plot contours of each cluster of the meta-clusters
plot(template)

option-2: plot contours of each cluster of the meta-clusters with defined color
plot(template, color.mc=c('blue', 'black', 'green3','red'))

option-3: plot contours of the meta-clusters with defined color

plot(template, plot.mc=TRUE, color.mc=c('blue', 'black', 'green3', 'red'))

option-4: plot contours of each cluster of the meta-clusters with different colors for different samples
plot(template, colorbysample=TRUE)

dist.cluster Dissimilarity between a pair of clusters

Description

Calculate the dissimilarity between a pair of cell populations (clusters) from the distributions of the
clusters.

14 dist.cluster

Usage

dist.cluster(clusterl,cluster2, dist.type = 'Mahalanobis')

Arguments
cluster1 an object of class Cluster representing the distribution parameters of the first
cluster.
cluster2 an object of class Cluster representing the distribution parameters of the second
cluster.
dist.type character, indicating the method with which the dissimilarity between a pair
of clusters is computed. Supported dissimilarity measures are: *Mahalanobis’,
"KL’ and ’Euclidean’.
Details

Consider two p-dimensional, normally distributed clusters with centers p1, ©2 and covariance ma-
trices 21, 22. Assume the size of the clusters are n1 and n2 respectively. We compute the dissimi-
larity d12 between the clusters as follows:

1. If dist.type="Mahalanobis’: we compute the dissimilarity d12 with the Mahalanobis distance
between the distributions of the clusters.

Y=(nl-1)*X14+ (n2—-1)*xX2)/(nl +n2 — 2)
d12 = sqri(t(pul — p2) * 20— 1) % (ul — p2))

2. If dist.type="KL’: we compute the dissimilarity d12 with the Symmetrized Kullback-Leibler
divergence between the distributions of the clusters. Note that KL-divergence is not symmetric
in its original form. We converted it symmetric by averaging both way KL divergence. The
symmetrized KL-divergence is not a metric because it does not satisfy triangle inequality.

d12 = 1/4% (t(p2— p1) % (10— 1)+ 220 1)) % (u2 — p1) 4+ trace(S1/82+ £2/%1) 4 2p)

3. If dist.type="Euclidean’: we compute the dissimilarity d12 with the Euclidean distance be-
tween the centers of the clusters.

dl12 = sqrt(Z(,ul — pu2)%)
The dimension of the clusters must be same.

Value

dist.cluster returns a numeric value denoting the dissimilarities between a pair of cell popula-
tions (clusters).

Author(s)
Ariful Azad

dist.matrix 15

References

McLachlan, GJ (1999) Mahalanobis distance; Journal of Resonance 4(6), 20-26.

Abou—Moustafa, Karim T and De La Torre, Fernando and Ferrie, Frank P (2010) Designing a
Metric for the Difference between Gaussian Densities; Brain, Body and Machine, 57-70.

See Also

mahalanobis.dist, symmetric.KL, dist.matrix

Examples

B m o
load data and retrieve a sample
H m o

library(healthyFlowData)
data(hd)
sample = exprs(hd.flowSet[[1]])

B m o
cluster sample using kmeans algorithm
B m o

km = kmeans(sample, centers=4, nstart=20)
cluster.labels = km$cluster

o

Create ClusteredSample object

and compute mahalanobis distance between two clsuters
-

clustSample = ClusteredSample(labels=cluster.labels, sample=sample)
clustl = get.clusters(clustSample)[[1]1]

clust2 = get.clusters(clustSample)[[2]]

dist.cluster(clustl, clust2, dist.type='Mahalanobis')
dist.cluster(clustl, clust2, dist.type='KL"')

dist.cluster(clustl, clust2, dist.type='Euclidean')

dist.matrix Dissimilarity matrix between each pair of clusters/meta-clusters
across a pair of samples/templates

Description

Calculate a matrix storing the dissimilarities between each pair of clusters (meta-clusters) across a
pair of samples (templates) S1 and S2. (i, j)th entry of the matrix stores dissimilarity between
i-th cluster (meta-cluster) from S1 and the j-th cluster (meta-cluster) from S2.

16 dist.matrix

Usage

dist.matrix(object1,object2, dist.type = 'Mahalanobis')

Arguments
objectl an object of class ClusteredSample or Template.
object2 an object of class ClusteredSample or Template.
dist.type character, indicating the method with which the dissimilarity between a pair
of clusters (meta-clusters) is computed. Supported dissimilarity measures are:
’Mahalanobis’, ’KL’ and ’Euclidean’, with the default is set to "Mahalanobis’
distance.
Details

Consider two FC samples/templates S1 and S2 with k1 and k2 clusters/meta-clusters. The dissim-
ilarity between each pair of cluster (meta-clusters) across S1 and S2 is computed and stored in a
(k1 x k2) matrix. The dissimilarity between i-th cluster (meta-cluster) from S1 and j-th cluster
(meta-cluster) from S2 is computed using function dist.cluster.

Value

dist.matrix function returns a (k1 x k2) matrix where k1 and k2 are the number of clusters (meta-
clusters) in the first and the second samples (templates) respectively. (i, j)th entry of the matrix
contains the dissimilarity between the i-th cluster (meta-cluster) from samplel (templatel) and the
j-th cluster (meta-cluster) from sample2 (template2).

Author(s)
Ariful Azad

See Also

dist.cluster

Examples

B oo
load data and retrieve two samples
B m o

library(healthyFlowData)
data(hd)

samplel = exprs(hd.flowSet[[1]1])
sample2 = exprs(hd.flowSet[[2]])

e e
cluster sample using kmeans algorithm
H m o

clustl = kmeans(samplel, centers=4, nstart=20)

dist.sample 17

clust2 = kmeans(sample2, centers=4, nstart=20)
cluster.labelsl = clusti1$cluster
cluster.labels2 = clust2$cluster

----——
Create ClusteredSample object

and compute the Mahalanobis distance between

each pair of clsuters and save it in a matrix
#H# - e

clustSamplel = ClusteredSample(labels=cluster.labels1, sample=samplel)
clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)
compute the dissimilarity matrix

DM = dist.matrix(clustSamplel, clustSample2, dist.type='Mahalanobis')
print(DM)

dist.sample Dissimilarity between a pair of clustered FC samples

Description

Compute the dissimilarity between a pair of clustered FC samples by using Mixed Edge Cover
(MEC) algorithm.

Usage

dist.sample(clustSamplel, clustSample2, dist.type='Mahalanobis', unmatch.penalty=999999)

Arguments

clustSample1 an object of class ClusteredSample containing cell populations from sample 1.
clustSample2 an object of class ClusteredSample containing cell populations from sample 2.

dist.type character, indicating the method with which the dissimilarity between a pair
of clusters is computed. Supported dissimilarity measures are: ’Mahalanobis’,
"KL’ and ’Euclidean’.

unmatch.penalty
A numeric value denoting the penalty for leaving a cluster unmatched. This
parameter should be already known or be estimated empirically estimated from
data (see the reference for a discussion). Default is set to a very high value so
that no cluster remains unmatched.

Details

We used a robust version of matching called Mixed Edge Cover (MEC) to match clusters across
a pair of samples. MEC allows a cluster to be matched with zero, one or more than one clusters
in a paired sample. The cost of an MEC solution is equal to the summation of dissimilarities of
the matched clusters and penalty for the unmatched clusters. The MEC algorithm finds an optimal
solution by minimizing the cost of MEC, which is then used as dissimilarity between a pair of
samples.

18 dist.sample

Value

dist.sample returns a numeric value representing dissimilarity between a pair of samples. This
value is equal to the summation of dissimilarities of the matched clusters and penalty for the un-
matched clusters.

Author(s)
Ariful Azad

References

Azad, Ariful and Langguth, Johannes and Fang, Youhan and Qi, Alan and Pothen, Alex (2010),
Identifying rare cell populations in comparative flow cytometry; Algorithms in Bioinformatics,
Springer, 162-175.

See Also

ClusteredSample, match.clusters

Examples

Y m o m
load data and retrieve two samples
oo

library(healthyFlowData)
data(hd)

samplel = exprs(hd.flowSet[[1]1])
sample2 = exprs(hd.flowSet[[2]])

B ittt
cluster sample using kmeans algorithm
oo

clustl = kmeans(samplel, centers=4, nstart=20)
clust2 = kmeans(sample2, centers=4, nstart=20)
cluster.labelsl = clusti$cluster
cluster.labels2 = clust2$cluster

-—-————————

Create ClusteredSample object

and compute dissimilarity between two clustered samples
using the mixed edge cover algorithm

#H# -

clustSamplel = ClusteredSample(labels=cluster.labels1, sample=samplel)
clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)
D = dist.sample(clustSamplel, clustSample2, dist.type='Mahalanobis', unmatch.penalty=999999)

dist.template 19

dist.template Dissimilarity between a pair of FC templates

Description
Compute the dissimilarity between a pair of FC templates by using Mixed Edge Cover (MEC)
algorithm.

Usage

dist.template(templatel, template2, dist.type='Mahalanobis', unmatch.penalty=999999)

Arguments
templatel an object of class Template containing cell populations from template 1.
template?2 an object of class Template containing cell populations from template 2.
dist.type character, indicating the method with which the dissimilarity between a pair

of meta-clusters is computed. Supported dissimilarity measures are: ’Maha-
lanobis’, "KL’ and ’Euclidean’.

unmatch.penalty
A numeric value denoting the penalty for leaving a meta-cluster unmatched.
This parameter should be already known or be estimated empirically estimated
from data (see the reference for a discussion). Default is set to a very high value
so that no meta-cluster remains unmatched.

Details

We used a robust version of matching called Mixed Edge Cover (MEC) to match meta-clusters
across a pair of templates. MEC allows a meta-cluster to be matched with zero, one or more than
one meta-clusters in a paired template. The cost of an MEC solution is equal to the summation
of dissimilarities of the matched meta-clusters and penalty for the unmatched meta-clusters. The
MEC algorithm finds an optimal solution by minimizing the cost of MEC, which is then used as
dissimilarity between a pair of templates.

Value

dist.template returns a numeric value representing dissimilarity between a pair of templates.
This value is equal to the summation of dissimilarities of the matched meta-clusters and penalty for
the unmatched meta-clusters.

Author(s)

Ariful Azad

20 mabhalanobis.dist

References

Azad, Ariful and Langguth, Johannes and Fang, Youhan and Qi, Alan and Pothen, Alex (2010),
Identifying rare cell populations in comparative flow cytometry; Algorithms in Bioinformatics,
Springer, 162-175.

See Also

Template, match.clusters

Examples

oo
load data and retrieve two templates
HHE mm

library(healthyFlowData)
data(hd)

H m o
Retrieve each sample, clsuter it and store the
clustered samples in a list

#H# - e

cat('Clustering samples: ')
clustSamples = list()
for(i in 1:10) # read 10 samples and cluster them
{
cat(i, ' ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labelsl = clustli$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

o
Create two templates each from five samples
B oo

templatel = create.template(clustSamples[1:5])
template2 = create.template(clustSamples[6:10])

D = dist.template(templatel, template2, dist.type='Mahalanobis', unmatch.penalty=999999)

mahalanobis.dist Mahanalobis Distance

mahalanobis.dist 21

Description

Compute the Mahalanobis distance between a pair of normally distributed clusters.

Usage

mahalanobis.dist(meanl, mean2, covl, cov2, nl, n2)

Arguments
mean1 mean vector of length p for cluster 1, where p is the dimension of the clusters.
mean?2 mean vector of length p for cluster 2.
covl pxp covariance matrix for cluster 1.
cov?2 pxp covariance matrix for cluster 2.
ni number of cells (points) in cluster 1.
n2 number of cells (points) in cluster 2.
Details

Consider two p-dimensional, normally distributed clusters with centers p1, 42 and covariance ma-
trices 21, >:2. Assume the size of the clusters are n1 and n2 respectively. We compute the Maha-
lanobis distance d12 between the clusters as follows:

Y=(nl—-1)*«X1+ (n2—-1)x322)/(nl +n2—2)

d12 = sqri(t(pl — p2) * 20— 1)« (ul — p2))

The dimension of the clusters must be same.

Value
mahalanobis.dist returns a numeric value measuring the Mahalanobis distance between a pair of
normally distributed clusters.

Author(s)

Ariful Azad

References

McLachlan, GJ (1999) Mahalanobis distance; Journal of Resonance 4(6), 20-26.

See Also

symmetric.KL, dist.cluster

22 match.clusters

Examples

e
load data and retrieve a sample
H m o

library(healthyFlowData)
data(hd)
sample = exprs(hd.flowSet[[1]1])

e
cluster sample using kmeans algorithm
B m o

km = kmeans(sample, centers=4, nstart=20)
cluster.labels = km$cluster

B oo

Create ClusteredSample object

and compute mahalanobis distance between two clsuters
B oo

clustSample = ClusteredSample(labels=cluster.labels, sample=sample)
mean1 = get.center(get.clusters(clustSample)[[1]1])

mean2 = get.center(get.clusters(clustSample)[[2]1])

covl = get.cov(get.clusters(clustSample)[[1]])

cov2 = get.cov(get.clusters(clustSample)[[2]])

n1 = get.size(get.clusters(clustSample)[[1]])

n2 = get.size(get.clusters(clustSample)[[2]])
mahalanobis.dist(mean1, mean2, covl, cov2, nl, n2)

match.clusters Matching of clusters/meta-clusters across FC samples/templates

Description

This function computes a matching of cluster/meta-clusters across a pair of FC samples/templates.
A cluster (meta-cluster) from a sample (template) can match to zero, one or more than one clusters
(meta-clusters) in another sample (template).

Usage

match.clusters(objectl, object2, dist.type='Mahalanobis', unmatch.penalty=999999)

match.clusters.dist(d.matrix,unmatch.penalty=999999)

match.clusters

Arguments

objectl
object2
dist.type

d.matrix

unmatch.penalty

Details

23

an object of class ClusteredSample or Template.
an object of class ClusteredSample or Template.

character, indicating the method with which the dissimilarity between a pair
of clusters (meta-clusters) is computed. Supported dissimilarity measures are:
’Mahalanobis’, ’KL’ and ’Euclidean’, with the default is set to "Mahalanobis’
distance.

a matrix used only in the second defination (match.clusters.dist) of the
function. d.matrix stores the dissimilarities between each pair of clusters (meta-
clusters) across a pair of samples (templates) S1 and S2. (i, j) entry of the
matrix stores dissimilarity between i-th cluster (meta-cluster) from S1 and the
j-th cluster (meta-cluster) from S2. d.matrix can be computed using function
dist.matrix

numeric value denoting the penalty for leaving a cluster (meta-cluster) unmatched.
This parameter should be already known or be estimated empirically estimated
from data (see the reference for a discussion). Default is set to a very high value
so that no cluster (meta-cluster) remains unmatched.

We used a robust version of matching called Mixed Edge Cover (MEC) to match clusters (meta-
clusters) across a pair of samples (templates). MEC allows a cluster (meta-cluster) to be matched
with zero, one or more than one clusters (meta-clusters) across a pair of samples (template). The
cost of an MEC solution is equal to the summation of dissimilarities of the matched clusters (meta-
clusters) and penalty for the unmatched clusters (meta-clusters). The MEC algorithm finds an opti-
mal solution by minimizing the cost of MEC.

Value

match.clusters returns an object of class ClusterMatch representing matching of clusters (meta-
clusters) across a pair of FC samples (templates). A cluster (meta-cluster) from a sample (template)
can match to zero, one or more than one cluster (meta-clusters) in another sample (template).

Author(s)

Ariful Azad

References

Azad, Ariful and Langguth, Johannes and Fang, Youhan and Qi, Alan and Pothen, Alex (2010),
Identifying rare cell populations in comparative flow cytometry; Algorithms in Bioinformatics,

Springer, 162-175.

See Also

dist.matrix, ClusteredSample, Template

24 match.clusters

Examples

B oo
load data and retrieve two samples
HHE mm

library(healthyFlowData)
data(hd)

e R R R R R R R e S e et T

HE xkkxxxkkxxkkkx first matching clusters across samples sxxxkkkxkkkrxkkk
it

o

retrieve and cluster two samples using kmeans algorithm
oo
samplel = exprs(hd.flowSet[[1]1])

sample2 = exprs(hd.flowSet[[2]])

clusti kmeans(samplel, centers=4, nstart=20)
clust2 = kmeans(sample2, centers=4, nstart=20)
cluster.labelsl = clusti$cluster
cluster.labels2 = clust2$cluster

B m o

Create ClusteredSample object

and compute mahalanobis distance between two clsuters
#H - e

clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)
compute the dissimilarity matrix

DM = dist.matrix(clustSamplel, clustSample2, dist.type='Mahalanobis"')

B o
Computing matching of clusteres

An object of class "ClusterMatch” is returned
B oo

directly from the ClusteredSample objects: approach 1

mec = match.clusters(clustSamplel, clustSample2, dist.type="Mahalanobis”, unmatch.penalty=99999)
from the dissimilarity matrix: approach 2

mec = match.clusters.dist(DM, unmatch.penalty=99999)

show the matching

summary (mec)

HiE *kkkkkhkkkhhhkhhhhrhhhhhhhhhhhhhrhhhhrhhhhhhhhrrhhhrhhhhrhhhhhhhhrrhkk

Fxkxxkxkkxkxxx Now matching meta-clusters across templates xxsxkxxkxkx
#H#

o
Retrieve each sample, clsuter it and store the

MetaCluster-class 25

clustered samples in a list
B o

cat('Clustering samples: ')
clustSamples = list()
for(i in 1:10) # read 10 samples and cluster them
{
cat(i, ' ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labelsl = clustli$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

B m o
Create two templates each from five samples
R e

templatel = create.template(clustSamples[1:5])
template2 = create.template(clustSamples[6:10])

B e
Match meta-clusters across templates
H m o

mec = match.clusters(templatel, template2, dist.type="Mahalanobis"”, unmatch.penalty=99999)
summary (mec)

B m o
Another example of matching meta-clusters & clusters
across a template and a sample

H m o

mec = match.clusters(templatel, clustSamplel, dist.type="Mahalanobis”, unmatch.penalty=99999)

summary (mec)
MetaCluster-class MetaCluster: An S4 class representing a meta-cluster (collection of
biologically similar clusters).
Description

An object of class "MetaCluster" represents a collection of biologically similar clusters from a
set of FC samples. A meta-cluster is formed by matching clusters across samples and merging the
matched clusters. An object of class "ClusteredSample" stores the estimated parameter of the
whole meta-cluster as well as a list of clusters participating in the meta-cluster.

26 MetaCluster-class

Creating Object

An object of class MetaCluster is usually created when constructing an object of class Template.
Unless you know exactly what you are doing, creating an object of class "MetaCluster" using new
or using the constructor is discouraged.

An object of class "MetaCluster" can be created using the following constructor

MetaCluster(clusters) where the argument "clusters" is a list of object of class Cluster from
which the meta-cluster is created.

Slots

An object of class "MetaCluster" contains the following slots:

The number of clusters in the meta-cluster.

num.clustelnssters A list of length num.clusters storing the clusters (cell populations) partici-
pating in this meta-cluster. Each cluster is stored as an object of class Cluster.

size Number of cells in the meta-cluster (summation of all cluster sizes).
center A numeric vector denoting the center of the meta-cluster.

cov A matrix denoting the covariances of the underlying normal distribution of the meta-cluster.

Accessors
All the slot accessor functions take an object of class MetaCluster. I show usage of the first
accessor function. Other functions can be called similarly.
The number of cells in the meta-cluster(summation of all cluster sizes).
Usage: get.size(object)
here object is a MetaCluster object.
get.sged: num.clusters Returns the number of clusters in the meta-cluster.

get.clusters Returns the list of clusters (cell populations) participating in this meta-cluster. Each
cluster is stored as an object of class Cluster.

get.size Returns the number of cells in the meta-cluster (summation of all cluster sizes).
get.center Returns the center of the meta-cluster.

get.cov Returns the covariances matrix of the meta-cluster.

Methods

show Display details about the Metacluster object.

summary Return descriptive summary for the MetaCluster object.
Usage: summary(MetaCluster)

plot We plot a meta-cluster as a contour plot of the distribution of the underlying clusters or the
combined meta-cluster. We consider cells in clusters or in the meta-cluster are normally dis-
tributed and represent the distribution with ellipsoid. The axes of an ellipsoid is estimated
from the eigen values and eigen vectors of the covariance matrix ("Applied Multivariate Sta-
tistical Analysis" by R. Johnson and D. Wichern, 5th edition, Prentice hall). We then plot the

MetaCluster-class 27

bi-variate projection of the ellipsoid as 2-D ellipses.

Usage:
plot(mc, alpha=.05, plot.mc=FALSE, ...)
the arguments of the plot function are:

* mc An object of class MetaCluster for which the plot function is invoked.

* alpha (1-alpha)*100% quantile of the distribution of the clusters or meta-cluster is plot-
ted.

¢ plot.mc TRUE/FALSE, when TRUE the functions draws contour of the combined meta-
cluster and when FALSE the function draws the contours of the individual clusters.

e ... Other usual plotting related parameters.

Author(s)
Ariful Azad

References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl
2), S10.

See Also

Cluster, Template

Examples

B m o
load data
et

library(healthyFlowData)
data(hd)

B o
Retrieve each sample, cluster it and store the
clustered samples in a list

#H# - e

cat('Clustering samples: ')
clustSamples = list()
for(i in 1:length(hd.flowSet))
{
cat(i, ' ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labels1 = clusti$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

28

Bt = m

symmetric. KL

Create a template from the list of clustered samples and retrieve the meta-clusters

Bt

template = create.template(clustSamples)

#tretrieve meta-clusters from template

mc = get.metaClusters(template)[[1]]

summary (mc)

plot all participating cluster in this meta-cluster
plot(mc)

plot the outline of the combined meta-cluster
plot(mc, plot.mc=TRUE)

symmetric.KL Symmetrized Kullback-Leibler divergence

Description

Compute the Symmetrized Kullback-Leibler divergence between a pair of normally distributed clus-

ters.

Usage

symmetric.KL(mean1, mean2, covl, cov2)

Arguments
mean1 mean vector of length p for cluster 1, where p is the dimension of the clusters.
mean2 mean vector of length p for cluster 2.
covl pxp covariance matrix for cluster 1.
cov?2 pxp covariance matrix for cluster 2.
Details

Consider two p-dimensional, normally distributed clusters with centers p1, ©2 and covariance ma-

trices 1, 22. We compute the KL divergence d12 between the clusters as follows:

d12 =1/4% (t(p2 — p1) « (210 = 1) + 220 = 1)) % (42 — pl) + trace(S1/52 + £2/51) + 2p)

The dimension of the clusters must be same.

Note that KL-divergence is not symmetric in its original form. We converted it symmetric by
averaging both way KL divergence. The symmetrized KL-divergence is not a metric because it

does not satisfy triangle inequality.

symmetric. KL 29

Value

symmetric.KL returns a numeric value measuring the Symmetrized Kullback-Leibler divergence
between a pair of normally distributed clusters.

Author(s)
Ariful Azad

References

Abou—Moustafa, Karim T and De La Torre, Fernando and Ferrie, Frank P (2010) Designing a
Metric for the Difference between Gaussian Densities; Brain, Body and Machine, 57-70.

See Also

mahalanobis.dist, dist.cluster

Examples

B et
load data and retrieve a sample
H m o

library(healthyFlowData)
data(hd)
sample = exprs(hd.flowSet[[1]1]1)

o
cluster sample using kmeans algorithm
H m o

km = kmeans(sample, centers=4, nstart=20)
cluster.labels = km$cluster

B oo
Create ClusteredSample object

and compute mahalanobis distance between two clsuters
B m o

clustSample = ClusteredSample(labels=cluster.labels, sample=sample)
mean1 = get.center(get.clusters(clustSample)[[1]1])

mean2 = get.center(get.clusters(clustSample)[[2]1])

covl = get.cov(get.clusters(clustSample)[[1]1])

cov2 = get.cov(get.clusters(clustSample)[[2]])

n1 = get.size(get.clusters(clustSample)[[1]])

n2 = get.size(get.clusters(clustSample)[[2]])

symmetric.KL(mean1, mean2, covl, cov2)

30 Template-class

Template-class Template: An S4 class representing a template of a group of FC Sam-
ples.

Description

An object of class "Template" summarizes a group of samples belonging to same biological-class
with a class-template. A template is represented by a collection of meta-clusters (MetaCluster)
created from samples of same class. An object of class "Template" therefore stores a list of
MetaCluster objects and other necessary parameters.

Creating Object

An object of class "Template" can be created using the function create. template :
create.template(clustSamples, dist.type = "Mahalanobis”, unmatch.penalty=999999, template.id
=NA_integer_).

The arguments to the create. template function is described below:

e clustSamples: A list of ClusteredSample objects from which the template is created. The
working examples describe how this objects are created by clustering FC samples.

* dist.type: character, indicating the method with which the dissimilarity between a pair of
clusters is computed. Supported dissimilarity measures are: ’Mahalanobis’, KL’ and ’Eu-
clidean’. If this argument is not passed then ’Mahalanobis’ distance is used by default.

e unmatch.penalty: A numeric value denoting the penalty for leaving a cluster unmatched.
This parameter should be already known or be estimated empirically estimated from data (see
the reference for a discussion). Default is set to a very high value so that no cluster remains
unmatched.

* template.id: integer, denoting the index of the template (relative to other template). Default
is NA_integer_

Slots

num.metaclusters: The number of meta-clusters in the template.

metaClusters: A list of length num.metaclusters storing the meta-clusters. Each meta-cluster
is stored as an object of class MetaCluster.

dimension: Dimensionality of the samples from which the template is created.
size: Number of cells in the template (summation of all meta-cluster sizes).
tree: A list (similar to an hclust object) storing the hierarchy of the samples in a template.

template.id: integer, denoting the index of the template (relative to other templates). Default is
NA_integer_

Template-class

Accessors

31

All the slot accessor functions take an object of class Template. I show usage of the first
accessor function. Other functions can be called similarly.

Number of cells in the template (summation of all meta-cluster sizes).

Usage: get.size(object)

here

object is a Template object.

get.sged:. num.metaclusters: Returns the number of meta-clusters in the template.

get.metaClusters: Returns a list of length num.metaclusters storing the meta-clusters. Each
meta-cluster is stored as an object of class MetaCluster.

get.dimension: Returns the dimensionality of the samples from which the template is created.

get.tree: Returns a hclust object storing the hierarchy of the samples in a template.

get.template.id: Returns the index of the template (relative to other templates).

Methods

show Display details about the Template object.

summary

Return descriptive summary for each MetaCluster of a Template.

Usage: summary (Template)

plot We plot a template as a collection of bivariate contour plots of its meta-clusters. To plot each
meta-cluster we consider the clusters within the meta-cluster normally distributed and repre-
sent each cluster with an ellipsoid. The axes of an ellipsoid is estimated from the eigen values
and eigen vectors of the covariance matrix of a cluster ("Applied Multivariate Statistical Anal-
ysis" by R. Johnson and D. Wichern, 5th edition, Prentice hall). We then plot the bivariate
projection of the ellipsoid as 2-D ellipses.

Usage:

plot(template, alpha=.05, plot.mc=FALSE, color.mc=NULL, colorbysample=FALSE, ...

the arguments of the plot function are:

L]

template: An object of class Template for which the plot function is invoked.

alpha: (l-alpha)*100% quantile of the distribution of the clusters or meta-cluster is
plotted.

plot.mc: TRUE/FALSE, when TRUE the functions draws contour of the combined
meta-cluster and when FALSE the function draws the contours of the individual clus-
ters.

color.mc: A character vector of length num.metaclusters denoting the colors to be
used to draw the contours. The ith color of this vector is used to draw the ellipses de-
noting clusters in the ith meta-cluster or the combined ith meta-cluster (depending on the
argument plot.mc). By default an empty vector is passed and then an arbitrary color is
used to draw each meta-cluster.

colorbysample: TRUE/FALSE, when TRUE the functions draws clusters from same
samples in a single color and when FALSE the function draws meta-clusters in a single
color.

... : Other usual plotting related parameters.

32 Template-class

template.tree Plot the hierarchy of samples established while creating the template-tree. See
template. tree

Author(s)
Ariful Azad

References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl
2), S10.

See Also

MetaCluster, ClusteredSample, create.template, template.tree

B oo
load data
B oo

library(healthyFlowData)
data(hd)

#H - e
Retrieve each sample, clsuter it and store the
clustered samples in a list
#H - e
set.seed(1234) # for reproducable clustering
cat('Clustering samples: ')
clustSamples = list()
for(i in 1:1length(hd.flowSet))
{
cat(i, " ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labelsl = clustli$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

e
Create a template from the list of clustered samples and plot functions
B —m o

template = create.template(clustSamples)
summary (template)

plot the tree denoting the hierarchy of the samples in a template
tree = template.tree(template)

template.tree 33

plot the template in terms of the meta-clusters
option-1 (default): plot contours of each cluster of the meta-clusters
plot(template)

option-2: plot contours of each cluster of the meta-clusters with defined color
plot(template, color.mc=c('blue', 'black', 'green3', 'red'))

option-3: plot contours of the meta-clusters with defined color

plot(template, plot.mc=TRUE, color.mc=c('blue', 'black','green3','red"))

option-4: plot contours of each cluster of the meta-clusters with different colors for different samples
plot(template, colorbysample=TRUE)

template. tree Plot the hierarchy of samples established while creating a template-
tree

Description

All samples within a template are organized as binary tree. This function plots the hierarchy of
samples established while creating a template-tree.

Usage
template.tree(object, ...)
Arguments
object An object of class Template. The working examples describe how a template is
created from a collection of FC samples.
Other usual plotting related parameters.
Value

Returns a tree object of class hclust storing the hierarchy of the samples in the template.

Author(s)
Ariful Azad

References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response
patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl
2), S10.

34 template.tree

See Also

Template, create. template

Examples

Bt m oo
load data
B —m o

library(healthyFlowData)
data(hd)

#H - e
Retrieve each sample, clsuter it and store the
clustered samples in a list
et
set.seed(1234) # for reproducable clustering
cat('Clustering samples: ')
clustSamples = list()
for(i in 1:length(hd.flowSet))
{
cat(i, ' ")
samplel = exprs(hd.flowSet[[i]])
clustl = kmeans(samplel, centers=4, nstart=20)
cluster.labels1l = clusti1$cluster
clustSamplel = ClusteredSample(labels=cluster.labelsl, sample=samplel)
clustSamples = c(clustSamples, clustSamplel)

H m o
Create a template from the list of clustered samples and plot functions
B m o

template = create.template(clustSamples)
summary (template)

plot the tree denoting the hierarchy of the samples in a template
tree = template.tree(template)

Index

* cluster
Cluster-class, 3

ClusteredSample-class, 5

ClusterMatch-class, 8
create.template, 11
dist.cluster, 13
dist.matrix, 15
dist.sample, 17
dist.template, 19
flowMatch-package, 2
mahalanobis.dist, 20
match.clusters, 22
MetaCluster-class, 25
symmetric.KL, 28
Template-class, 30
template. tree, 33

x distance
dist.cluster, 13
dist.matrix, 15
mahalanobis.dist, 20
symmetric.KL, 28

* matching
ClusterMatch-class, 8
create.template, 11
dist.sample, 17
dist.template, 19
flowMatch-package, 2
match.clusters, 22
template. tree, 33

* meta-cluster
flowMatch-package, 2

+* metacluster
MetaCluster-class, 25
Template-class, 30

+* multivariate
Cluster-class, 3

ClusteredSample-class, 5

ClusterMatch-class, 8
create.template, 11

dist.cluster, 13
dist.matrix, 15
dist.sample, 17
dist.template, 19
flowMatch-package, 2
mahalanobis.dist, 20
match.clusters, 22
MetaCluster-class, 25
symmetric.KL, 28
Template-class, 30
template. tree, 33

* nonparametric
flowMatch-package, 2

* template
flowMatch-package, 2
Template-class, 30

Cluster, 6, 7, 14, 26, 27

Cluster (Cluster-class), 3

Cluster-class, 3

ClusteredSample, 4, 5,8, 9, 11, 16-18, 23,
30, 32

ClusteredSample
(ClusteredSample-class), 5

ClusteredSample-class, 5

ClusterMatch, 23

ClusterMatch (ClusterMatch-class), 8

ClusterMatch-class, 8

create.template, 11, 30, 32, 34

dist.cluster, 13, 16, 21, 29
dist.matrix, 15, 15, 23
dist.sample, 17
dist.template, 19

flowMatch (flowMatch-package), 2
flowMatch-package, 2

get.center (Cluster-class), 3
get.center,Cluster-method
(Cluster-class), 3

36

get.

get.
get.

get.
get.

get.

get.
get.

get.

get.
get.

get.

get.
get.

get.
get.

get.
get.

get.

get.

get.
get.

get.

get.

get.

get.

get.

get.
get.

center,MetaCluster-method
(MetaCluster-class), 25
cluster.id (Cluster-class), 3
cluster.id,Cluster-method
(Cluster-class), 3
clusters (ClusteredSample-class), 5
clusters,ClusteredSample-method
(ClusteredSample-class), 5
clusters,MetaCluster-method
(MetaCluster-class), 25
cov (Cluster-class), 3
cov,Cluster-method (Cluster-class),
3
cov,MetaCluster-method
(MetaCluster-class), 25
dimension (ClusteredSample-class), 5
dimension,ClusteredSample-method
(ClusteredSample-class), 5
dimension,Template-method
(Template-class), 30
labels (ClusteredSample-class), 5
labels,ClusteredSample-method
(ClusteredSample-class), 5
match12 (ClusterMatch-class), 8
match12,ClusterMatch-method
(ClusterMatch-class), 8
match21 (ClusterMatch-class), 8
match21,ClusterMatch-method
(ClusterMatch-class), 8
matching.cost (ClusterMatch-class),
8
matching.cost,ClusterMatch-method
(ClusterMatch-class), 8
metaClusters (Template-class), 30
metaClusters, Template-method
(Template-class), 30
num.clusters
(ClusteredSample-class), 5
num.clusters,ClusteredSample-method
(ClusteredSample-class), 5
num.clusters,MetaCluster-method
(MetaCluster-class), 25
num.metaclusters (Template-class),
30
num.metaclusters, Template-method
(Template-class), 30
sample.id (Cluster-class), 3
sample.id,Cluster-method

INDEX

(Cluster-class), 3
get.sample.id,ClusteredSample-method
(ClusteredSample-class), 5
get.size (Cluster-class), 3
get.size,Cluster-method
(Cluster-class), 3
get.size,ClusteredSample-method
(ClusteredSample-class), 5
get.size,MetaCluster-method
(MetaCluster-class), 25
get.size,Template-method
(Template-class), 30
get.template.id (Template-class), 30
get.template.id,Template-method
(Template-class), 30
get.tree (Template-class), 30
get.tree,Template-method
(Template-class), 30
get.unmatch.penalty
(ClusterMatch-class), 8
get.unmatch.penalty,ClusterMatch-method
(ClusterMatch-class), 8

mahalanobis.dist, 75, 20, 29
match.clusters, 8, 9, 18, 20, 22
MetaCluster, /1, 12, 30-32
MetaCluster (MetaCluster-class), 25
MetaCluster-class, 25

plot,ANY,ClusteredSample-method
(ClusteredSample-class), 5
plot, flowFrame,ClusteredSample-method
(ClusteredSample-class), 5
plot,MetaCluster,missing-method
(MetaCluster-class), 25
plot,MetaCluster-method
(MetaCluster-class), 25
plot,Template, ANY-method
(Template-class), 30
plot,Template,missing-method
(Template-class), 30
plot,Template-method (Template-class),
30

sample.id<- (Cluster-class), 3

sample.id<-,Cluster-method
(Cluster-class), 3

show,Cluster-method (Cluster-class), 3

INDEX

show, ClusteredSample-method
(ClusteredSample-class), 5
show,ClusterMatch-method
(ClusterMatch-class), 8
show,MetaCluster-method
(MetaCluster-class), 25
show, Template-method (Template-class),
30
summary,Cluster-method (Cluster-class),
3
summary,ClusteredSample-method
(ClusteredSample-class), 5
summary,ClusterMatch-method
(ClusterMatch-class), 8
summary,MetaCluster-method
(MetaCluster-class), 25
summary, Template-method
(Template-class), 30
symmetric.KL, 15, 21, 28

Template, 8, 9, 11, 12, 16, 19, 20, 23, 26, 27.
33, 34

Template (Template-class), 30

Template-class, 30

template. tree, 32, 33

template.tree,Template-method
(template.tree), 33

37

	flowMatch-package
	Cluster-class
	ClusteredSample-class
	ClusterMatch-class
	create.template
	dist.cluster
	dist.matrix
	dist.sample
	dist.template
	mahalanobis.dist
	match.clusters
	MetaCluster-class
	symmetric.KL
	Template-class
	template.tree
	Index

