
Package ‘coseq’
January 23, 2026

Type Package

Title Co-Expression Analysis of Sequencing Data

Version 1.35.0

Date 2021-07-21

Depends R (>= 4.0.0), SummarizedExperiment, S4Vectors

Imports edgeR, DESeq2, capushe, Rmixmod, e1071, BiocParallel, ggplot2,
scales, HTSFilter, corrplot, HTSCluster, grDevices, graphics,
stats, methods, compositions, mvtnorm

Suggests Biobase, knitr, rmarkdown, testthat, BiocStyle

Description Co-expression analysis for expression profiles arising from
high-throughput sequencing data. Feature (e.g., gene) profiles

are clustered using adapted transformations and mixture models or
a K-means algorithm, and model selection criteria

(to choose an appropriate number of clusters) are provided.

biocViews GeneExpression, RNASeq, Sequencing, Software, ImmunoOncology

License GPL-3

LazyLoad yes

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/coseq

git_branch devel

git_last_commit 9d19790

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Andrea Rau [cre, aut] (ORCID: <https://orcid.org/0000-0001-6469-488X>),
Cathy Maugis-Rabusseau [ctb],
Antoine Godichon-Baggioni [ctb]

Maintainer Andrea Rau <andrea.rau@inrae.fr>

1

https://orcid.org/0000-0001-6469-488X

2 coseq-package

Contents
coseq-package . 2
clusterEntropy . 4
clusterInertia . 5
compareARI . 6
compareICL . 8
convertLegacyCoseq . 9
coseq . 10
coseqFullResults . 13
coseqResults-class . 16
coseqRun . 17
fietz . 19
kmeansProbaPost . 20
logclr . 21
matchContTable . 21
NormMixClus . 22
NormMixClusK . 23
NormMixParam . 25
plot . 27
summary,coseqResults-method . 30
transformRNAseq . 32

Index 34

coseq-package Co-expression and co-abundance analysis of high-throughput se-
quencing data

Description

Co-expression analysis for expression profiles arising from high-throughput sequencing data. Fea-
ture (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-
means algorithm, and model selection criteria (to choose an appropriate number of clusters) are
provided.

Details

Package: coseq
Type: Package
Version: 1.15.4
Date: 2020-12-03
License: GPL-3
LazyLoad: yes

coseq-package 3

Author(s)

Andrea Rau, Cathy Maugis-Rabusseau, Antoine Godichon-Baggioni

Maintainer: Andrea Rau <andrea.rau@inrae.fr>

References

Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2018) Clustering transformed compo-
sitional data using K-means, with applications in gene expression and bicycle sharing system data.
Journal of Applied Statistics, doi:10.1080/02664763.2018.1454894.

Rau, A. and Maugis-Rabusseau, C. (2018) Transformation and model choice for co-expression
analayis of RNA-seq data. Briefings in Bioinformatics, 19(3)-425-436.

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux, G. (2015) Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
doi: 10.1093/bioinformatics/btu845.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011) Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at http://hal.inria.fr/inria-00638082.

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing

andrea.rau@inrae.fr
http://hal.inria.fr/inria-00638082

4 clusterEntropy

tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

clusterEntropy Calculation of per-cluster entropy

Description

Provides the calculation of per-cluster entropy, equivalent to

Entropy(k) =
∑
i∈Ck

log(τik)

where τik is the conditional probability of gene i belonging to cluster k and Ck corresponds to the
set of indices of genes attributed to cluster k.

Usage

clusterEntropy(probaPost)

Arguments

probaPost Matrix containing the conditional probabilities of belonging to each cluster for
all observations

Value

Entropy per cluster

Author(s)

Cathy Maugis-Rabusseau

Examples

Generate artificial matrix of conditional probabilities for K=5 clusters
tmp <- matrix(runif(100*5), nrow=100, ncol=5)
probaPost <- tmp / rowSums(tmp)
clusterEntropy(probaPost)

clusterInertia 5

clusterInertia Calculation of within-cluster inertia

Description

Provides the calculation of within-cluster inertia, equivalent to

Inertia(k) =
∑
i∈Ck

(yik − µk)
2

where µk is the mean of cluster k and Ck corresponds to the set of indices of genes attributed to
cluster k.

Usage

clusterInertia(profiles, clusters)

Arguments

profiles Matrix, data.frame, or DataFrame containing the (transformed) profiles used for
the clustering

clusters Vector of cluster labels corresponding to the observations in profiles

Value

Within cluster inertia

Author(s)

Andrea Rau, Antoine Godichon-Baggioni

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
model="kmeans")
clusterInertia(profiles=tcounts(run_kmeans), clusters=clusters(run_kmeans))

6 compareARI

compareARI Pairwise comparisons of ARI values among a set of clustering parti-
tions

Description

Provides the adjusted rand index (ARI) between pairs of clustering paritions.

Usage

compareARI(object, ...)

S4 method for signature 'coseqResults'
compareARI(
object,
K = NULL,
parallel = FALSE,
BPPARAM = bpparam(),
plot = TRUE,
...

)

S4 method for signature 'matrix'
compareARI(object, parallel = FALSE, BPPARAM = bpparam(), plot = TRUE, ...)

S4 method for signature 'data.frame'
compareARI(object, parallel = FALSE, BPPARAM = bpparam(), plot = TRUE, ...)

Arguments

object Object of class coseqResults or RangedSummarizedExperiment, or alterna-
tively a n x M data.frame or matrix containing the clustering partitions for M
different models

... Additional optional parameters for corrplot

K If NULL, pairwise ARI values will be calculated among every model in object x.
Otherwise, K provides a vector of cluster numbers identifying a subset of models
in x.

parallel If FALSE, no parallelization. If TRUE, parallel execution using BiocParallel (see
next argument BPPARAM). Note that parallelization is unlikely to be helpful unless
the number of observations n in the clustering partitions or the number of models
M are very large.

BPPARAM Optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

plot If TRUE, provide a heatmap using corrplot to visualize the calculated pairwise
ARI values.

compareARI 7

Value

Matrix of adjusted rand index values calculated between each pair of models.

Author(s)

Andrea Rau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

8 compareICL

compareICL Compare corrected ICL values after data transformation

Description

Compare the corrected ICL values after applying the arcsin, logit, and logMedianRef transforma-
tions in a coseq analysis

Usage

compareICL(x)

Arguments

x A list made up of coseqResults objects. At the current time, this function only
supports the comparison of coseqResults objects using model="Normal" and
transformation = c("arcsin", "logit", "logMedianRef")

Value

A plot of corrected ICL values for the models included in x (the list of coseqResults objects)

Author(s)

Andrea Rau, Cathy Maugis-Rabusseau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")

convertLegacyCoseq 9

compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

convertLegacyCoseq Convert legacy coseq objects

Description

Convert legacy coseq S3 class objects to coseqResults S4 class objects

Usage

convertLegacyCoseq(object, digits = 3)

Arguments

object Object of S3 class coseq arising from a call to previous versions of coseq (<
0.99.1)

digits integer indicating the number of decimal places (round) to retain in results.

Value

Converted object of S4 class coseqResults compatible with recent versions of coseq (>= 0.99.1)

10 coseq

coseq Co-expression or co-abudance analysis of high-throughput sequenc-
ing data

Description

This is the primary user interface for the coseq package. Generic S4 methods are implemented to
perform co-expression or co-abudance analysis of high-throughput sequencing data, with or with-
out data transformation, using K-means or mixture models. The supported classes are matrix,
data.frame, and DESeqDataSet. The output of coseq is an S4 object of class coseqResults.

Usage

coseq(object, ...)

S4 method for signature 'matrix'
coseq(
object,
K,
subset = NULL,
model = "kmeans",
transformation = "logclr",
normFactors = "TMM",
meanFilterCutoff = NULL,
modelChoice = ifelse(model == "kmeans", "DDSE", "ICL"),
parallel = FALSE,
BPPARAM = bpparam(),
seed = NULL,
...

)

S4 method for signature 'data.frame'
coseq(
object,
K,
subset = NULL,
model = "kmeans",
transformation = "logclr",
normFactors = "TMM",
meanFilterCutoff = NULL,
modelChoice = ifelse(model == "kmeans", "DDSE", "ICL"),
parallel = FALSE,
BPPARAM = bpparam(),
seed = NULL,
...

)

coseq 11

S4 method for signature 'DESeqDataSet'
coseq(
object,
K,
model = "kmeans",
transformation = "logclr",
normFactors = "TMM",
meanFilterCutoff = NULL,
modelChoice = ifelse(model == "kmeans", "DDSE", "ICL"),
parallel = FALSE,
BPPARAM = bpparam(),
seed = NULL,
...

)

Arguments

object Data to be clustered. May be provided as a y (n x q) matrix or data.frame
of observed counts for n observations and q variables, or an object of class
DESeqDataSet arising from a differential analysis via DESeq2.

... Additional optional parameters.

K Number of clusters (a single value or a vector of values)

subset Optional vector providing the indices of a subset of genes that should be used for
the co-expression analysis (i.e., row indices of the data matrix y. For the generic
function coseq, the results of a previously run differential analysis may be used
to select a subset of genes on which to perform the co-expression analysis. If this
is desired, subset.index can also be an object of class DESeqResults (from the
results function in DESeq2).

model Type of mixture model to use (“Poisson” or “Normal”), or alternatively “kmeans”
for a K-means algorithm

transformation Transformation type to be used: “voom”, “logRPKM” (if geneLength is provided
by user), “arcsin”, “logit”, “logMedianRef”, “profile”, “logclr”, “clr”,
“alr”, “ilr”, or “none”

normFactors The type of estimator to be used to normalize for differences in library size:
(“TC” for total count, “UQ” for upper quantile, “Med” for median, “DESeq” for the
normalization method in the DESeq package, and “TMM” for the TMM normal-
ization method (Robinson and Oshlack, 2010). Can also be a vector (of length
q) containing pre-estimated library size estimates for each sample, or “none” if
no normalization is required.

meanFilterCutoff

Value used to filter low mean normalized counts if desired (by default, set to a
value of 50)

modelChoice Criterion used to select the best model. For Gaussian mixture models, “ICL”
(integrated completed likelihood criterion) is currently supported. For Pois-
son mixture models, “ICL”, “BIC” (Bayesian information criterion), and a non-
asymptotic criterion calibrated via the slope heuristics using either the “DDSE”

12 coseq

(data-driven slope estimation) or “Djump” (dimension jump) approaches may be
used. See the HTSCluster package documentation for more details about the
slope heuristics approaches.

parallel If FALSE, no parallelization. If TRUE, parallel execution using BiocParallel (see
next argument BPPARAM). A note on running in parallel using BiocParallel: it
may be advantageous to remove large, unneeded objects from the current R
environment before calling the function, as it is possible that R’s internal garbage
collection will copy these files while running on worker nodes.

BPPARAM Optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

seed If desired, an integer defining the seed of the random number generator. If NULL,
a random seed is used.

Value

An S4 object of class coseqResults, where conditional probabilities of cluster membership for
each gene in each model is stored as a SimpleList of assay data, and the corresponding log like-
lihood, ICL value, number of clusters, and form of Gaussian model for each model are stored as
metadata.

Author(s)

Andrea Rau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results

coseqFullResults 13

clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

coseqFullResults Accessors for the assigned cluster labels of a coseqResults object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

coseqFullResults(object, ...)

clusters(object, ...)

likelihood(object, ...)

nbCluster(object, ...)

proba(object, ...)

ICL(object, ...)

profiles(object, ...)

tcounts(object, ...)

transformationType(object, ...)

model(object, ...)

DDSEextract(object, ...)

Djumpextract(object, ...)

14 coseqFullResults

S4 method for signature 'coseqResults'
clusters(object, K)

S4 method for signature 'RangedSummarizedExperiment'
clusters(object, ...)

S4 method for signature 'matrix'
clusters(object, ...)

S4 method for signature 'data.frame'
clusters(object, ...)

S4 method for signature 'MixmodCluster'
likelihood(object)

S4 method for signature 'RangedSummarizedExperiment'
likelihood(object)

S4 method for signature 'coseqResults'
likelihood(object)

S4 method for signature '`NULL`'
likelihood(object)

S4 method for signature 'MixmodCluster'
nbCluster(object)

S4 method for signature 'RangedSummarizedExperiment'
nbCluster(object)

S4 method for signature 'coseqResults'
nbCluster(object)

S4 method for signature '`NULL`'
nbCluster(object)

S4 method for signature 'MixmodCluster'
ICL(object)

S4 method for signature 'RangedSummarizedExperiment'
ICL(object)

S4 method for signature 'coseqResults'
ICL(object)

S4 method for signature '`NULL`'
ICL(object)

coseqFullResults 15

S4 method for signature 'coseqResults'
profiles(object)

S4 method for signature 'coseqResults'
tcounts(object)

S4 method for signature 'coseqResults'
transformationType(object)

S4 method for signature 'coseqResults'
model(object)

S4 method for signature 'coseqResults'
coseqFullResults(object)

S4 method for signature 'coseqResults'
show(object)

S4 method for signature 'MixmodCluster'
proba(object)

S4 method for signature 'Capushe'
DDSEextract(object)

S4 method for signature 'Capushe'
Djumpextract(object)

Arguments

object a coseqResults, RangedSummarizedExperiment, or MixmodCluster object.

... Additional optional parameters

K numeric indicating the model to be used (if NULL of missing, the model chosen
by ICL is used by default)

Value

Output varies depending on the method. clusters returns a vector of cluster labels for each gene
for the desired model.

Author(s)

Andrea Rau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]

16 coseqResults-class

conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

coseqResults-class coseqResults object and constructor

Description

coseqResults is a subclass of RangedSummarizedExperiment, used to store the co-expression
results as well as some additional information useful for plotting (tcounts, y_profiles) and meta-
information about the co-expression analysis (transformation, normFactors).

Usage

coseqResults(
SummarizedExperiment,
allResults,
model = NULL,
transformation = NULL,

coseqRun 17

tcounts = NULL,
y_profiles = NULL,
normFactors = NULL

)

Arguments

SummarizedExperiment

a RangedSummarizedExperiment of coseq results

allResults List of conditional probabilities of cluster membership for each gene, in all mod-
els fit

model "Normal" or "Poisson", the mixture model used for co-expression

transformation Transformation applied to counts to obtain tcounts

tcounts Transformed counts used for mixture model fitting

y_profiles y profiles used for coseq plotting

normFactors Scaling factors used for normalization

Details

This constructor function would not typically be used by "end users". This simple class extends
the RangedSummarizedExperiment class of the SummarizedExperiment package to allow other
packages to write methods for results objects from the coseq package. It is used by coseqRun to
wrap up the results table.

Value

a coseqResults object

coseqRun Co-expression analysis

Description

Function for primary code to perform co-expression analysis, with or without data transformation,
using mixture models. The output of coseqRun is an S4 object of class coseqResults.

Usage

coseqRun(
y,
K,
conds = NULL,
normFactors = "TMM",
model = "kmeans",
transformation = "logclr",
subset = NULL,

18 coseqRun

meanFilterCutoff = 50,
modelChoice = ifelse(model == "kmeans", "DDSE", "ICL"),
parallel = FALSE,
BPPARAM = bpparam(),
seed = NULL,
...

)

Arguments

y (n x q) matrix of observed counts for n observations (genes) and q variables
(samples). In nearly all cases, n > q.

K Number of clusters (a single value or a vector of values)
conds Vector of length q defining the condition (treatment group) for each variable

(column) in y

normFactors The type of estimator to be used to normalize for differences in library size:
(“TC” for total count, “UQ” for upper quantile, “Med” for median, “DESeq” for the
normalization method in the DESeq package, and “TMM” for the TMM normal-
ization method (Robinson and Oshlack, 2010). Can also be a vector (of length
q) containing pre-estimated library size estimates for each sample, or “none” if
no normalization is required.

model Type of mixture model to use (“Poisson” or “Normal”), or alternatively “kmeans”
for a K-means algorithm

transformation Transformation type to be used: “voom”, “logRPKM” (if geneLength is provided
by user), “arcsin”, “logit”, “logMedianRef”, “profile”, “logclr”, “clr”,
“alr”, “ilr”, or “none”

subset Optional vector providing the indices of a subset of genes that should be used for
the co-expression analysis (i.e., row indices of the data matrix y. For the generic
function coseq, the results of a previously run differential analysis may be used
to select a subset of genes on which to perform the co-expression analysis. If this
is desired, subset.index can also be an object of class DESeqResults (from the
results function in DESeq2).

meanFilterCutoff

Value used to filter low mean normalized counts if desired (by default, set to a
value of 50)

modelChoice Criterion used to select the best model. For Gaussian mixture models, “ICL”
(integrated completed likelihood criterion) is currently supported. For Pois-
son mixture models, “ICL”, “BIC” (Bayesian information criterion), and a non-
asymptotic criterion calibrated via the slope heuristics using either the “DDSE”
(data-driven slope estimation) or “Djump” (dimension jump) approaches may be
used. See the HTSCluster package documentation for more details about the
slope heuristics approaches.

parallel If FALSE, no parallelization. If TRUE, parallel execution using BiocParallel (see
next argument BPPARAM). A note on running in parallel using BiocParallel: it
may be advantageous to remove large, unneeded objects from the current R
environment before calling the function, as it is possible that R’s internal garbage
collection will copy these files while running on worker nodes.

fietz 19

BPPARAM Optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

seed If desired, an integer defining the seed of the random number generator. If NULL,
a random seed is used.

... Additional optional parameters.

Value

An S4 object of class coseqResults whose assays contain a SimpleList object, where each el-
ement in the list corresponds to the conditional probabilities of cluster membership for each gene
in each model. Meta data (accessible via metatdata include the model used (either Normal or
Poisson), the transformation used on the data, the transformed data using to estimate model
(tcounts), the normalized profiles for use in plotting (y_profiles), and the normalization factors
used in the analysis (normFactors).

Author(s)

Andrea Rau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the K-means for K = 2,3,4 with logCLR transformation
The following are equivalent:
run <- coseqRun(y=countmat, K=2:15)
run <- coseq(object=countmat, K=2:15, transformation="logclr", model="kmeans")

Run the Normal mixture model for K = 2,3,4 with arcsine transformation
The following are equivalent:
run <- coseqRun(y=countmat, K=2:4, iter=5, transformation="arcsin", model="Normal")
run <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin", model="Normal")

fietz RNA-seq data from the mouse neocortex in Fietz et al. (2012)

Description

This dataset represents RNA-seq data from mouse neocortex RNA-seq data in five embryonic (day
14.5) mice by analyzing the transcriptome of three regions: the ventricular zone (VZ), subventricu-
lar zone (SVZ) and cortical place (CP).

20 kmeansProbaPost

Usage

data(fietz)

Format

An ExpressionSet named fietz.eset containing the phenotype data and expression data for the
Fietz et al. (2012) experiment. Phenotype data may be accessed using the pData function, and
expression data may be accessed using the exprs function.

Value

Object of class ‘ExpressionSet’. Matrix of counts can be accessed after loading the ‘Biobase’
package and calling exprs(fietz)).

Source

Digital Expression Explorer (http://dee.bakeridi.edu.au/).

References

https://perso.math.univ-toulouse.fr/maugis/mixstatseq/packages

Fietz, S. A., et al. (2012). Transcriptomes of germinal zones of human and mouse fetal neocor-
tex suggest a role of extracellular matrix in progenitor self-renewal. Proceedings of the National
Academy of Sciences, 109(29):11836-11841.

kmeansProbaPost Calculate conditional probabilities of cluster membership for K-
means clustering

Description

Calculate conditional probabilities of cluster membership for K-means clustering

Usage

kmeansProbaPost(clusters, tcounts)

Arguments

clusters Cluster labels arising from K-means clustering

tcounts Transformed counts clustered using K-means

Value

Conditional probabilities of cluster membership for each observation in each cluster

https://perso.math.univ-toulouse.fr/maugis/mixstatseq/packages

logclr 21

Examples

Example of K-means taken from ?kmeans help page
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")

cl <- kmeans(x, 5)
probaPost <- kmeansProbaPost(cl$cluster, x)
head(probaPost)

logclr Calculate the Log Centered Log Ratio (logCLR) transformation

Description

Calculate the Log Centered Log Ratio (logCLR) transformation

Usage

logclr(profiles)

Arguments

profiles Matrix of profiles. Note that the presence of 0 values causes an error message to
be produced.

Value

logCLR-transformed profiles

matchContTable Permute columns of a contingency table

Description

Permute the columns of a contingency table comparing two clusterings to load the diagonal as much
as possible.

Usage

matchContTable(table_1, table_2)

Arguments

table_1 Partition from a first data clustering

table_2 Partition from a second data clustering

22 NormMixClus

Value

Permuted contingency table

Examples

Generate arbitrary labels from two separate clustering results
labels_1 <- sample(1:10, 1000, replace=TRUE) ## K=10 clusters
labels_2 <- sample(1:8, 1000, replace=TRUE) ## K=8 clusters
matchContTable(labels_1, labels_2)

NormMixClus Normal mixture model estimation and selection for a series of cluster
numbers

Description

Perform co-expression and co-abudance analysis of high-throughput sequencing data, with or with-
out data transformation, using a Normal mixture models. The output of NormMixClus is an S4
object of class RangedSummarizedExperiment.

Usage

NormMixClus(
y_profiles,
K,
subset = NULL,
parallel = TRUE,
BPPARAM = bpparam(),
seed = NULL,
...

)

Arguments

y_profiles (n x q) matrix of observed profiles for n observations and q variables

K Number of clusters (a single value or a sequence of values).

subset Optional vector providing the indices of a subset of genes that should be used
for the co-expression analysis (i.e., row indices of the data matrix y.

parallel If FALSE, no parallelization. If TRUE, parallel execution using BiocParallel (see
next argument BPPARAM). A note on running in parallel using BiocParallel: it
may be advantageous to remove large, unneeded objects from the current R
environment before calling the function, as it is possible that R’s internal garbage
collection will copy these files while running on worker nodes.

BPPARAM Optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

NormMixClusK 23

seed If desired, an integer defining the seed of the random number generator. If NULL,
a random seed is used.

... Additional optional parameters to be passed to NormMixClusK.

Value

An S4 object of class coseqResults, with conditional probabilities of cluster membership for each
gene in each model stored as a list of assay data, and corresponding log likelihood, ICL value,
number of clusters, and form of Gaussian model for each model stored as metadata.

Author(s)

Andrea Rau, Cathy Maugis-Rabusseau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transformRNAseq(countmat, norm="none",

transformation="arcsin")$tcounts

conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3
Object of class coseqResults
run <- NormMixClus(y=profiles, K=2:3, iter=5)
run

Run the Normal mixture model for K=2
Object of class SummarizedExperiment0
run2 <- NormMixClusK(y=profiles, K=2, iter=5)

Summary of results
summary(run)

Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run, y_profiles=profiles)

NormMixClusK Normal mixture model estimation

Description

Perform co-expression and co-abudance analysis of high-throughput sequencing data, with or with-
out data transformation, using a Normal mixture models for single number of clusters K. The output
of NormMixClusK is an S4 object of class RangedSummarizedExperiment.

24 NormMixClusK

Usage

NormMixClusK(
y_profiles,
K,
alg.type = "EM",
init.runs = 50,
init.type = "small-em",
GaussianModel = "Gaussian_pk_Lk_Ck",
init.iter = 20,
iter = 1000,
cutoff = 0.001,
verbose = TRUE,
digits = 3,
seed = NULL

)

Arguments

y_profiles y (n x q) matrix of observed profiles for n observations and q variables

K Number of clusters (a single value).

alg.type Algorithm to be used for parameter estimation: “EM”, “CEM”, “SEM”

init.runs Number of runs to be used for the Small-EM strategy, with a default value of 50

init.type Type of initialization strategy to be used: “small-em” for the Small-EM strat-
egy, “random”, “CEM”, or “SEMMax”

GaussianModel One of the 28 forms of Gaussian models defined in Rmixmod, by default equal
to the "Gaussian_pk_Lk_Ck" (i.e., a general family model with free propor-
tions, free volume, free shape, and free orientation)

init.iter Number of iterations to be used within each run for the Small-EM strategry, with
a default value of 20

iter Maximum number of iterations to be run for the chosen algorithm

cutoff Cutoff to declare algorithm convergence

verbose If TRUE, verbose output is created

digits Integer indicating the number of decimal places to be used for the probaPost
output

seed If desired, an integer defining the seed of the random number generator. If NULL,
a random seed is used.

Value

An S4 object of class RangedSummarizedExperiment, with conditional probabilities of cluster
membership for each gene stored as assay data, and log likelihood, ICL value, number of clusters,
and form of Gaussian model stored as metadata.

Author(s)

Cathy Maugis-Rabusseau, Andrea Rau

NormMixParam 25

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transformRNAseq(countmat, norm="none",

transformation="arcsin")$tcounts

conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3
Object of class coseqResults
run <- NormMixClus(y=profiles, K=2:3, iter=5)
run

Run the Normal mixture model for K=2
Object of class SummarizedExperiment0
run2 <- NormMixClusK(y=profiles, K=2, iter=5)

Summary of results
summary(run)

Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run, y_profiles=profiles)

NormMixParam Calculate the mean and covariance for a Normal mixture model

Description

Calculates the mean and covariance parameters for a normal mixture model of the form pK_Lk_Ck

Usage

NormMixParam(
coseqResults,
y_profiles = NULL,
K = NULL,
digits = 3,
plot = FALSE,
...

)

Arguments

coseqResults Object of class coseqResults or RangedSummarizedExperiment (as output
from the NormMixClus or NormMixClusK functions)

26 NormMixParam

y_profiles y (n x q) matrix of observed profiles for n observations and q variables, required
for x of class RangedSummarizedExperiment

K The model used for parameter estimation for objects x of class coseq or NormMixClus.
When NULL, the model selected by the ICL criterion is used; otherwise, K should
designate the number of clusters in the desired model

digits Integer indicating the number of decimal places to be used for output

plot If true, produce heatmaps to visualize the estimated per-cluster correlation ma-
trices

... Additional optional parameters to pass to corrplot, if desired

Value

pi Vector of dimension K with the estimated cluster proportions from the Gaussian
mixture model, where K is the number of clusters

mu Matrix of dimension K x d containing the estimated mean vector from the Gaus-
sian mixture model, where d is the number of samples in the data y_profiles
and K is the number of clusters

Sigma Array of dimension d x d x K containing the estimated covariance matrices
from the Gaussian mixture model, where d is the number of samples in the data
y_profiles and K is the number of clusters

rho Array of dimension d x d x K containing the estimated correlation matrices
from the Gaussian mixture model, where d is the number of samples in the data
y_profiles and K is the number of clusters

Author(s)

Andrea Rau, Cathy Maugis-Rabusseau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transformRNAseq(countmat, norm="none",

transformation="arcsin")$tcounts

conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3
Object of class coseqResults
run <- NormMixClus(y=profiles, K=2:3, iter=5)
run

Run the Normal mixture model for K=2
Object of class SummarizedExperiment0
run2 <- NormMixClusK(y=profiles, K=2, iter=5)

Summary of results

plot 27

summary(run)

Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run, y_profiles=profiles)

plot Visualize results from coseq clustering

Description

Plot a coseqResults object.

Usage

plot(x, ...)

S4 method for signature 'coseqResults'
plot(
x,
y_profiles = NULL,
K = NULL,
threshold = 0.8,
conds = NULL,
average_over_conds = FALSE,
collapse_reps = "none",
graphs = c("logLike", "ICL", "profiles", "boxplots", "probapost_boxplots",
"probapost_barplots", "probapost_histogram"),

order = FALSE,
profiles_order = NULL,
n_row = NULL,
n_col = NULL,
add_lines = TRUE,
...

)

coseqGlobalPlots(object, graphs = c("logLike", "ICL"), ...)

coseqModelPlots(
probaPost,
y_profiles,
K = NULL,
threshold = 0.8,
conds = NULL,
collapse_reps = "none",
graphs = c("profiles", "boxplots", "probapost_boxplots", "probapost_barplots",

"probapost_histogram"),

28 plot

order = FALSE,
profiles_order = NULL,
n_row = NULL,
n_col = NULL,
add_lines = TRUE,
...

)

Arguments

x An object of class "coseqResults"
... Additional optional plotting arguments (e.g., xlab, ylab, use_sample_names,

facet_labels)
y_profiles y (n x q) matrix of observed profiles for n observations and q variables to be

used for graphing results (optional for logLike, ICL, probapost_boxplots,
and probapost_barplots, and by default takes value x$tcounts if NULL)

K If desired, the specific model to use for plotting (or the specific cluster number(s)
to use for plotting in the case of coseqModelPlots). If NULL, all clusters will be
visualized, and the model chosen by ICL will be plotted

threshold Threshold used for maximum conditional probability; only observations with
maximum conditional probability greater than this threshold are visualized

conds Condition labels, if desired
average_over_conds

If TRUE, average values of y_profiles within each condition identified by conds
for the profiles and boxplots plots. This argument is redundant to collapse_reps
= "sum", and collapse_reps should be used instead.

collapse_reps If "none", display all replicates. If "sum", collapse replicates within each con-
dition by summing their profiles If "average", collapse replicates within each
condition by averaging their profiles. For highly unbalanced experimental de-
signs, using "average" will likely provide more easily interpretable plots.

graphs Graphs to be produced, one (or more) of the following: "logLike" (log-likelihood
plotted versus number of clusters), "ICL" (ICL plotted versus number of clus-
ters), "profiles" (line plots of profiles in each cluster), "boxplots" (boxplots
of profiles in each cluster), "probapost_boxplots" (boxplots of maximum
conditional probabilities per cluster), "probapost_barplots" (number of ob-
servations with a maximum conditional probability greater than threshold per
cluster), "probapost_histogram" (histogram of maximum conditional proba-
bilities over all clusters)

order If TRUE, order clusters in probapost_boxplot by median and probapost_barplot
by number of observations with maximum conditional probability greater than
threshold

profiles_order If NULL or FALSE, line plots and boxplots of profiles are plotted sequentially by
cluster number (K=1, K=2, ...). If TRUE, line plots and boxplots of profiles are
plotted in an automatically calculated order (according to the Euclidean distance
between cluster means) to plot clusters with similar mean profiles next to one
another. Otherwise, the user may provide a vector (of length equal to the number
of clusters in the given model) providing the desired order of plots.

plot 29

n_row Number of rows for plotting layout of line plots and boxplots of profiles.

n_col Number of columns for plotting layout of line plots and boxplots of profiles.

add_lines If TRUE, add red lines representing means to boxplots; if FALSE, these will be
suppressed.

object An object of class "RangedSummarizedExperiment" arising from a call to NormMixClus

probaPost Matrix or data.frame of dimension (n x K) containing the conditional probilities
of cluster membership for n genes in K clusters arising from a mixture model

Value

Named list of plots of the coseqResults object.

Author(s)

Andrea Rau, Cathy Maugis-Rabusseau

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

30 summary,coseqResults-method

Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",

model="kmeans")
run_kmeans

summary,coseqResults-method

Summarize results from coseq clustering

Description

A function to summarize the clustering results obtained from a Poisson or Gaussian mixture model
estimated using coseq. In particular, the function provides the number of clusters selected for
the ICL model selection approach (or alternatively, for the capushe non-asymptotic approach if K-
means clustering is used), number of genes assigned to each cluster, and if desired the per-gene
cluster means.

Usage

S4 method for signature 'coseqResults'
summary(object, y_profiles, digits = 3, ...)

Arguments

object An object of class "coseqResults"

y_profiles Data used for clustering if per-cluster means are desired

digits Integer indicating the number of decimal places to be used for mixture model
parameters

... Additional arguments

Details

Provides the following summary of results:

1) Number of clusters and model selection criterion used, if applicable.

2) Number of observations across all clusters with a maximum conditional probability greater than
90 observations) for the selected model.

3) Number of observations per cluster with a maximum conditional probability greater than 90
cluster) for the selected model.

4) If desired, the µ values and π values for the selected model in the case of a Gaussian mixture
model.

Value

Summary of the coseqResults object.

summary,coseqResults-method 31

Author(s)

Andrea Rau

References

Rau, A. and Maugis-Rabusseau, C. (2017) Transformation and model choice for co-expression
analayis of RNA-seq data. Briefings in Bioinformatics, doi: http://dx.doi.org/10.1101/065607.

Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2017) Clustering transformed compo-
sitional data using K-means, with applications in gene expression and bicycle sharing system data.
arXiv:1704.06150.

See Also

coseq

Examples

Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",

model="Normal", seed=12345)
run_arcsin

Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)

Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)

Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",

model="Normal")
compareICL(list(run_arcsin, run_logit))

Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)

Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)

Run the K-means algorithm for logclr profiles for K = 2,..., 20

32 transformRNAseq

run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
model="kmeans")

run_kmeans

transformRNAseq Transform RNA-seq data using common transformations

Description

Application of common transformations for RNA-seq data prior to fitting a normal mixture model

Usage

transformRNAseq(
y,
normFactors = "TMM",
transformation = "arcsin",
geneLength = NA,
meanFilterCutoff = NULL,
verbose = TRUE

)

Arguments

y (n x q) matrix or data.frame of observed counts for n observations and q
variables

normFactors The type of estimator to be used to normalize for differences in library size: “TC”
for total count, “DESeq” for the normalization method in the DESeq package,
and “TMM” for the TMM normalization method (Robinson and Oshlack, 2010).
Can also be a vector (of length q) containing pre-estimated library size estimates
for each sample.

transformation Transformation type to be used: “arcsin”, “logit”, “logMedianRef”, “profile”,
“voom”, “logRPKM” (if geneLength is provided by user), “logclr”, “clr”,
“alr”, “ilr”, “none”,

geneLength Vector of length equal to the number of rows in “y” providing the gene length
(bp) for RPKM calculation

meanFilterCutoff

Value used to filter low mean normalized counts

verbose If TRUE, include verbose output

Value

tcounts Transformed counts

normCounts Normalized counts

snorm Per-sample normalization factors divided by mean normalization factor

ellnorm Per-sample normalization factors

transformRNAseq 33

Examples

set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)

Arcsin transformation, TMM normalization
arcsin <- transformRNAseq(countmat, normFactors="TMM", transformation="arcsin")$tcounts
Logit transformation, TMM normalization
logit <- transformRNAseq(countmat, normFactors="TMM", transformation="logit")$tcounts
logCLR transformation, TMM normalization
logclr <- transformRNAseq(countmat, normFactors="TMM", transformation="logclr")$tcounts

Index

∗ cluster
coseq-package, 2

∗ datasets
fietz, 19

∗ methods
coseq, 10
summary,coseqResults-method, 30

∗ models
coseq-package, 2

clusterEntropy, 4
clusterInertia, 5
clusters (coseqFullResults), 13
clusters,coseqResults-method

(coseqFullResults), 13
clusters,data.frame-method

(coseqFullResults), 13
clusters,matrix-method

(coseqFullResults), 13
clusters,RangedSummarizedExperiment-method

(coseqFullResults), 13
compareARI, 6
compareARI,coseqResults-method

(compareARI), 6
compareARI,data.frame-method

(compareARI), 6
compareARI,matrix-method (compareARI), 6
compareARI,RangedSummarizedExperiment-method

(compareARI), 6
compareARI-methods (compareARI), 6
compareICL, 8
convertLegacyCoseq, 9
coseq, 10, 31
coseq,data.frame-method (coseq), 10
coseq,DESeqDataSet-method (coseq), 10
coseq,matrix-method (coseq), 10
coseq-methods (coseq), 10
coseq-package, 2
coseqFullResults, 13

coseqFullResults,coseqResults-method
(coseqFullResults), 13

coseqGlobalPlots (plot), 27
coseqModelPlots (plot), 27
coseqResults (coseqResults-class), 16
coseqResults-class, 16
coseqRun, 17, 17

DDSEextract (coseqFullResults), 13
DDSEextract,Capushe-method

(coseqFullResults), 13
Djumpextract (coseqFullResults), 13
Djumpextract,Capushe-method

(coseqFullResults), 13

fietz, 19

ICL (coseqFullResults), 13
ICL,coseqResults-method

(coseqFullResults), 13
ICL,MixmodCluster-method

(coseqFullResults), 13
ICL,NULL-method (coseqFullResults), 13
ICL,RangedSummarizedExperiment-method

(coseqFullResults), 13

kmeansProbaPost, 20

likelihood (coseqFullResults), 13
likelihood,coseqResults-method

(coseqFullResults), 13
likelihood,MixmodCluster-method

(coseqFullResults), 13
likelihood,NULL-method

(coseqFullResults), 13
likelihood,RangedSummarizedExperiment-method

(coseqFullResults), 13
logclr, 21

matchContTable, 21
model (coseqFullResults), 13

34

INDEX 35

model,coseqResults-method
(coseqFullResults), 13

nbCluster (coseqFullResults), 13
nbCluster,coseqResults-method

(coseqFullResults), 13
nbCluster,MixmodCluster-method

(coseqFullResults), 13
nbCluster,NULL-method

(coseqFullResults), 13
nbCluster,RangedSummarizedExperiment-method

(coseqFullResults), 13
NormMixClus, 22
NormMixClusK, 23, 23
NormMixParam, 25

plot, 27
plot,coseqResults-method (plot), 27
plot-methods (plot), 27
proba (coseqFullResults), 13
proba,MixmodCluster-method

(coseqFullResults), 13
profiles (coseqFullResults), 13
profiles,coseqResults-method

(coseqFullResults), 13

show (coseqFullResults), 13
show,coseqResults-method

(coseqFullResults), 13
summary (summary,coseqResults-method),

30
summary,coseqResults-method, 30
summary-methods

(summary,coseqResults-method),
30

tcounts (coseqFullResults), 13
tcounts,coseqResults-method

(coseqFullResults), 13
transformationType (coseqFullResults),

13
transformationType,coseqResults-method

(coseqFullResults), 13
transformRNAseq, 32

	coseq-package
	clusterEntropy
	clusterInertia
	compareARI
	compareICL
	convertLegacyCoseq
	coseq
	coseqFullResults
	coseqResults-class
	coseqRun
	fietz
	kmeansProbaPost
	logclr
	matchContTable
	NormMixClus
	NormMixClusK
	NormMixParam
	plot
	summary,coseqResults-method
	transformRNAseq
	Index

