Package ‘dar’

January 23, 2026

Title Differential Abundance Analysis by Consensus
Version 1.7.0
Date 2025-10-14

Description Differential abundance testing in microbiome data challenges both
parametric and non-parametric statistical methods, due to its sparsity, high
variability and compositional nature. Microbiome-specific statistical
methods often assume classical distribution models or take into account
compositional specifics. These produce results that range within the
specificity vs sensitivity space in such a way that type I and type II error
that are difficult to ascertain in real microbiome data when a single method
is used. Recently, a consensus approach based on multiple differential
abundance (DA) methods was recently suggested in order to increase robustness.
With dar, you can use dplyr-like pipeable sequences of DA methods and then
apply different consensus strategies. In this way we can obtain more reliable
results in a fast, consistent and reproducible way.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(roclets = ¢(" " collate", " *namespace", * "rd",
* “roxytest::testthat_roclet", * " roxyglobals::global_roclet"),
markdown = TRUE)

URL https://github.com/MicrobialGenomics-IrsicaixaOrg/dar,

https://microbialgenomics-irsicaixaorg.github.io/dar/

BugReports https://github.com/MicrobialGenomics-IrsicaixaOrg/dar/issues

biocViews Software, Sequencing, Microbiome, Metagenomics,
MultipleComparison, Normalization

Imports cli, ComplexHeatmap, crayon, dplyr, generics, ggplot2, glue,
gplots, heatmaply, magrittr, methods, mia, phyloseq, purrr,
readr, rlang (>= 0.4.11), scales, stringr, tibble, tidyr,

UpSetR, waldo

Suggests ALDEx2, ANCOMBC, apeglm, ashr, Biobase, corncob, covr,
DESeq2, devtools, furrr, future, knitr, lefser, limma,
Maaslin2, metagenomeSeq, microbiome, rmarkdown, roxygen2,

1

https://github.com/MicrobialGenomics-IrsicaixaOrg/dar
https://microbialgenomics-irsicaixaorg.github.io/dar/
https://github.com/MicrobialGenomics-IrsicaixaOrg/dar/issues

2 Contents

roxyglobals, roxytest, rstatix, SummarizedExperiment,
TreeSummarizedExperiment, testthat (>= 3.0.0), GenomelnfoDb

Config/testthat/edition 3
Depends R (>=4.5.0)
LazyData false

Collate 'recipe-class.R' 'aldex2.R' 'ancom.R' 'bake.R' 'corncob.R’
'dar-package.R' 'data.R' 'deseq2.R' 'filter_by_abundance.R'
'filter_by_prevalence.R' 'filter_by_rarity.R’
'filter_by_variance.R' 'filter_taxa.R' 'globals.R' lefse.R’
'maaslin2.R' 'metagenomeseq.R' 'misc.R' 'phyloseq_qc.R'
'pkg_check.R' 'plot_methods.R' 'rarefaction.R' 'read_data.R'
'steps_and_checks.R' 'subset_taxa.R' 'utils-pipe.R'
'utils-tidy-eval.R' 'utils.R' 'wilcox.R'

VignetteBuilder knitr
Config/roxyglobals/filename globals.R
Config/roxyglobals/unique TRUE
Config/testthat/parallel true
RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/dar
git_branch devel

git_last_commit 6a93481
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-23

Author Francesc Catala-Moll [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2354-8648>)

Maintainer Francesc Catala-Moll <fcatala@irsicaixa.es>

Contents
dar-package 4
abundance_plt 4
add_step e e 6
add_tax . ..o s, 6
add_var e e e e e e 7
bake e e 8
contains_rarefaction L. e e 10
COOl . . e e e e 11
corr_heatmap 12
exclusion_plt 13
EXPOTE_SIEPS &« v v v v o e 14

find_intersections e 14

https://orcid.org/0000-0002-2354-8648

Contents

3
GEL_COMPATISONS . . v v v v v v v e e e e e e e e e e e e e e e 15
get_phy . . e e 16
GEL LAX L e e e e e e 17
GELLVAL . . . L e e e e e e 17
IMPOTE_SIEPS .+« o v v o e 18
intersection_df e 19
intersection_plt L 20
metaHIV_phy e 21
mutual_plt L e 22
otu_table L L s 23
overlap_df 24
pastry_df . ..o e e 25
phyloseq_or_null-class 25
Phy_qgc. . o o 26
PIED - o o o e e e e e e e e e e 27
PrepRecipe-class 28
PIEP_IECIPE . . .« o v v i e e e e e e e e e e e e 29
rand_id L e e 29
read_data L e 30
TECIPE « « o o o i e e e e e e e e e 31
recipes_pkg_check 32
required_deps e e e e 33
sample_data L e 34
] 1) o 34
StEPS_1dS e e e 35
step_aldex 36
SEP_ANCOIM .« . .« . v v vt e e e e e e e e e e e e e e e 38
SEP_COIMCOD o o o e e 42
SEP_deSeq e e e e e e e 45
step_filter_by_abundance 47
step_filter_by_prevalence 49
step_filter_by_rarity e e e e 50
step_filter_by_variance oL 52
step_filter_taxa 53
step_lefse L 54
step_maaslin e e e e 57
SEP_MEtageNOMESEq« « v v v v v e e e e e e e e e e e e e e 59
step_rarefaction L 62
SEEP_SUDSEL_taXa i e e e e e e e e e e e e e e e 63
SEP_LO_EXPI . « . o o o e e e e e e e e e e e e 64
Step_WIlCOX L 65
tax_table L e 67
EESI_PIEP_TEC .+ o v v v o v e 67
TESE TEC . . v v v v e e e e e e e 68
tidyeval 68
to_tibble L e e 70
use_rarefy e e e 71

ZETO_OMU . . v v v v e e e e e e e e e 72

4 abundance_plt

Do>% . .. e 73
Index 74
dar-package dar: Differential Abundance Analysis by Consensus
Description

To learn more about dar, start with the vignettes: browseVignettes(package = "dar")

Author(s)

Maintainer: Francesc Catala-Moll <fcatala@irsicaixa.es> (ORCID)

See Also
Useful links:

* https://github.com/MicrobialGenomics-IrsicaixaOrg/dar
e https://microbialgenomics-irsicaixaorg.github.io/dar/

* Report bugs at https://github.com/MicrobialGenomics-IrsicaixaOrg/dar/issues

abundance_plt Abundance boxplot

Description

Abundance boxplot

Usage

abundance_plt(
rec,
taxa_ids = NULL,
type = "boxplot”,

transform = "compositional”,
scale = 1,
top_n = 20

)

S4 method for signature 'Recipe
abundance_plt(

rec,

taxa_ids = NULL,

type = "boxplot”,

https://orcid.org/0000-0002-2354-8648
https://github.com/MicrobialGenomics-IrsicaixaOrg/dar
https://microbialgenomics-irsicaixaorg.github.io/dar/
https://github.com/MicrobialGenomics-IrsicaixaOrg/dar/issues

abundance_plt 5

transform = "compositional”,
scale = 1,
top_n = 20

)

S4 method for signature 'PrepRecipe’
abundance_plt(

rec,

taxa_ids = NULL,

type = "boxplot”,

transform = "compositional”,
scale = 1,
top_n = 20
)
Arguments
rec A Recipe or Recipe step.
taxa_ids Character vector with taxa_ids to plot. If taxa_ids is NULL the significant char-
acteristics present in all of the executed methods will be plotted.
type Character vector indicating the type of the result. Options: c¢("boxoplot", "heatmap").
transform Transformation to apply. The options include: ’compositional’ (ie relative abun-

dance), ’Z’, ’log10’, ’log10p’, *hellinger’, ’identity’, ’clr’, ’alr’, or any method
from the vegan::decostand function. If the value is NULL, no normalization is
applied and works with the raw counts.

scale Scaling constant for the abundance values when transform = "scale".
top_n Maximum number of taxa to represent. Default: 20.

Value
ggplot2

Examples

data(test_prep_rec)

Running the function returns a boxplot,
abundance_plt(test_prep_rec)

Giving the value "heatmap” to the type parameter, the resulting graph
a heatmap.
abundance_plt(test_prep_rec, type = "heatmap")

By default, those taxa significant in all methods are plotted. If you want
to graph some determined features, you can pass them as vector through the
taxa_ids parameter.

taxa_ids <- c("Otu_96", "Otu_78", "Otu_88", "Otu_35", "Otu_94", "Otu_34")

abundance_plt(test_prep_rec, taxa_ids = taxa_ids)

abundance_plt(test_prep_rec, taxa_ids = taxa_ids, type = "heatmap”)

6 add_tax

abundance_plt function needs a PrepRecipe. If you pass a a non-prep
Recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(abundance_plt(test_rec))

err

add_step Add a New Operation to the Current Recipe

Description

add_step adds a step to the last location in the Recipe. add_check does the same for checks.

Usage
add_step(rec, object)

S4 method for signature 'Recipe’
add_step(rec, object)

S4 method for signature 'PrepRecipe'’
add_step(rec, object)

Arguments

rec A Recipe().

object A step or check object.
Value

A updated Recipe() with the new operation in the last slot.

add_tax Adds taxonomic level of interest in the Recipe.

Description

Adds taxonomic level of interest in the Recipe.

Usage

add_tax(rec, tax_info)

S4 method for signature 'Recipe’
add_tax(rec, tax_info)

S4 method for signature 'PrepRecipe'’
add_tax(rec, tax_info)

add_var

Arguments

rec A Recipe object.

tax_info A character string of taxonomic levels that will be used in any context.
Value

A Recipe object.

Examples

data(metaHIV_phy)

Define recipe
rec <-
recipe(metaHIV_phy)

add var info
rec <- add_tax(rec, tax_info = "Species"”)
rec

add tax info to a prep-Recipe returns an error
data(test_prep_rec)
err <- testthat::expect_error(

add_tax(test_prep_rec, tax_info = "Species”)
)
err
add_var Adds variable of interest to the Recipe
Description

Adds variable of interest to the Recipe

Usage

add_var(rec, var_info)

S4 method for signature 'Recipe’
add_var(rec, var_info)

S4 method for signature 'PrepRecipe'’
add_var(rec, var_info)

8 bake

Arguments
rec A Recipe object.
var_info A character string of column names corresponding to variables that will be used
in any context.
Value

A Recipe object.

Examples

data(metaHIV_phy)

Define recipe
rec <- recipe(metaHIV_phy)

add var info
rec <- add_var(rec, var_info = "RiskGroup2")
rec

add var info to a prep-recipe returns an error
data(test_prep_rec)
err <- testthat::expect_error(

add_var(test_prep_rec, var_info = "RiskGroup2")
)
err
bake Define consensus strategies from a Recipe
Description

For a prep Recipe adds a consensus strategies to use for result extraction.

Usage

bake(
rec,
count_cutoff = NULL,
weights = NULL,
exclude = NULL,
id = rand_id("bake")

S4 method for signature 'PrepRecipe'’
bake (
rec,

bake 9

count_cutoff = NULL,
weights = NULL,
exclude = NULL,
id = rand_id("bake")

S4 method for signature 'Recipe'’
bake (

rec,

count_cutoff = NULL,

weights = NULL,

exclude = NULL,

id = rand_id("bake")

Arguments

rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.

count_cutoff Indicates the minimum number of methods in which an OTU must be present
(Default: NULL). If count_cutoff is NULL count_cutoff is equal to length(steps_ids(rec,
"da")) - length(exclude)

weights Named vector with the ponderation value for each method.

exclude Method ids to exclude.

id A character string that is unique to this step to identify it.
Value

An object of class PrepRecipe

Examples

data(test_prep_rec)
rec <- test_prep_rec

Default bake extracts common OTUs in all DA tested methods
(In this case the Recipe contains 3 methods)

res <- bake(rec)

cool(res)

bake and cool methods needs a PrepRecipe. If you pass a non-PrepRecipe
the output is an error.

data(test_rec)

err <- testthat::expect_error(bake(test_rec))

err

We can use the parameter ~cout_cutoff” to for example select those OTUs
shared with at least two methods
res <- bake(rec, count_cutoff = 2)

10 contains_rarefaction

cool(res)

Furthermore, we can exclude methods from the consensus strategy with the
~exclude” parameter.

res <- bake(rec, exclude = steps_ids(rec, "da")[1])

cool(res)

Finally, we can use the “weights™ parameter to weigh each method.
weights <- c(2, 1, 1)

names(weights) <- steps_ids(rec, "da")

res <- bake(rec, weights = weights)

cool(res)

contains_rarefaction Checks if Recipe contains a rarefaction step

Description

Checks if Recipe contains a rarefaction step

Usage

contains_rarefaction(rec)

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
recipe.
Value
boolean
Examples

data(GlobalPatterns, package = "phyloseq")
rec <-
phyloseq: : subset_samples(
GlobalPatterns, SampleType %in% c("Soil"”, "Skin")
E
recipe(var_info = "SampleType”, tax_info = "Genus") |>
step_rarefaction()

contains_rarefaction(rec)

cool

cool Extract results from defined bake

Description

Extract results from defined bake
Usage
cool(rec, bake = 1)

S4 method for signature 'Recipe'’
cool(rec, bake = 1)

S4 method for signature 'PrepRecipe'’
cool(rec, bake 1)

Arguments

rec A Recipe object.

bake Name or index of the bake to extract.

Value

tbl_df

Examples

data(test_prep_rec)

First we need to add bakes (extraction strategies) to the PrepRecipe.
rec <- bake(test_prep_rec)

Finally we can extract the results with the cool method
cool(rec)

By default cool extracts the results of the first bake. If we have more
bakes we can extract the one that you want with the bake parameter.

rec <- bake(rec, count_cutoff = 1)

cool(rec, 2)

bake and cool methods needs a prep-Recipe. If you pass a non-PrepRecipe
the output is an error.

data(test_rec)

err <- testthat::expect_error(cool(test_rec))

err

12 corr_heatmap

corr_heatmap Plot otuput of the overlap_df function as a heatmap.

Description

Plot otuput of the overlap_df function as a heatmap.

Usage

corr_heatmap(rec, steps = steps_ids(rec, "da"), font_size = 15, type = "all")

S4 method for signature 'Recipe'’

corr_heatmap(rec, steps = steps_ids(rec, "da"), font_size = 15, type = "all")
S4 method for signature 'PrepRecipe’
corr_heatmap(rec, steps = steps_ids(rec, "da"), font_size = 15, type = "all")
Arguments
rec A Recipe object.
steps Character vector with step_ids to take in account.
font_size Size of the axis font.
type Indicates whether to use all taxa ("all") or only those that are differentially abun-
dant in at least one method ("da"). Default as "all".
Value
heatmap
Examples

data(test_prep_rec)

Running the function returns a UpSet plot ordered by frequency.
corr_heatmap(test_prep_rec)

If you want to exclude a method for the plot, you can remove it with the
step parameter. In the following example we eliminate from the graph the
results of maaslin

corr_heatmap(test_prep_rec, steps = steps_ids(test_prep_rec, "da")[-11)

corr_heatmap function needs a PrepRecipe. If you pass a a non-prep
Recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(corr_heatmap(test_rec))

err

exclusion_plt 13

exclusion_plt Plot the number of shared DA OTUs between methods.

Description

Plot the number of shared DA OTUs between methods.

Usage

exclusion_plt(rec, steps = steps_ids(rec, "da"))

S4 method for signature 'Recipe'’
exclusion_plt(rec, steps = steps_ids(rec, "da"))

S4 method for signature 'PrepRecipe’
exclusion_plt(rec, steps = steps_ids(rec, "da"))

Arguments

rec A Recipe object.

steps Character vector with step_ids to take in account.
Value

ggplot2-class object

Examples

data(test_prep_rec)

Running the function returns a barplot plot,
exclusion_plt(test_prep_rec)

If you want to exclude a method for the plot, you can remove it with the
step parameter. In the following example we eliminate from the graph the
results of maaslin

exclusion_plt(test_prep_rec, steps = steps_ids(test_prep_rec, "da")[-1])

intersection_plt function needs a PrepRecipe. If you pass a a non-prep
Recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(exclusion_plt(test_rec))

err

14 find_intersections

export_steps Export step parameters as json.

Description

Export step parameters as json.

Usage

export_steps(rec, file_name)

Arguments

rec A Recipe object.
file_name The path and file name of the optout file.

Value
invisible
Examples
data(metaHIV_phy)

Create a Recipe with steps

rec <-
recipe(metaHIV_phy, "RiskGroup2"”, "Species") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.3 * length(x))") |>
step_filter_by_prevalence(0.4) |>
step_maaslin()

Prep Recipe
rec <- prep(rec, parallel = TRUE)

Export to json file

export_steps(rec, tempfile(fileext = ".json"))
find_intersections Finds common OTU between method results
Description

Finds common OTU between method results

Usage

find_intersections(rec, steps = steps_ids(rec, "da"))

get_comparisons 15

Arguments

rec A Recipe object.

steps character vector with step ids to take in account

Value

tibble

Examples

data(test_prep_rec)

From a PrepRecipe we can extract a tibble with all intersections
intersections <- find_intersections(test_prep_rec)
intersections

Additionally, we can exclude some methods form the table
intersections <- find_intersections(

test_prep_rec,

steps = steps_ids(test_prep_rec, "da")[-1]
)

intersections

get_comparisons Generate all unique contrasts between levels of a categorical variable.

Description

Generate all unique contrasts between levels of a categorical variable.

Usage

get_comparisons(var, phy, as_list = TRUE, n_cut = 1)

Arguments
var categorical variable
phy phyloseq object
as_list boolean indicating if output must be returned as a list.
n_cut minimum of observations by level.
Value

tibble or list

16

Examples

data(test_rec)
dar:::get_comparisons("RiskGroup2"”, get_phy(test_rec))

get_phy

get_phy Returns phyloseq from Recipe-class object

Description

Returns phyloseq from Recipe-class object

Usage
get_phy(rec)

S4 method for signature 'Recipe'’
get_phy(rec)

Arguments

rec A Recipe object
Value

Phyloseq class object
Examples

data(metaHIV_phy)

Define recipe
rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species”)

Extract phyloseq object
get_phy(rec)

get_tax

get_tax Returns tax_info from Recipe-class object

Description

Returns tax_info from Recipe-class object

Usage

get_tax(rec)

S4 method for signature 'Recipe'’
get_tax(rec)
Arguments

rec A Recipe object

Value

Tibble containing tax_info.

Examples
data(metaHIV_phy)
Define recipe

rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species")

Extract taxonomic level
get_tax(rec)

get_var Returns var_info from Recipe-class object

Description

Returns var_info from Recipe-class object
Usage
get_var(rec)

S4 method for signature 'Recipe'’
get_var(rec)

18 import_steps

Arguments

rec A Recipe object

Value

Tibble containing var_info.

Examples

data(metaHIV_phy)

Define recipe
rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species”)

Extract variable of interest
get_var(rec)

import_steps Import steps from json file

Description

Import steps from json file

Usage

import_steps(rec, file, parallel = TRUE, workers = future::availableCores())

Arguments
rec A Recipe object.
file Path to the input file.
parallel if FALSE, no palatalization. if TRUE, parallel execution using future and furrr
packages.
workers Number of workers for palatalization.
Value

recipe-class object

intersection_df 19

Examples

data(metaHIV_phy)
Initialize the Recipe with a phyloseq object
rec <- recipe(metaHIV_phy, "RiskGroup2"”, "Species")

rec

Import steps

json_file <- system.file("extdata”, "test.json"”, package = "dar")
rec <- import_steps(rec, json_file)
rec

If the json file contains 'bake', the Recipe is automatically prepared.
json_file <- system.file("extdata"”, "test_bake.json"”, package = "dar")
rec <-

recipe(metaHIV_phy, "RiskGroup2", "Species") |>

import_steps(json_file)

rec
cool(rec)

intersection_df Returns data.frame with OTU intersection between methods

Description

Returns data.frame with OTU intersection between methods

Usage
intersection_df(rec, steps = steps_ids(rec, "da"), tidy = FALSE)
S4 method for signature 'Recipe’
intersection_df (rec, steps = steps_ids(rec, "da"), tidy = FALSE)
S4 method for signature 'PrepRecipe'’
intersection_df(rec, steps = steps_ids(rec, "da"), tidy = FALSE)
Arguments
rec A Recipe object.
steps character vector with step_ids to take in account.
tidy Boolan indicating if result must be in tidy format.
Value

data.frame class object

20 intersection_plt

Examples

data(test_prep_rec)

df <- intersection_df(test_prep_rec)
head(df)

intersection_df function needs a prep-Recipe. If you pass a a non-prep
recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(intersection_df(test_rec))

err

intersection_plt Plot results using UpSet plot

Description

Plot results using UpSet plot

Usage

intersection_plt(
rec,
steps = steps_ids(rec, "da"),
ordered_by = c("freq", "degree"),
font_size = 2

S4 method for signature 'Recipe’
intersection_plt(rec, steps, font_size)

S4 method for signature 'PrepRecipe'’
intersection_plt(
rec,
steps = steps_ids(rec, "da"),
ordered_by = c("freq", "degree"),
font_size = 2

)
Arguments
rec A Recipe object.
steps Character vector with step_ids to take in account.
ordered_by How the intersections in the matrix should be ordered by. Options include fre-

quency (entered as "freq"), degree, or both in any order.

font_size Size of the font.

metaHIV_phy 21

Value

UpSet plot

Examples

data(test_prep_rec)

Running the function returns a UpSet plot ordered by frequency.
intersection_plt(test_prep_rec)

Alternatively, you can order the plot by degree
intersection_plt(test_prep_rec, ordered_by = "degree")

If you want to exclude a method for the plot, you can remove it with the
step parameter. In the following example we eliminate from the graph the
results of maaslin

intersection_plt(test_prep_rec, steps = steps_ids(test_prep_rec, "da")[-1])

intersection_plt function needs a PrepRecipe. If you pass a a non-prep
Recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(intersection_plt(test_rec))

err

metaHIV_phy Phyloseq object from metaHIV project

Description

A Phyloseq object containing abundance counts and sample_data for metaHIV project. Count reads
were annotated with Metaphlan3.

Usage

data("metaHIV_phy")

Format

A phyloseq object with 451 taxas, 30 samples, 3 sample variables and 7 taxonomic ranks.

Source

s3://fcatala-09142020-eu-west-1/cloud_test/SpeciesQuantification/Kraken2

22 mutual_plt

mutual_plt Mutual finding plot

Description

Plots number of differentially abundant features mutually found by defined number of methods,
colored by the differential abundance direction and separated by comparison.

Usage

mutual_plt(
rec,
count_cutoff = NULL,
comparisons = NULL,
steps = steps_ids(rec, type = "da"),
top_n 20
)

S4 method for signature 'Recipe'’
mutual_plt(
rec,
count_cutoff = NULL,
comparisons = NULL,
steps = steps_ids(rec, type = "da"),
top_n = 20
)

S4 method for signature 'PrepRecipe
mutual_plt(
rec,
count_cutoff = NULL,
comparisons = NULL,
steps = steps_ids(rec, type = "da"),
top_n = 20

Arguments

rec A Recipe or Recipe step.

count_cutoff Indicates the minimum number of methods in which an OTU must be present
(Default: NULL). If count_cutoff is NULL count_cutoff is equal to length(steps_ids(rec,
"da")) *x2/ 3.

comparisons By default, this function plots all comparisons. However, if the user indicates
the comparison or comparisons of interest, only the selected ones will be plotted.

steps Character vector with step_ids to take in account. Default all "da" methods.

top_n Maximum number of taxa to represent. Default: 20.

otu_table 23

Value

ggplot2

Examples

data(test_prep_rec)

Running the function returns a tile plot,
mutual_plt(test_prep_rec)

The count_cutoff indicates the minimum number of methods in which an OTU
must be present. By default the value is equal to
length(steps_ids(rec, "da")) * 2 / 3 but it is customizable.
mutual_plt(
test_prep_rec,
count_cutoff = length(steps_ids(test_prep_rec, "da"))
)

A single comparisons can be plotted through the comparison parameter.
mutual_plt(test_prep_rec, comparisons = c("hts_msm"))

If you want to exclude a method for the plot, you can remove it with the
step parameter. In the following example we eliminate from the graph the
results of maaslin.

mutual_plt(test_prep_rec, steps = steps_ids(test_prep_rec, "da")[-11])

mutual_plt function needs a PrepRecipe. If you pass a a non-PrepRecipe
the output is an error.

data(test_rec)

err <- testthat::expect_error(mutual_plt(test_rec))

err

otu_table Extracts otu_table from phyloseq inside a Recipe

Description

Extracts otu_table from phyloseq inside a Recipe

Usage

otu_table(rec)

S4 method for signature 'Recipe'’
otu_table(rec)

Arguments

rec A Recipe or Recipe step.

24 overlap_df

Value

A tibble

Examples

data(metaHIV_phy)

Define recipe
rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species”)

Extract otu_table from phyloseq object
otu_table(rec)

overlap_df Overlap of significant OTUs between tested methods.

Description

Overlap of significant OTUs between tested methods.

Usage
overlap_df(rec, steps = steps_ids(rec, "da"), type = "all")
S4 method for signature 'Recipe'’
overlap_df(rec, steps = steps_ids(rec, "da"), type = "all")

S4 method for signature 'PrepRecipe'’
overlap_df(rec, steps = steps_ids(rec, "da"), type = "all")

Arguments
rec A Recipe object.
steps Character vector with step_ids to take in account.
type Indicates whether to use all taxa ("all") or only those that are differentially abun-
dant in at least one method ("da"). Default as "all".
Value

df

pastry_df 25

Examples

data(test_prep_rec)

Running the function returns a UpSet plot ordered by frequency.
df <- overlap_df(test_prep_rec, steps_ids(test_prep_rec, "da"))
head(df)

If you want to exclude a method for the plot, you can remove it with the
step parameter. In the following example we eliminate from the graph the
results of maaslin

overlap_df (test_prep_rec, steps = steps_ids(test_prep_rec, "da")[-1])

overlap_df function needs a prep-Recipe. If you pass a a non-prep
Recipe the output is an error.

data(test_rec)

err <- testthat::expect_error(overlap_df(test_rec))

err

pastry_df Pastery data for step id generation

Description

Tibble contain

Format

A tbl_df object with 228 unique pasteries.

Value

tibble with pastry names

Source

https://raw.githubusercontent.com/prasertcbs/basic-dataset/master/pastry.csv

phyloseq_or_null-class
Recipe-class object

Description

A Recipe is a description of the steps to be applied to a data set in order to prepare it for data
analysis.

26

Usage

phy_qc

S4 method for signature 'PrepRecipe'’
show(object)

Arguments

object A Recipe object.

Value

Recipe-class object

Slots

phyloseq Phyloseq-class object.

var_info A tibble that contains the current set of terms in the data set. This initially defaults to

the same data contained in var_info.

tax_info A tibble that contains the current set of taxonomic levels that will be used in the analysis.

steps List of step-class objects that will be used by DA.

phy_gc

Phyloseq Quality Control Metrics

Description

phy_qc() returns a tibble. It will have information about some important metrics about the sparsity
of the count matrix. The content of the table is as follows:

Usage

var_levels: levels of the categorical variable of interest. "all" refers to all rows of the dataset
(without splitting by categorical levels).

n: total number of values in the count matrix.

n_zero: number of zeros in the count matrix.

pct_zero: percentage of zeros in the count matrix.

pct_all_zero: percentage of taxa with zero counts in all samples.
pct_singletons: percentage of taxa with counts in a single sample.
pct_doubletons: percentage of taxa with counts in two samples.
count_mean: average of the mean counts per sample.

count_min: average of the min counts per sample.

count_max: average of the max counts per sample.

phy_qc(rec)

S4 method for signature 'Recipe'’
phy_qc(rec)

prep 27

Arguments

rec A Recipe or Recipe step.

Value

A tibble

Examples

data(metaHIV_phy)

Define Recipe
rec <- recipe(metaHIV_phy, var_info = "RiskGroup2", tax_info = "Species”)

phy_gc(rec)

prep Performs all the steps defined in a Recipe

Description

For a Recipe with at least one preprocessing or DA operation run the steps in a convenient order.

Usage
prep(rec, parallel = TRUE, workers = future::availableCores(), force = FALSE)
S4 method for signature 'Recipe'’
prep(rec, parallel = TRUE, workers = future::availableCores(), force = FALSE)
Arguments
rec A Recipe object. and furrr packages.
parallel if FALSE, no palatalization. if TRUE, parallel execution using future and furrr
packages.
workers Number of workers for palatalization.
force Force the reexecution of all steps. This remove previous results.
Value

A PrepRecipe object.

28 PrepRecipe-class

Examples

data(metaHIV_phy)

Define Recipe

rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2", tax_info = "Class") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.03 * length(x))") |>
step_maaslin()

Prep Recipe
da_results <- prep(rec)

If you try

Consensus strategy

n_methods <- 2

da_results <- bake(da_results, count_cutoff = n_methods)

da_results

If you try to run prep on an object of class PrepRecipe it returns an

error.
err <- testthat::expect_error(prep(da_results))
err

You can force the overwrite with:
prep(rec, force = TRUE)

This function can operate in parallel thanks to future and furrr packages.
prep(rec, parallel = TRUE, workers = 2)

PrepRecipe-class PrepRecipe-class object

Description

A PrepRecipe is Recipe with the results corresponding to the steps defined in the Recipe.

Value

PrepRecipe-class object

Slots

results Contains the results of all defined analysis in the Recipe.

bakes Contains the executed bakes.

prep_recipe

prep_recipe Create a PrepRecipe.

Description

A PrepRecipe is Recipe with the results corresponding to the steps defined in the Recipe.

Usage

prep_recipe(rec, results, bakes)

Arguments
rec A Recipe object.
results list with the results
bakes list with saved bakes
Value

An object of class PrepRecipe.

rand_id Make a random identification field for steps

Description

Make a random identification field for steps

Usage

rand_id(prefix = "step")

Arguments

prefix A single character string

Value

A character string with the prefix and random letters separated by and underscore.

Examples

rand_id("step"”)

30 read_data

read_data Loads Phyloseq data

Description

This function returns a validated Phyloseq object by loading it directly from a file with the .rds
extension. Alternatively, this function can also take three text files as input that will be used to
construct and validate the Phyloseq object: - Counts matrix with the otu_id in the first column.
- Taxonomic annotation matrix with the otu_id in the first column. - Metadata annotation with
sample_id in the first column.

Usage
read_data(data_path)
validate_otu(otu)
validate_sample_data(sample_data)
validate_tax_table(tax_table)
validate_phyloseq(phy, slots = c("”sample_data”, "tax_table"))
read_phyloseq(file_path)
read_file(file_path, ext = c(".txt].csv]|.tsv"))

Arguments

data_path List of length 1 or 3, with the paths of the input files.

Value

a phylseq-class object

Examples

From a phyloseq object saved with .rds extension.
system.file("extdata”, "metaHIV_phy.rds”, package = "dar") |>
read_data()

From the three components of a phyloseq object saved as a plain text.
data_path <- c(
system.file("extdata”, "metaHIV_counts.txt", package = "dar"),
system.file("extdata”, "metaHIV_metadata.txt"”, package = "dar"),
system.file("extdata”, "metaHIV_taxas.txt"”, package = "dar")

)

read_data(data_path)

recipe 31

recipe Create a Recipe for preprocessing data

Description

A Recipe is a description of the steps to be applied to a data set in order to prepare it for data
analysis.

Usage

recipe(
microbiome_object = NULL,
var_info = NULL,
tax_info = NULL,
steps = list()
)

Arguments

microbiome_object
Phyloseq-class object or TreeSummarizedExperiment-class object.

var_info A character string of column names corresponding to variables that will be used
in any context.
tax_info A character string of taxonomic levels that will be used in any context.
steps list with steps.
Value

An object of class Recipe with sub-objects:

phyloseq object of class phyloseq with taxa abundance information.
var_info A tibble that contains the current set of terms in the data set. This initially
defaults to the same data contained in var_info.
tax_info A tibble that contains the current set of taxonomic levels that will be used in the
analysis.
Examples

data(metaHIV_phy)

Define recipe

rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Phylum"”) |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.3 * length(x))") |>
step_metagenomeseq(rm_zeros = 0.01) |>
step_maaslin()

32 recipes_pkg_check

Prep recipe
da_results <- prep(rec)

Consensus strategy
n_methods <- 2
da_results <- bake(da_results, count_cutoff = n_methods)

Results
cool(da_results)

You can also crate a recipe without var and tax info
rec <- recipe(metaHIV_phy)

rec

And define them later
rec <- rec |>
add_var ("RiskGroup2") |>
add_tax("Genus")

rec

When trying to add an identical step to an existing one, the system
returns an information message.

rec <- step_aldex(rec)

rec <- step_aldex(rec)

The same with bake
da_results <- bake(da_results)
da_results <- bake(da_results)

recipes_pkg_check Update packages

Description

This will check to see if all required packages are installed.

Usage
recipes_pkg_check(pkg = NULL, step_name, ...)
Arguments
pkg A character string for the package being checked
step_name Name of the step.

Extra arguments to pass to utils::install.packages()

required_deps 33

Value

Nothing is returned but a message is printed to the console about which packages (if any) should be
installed along with code to do so.

required_deps Returns required pakcages for Recipe object

Description

Returns required pakcages for Recipe object

Usage
required_deps(rec)

S4 method for signature 'Recipe’
required_deps(rec)

Arguments

rec A Recipe object

Value

character

Examples
data(test_rec)

The function returns instructions to install any uninstalled dependencies
needed to run the Recipe steps
dar:::required_deps(test_rec)

The function also works with PrepRecipe-class objects
data(test_prep_rec)
dar:::required_deps(test_prep_rec)

34 step

sample_data Extracts sample_data from phyloseq inside a Recipe

Description

Extracts sample_data from phyloseq inside a Recipe

Usage

sample_data(rec)

S4 method for signature 'Recipe'’
sample_data(rec)
Arguments

rec A Recipe or Recipe step.

Value

A tibble

Examples

data(metaHIV_phy)

Define recipe
rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species”)

Extract sample_data from phyloseq object
sample_data(rec)

step Overall Wrappers to Make New step_X or check_Y Objects

Description

step sets the class of the step and check is for checks.

Usage

step(subclass, ..., .prefix = "step_")

check(subclass, ..., .prefix = "check_")

steps_ids 35

Arguments
subclass A character string for the resulting class. For example, if subclass = "blah”
the step object that is returned has class step_blah or check_blah depending
on the context.
All arguments to the operator that should be returned.
.prefix Prefix to the subclass created.
Value

An updated step or check with the new class.

steps_ids Get step_ids from recipe

Description

Get step_ids from recipe

Usage

steps_ids(rec, type = "all")

Arguments

rec A Recipe object.

type character vector indicating the type class. Options c("all”, "da", "prepro”).
Value

character vector

Examples

data(test_rec)

We can extract the step identifiers from a Recipe with “step_ids”
ids <- steps_ids(test_rec)
ids

With the “type” parameter, extract the prepro and da steps separately.
da_ids <- steps_ids(test_rec, type = "da")
da_ids

prepro_ids <- steps_ids(test_rec, type = "prepro”)
prepro_ids

36 step_aldex

step_aldex ALDEX2 analysis

Description

A differential abundance analysis for the comparison of two or more conditions. For example,
single-organism and meta-RNA-seq high-throughput sequencing assays, or of selected and unse-
lected values from in-vitro sequence selections. Uses a Dirichlet-multinomial model to infer abun-
dance from counts, that has been optimized for three or more experimental replicates. Infers sam-
pling variation and calculates the expected false discovery rate given the biological and sampling
variation using the Wilcox rank test or Welches t-test (aldex.ttest) or the glm and Kruskal Wallis
tests (aldex.glm). Reports both P and fdr values calculated by the Benjamini Hochberg correction
(Not supported in dar package).

Usage

step_aldex(
rec,
max_significance = 0.05,
mc.samples = 128,
denom = "all”,
rarefy = FALSE,
id = rand_id("aldex")
)

S4 method for signature 'Recipe'’
step_aldex(
rec,
max_significance = 0.05,
mc.samples = 128,
denom = "all",
rarefy = FALSE,
id = rand_id("aldex")
)

S4 method for signature 'PrepRecipe'’
step_aldex(

rec,

max_significance = 0.05,

mc.samples = 128,

denom = "all",

rarefy = FALSE,

id = rand_id("aldex")

step_aldex 37

Arguments

rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.

max_significance
Benjamini-Hochberg corrected P value of Welch’s t test cutoff.

mc.samples The number of Monte Carlo instances to use to estimate the underlying distri-
butions; since we are estimating central tendencies, 128 is usually sufficient, but
larger numbers may be .

denom An any variable (all, iglr, zero, lvha, median, user) indicating features to use as
the denominator for the Geometric Mean calculation The default "all" uses the
geometric mean abundance of all features. Using "median" returns the median
abundance of all features. Using "iqlr" uses the features that are between the
first and third quartile of the variance of the clr values across all samples. Using
"zero" uses the non-zero features in each grop as the denominator. This approach
is an extreme case where there are many nonzero features in one condition but
many zeros in another. Using "lvha" uses features that have low variance (bot-
tom quartile) and high relative abundance (top quartile in every sample). It is
also possible to supply a vector of row indices to use as the denominator. Here,
the experimentalist is determining a-priori which rows are thought to be invari-
ant. In the case of RNA-seq, this could include ribosomal protein genes and and
other house-keeping genes. This should be used with caution because the offsets
may be different in the original data and in the data used by the function because
features that are 0 in all samples are removed by aldex.clr.

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the
standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.

Details

The run_aldex function is a wrapper that performs log-ratio transformation and statistical testing in
a single line of code. Specifically, this function: (a) generates Monte Carlo samples of the Dirichlet
distribution for each sample, (b) converts each instance using a log-ratio transform, then (c) returns
test results for two sample (Welch’s t, Wilcoxon) test. This function also estimates effect size for
two sample analyses.

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_ancom(), step_corncob(), step_deseq(), step_lefse(), step_maaslin(),
step_metagenomeseq(), step_wilcox()

38 step_ancom

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2”, "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.4 * length(x))")
rec

Define ALDEX step with default parameters and prep
rec <-

step_aldex(rec) |>

prep(parallel = FALSE)

rec
Wearing rarefaction only for this step
rec <-
recipe(metaHIV_phy, "RiskGroup2"”, "Species"”) |>
step_aldex(rarefy = TRUE)

rec

step_ancom ANCOM analysis

Description

Determine taxa whose absolute abundances, per unit volume, of the ecosystem (e.g., gut) are sig-
nificantly different with changes in the covariate of interest (e.g., group). The current version of
ancombc?2 function implements Analysis of Compositions of Microbiomes with Bias Correction
(ANCOM-BC2) in cross-sectional and repeated measurements data. In addition to the two-group
comparison, ANCOM-BC?2 also supports testing for continuous covariates and multi-group com-
parisons, including the global test, pairwise directional test, Dunnett’s type of test, and trend test.

Usage

step_ancom(
rec,
fix_formula = get_var(rec)[[1]],
rand_formula = NULL,
p_adj_method = "holm”,
prv_cut = 0.1,
lib_cut = 0,
s@_perc = 0.05,
group = NULL,

step_ancom

)

struc_zero = FALSE,
neg_lb = FALSE,
alpha = 0.05,

n_cl =1,

verbose = FALSE,
global = FALSE,
pairwise = FALSE,
dunnet = FALSE,
trend = FALSE,
rarefy = FALSE,

id = rand_id("ancom")

S4 method for signature 'Recipe'’
step_ancom(

)

rec,

fix_formula = get_var(rec)[[1]1],
rand_formula = NULL,
p_adj_method = "holm",

prv_cut = 0.1,

lib_cut = 9,
s@_perc = 0.05,
group = NULL,

struc_zero = FALSE,
neg_lb = FALSE,
alpha = 0.05,

n_cl =1,

verbose = FALSE,
global = FALSE,
pairwise = FALSE,
dunnet = FALSE,
trend = FALSE,
rarefy = FALSE,

id = rand_id("ancom")

S4 method for signature 'PrepRecipe'’
step_ancom(

rec,

fix_formula = get_var(rec)[[11],
rand_formula = NULL,
p_adj_method = "holm”,

prv_cut = 0.1,

lib_cut = 0,
s@_perc = 0.05,
group = NULL,

struc_zero = FALSE,
neg_lb = FALSE,

39

40

alpha = 0.05,
n_cl =1

step_ancom

verbose = FALSE,
global = FALSE,
pairwise = FALSE,
dunnet = FALSE,

trend = FALSE,

rarefy = FALSE,

id = rand_id("ancom")

Arguments

rec

fix_formula

rand_formula

p_adj_method

prv_cut

lib_cut

s@_perc

group

struc_zero

neg_lb

A Recipe object. The step will be added to the sequence of operations for this
Recipe.

the character string expresses how the microbial absolute abundances for each
taxon depend on the fixed effects in metadata. When specifying the fix_formula,
make sure to include the group variable in the formula if it is not NULL.

the character string expresses how the microbial absolute abundances for each
taxon depend on the random effects in metadata. ANCOM-BC2 follows the
ImerTest package in formulating the random effects. See ?lmerTest::Imer for
more details. Default is NULL.

character. method to adjust p-values. Default is "holm". Options include
"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See
7stats::p.adjust for more details.

a numerical fraction between 0 and 1. Taxa with prevalences less than prv_cut
will be excluded in the analysis. For instance, suppose there are 100 samples,
if a taxon has nonzero counts presented in less than 10 samples, it will not be
further analyzed. Default is 0.10.

a numerical threshold for filtering samples based on library sizes. Samples with
library sizes less than lib_cut will be excluded in the analysis. Default is 0, i.e.
do not discard any sample.

a numerical fraction between 0 and 1. Inspired by Significance Analysis of
Microarrays (SAM) methodology, a small positive constant is added to the de-
nominator of ANCOM-BC?2 test statistic corresponding to each taxon to avoid
the significance due to extremely small standard errors, especially for rare taxa.
This small positive constant is chosen as sO_perc-th percentile of standard error
values for each fixed effect. Default is 0.05 (5th percentile).

character. The name of the group variable in metadata. group should be discrete.
Specifying group is required for detecting structural zeros and performing multi-
group comparisons (global test, pairwise directional test, Dunnett’s type of test,
and trend test). Default is NULL. If the group of interest contains only two
categories, leave it as NULL.

logical. Whether to detect structural zeros based on group. Default is FALSE.
See Details for a more comprehensive discussion on structural zeros.

logical. Whether to classify a taxon as a structural zero using its asymptotic
lower bound. Default is FALSE.

step_ancom 41

alpha numeric. Level of significance. Default is 0.05.

n_cl numeric. The number of nodes to be forked. For details, see ?parallel::makeCluster.
Default is 1 (no parallel computing).

verbose logical. Whether to generate verbose output during the ANCOM-BC2 fitting
process. Default is FALSE.

global logical. Whether to perform the global test. Default is FALSE.

pairwise logical. Whether to perform the pairwise directional test. Default is FALSE.

dunnet logical. Whether to perform the Dunnett’s type of test. Default is FALSE.

trend logical. Whether to perform trend test. Default is FALSE.

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the

standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_corncob(), step_deseq(), step_lefse(), step_maaslin(),
step_metagenomeseq(), step_wilcox()

Examples

Not run:
data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.4 * length(x))")
rec
Define step with default parameters and prep
rec <-

step_ancom(rec) |>

prep(parallel = FALSE)

rec

Wearing rarefaction only for this step

42 step_corncob

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species") |>
step_ancom(rarefy = TRUE)

rec

End(Not run)

step_corncob corncob analysis

Description

Corncob an individual taxon regression model that uses abundance tables and sample data. corn-
cob is able to model differential abundance and differential variability, and addresses each of the
challenges presented below:

Usage

step_corncob(
rec,
phi.formula = stats::formula(~1),
formula_null = stats::formula(~1),
phi.formula_null = stats::formula(~1),
link = "logit",
phi.link = "logit",
test = "Wald”,
boot = FALSE,
B = 1000,
filter_discriminant = TRUE,
fdr_cutoff = 0.05,
fdr = "fdr",
log2FC = 0,
rarefy = FALSE,
id = rand_id("corncob")

)

S4 method for signature 'Recipe’
step_corncob(
rec,
phi.formula = stats::formula(~1),
formula_null = stats::formula(~1),
phi.formula_null = stats::formula(~1),
link = "logit",
phi.link = "logit",
test = "Wald",
boot = FALSE,

step_corncob

B = 1000,

43

filter_discriminant = TRUE,
fdr_cutoff = 0.05,

fdr = "fdr",
log2FC = 0,

rarefy = FALSE,
id = rand_id("corncob")

)

S4 method for signature 'PrepRecipe'’

step_corncob(
rec,

phi.formula = stats::formula(~1),

formula_null

= stats::formula(~1),

phi.formula_null = stats::formula(~1),
link = "logit",

phi.link = "logit",

test = "Wald”,

boot = FALSE,
B = 1000,

filter_discriminant = TRUE,
fdr_cutoff = 0.05,

fdr = "fdr",
log2FC = 0,

rarefy = FALSE,
id = rand_id("corncob")

Arguments

rec

phi.formula

formula_null

A Recipe object. The step will be added to the sequence of operations for this
Recipe.

An object of class formula without the response: a symbolic description of the
model to be fitted to the dispersion.

Formula for mean under null, without response.

phi.formula_null

link
phi.link
test

boot

Formula for overdispersion under null, without response.
Link function for abundance covariates, defaults to "logit".
Link function for dispersion covariates, defaults to "logit".

Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (like-
lihood ratio test).

Boolean. Defaults to FALSE. Indicator of whether or not to use parametric
bootstrap algorithm. (See ppWald and pbLRT).

Optional integer. Number of bootstrap iterations. Ignored if boot is FALSE.
Otherwise, defaults to 1000.

44 step_corncob

filter_discriminant
Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered

out.

fdr_cutoff Integer. Defaults to 0.05. Desired type 1 error rate.

fdr Character. Defaults to "fdr". False discovery rate control method, see p.adjust
for more options.

log2FC log2FC cutoff.

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the

standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.

Details

* different sequencing depth

* excessive zeros from unobserved taxa

* high variability of empirical relative abundances (overdispersion)
* within-taxon correlation

* hypothesis testing with categorical and continuous covariates

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_deseq(), step_lefse(), step_maaslin(),
step_metagenomeseq(), step_wilcox()

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.3 * length(x))")
rec
Define step with default parameters and prep

rec <-
step_corncob(rec) |>

step_deseq 45

prep(parallel = FALSE)

rec

step_deseq DESeq?2 analysis

Description

Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distri-
bution. This function performs a default analysis through the steps: 1) estimation of size factors:
estimateSizeFactors. 2) estimation of dispersion: estimateDispersions. 3) Negative Bino-
mial GLM fitting and Wald statistics: nbinomWaldTest. For complete details on each step, see
the manual pages of the respective functions. After the DESeq function returns a DESeqDataSet
object, results tables (log2 fold changes and p-values) can be generated using the results function.
Shrunken LFC can then be generated using the 1fcShrink function.

Usage
step_deseq(
rec,
test = "Wald”,

fitType = "local”,
betaPrior = FALSE,

type = "ashr",
max_significance = 0.05,
log2FC = 0,

rarefy = FALSE,
id = rand_id("deseq")
)

S4 method for signature 'Recipe’
step_deseq(

rec,

test = "Wald",

fitType = "local”,

betaPrior = FALSE,

type = "ashr",
max_significance = 0.05,
log2FC = 0,

rarefy = FALSE,
id = rand_id("deseq")
)

S4 method for signature 'PrepRecipe'’
step_deseq(
rec,

46 step_deseq

test = "Wald”,
fitType = "local”,
betaPrior = FALSE,

type = "ashr",
max_significance = 0.05,
log2FC = 0,

rarefy = FALSE,
id = rand_id("deseq")

)
Arguments

rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.

test Either "Wald" or "LRT", which will then use either Wald significance tests (de-
fined by nbinomWaldTest), or the likelihood ratio test on the difference in de-
viance between a full and reduced model formula (defined by nbinomLRT).

fitType either "parametric", "local", "mean", or "glmGamPoi" for the type of fitting of
dispersions to the mean intensity. See estimateDispersions for description.

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients
See nbinomWaldTest for description of the calculation of the beta prior. In ver-
sions >=1.16, the default is set to FALSE, and shrunken LFCs are obtained af-
terwards using IfcShrink.

type "apeglm" is the adaptive Student’s t prior shrinkage estimator from the ’apeglm’

package; "ashr" is the adaptive shrinkage estimator from the ’ashr’ package,
using a fitted mixture of normals prior - see the Stephens (2016) reference below
for citation; "normal" is the 2014 DESeq?2 shrinkage estimator using a Normal
prior.

max_significance
The g-value threshold for significance.

log2FC log2FC cutoff.

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the
standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.
Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_corncob(), step_lefse(), step_maaslin(),
step_metagenomeseq(), step_wilcox()

step_filter_by_abundance 47

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2”, "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("Bacteria”, "Archaea")) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.4 * length(x))")
rec

Define step with default parameters and prep
rec <-

step_deseq(rec) |>

prep(parallel = FALSE)

rec

Wearing rarefaction only for this step

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species"”) |>
step_deseq(rarefy = TRUE)

rec

step_filter_by_abundance
Filter taxa by abundance

Description

This is a convenience wrapper around the filter_taxa function. It is intended to speed up filtering
complex experimental objects with one function call. In the case of filter_by_abundance, the fil-
tering will be based on the relative abundance of each taxon. The taxa retained in the dataset are
those where the sum of their abundance is greater than the product of the total abundance and the
provided threshold.

Usage

step_filter_by_abundance(

rec,

threshold = 0.01,

id = rand_id("filter_by_abundance")
)

S4 method for signature 'Recipe'’
step_filter_by_abundance(
rec,

48 step_filter_by_abundance

threshold = 9.01,
id = rand_id("filter_by_abundance")
)

S4 method for signature 'PrepRecipe'’
step_filter_by_abundance(

rec,

threshold = 0.01,

id = rand_id("filter_by_abundance")

)
Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
threshold The relative abundance threshold for filtering taxa, expressed as a proportion of
the total abundance. For example, a threshold of 0.01 means that a taxon must
make up at least 1% of the total abundance to be retained. The default value is
0.01.
id A character string that is unique to this step to identify it.
Details

The function calculates the total abundance of all taxa in the phyloseq object. It then compares this
total abundance to the abundance of each individual taxon. If a taxon’s abundance is less than the
threshold times the total abundance, that taxon is removed from the phyloseq object.

Value

A Recipe object that has been filtered based on abundance.

Note

This function modifies rec in place, you might want to make a copy of rec before modifying it if
you need to preserve the original object.

See Also

filter_taxa

Other filter phy steps: step_filter_by_prevalence(), step_filter_by_rarity(), step_filter_by_variance(),
step_filter_taxa()

Examples
data(metaHIV_phy)
Init Recipe

rec <- recipe(metaHIV_phy, "RiskGroup2", "Phylum")
rec

step_filter_by_prevalence 49

Define filter_by_abundance step with default parameters
rec <- step_filter_by_abundance(rec, threshold = 0.01)
rec

step_filter_by_prevalence
Filter taxa by prevalence

Description

This is a convenience function around the filter_taxa function. It is designed to speed up filtering
complex experimental objects with one function call. In the case of run_filter_by_prevalence, the
filtering will be based on the prevalence of each taxon. The taxa retained in the dataset are those
where the prevalence is greater than the provided threshold.

Usage

step_filter_by_prevalence(

rec,

threshold = 0.01,

id = rand_id("filter_by_prevalence")
)

S4 method for signature 'Recipe'’
step_filter_by_prevalence(

rec,

threshold = 0.01,

id = rand_id("filter_by_prevalence")

)

S4 method for signature 'PrepRecipe
step_filter_by_prevalence(

rec,

threshold = 0.01,

id = rand_id("filter_by_prevalence")

)
Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
threshold The prevalence threshold for filtering taxa, expressed as a proportion of the total

number of samples. For example, a threshold of 0.01 means that a taxon must
be present in at least 1% of the samples to be retained. The default value is 0.01.

id A character string that is unique to this step to identify it.

50 step_filter_by_rarity

Details

The function calculates the prevalence of all taxa in the phyloseq object as the proportion of samples
in which they are present. It then compares this prevalence to the threshold. If a taxon’s prevalence
is less than the threshold, that taxon is removed from the phyloseq object.

Value

A Recipe object that has been filtered based on prevalence.

Note

This function modifies rec in place, you might want to make a copy of rec before modifying it if
you need to preserve the original object.

See Also
filter_taxa

Other filter phy steps: step_filter_by_abundance(), step_filter_by_rarity(), step_filter_by_variance(),
step_filter_taxa()

Examples

data(metaHIV_phy)

Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2", "Phylum")
rec

Define step_filter_by_prevalence step with default parameters
rec <- step_filter_by_prevalence(rec, threshold = 0.01)
rec

step_filter_by_rarity Filter taxa by rarity

Description

This is a convenience function around the filter_taxa function. It is designed to speed up filtering
complex experimental objects with one function call. In the case of run_filter_by_rarity, the filtering
will be based on the rarity of each taxon. The taxa retained in the dataset are those where the sum
of their rarity is less than the provided threshold.

step_filter_by_rarity 51

Usage
step_filter_by_rarity(rec, threshold = 0.01, id = rand_id("filter_by_rarity"))
S4 method for signature 'Recipe'’
step_filter_by_rarity(rec, threshold = 0.01, id = rand_id("filter_by_rarity"))

S4 method for signature 'PrepRecipe’
step_filter_by_rarity(rec, threshold = 0.01, id

rand_id("filter_by_rarity"))

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
threshold The rarity threshold for filtering taxa, expressed as a proportion of the total
number of samples. For example, a threshold of 0.01 means that a taxon must
be present in less than 1% of the samples to be retained. The default value is
0.01.
id A character string that is unique to this step to identify it.
Details

The function calculates the rarity of all taxa in the phyloseq object as the proportion of samples in
which they are present. It then compares this rarity to the threshold. If a taxon’s rarity is greater
than the threshold, that taxon is removed from the phyloseq object.

Value

A Recipe object that has been filtered based on rarity.

Note
This function modifies rec in place, you might want to make a copy of rec before modifying it if
you need to preserve the original object.

See Also

filter_taxa

Other filter phy steps: step_filter_by_abundance(), step_filter_by_prevalence(), step_filter_by_variance(),
step_filter_taxa()

Examples
data(metaHIV_phy)
Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2”, "Phylum")

rec

Define step_filter_by_rarity step with default parameters

52

rec <- step_filter_by_rarity(rec, threshold = 0.01)

rec

step_filter_by_variance

step_filter_by_variance
Filter taxa by variance

Description

This is a convenience function around the filter_taxa function. It is designed to speed up filtering
complex experimental objects with one function call. In the case of run_filter_by_variance, the
filtering will be based on the variance of each taxon. The taxa retained in the dataset are those
where the variance of their abundance is greater than the provided threshold.

Usage

step_filter_by_variance(
rec,
threshold = 0.01,
id = rand_id("filter_by_variance”)

)

S4 method for signature 'Recipe'’
step_filter_by_variance(

rec,

threshold = 0.01,

id = rand_id("filter_by_variance”)

)

S4 method for signature 'PrepRecipe
step_filter_by_variance(

rec,

threshold = 9.01,

id = rand_id("filter_by_variance”)

)

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
threshold The variance threshold for filtering taxa. The default value is 0.01.
id A character string that is unique to this step to identify it.
Details

The function calculates the variance of all taxa in the phyloseq object. It then compares this variance
to the variance of each individual taxon. If a taxon’s variance is less than the threshold, that taxon

is removed from the phyloseq object.

step_filter_taxa 53

Value

A Recipe object that has been filtered based on variance.

Note

This function modifies rec in place, you might want to make a copy of rec before modifying it if
you need to preserve the original object.

See Also

filter_taxa

Other filter phy steps: step_filter_by_abundance(), step_filter_by_prevalence(), step_filter_by_rarity(),
step_filter_taxa()

Examples

data(metaHIV_phy)

Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2”, "Phylum")
rec

Define step_filter_by_variance step with default parameters
rec <- step_filter_by_variance(rec, threshold = 0.01)
rec

step_filter_taxa Filter taxa based on across-sample OTU abundance criteria

Description

This function is directly analogous to the genefilter function for microarray filtering, but is used for
filtering OTUs from phyloseq objects. It applies an arbitrary set of functions — as a function list,
for instance, created by filterfun — as across-sample criteria, one OTU at a time. It takes as input a
phyloseq object, and returns a logical vector indicating whether or not each OTU passed the criteria.
Alternatively, if the "prune" option is set to FALSE, it returns the already-trimmed version of the
phyloseq object.

Usage
step_filter_taxa(rec, .f, id = rand_id("filter_taxa"))

S4 method for signature 'Recipe'’
step_filter_taxa(rec, .f, id = rand_id("filter_taxa"))

54 step_lefse

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
f A function or list of functions that take a vector of abundance values and return
a logical. Some canned useful function types are included in the genefilter-
package.
id A character string that is unique to this step to identify it.
Value

An object of class Recipe

See Also

Other filter phy steps: step_filter_by_abundance(), step_filter_by_prevalence(), step_filter_by_rarity(),
step_filter_by_variance()

Examples

data(metaHIV_phy)

Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2", "Phylum")
rec

Define filter taxa step with default parameters
rec <-

step_filter_taxa(rec, .f = "function(x) sum(x > @) >= (0.03 * length(x))")

rec

step_lefse lefse analysis

Description

Lefser is metagenomic biomarker discovery tool that is based on LEfSe tool and is published by
Huttenhower et al. 2011. Lefser is the R implementation of the LEfSe method. Using statistical
analyses, lefser compares microbial populations of healthy and diseased subjects to discover differ-
encially expressed microorganisms. Lefser than computes effect size, which estimates magnitude
of differential expression between the populations for each differentially expressed microorganism.
Subclasses of classes can also be assigned and used within the analysis.

step_lefse 55

Usage

step_lefse(
rec,
kruskal.threshold = 0.05,
wilcox.threshold = 9.05,
lda.threshold = 2,
subclassCol = NULL,
assay = 1L,
trim.names = FALSE,
rarefy = TRUE,
id = rand_id("lefse")

)

S4 method for signature 'Recipe'’
step_lefse(
rec,
kruskal.threshold = 9.05,
wilcox.threshold = 0.05,
lda. threshold = 2,
subclassCol = NULL,
assay = 1L,
trim.names = FALSE,
rarefy = TRUE,
id = rand_id("lefse")
)

S4 method for signature 'PrepRecipe'’
step_lefse(
rec,
kruskal.threshold = 9.05,
wilcox.threshold = 9.05,
lda.threshold = 2,
subclassCol = NULL,
assay = 1L,
trim.names = FALSE,
rarefy = TRUE,
id = rand_id("lefse")

Arguments

rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.

kruskal.threshold
numeric(1) The p-value for the Kruskal-Wallis Rank Sum Test (default 0.05).
wilcox.threshold

numeric(1l) The p-value for the Wilcoxon Rank-Sum Test when "blockCol’ is
present (default 0.05).

56 step_lefse

lda.threshold numeric(1) The effect size threshold (default 2.0).

subclassCol character(1) Optional column name in ’colData(expr)’ indicating the blocks,
usually a factor with two levels (e.g., ’c("adult", "senior")’; default NULL).

assay The i-th assay matrix in the ‘SummarizedExperiment’ ("expr’; default 1).
trim.names If "'TRUE’ extracts the most specific taxonomic rank of organism.
rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the

standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_corncob(), step_deseq(), step_maaslin(),
step_metagenomeseq(), step_wilcox()

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.3 * length(x))")
rec

Define step with default parameters
rec <- step_lefse(rec)
rec

Running lefse without rarefaction (not recommended)
rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species") |>
step_lefse(rarefy = FALSE)

rec

step_maaslin 57

step_maaslin MaAsLin2 analysis

Description

MaAsLin2 finds associations between microbiome meta-omics features and complex metadata in
population-scale epidemiological studies. The software includes multiple analysis methods (includ-
ing support for multiple covariates and repeated measures), filtering, normalization, and transform
options to customize analysis for your specific study.

Usage

step_maaslin(
rec,
min_abundance = 0,
min_prevalence = 0.1,
min_variance = 0,
normalization = "TSS",
transform = "LOG",
analysis_method = "LM",
max_significance = 0.25,
random_effects = NULL,
correction = "BH",
standardize = TRUE,
reference = NULL,
rarefy = FALSE,
id = rand_id("maaslin")

S4 method for signature 'Recipe'’
step_maaslin(
rec,
min_abundance = 0,
min_prevalence = 0.1,
min_variance = 0,
normalization = "TSS",
transform = "LOG",
analysis_method = "LM",
max_significance = 0.25,
random_effects = NULL,
correction = "BH",
standardize = TRUE,
reference = NULL,
rarefy = FALSE,
id = rand_id("maaslin")

58

step_maaslin

S4 method for signature 'PrepRecipe'’

step_maaslin(
rec,

min_abundance = 0,
min_prevalence = 0.1,

min_variance = 0,
normalization = "TSS",
transform = "LOG",
analysis_method = "LM",

max_significance = 0.25,
random_effects = NULL,
correction = "BH",

standardize
reference =
rarefy = FAL
id = rand_id

Arguments

rec

min_abundance

min_prevalence

min_variance

normalization

transform

= TRUE,
NULL,

SE,
("maaslin")

A Recipe object. The step will be added to the sequence of operations for this
Recipe.

The minimum abundance for each feature.

The minimum percent of samples for which a feature is detected at minimum
abundance.

Keep features with variance greater than.

The normalization method to apply. Default: "TSS". Choices: "TSS", "CLR",
"CSS", "NONE", "TMM".

The transform to apply. Default: "LOG". Choices: "LOG", "LOGIT", "AST",
"NONE".

analysis_method

The analysis method to apply. Default: "LM". Choices: "LM", "CPLM",
"ZICP", "NEGBIN", "ZINB".

max_significance

random_effects
correction
standardize

reference

rarefy

The g-value threshold for significance.

The random effects for the model, comma-delimited for multiple effects.
The correction method for computing the g-value.

Apply z-score so continuous metadata are on the same scale.

The factor to use as a reference for a variable with more than two levels provided
as a string of ’variable,reference’ semi-colon delimited for multiple variables.

Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the
standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

step_metagenomeseq 59

id A character string that is unique to this step to identify it.

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_corncob(), step_deseq(), step_lefse(),
step_metagenomeseq(), step_wilcox()

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.4 * length(x))")
rec

Define step with default parameters and prep
rec <-

step_maaslin(rec) |>

prep(parallel = FALSE)

rec

Wearing rarefaction only for this step

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species") |>
step_maaslin(rarefy = TRUE)

rec

step_metagenomeseq MetagenomeSeq analysis

Description

metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species,
etc.) that are differentially abundant between two or more groups of multiple samples. metagenome-
Seq is designed to address the effects of both normalization and under-sampling of microbial com-
munities on disease association detection and the testing of feature correlations.

60 step_metagenomeseq

Usage

step_metagenomeseq(
rec,
zeroMod = NULL,
useCSSoffset = TRUE,
useMixedModel = FALSE,
max_significance = 0.05,
log2FC = 0,
rarefy = FALSE,
rm_zeros = 0,
id = rand_id("metagenomeseq”)

)

S4 method for signature 'Recipe'’
step_metagenomeseq(
rec,
zeroMod = NULL,
useCSSoffset = TRUE,
useMixedModel = FALSE,
max_significance = 0.05,
log2FC = 0,
rarefy = FALSE,
rm_zeros = 0,
id = rand_id("metagenomeseq”)

)

S4 method for signature 'PrepRecipe’
step_metagenomeseq(
rec,
zeroMod = NULL,
useCSSoffset = TRUE,
useMixedModel = FALSE,
max_significance = 0.05,
log2FC = 0,
rarefy = FALSE,
rm_zeros = 0,
id = rand_id("metagenomeseq”)

)
Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
zeroMod The zero model, the model to account for the change in the number of OTUs

observed as a linear effect of the depth of coverage.
useCSSoffset Boolean, whether to include the default scaling parameters in the model or not.

useMixedModel Estimate the correlation between duplicate features or replicates using dupli-
cateCorrelation.

step_metagenomeseq 61

max_significance
The g-value threshold for significance.

log2FC log2FC cutoff.

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the
standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

rm_zeros Proportion of samples of the same categorical level with more than 0 counts.
id A character string that is unique to this step to identify it.
Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_corncob(), step_deseq(), step_lefse(),
step_maaslin(), step_wilcox()

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2”, "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("Bacteria”, "Archaea")) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.02 * length(x))")
rec

Define step with default parameters and prep
rec <-
step_metagenomeseq(rec, rm_zeros = 0.01) |>
prep(parallel = FALSE)

rec

Wearing rarefaction only for this step

rec <-
recipe(metaHIV_phy, "RiskGroup2", "Species"”) |>
step_metagenomeseq(rarefy = TRUE)

rec

62 step_rarefaction

step_rarefaction Resample an OTU table such that all samples have the same library
size.

Description

Please note that the authors of phyloseq do not advocate using this as a normalization procedure,
despite its recent popularity. Our justifications for using alternative approaches to address dispar-
ities in library sizes have been made available as an article in PLoS Computational Biology. See
phyloseq_to_deseq?2 for a recommended alternative to rarefying directly supported in the phyloseq
package, as well as the supplemental materials for the PLoS-CB article and the phyloseq extensions
repository on GitHub. Nevertheless, for comparison and demonstration, the rarefying procedure is
implemented here in good faith and with options we hope are useful. This function uses the standard
R sample function to resample from the abundance values in the otu_table component of the first
argument, physeq. Often one of the major goals of this procedure is to achieve parity in total num-
ber of counts between samples, as an alternative to other formal normalization procedures, which
is why a single value for the sample.size is expected. This kind of resampling can be performed
with and without replacement, with replacement being the more computationally-efficient, default
setting. See the replace parameter documentation for more details. We recommended that you ex-
plicitly select a random number generator seed before invoking this function, or, alternatively, that
you explicitly provide a single positive integer argument as rngseed.

Usage
step_rarefaction(rec, id = rand_id("rarefaction”))

S4 method for signature 'Recipe'’
step_rarefaction(rec, id = rand_id("rarefaction”))

S4 method for signature 'PrepRecipe'’
step_rarefaction(rec, id = rand_id("rarefaction”))

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
id A character string that is unique to this step to identify it.
Value

An object of class Recipe

Examples

data(metaHIV_phy)

Init Recipe

step_subset_taxa 63

rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Phylum"”) |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.03 * length(x))")
rec

Define step with default parameters and prep
rec <- step_rarefaction(rec)

rec

step_subset_taxa Subset taxa by taxonomic level

Description

This is a convenience function around the subset_taxa function from the phyloseq package. It is
designed to speed up subsetting complex experimental objects with one function call. In the case
of run_subset_taxa, the subsetting will be based on the taxonomic level of each taxon. The taxa
retained in the dataset are those where the taxonomic level matches the provided taxa.

Usage

step_subset_taxa(rec, tax_level, taxa, id = rand_id("subset_taxa"))

S4 method for signature 'Recipe’
step_subset_taxa(rec, tax_level, taxa, id = rand_id("subset_taxa"))

S4 method for signature 'PrepRecipe'’
step_subset_taxa(rec, tax_level, taxa, id = rand_id("subset_taxa"))

Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
tax_level The taxonomic level for subsetting taxa.
taxa The taxa to be retained in the dataset.
id A character string that is unique to this step to identify it.
Details

The function subsets the taxa in the phyloseq object based on the provided taxonomic level and
taxa. Only the taxa that match the provided taxa at the given taxonomic level are retained in the
phyloseq object.

64 step_to_expr

Value

A Recipe object that has been subsetted based on taxonomic level.

Note

This function modifies rec in place, you might want to make a copy of rec before modifying it if
you need to preserve the original object.

See Also

subset_taxa

Examples

data(metaHIV_phy)

Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2", "Species")
rec

Define step_subset_taxa step with default parameters
rec <- step_subset_taxa(

rec,
tax_level = "Kingdom”,
taxa = c("Bacteria”, "Archaea")
)
rec
step_to_expr Extracts parameters from steps and makes a character vector with the
expression to evaluate
Description

Extracts parameters from steps and makes a character vector with the expression to evaluate

Usage

step_to_expr(step)

Arguments

step object of class step

Value

character vector

step_wilcox 65

step_wilcox Wilcox analysis

Description

Performs a wilcox test to determine features (be it Operational Taxanomic Unit (OTU), species,
etc.) that are differentially abundant between two or more groups of multiple samples.

Usage

step_wilcox(
rec,
norm_method = "compositional”,
max_significance = 0.05,
p_adj_method = "BH",
rarefy = FALSE,
id = rand_id("wilcox")

)

S4 method for signature 'Recipe’
step_wilcox(
rec,
norm_method = "compositional”,
max_significance = 0.05,
p_adj_method = "BH",
rarefy = FALSE,
id = rand_id("wilcox")

)

S4 method for signature 'PrepRecipe'’
step_wilcox(

rec,

norm_method = "compositional”,

max_significance = 0.05,

p_adj_method = "BH",

rarefy = FALSE,

id = rand_id("wilcox")

)
Arguments
rec A Recipe object. The step will be added to the sequence of operations for this
Recipe.
norm_method Transformation to apply. The options include: ’compositional’ (ie relative abun-

dance), ’Z’, ’log10’, ’log10p’, ’hellinger’, ’identity’, ’clr’, ’alr’, or any method
from the vegan::decostand function.

66 step_wilcox

max_significance
The g-value threshold for significance.

p_adj_method Character. Specifying the method to adjust p-values for multiple comparisons.
Default is “BH” (Benjamini-Hochberg procedure).

rarefy Boolean indicating if OTU counts must be rarefyed. This rarefaction uses the
standard R sample function to resample from the abundance values in the otu_table
component of the first argument, physeq. Often one of the major goals of this
procedure is to achieve parity in total number of counts between samples, as
an alternative to other formal normalization procedures, which is why a single
value for the sample.size is expected. If 'no_seed’, rarefaction is performed
without a set seed.

id A character string that is unique to this step to identify it.

Value

An object of class Recipe

See Also

Other Diff taxa steps: step_aldex(), step_ancom(), step_corncob(), step_deseq(), step_lefse(),
step_maaslin(), step_metagenomeseq()

Examples

data(metaHIV_phy)

Init Recipe

rec <-
recipe(metaHIV_phy, "RiskGroup2”, "Phylum") |>
step_subset_taxa(tax_level = "Kingdom”, taxa = c("”Bacteria”, "Archaea”)) |>

step_filter_taxa(.f = "function(x) sum(x > @) >= (0.4 * length(x))")
rec

Define step with default parameters and prep
rec <-

step_wilcox(rec) |>

prep(parallel = FALSE)

rec
Wearing rarefaction only for this step
rec <-
recipe(metaHIV_phy, "RiskGroup2"”, "Species"”) |>
step_wilcox(rarefy = TRUE)

rec

tax_table 67

tax_table Extracts tax_table from phyloseq inside a Recipe

Description

Extracts tax_table from phyloseq inside a Recipe

Usage

tax_table(rec)

S4 method for signature 'Recipe'’
tax_table(rec)
Arguments

rec A Recipe or Recipe step.

Value

A tibble

Examples
data(metaHIV_phy)
Define recipe

rec <-
recipe(metaHIV_phy, var_info = "RiskGroup2"”, tax_info = "Species")

Extract tax_table from phyloseq object
tax_table(rec)

test_prep_rec PrepRecipe for metaHIV_phy data

Description
A Recipe created for a metaHIV_phy object uning "Riskgroup2" as a var_info and "Genus" as a
tax_info. Also includes step_deseq, step_maaslin and step_metagenomeSeq.

Usage

data("test_prep_rec")

Format

A PrepRecipe object.

68 tidyeval

test_rec Recipe for metaHIV_phy data

Description

A Recipe created for a metaHIV_phy object uning "Riskgroup2" as a var_info and "Genus" as a
tax_info.

Usage

data("test_rec"”)

Format

A Recipe object.

tidyeval Tidy eval helpers

Description

This page lists the tidy eval tools reexported in this package from rlang. To learn about using tidy
eval in scripts and packages at a high level, see the dplyr programming vignette and the ggplot2 in
packages vignette. The Metaprogramming section of Advanced R may also be useful for a deeper
dive.

* The tidy eval operators {{, ! !, and ! ! ! are syntactic constructs which are specially interpreted
by tidy eval functions. You will mostly need {{, as !! and !!! are more advanced operators
which you should not have to use in simple cases.

The curly-curly operator {{ allows you to tunnel data-variables passed from function argu-
ments inside other tidy eval functions. {{ is designed for individual arguments. To pass
multiple arguments contained in dots, use . . . in the normal way.

my_function <- function(data, var, ...) {
data %>%
group_by(...) %>%
summarise(mean = mean({{ var 1}}))

}

* enquo() and enquos() delay the execution of one or several function arguments. The former
returns a single expression, the latter returns a list of expressions. Once defused, expressions
will no longer evaluate on their own. They must be injected back into an evaluation context
with !'! (for a single expression) and !'!' ! (for a list of expressions).

https://dplyr.tidyverse.org/articles/programming.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://adv-r.hadley.nz/metaprogramming.html
https://adv-r.hadley.nz

tidyeval 69

my_function <- function(data, var, ...) {
Defuse
var <- enquo(var)
dots <- enquos(...)

Inject

data %>%
group_by(!!!dots) %>%
summarise(mean = mean(!!var))

}

In this simple case, the code is equivalent to the usage of {{ and ... above. Defusing with
enquo() or enquos() is only needed in more complex cases, for instance if you need to
inspect or modify the expressions in some way.

* The .data pronoun is an object that represents the current slice of data. If you have a variable
name in a string, use the .data pronoun to subset that variable with [[.

my_var <- "disp”
mtcars %>% summarise(mean = mean(.data[[my_var]]))

* Another tidy eval operator is : =. It makes it possible to use glue and curly-curly syntax on the
LHS of =. For technical reasons, the R language doesn’t support complex expressions on the
left of =, so we use := as a workaround.

my_function <- function(data, var, suffix = "foo") {
Use “{{° to tunnel function arguments and the usual glue
operator “{° to interpolate plain strings.
data %>%
summarise("{{ var }}_mean_{suffix}" := mean({{ var 1}}))

}

* Many tidy eval functions like dplyr: :mutate() or dplyr: :summarise() give an automatic
name to unnamed inputs. If you need to create the same sort of automatic names by yourself,
use as_label(). For instance, the glue-tunnelling syntax above can be reproduced manually
with:

my_function <- function(data, var, suffix = "foo") {
var <- enquo(var)
prefix <- as_label(var)
data %>%
summarise("{prefix}_mean_{suffix}" := mean(!!var))

3

Expressions defused with enquo() (or tunnelled with {{) need not be simple column names,
they can be arbitrarily complex. as_label() handles those cases gracefully. If your code
assumes a simple column name, use as_name() instead. This is safer because it throws an
error if the input is not a name as expected.

Value

The function does not return a value explicitly.

70 to_tibble

Examples

“enquo()” defuses the expression supplied by your user
f <- function(arg) {
rlang: :enquo(arg)

}

f(a+1)

“enquos()” works with arguments and dots. It returns a list of
expressions

f <= function(...) {

rlang::enquos(...)

3

f(+1, 2x%10)

Let's create some symbols:
foo <- quote(foo)

bar <- rlang::sym("bar")

as_name() converts symbols to strings:
foo

rlang: :as_name(foo)
typeof (bar)
typeof (rlang: :as_name(bar))

as_name() unwraps quosured symbols automatically:
rlang::as_name(rlang: :quo(foo))

as_label() is useful with quoted expressions:
rlang::as_label(rlang: :expr(foo(bar)))

rlang::as_label(rlang: :expr(foobar))
It works with any R object. This is also useful for quoted
arguments because the user might unquote constant objects:

rlang::as_label(1:3)

rlang::as_label(base::list)

to_tibble Wrapper to convert phyloseq slots to tibble

Description

Wrapper to convert phyloseq slots to tibble

use_rarefy 71

Usage

to_tibble(df, id_name = "otu_id")

Arguments

df output of otu_table(), sample_data() or tax_table() phyloseq functions.

id_name Name of the new column generated from rownames

Value

tibble

Examples

data(test_rec)

otu_table <-
get_phy(test_rec) [|>
phyloseq: :otu_table()

dar:::to_tibble(otu_table)

use_rarefy Perform Rarefaction on Phyloseq Object

Description

This function performs rarefaction on a phyloseq object if the rarefy parameter is set to TRUE.

Rarefaction is a process that randomly subsamples the data to a specified depth. This is done to

account for differences in sequencing depth between samples. However, this process is not without

controversy. Rarefaction can lead to loss of information and can also lead to false positives in differ-

ential abundance testing. For more information, see https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-
019-0650-2

Usage
use_rarefy(phy, rarefy)

Arguments
phy A phyloseq object.
rarefy A logical value indicating whether to perform rarefaction. If 'no_seed’, rarefac-
tion is performed without a set seed. If FALSE, no rarefaction is performed.
Value

A phyloseq object after rarefaction if rarefy is TRUE or "no_seed", otherwise the original phyloseq
object is returned.

72 zero_otu

Examples

data(metaHIV_phy)

With seed
phy_rarefied <- dar:::use_rarefy(metaHIV_phy, TRUE)

Witout seed
phy_rarefied <- dar:::use_rarefy(metaHIV_phy, "no_seed")

zero_otu Extract outs with all 0 values in at least on level of the variable

Description

Extract outs with all O values in at least on level of the variable

Usage
zero_otu(obj, var = NULL, pct_cutoff = 0)
S4 method for signature 'Recipe'’
zero_otu(obj, var = NULL, pct_cutoff = @)
S4 method for signature 'phyloseq'
zero_otu(obj, var = NULL, pct_cutoff = 0)
Arguments
obj A Recipe or phyloseq object.
var Variable of interest. Must be present in the metadata.
pct_cutoff Minimum of pct counts samples with counts for each taxa.
Value

character vector

Examples

data(metaHIV_phy)

Init Recipe
rec <- recipe(metaHIV_phy, "RiskGroup2"”, "Species")

Extract outs with all @ values
zero_otu(rec)

%>%

73

%>% Pipe operator

Description

Pipe operator

Value

The result of calling rhs(1hs).

Index

+ Bake steps
bake, 8

+ Diff taxa steps
step_aldex, 36
step_ancom, 38
step_corncob, 42
step_deseq, 45
step_lefse, 54
step_maaslin, 57
step_metagenomeseq, 59
step_wilcox, 65

* datasets
metaHIV_phy, 21
test_prep_rec, 67
test_rec, 68

« filter phy steps
step_filter_by_abundance, 47
step_filter_by_prevalence, 49
step_filter_by_rarity, 50
step_filter_by_variance, 52
step_filter_taxa, 53

* internal
%>%, 13
add_step, 6
dar-package, 4
get_comparisons, 15
pastry_df, 25
prep_recipe, 29
read_data, 30
recipes_pkg_check, 32
required_deps, 33
step, 34
step_ancom, 38
step_to_expr, 64
tidyeval, 68
to_tibble, 70
use_rarefy, 71

* rarefaction phy steps
step_rarefaction, 62

74

* subset phy steps
step_subset_taxa, 63

.data (tidyeval), 68

.env (tidyeval), 68

:=(tidyeval), 68

%>%, 13

abundance_plt, 4
abundance_plt,PrepRecipe-method
(abundance_plt), 4
abundance_plt,Recipe-method

(abundance_plt), 4
add_step, 6

add_step,PrepRecipe-method (add_step), 6

add_step,Recipe-method (add_step), 6
add_tax, 6
add_tax,PrepRecipe-method (add_tax), 6
add_tax,Recipe-method (add_tax), 6
add_var, 7
add_var,PrepRecipe-method (add_var), 7
add_var,Recipe-method (add_var), 7
as_label (tidyeval), 68

as_name (tidyeval), 68

bake, 8
bake,PrepRecipe-method (bake), 8
bake,Recipe-method (bake), 8

check (step), 34
contains_rarefaction, 10
cool, 11
cool,PrepRecipe-method (cool), 11
cool,Recipe-method (cool), 11
corr_heatmap, 12
corr_heatmap,PrepRecipe-method
(corr_heatmap), 12
corr_heatmap,Recipe-method
(corr_heatmap), 12

dar (dar-package), 4

INDEX

dar-package, 4

enquo (tidyeval), 68

enquo(), 68

enquos (tidyeval), 68

enquos(), 68

exclusion_plt, 13

exclusion_plt,PrepRecipe-method
(exclusion_plt), 13

exclusion_plt,Recipe-method
(exclusion_plt), 13

export_steps, 14

filter_taxa, 48, 50, 51, 53
find_intersections, 14

get_comparisons, 15

get_phy, 16

get_phy,Recipe-method (get_phy), 16
get_tax, 17

get_tax,Recipe-method (get_tax), 17
get_var, 17

get_var,Recipe-method (get_var), 17

import_steps, 18
intersection_df, 19
intersection_df,PrepRecipe-method
(intersection_df), 19
intersection_df,Recipe-method
(intersection_df), 19
intersection_plt, 20
intersection_plt,PrepRecipe-method
(intersection_plt), 20
intersection_plt,Recipe-method
(intersection_plt), 20

metaHIV_phy, 21

mutual_plt, 22

mutual_plt,PrepRecipe-method
(mutual_plt), 22

mutual_plt,Recipe-method (mutual_plt),
22

otu_table, 23

otu_table,Recipe-method (otu_table), 23

overlap_df, 24

overlap_df,PrepRecipe-method
(overlap_df), 24

overlap_df,Recipe-method (overlap_df),
24

75

pastry_df, 25

phy_qc, 26

phy_qgc,Recipe-method (phy_qc), 26
phyloseq_or_null-class, 25
prep, 27
prep,Recipe-method (prep), 27
prep_recipe, 29

PrepRecipe (prep_recipe), 29
PrepRecipe-class, 28

rand_id, 29

read_data, 30

read_file (read_data), 30

read_phyloseq (read_data), 30

Recipe (recipe), 31

recipe, 31

Recipe(), 6

Recipe-class (phyloseq_or_null-class),
25

recipes_pkg_check, 32

required_deps, 33

required_deps,Recipe-method
(required_deps), 33

sample_data, 34
sample_data,Recipe-method
(sample_data), 34
show, PrepRecipe-method
(phyloseq_or_null-class), 25
step, 34
step_aldex, 36, 41, 44, 46, 56, 59, 61, 66
step_aldex,PrepRecipe-method
(step_aldex), 36
step_aldex,Recipe-method (step_aldex),
36
step_ancom, 37, 38, 44, 46, 56, 59, 61, 66
step_ancom,PrepRecipe-method
(step_ancom), 38
step_ancom,Recipe-method (step_ancom),
38
step_corncob, 37,41, 42, 46, 56, 59, 61, 66
step_corncob,PrepRecipe-method
(step_corncob), 42
step_corncob,Recipe-method
(step_corncob), 42
step_deseq, 37,41, 44, 45, 56, 59, 61, 66
step_deseq, PrepRecipe-method
(step_deseq), 45

76

step_deseq,Recipe-method (step_deseq),

45
step_filter_by_abundance, 47, 50, 51, 53,

54
step_filter_by_abundance,PrepRecipe-method

(step_filter_by_abundance), 47
step_filter_by_abundance,Recipe-method

(step_filter_by_abundance), 47
step_filter_by_prevalence, 48,49, 51, 53,

54

step_filter_by_prevalence,PrepRecipe-method

(step_filter_by_prevalence), 49
step_filter_by_prevalence,Recipe-method
(step_filter_by_prevalence), 49
step_filter_by_rarity, 48, 50, 50, 53, 54
step_filter_by_rarity,PrepRecipe-method
(step_filter_by_rarity), 50
step_filter_by_rarity,Recipe-method
(step_filter_by_rarity), 50
step_filter_by_variance, 48, 50, 51, 52,
54
step_filter_by_variance,PrepRecipe-method
(step_filter_by_variance), 52
step_filter_by_variance,Recipe-method
(step_filter_by_variance), 52
step_filter_taxa, 48, 50, 51, 53, 53
step_filter_taxa,Recipe-method
(step_filter_taxa), 53
step_lefse, 37,41, 44, 46, 54, 59, 61, 66
step_lefse,PrepRecipe-method
(step_lefse), 54
step_lefse,Recipe-method (step_lefse),
54
step_maaslin, 37,41, 44, 46, 56, 57, 61, 66
step_maaslin,PrepRecipe-method
(step_maaslin), 57
step_maaslin,Recipe-method
(step_maaslin), 57
step_metagenomeseq, 37, 41, 44, 46, 56, 59,
59, 66
step_metagenomeseq,PrepRecipe-method
(step_metagenomeseq), 59
step_metagenomeseq,Recipe-method
(step_metagenomeseq), 59
step_rarefaction, 62
step_rarefaction,PrepRecipe-method
(step_rarefaction), 62
step_rarefaction,Recipe-method

INDEX

(step_rarefaction), 62
step_subset_taxa, 63
step_subset_taxa,PrepRecipe-method

(step_subset_taxa), 63
step_subset_taxa,Recipe-method

(step_subset_taxa), 63
step_to_expr, 64
step_wilcox, 37,41, 44, 46, 56, 59, 61, 65
step_wilcox,PrepRecipe-method

(step_wilcox), 65
step_wilcox,Recipe-method

(step_wilcox), 65
steps_ids, 35
subset_taxa, 64

tax_table, 67

tax_table,Recipe-method (tax_table), 67

test_prep_rec, 67

test_rec, 68

tibble_or_NULL-class
(phyloseq_or_null-class), 25

tidyeval, 68

to_tibble, 70

use_rarefy, 71
utils::install.packages(), 32

validate_otu (read_data), 30
validate_phyloseq (read_data), 30
validate_sample_data (read_data), 30
validate_tax_table (read_data), 30

zero_otu, 72
zero_otu,phyloseq-method (zero_otu), 72
zero_otu,Recipe-method (zero_otu), 72

	dar-package
	abundance_plt
	add_step
	add_tax
	add_var
	bake
	contains_rarefaction
	cool
	corr_heatmap
	exclusion_plt
	export_steps
	find_intersections
	get_comparisons
	get_phy
	get_tax
	get_var
	import_steps
	intersection_df
	intersection_plt
	metaHIV_phy
	mutual_plt
	otu_table
	overlap_df
	pastry_df
	phyloseq_or_null-class
	phy_qc
	prep
	PrepRecipe-class
	prep_recipe
	rand_id
	read_data
	recipe
	recipes_pkg_check
	required_deps
	sample_data
	step
	steps_ids
	step_aldex
	step_ancom
	step_corncob
	step_deseq
	step_filter_by_abundance
	step_filter_by_prevalence
	step_filter_by_rarity
	step_filter_by_variance
	step_filter_taxa
	step_lefse
	step_maaslin
	step_metagenomeseq
	step_rarefaction
	step_subset_taxa
	step_to_expr
	step_wilcox
	tax_table
	test_prep_rec
	test_rec
	tidyeval
	to_tibble
	use_rarefy
	zero_otu
	>
	Index

