
Package ‘condiments’
January 23, 2026

Type Package

Title Differential Topology, Progression and Differentiation

Description This package encapsulate many functions to conduct a differential topology analy-
sis. It focuses on analyzing an 'omic dataset with multiple conditions. While the pack-
age is mostly geared toward scRNASeq, it does not place any restriction on the actual input format.

Version 1.19.0

License MIT + file LICENSE

Encoding UTF-8

URL https://hectorrdb.github.io/condiments/index.html

Depends R (>= 4.0)

VignetteBuilder knitr

biocViews RNASeq, Sequencing, Software, SingleCell, Transcriptomics,
MultipleComparison, Visualization

BugReports https://github.com/HectorRDB/condiments/issues

Imports slingshot (>= 1.9), mgcv, RANN, stats, SingleCellExperiment,
SummarizedExperiment, utils, magrittr, dplyr (>= 1.0), Ecume
(>= 0.9.1), methods, pbapply, matrixStats, BiocParallel,
TrajectoryUtils, igraph, distinct

RoxygenNote 7.1.2

Suggests knitr, testthat, rmarkdown, covr, viridis, ggplot2,
RColorBrewer, randomForest, tidyr, TSCAN, DelayedMatrixStats

git_url https://git.bioconductor.org/packages/condiments

git_branch devel

git_last_commit 68a222c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

1

https://hectorrdb.github.io/condiments/index.html
https://github.com/HectorRDB/condiments/issues

2 condiments-package

Author Hector Roux de Bezieux [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1489-8339>),

Koen Van den Berge [aut, ctb],
Kelly Street [aut, ctb]

Maintainer Hector Roux de Bezieux <hector.rouxdebezieux@berkeley.edu>

Contents

condiments-package . 2
create_differential_topology . 3
differentiationTest . 4
fateSelectionTest . 4
fateSelectionTest_multipleSamples . 7
imbalance_score . 8
merge_sds . 9
nLineages . 10
progressionTest . 11
progressionTest_multipleSamples . 14
slingshot_conditions . 15
topologyTest . 16
topologyTest_multipleSamples . 19
toy_dataset . 20
weights_from_pst . 20

Index 22

condiments-package condiments: Differential Topology, Progression and Differentiation

Description

This package encapsulate many functions to conduct a differential topology analysis. It focuses on
analyzing an ’omic dataset with multiple conditions. While the package is mostly geared toward
scRNASeq, it does not place any restriction on the actual input format.

Author(s)

Maintainer: Hector Roux de Bezieux <hector.rouxdebezieux@berkeley.edu> (ORCID)

Authors:

• Koen Van den Berge [contributor]

• Kelly Street [contributor]

https://orcid.org/0000-0002-1489-8339
https://orcid.org/0000-0002-1489-8339

create_differential_topology 3

See Also

Useful links:

• https://hectorrdb.github.io/condiments/index.html

• Report bugs at https://github.com/HectorRDB/condiments/issues

create_differential_topology

Create Example function

Description

This creates a simulated reduced dimension dataset

Usage

create_differential_topology(
n_cells = 200,
noise = 0.15,
shift = 10,
unbalance_level = 0.9,
speed = 1

)

Arguments

n_cells The number of cells in the dataset.

noise Amount of noise. Between 0 and 1.

shift How much should the top lineage shift in condition B.
unbalance_level

How much should the bottom lineage be unbalanced toward condition A.

speed How fast the cells from condition B should differentiate

Value

A list with two components

• sd: An n_cells by 4 dataframe that contains the reduced dimensions coordinates, lineage
assignment (1 or 2) and condition assignment (A or B) for each cell.

• mst: a data.frame that contains the skeleton of the trajectories

Examples

sd <- create_differential_topology()

https://hectorrdb.github.io/condiments/index.html
https://github.com/HectorRDB/condiments/issues

4 fateSelectionTest

differentiationTest Differential differentiation

Description

Test whether or not the cell repartition between lineages is independent of the conditions

Usage

differentiationTest(...)

Arguments

... See the fateSelectionTest

Value

See the fateSelectionTest

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
differentiationTest(sds, condition)

fateSelectionTest Differential fate selection Test

Description

Test whether or not the cell repartition between lineages is independent of the conditions

Usage

fateSelectionTest(cellWeights, ...)

S4 method for signature 'matrix'
fateSelectionTest(
cellWeights,
conditions,
global = TRUE,
pairwise = FALSE,

fateSelectionTest 5

method = c("Classifier", "mmd", "wasserstein_permutation"),
classifier_method = "rf",
thresh = 0.01,
args_classifier = list(),
args_mmd = list(),
args_wass = list()

)

S4 method for signature 'SlingshotDataSet'
fateSelectionTest(
cellWeights,
conditions,
global = TRUE,
pairwise = FALSE,
method = c("Classifier", "mmd", "wasserstein_permutation"),
classifier_method = "rf",
thresh = 0.01,
args_classifier = list(),
args_mmd = list(),
args_wass = list()

)

S4 method for signature 'SingleCellExperiment'
fateSelectionTest(
cellWeights,
conditions,
global = TRUE,
pairwise = FALSE,
method = c("Classifier", "mmd", "wasserstein_permutation"),
classifier_method = "rf",
thresh = 0.01,
args_classifier = list(),
args_mmd = list(),
args_wass = list()

)

S4 method for signature 'PseudotimeOrdering'
fateSelectionTest(
cellWeights,
conditions,
global = TRUE,
pairwise = FALSE,
method = c("Classifier", "mmd", "wasserstein_permutation"),
classifier_method = "rf",
thresh = 0.01,
args_classifier = list(),
args_mmd = list(),
args_wass = list()

6 fateSelectionTest

)

Arguments

cellWeights Can be either a SlingshotDataSet, a SingleCellExperiment object or a ma-
trix of cell weights defining the probability that a cell belongs to a particular
lineage. Each row represents a cell and each column represents a lineage. If
only a single lineage, provide a matrix with one column containing all values of
1.

... parameters including:

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector

global If TRUE, test for all pairs simultaneously.

pairwise If TRUE, test for all pairs independently.

method One of "Classifier" or "mmd".
classifier_method

The method used in the classifier test. Default to "rf", i.e random forest.

thresh The threshold for the classifier test. See details. Default to .05.
args_classifier

arguments passed to the classifier test. See classifier_test.

args_mmd arguments passed to the mmd test. See mmd_test.

args_wass arguments passed to the wasserstein permutation test. See wasserstein_permut.

Value

A data frame with 3 columns:

• *pair* for individual pairs, the lineages numbers. For global, "All".

• *p.value* the pvalue for the test at the global or pair level

• *statistic* The classifier accuracy

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
fateSelectionTest(sds, condition)

fateSelectionTest_multipleSamples 7

fateSelectionTest_multipleSamples

Differential fate selection Test with multiple samples

Description

Test whether or not the cell repartition between lineages is independent of the conditions, with
samples not being confounded by conditions

Usage

fateSelectionTest_multipleSamples(cellWeights, ...)

S4 method for signature 'matrix'
fateSelectionTest_multipleSamples(cellWeights, conditions, Samples, ...)

S4 method for signature 'SlingshotDataSet'
fateSelectionTest_multipleSamples(cellWeights, conditions, Samples, ...)

S4 method for signature 'SingleCellExperiment'
fateSelectionTest_multipleSamples(cellWeights, conditions, Samples, ...)

S4 method for signature 'PseudotimeOrdering'
fateSelectionTest_multipleSamples(cellWeights, conditions, Samples, ...)

Arguments

cellWeights Can be either a SlingshotDataSet, a SingleCellExperiment object or a ma-
trix of cell weights defining the probability that a cell belongs to a particular
lineage. Each row represents a cell and each column represents a lineage. If
only a single lineage, provide a matrix with one column containing all values of
1.

... Other arguments passed to fateSelectionTest.

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector.

Samples A vector assigning each cell to a sample. Samples must be shared across all
conditions.

Value

The same object has the fateSelectionTest with one more column per sample.

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd

8 imbalance_score

cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
samples <- sample(1:2, 140, replace = TRUE)
fateSelectionTest_multipleSamples(cellWeights = sds, conditions = condition, Samples = samples)

imbalance_score Imbalance Score

Description

Compute a imbalance score to show whether nearby cells have the same condition of not

Usage

imbalance_score(Object, ...)

S4 method for signature 'matrix'
imbalance_score(Object, conditions, k = 10, smooth = 10)

S4 method for signature 'SingleCellExperiment'
imbalance_score(Object, dimred = 1, conditions, k = 10, smooth = 10)

Arguments

Object A SingleCellExperiment object or a matrix representing the reduced dimen-
sion matrix of the cells.

... parameters including:

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector

k The number of neighbors to consider when computing the score. Default to 10.

smooth The smoothing parameter. Default to k. Lower values mean that we smooth
more.

dimred A string or integer scalar indicating the reduced dimension result in reducedDims(sce)
to plot. Default to 1.

Value

Either a list with the scaled_scores and the scores for each cell, if input is a matrix, or the
SingleCellExperiment object, wit this list in the colData.

merge_sds 9

Examples

data("toy_dataset")
scores <- imbalance_score(as.matrix(toy_dataset$sd[,1:2]),

toy_datasetsdconditions, k = 4)
cols <- as.numeric(cut(scores$scaled_scores, 8))
plot(as.matrix(toy_dataset$sd[, 1:2]), xlab = "Dim1", ylab = "Dim2",
pch = 16, col = RColorBrewer::brewer.pal(8, "Blues")[cols])

merge_sds Merge slingshots datasets

Description

If trajectory inference needs to be manually done condition per condition, this allows to merge them
into one. It requires manual mapping of lineages.

Usage

merge_sds(..., mapping, condition_id = seq_len(ncol(mapping)), scale = FALSE)

Arguments

... Slingshot datasets

mapping a matrix, one column per dataset. Each row amounts to lineage mapping.

condition_id A vector of condition for each condition. Default to integer values in order of
appearance

scale If TRUE (default), lineages that are mapped are scaled to have the same length.

Details

The function assumes that each lineage in a dataset maps to exactly one lineage in another dataset.
Anything else needs to be done manually.

Value

A modified slingshot dataset that can be used for downstream steps.

Examples

data(list = 'slingshotExample', package = "slingshot")
if (!"cl" %in% ls()) {

rd <- slingshotExample$rd
cl <- slingshotExample$cl

}
sds <- slingshot::slingshot(rd, cl)
merge_sds(sds, sds, mapping = matrix(c(1, 2, 1, 2), nrow = 2))

10 nLineages

nLineages Number of lineages

Description

Return the number of lineages for a slingshot object

Usage

nLineages(sds, ...)

S4 method for signature 'SingleCellExperiment'
nLineages(sds)

S4 method for signature 'SlingshotDataSet'
nLineages(sds)

S4 method for signature 'PseudotimeOrdering'
nLineages(sds)

Arguments

sds A slingshot object already run on the full dataset. Can be either a SlingshotDataSet
or a SingleCellExperiment object.

... parameters including:

Value

The number of lineages in the slingshot object

Examples

data(list = 'slingshotExample', package = "slingshot")
if (!"cl" %in% ls()) {

rd <- slingshotExample$rd
cl <- slingshotExample$cl

}
sds <- slingshot::slingshot(rd, cl)
nLineages(sds)

progressionTest 11

progressionTest Differential Progression Test

Description

Test whether or not the pseudotime distribution are identical within lineages between conditions

Usage

progressionTest(pseudotime, ...)

S4 method for signature 'matrix'
progressionTest(
pseudotime,
cellWeights,
conditions,
global = TRUE,
lineages = FALSE,
method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
thresh = ifelse(method == "Classifer", 0.05, 0.01),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
rep = 10000,
distinct_samples = NULL

)

S4 method for signature 'SlingshotDataSet'
progressionTest(
pseudotime,
conditions,
global = TRUE,
lineages = FALSE,
method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
thresh = ifelse(method == "Classifer", 0.05, 0.01),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
rep = 10000,
distinct_samples = NULL

)

S4 method for signature 'SingleCellExperiment'
progressionTest(
pseudotime,
conditions,
global = TRUE,

12 progressionTest

lineages = FALSE,
method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
thresh = ifelse(method == "Classifer", 0.05, 0.01),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
rep = 10000,
distinct_samples = NULL

)

S4 method for signature 'PseudotimeOrdering'
progressionTest(
pseudotime,
conditions,
global = TRUE,
lineages = FALSE,
method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
thresh = ifelse(method == "Classifer", 0.05, 0.01),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
rep = 10000,
distinct_samples = NULL

)

Arguments

pseudotime Can be either a SlingshotDataSet or a SingleCellExperiment object or a
matrix of pseudotime values, each row represents a cell and each column repre-
sents a lineage.

... parameters including:

cellWeights If pseudotime is a matrix of pseudotime values, this represent the cell weights
for each lineage. Ignored if pseudotime is not a matrix.

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector.

global If TRUE, test for all lineages simultaneously.

lineages If TRUE, test for all lineages independently.

method One of "KS", "Classifier", "mmd", "wasserstein_permutation" or "Permutation"
for a permutation. See details. Default to KS if there is two conditions and to
"Classifier" otherwise.

thresh The threshold for the KS test or Classifier test. Ignored if method = "Permutation".
Default to .01 for KS and .05 for the ’classifier’.

args_mmd arguments passed to the mmd test. See mmd_test.
args_classifier

arguments passed to the classifier test. See classifier_test.

args_wass arguments passed to the wasserstein permutation test. See wasserstein_permut.

progressionTest 13

rep Number of permutations to run. Only for methods "Permutations" and "wasser-
stein_permutation". Default to 1e4.

distinct_samples

The samples to which each cell belong to. Only use with method distinct. See
\code{\link{distinct_test}} for help.

Details

For every lineage, we compare the pseudotimes of the cells from either conditions, using the lineage
weights as observations weights.

• If method = "KS", this uses the updated KS test, see ks_test for details.

• If method = "Classifier", this uses a classifier to assess if that classifier can do better than
chance on the conditions

• If method = "Permutation", the difference of weighted mean pseudotime between condition
is computed, and a p-value is found by permuting the condition labels.

• If method = "mmd", this uses the mean maximum discrepancies statistics.

The p-value at the global level can be computed in two ways. method is "KS" or "Permutation",
then the p-values are computed using stouffer’s z-score method, with the lineages weights acting as
weights. Otherwise, the test works on multivariate data and is applied on all pseudotime values.

Value

A data frame with 3 columns:

• lineage for individual lineages, the lineage number. For global, "All".

• p.value the pvalue for the test at the global or lineage level

• statistic for individual lineages, either the modified KS statistic if method = "KS", or the
weighted difference of means, if method = "Permutation". For the global test, the combined
Z-score.

References

Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.; Williams, R.M. Jr. (1949). The Ameri-
can Soldier, Vol.1: Adjustment during Army Life. Princeton University Press, Princeton.

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
progressionTest(sds, condition)

14 progressionTest_multipleSamples

progressionTest_multipleSamples

Differential Progression Test with multiple samples

Description

Test whether or not the pseudotime distribution are identical within lineages between conditions,
with samples not being confounded by conditions

Usage

progressionTest_multipleSamples(pseudotime, ...)

S4 method for signature 'matrix'
progressionTest_multipleSamples(
pseudotime,
cellWeights,
conditions,
Samples,
...

)

S4 method for signature 'SlingshotDataSet'
progressionTest_multipleSamples(pseudotime, conditions, Samples, ...)

S4 method for signature 'SingleCellExperiment'
progressionTest_multipleSamples(pseudotime, conditions, Samples, ...)

S4 method for signature 'PseudotimeOrdering'
progressionTest_multipleSamples(pseudotime, conditions, Samples, ...)

Arguments

pseudotime Can be either a SlingshotDataSet or a SingleCellExperiment object or a
matrix of pseudotime values, each row represents a cell and each column repre-
sents a lineage.

... Other arguments passed to progressionTest.
cellWeights If ‘pseudotime‘ is a matrix of pseudotime values, this represent the cell weights

for each lineage. Ignored if ‘pseudotime‘ is not a matrix.
conditions Either the vector of conditions, or a character indicating which column of the

metadata contains this vector.
Samples A vector assigning each cell to a sample. Samples must be shared across all

conditions.

Value

The same object has the progressionTest with one more column per sample.

slingshot_conditions 15

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
samples <- sample(1:2, 140, replace = TRUE)
progressionTest_multipleSamples(pseudotime = sds, conditions = condition, Samples = samples)

slingshot_conditions Refitting slingshot per condition

Description

Based on an original slingshot object, refit one trajectory per condition, using the same skeleton.

Usage

slingshot_conditions(sds, ...)

S4 method for signature 'SlingshotDataSet'
slingshot_conditions(
sds,
conditions,
approx_points = 100,
adjust_skeleton = TRUE,
verbose = TRUE,
...

)

S4 method for signature 'SingleCellExperiment'
slingshot_conditions(
sds,
conditions,
approx_points = 100,
adjust_skeleton = TRUE,
verbose = TRUE,
...

)

S4 method for signature 'PseudotimeOrdering'
slingshot_conditions(
sds,
conditions,
approx_points = 100,
adjust_skeleton = TRUE,

16 topologyTest

verbose = TRUE,
...

)

Arguments

sds A slingshot object already run on the full dataset. Can be either a SlingshotDataSet
or a SingleCellExperiment object.

... Other arguments passed to getCurves

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector.

approx_points Passed to getCurves

adjust_skeleton

Boolean, default to ‘TRUE‘. Whether to recompute the locations of the nodes
after fitting per conditions.

verbose Boolean, default to ‘TRUE‘. Control whether messages are printed.

Value

A list of SlingshotDataSet, one per condition.

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
sdss <- slingshot_conditions(sds, condition)

topologyTest Differential Topology Test

Description

Test whether or not slingshot should be fitted independently for different conditions or not.

Usage

topologyTest(sds, ...)

S4 method for signature 'SlingshotDataSet'
topologyTest(
sds,
conditions,
rep = 100,

topologyTest 17

threshs = 0.01,
methods = ifelse(dplyr::n_distinct(conditions) == 2, "KS_mean", "Classifier"),
parallel = FALSE,
BPPARAM = BiocParallel::bpparam(),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
nmax = nrow(slingshot::slingPseudotime(sds)),
distinct_samples = NULL

)

S4 method for signature 'SingleCellExperiment'
topologyTest(
sds,
conditions,
rep = 100,
threshs = 0.01,
methods = ifelse(dplyr::n_distinct(conditions) == 2, "KS_mean", "Classifier"),
parallel = FALSE,
BPPARAM = BiocParallel::bpparam(),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
nmax = ncol(sds),
distinct_samples = NULL

)

S4 method for signature 'PseudotimeOrdering'
topologyTest(
sds,
conditions,
rep = 100,
threshs = 0.01,
methods = ifelse(dplyr::n_distinct(conditions) == 2, "KS_mean", "Classifier"),
parallel = FALSE,
BPPARAM = BiocParallel::bpparam(),
args_mmd = list(),
args_classifier = list(),
args_wass = list(),
nmax = nrow(slingshot::slingPseudotime(sds)),
distinct_samples = NULL

)

Arguments

sds A slingshot object already run on the full dataset. Can be either a SlingshotDataSet
or a SingleCellExperiment object.

... parameters including:

18 topologyTest

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector.

rep How many permutations to run. Default to 50.

threshs the threshold(s) for the KS test or classifier test. Default to .01 See ks_test and
classifier_test.

methods The method(s) to use to test. Must be among ’KS_mean’, ’Classifier’, "KS_all’,
"mmd’ and ’wasserstein_permutation’. See details.

parallel Logical, defaults to FALSE. Set to TRUE if you want to parallellize the fitting.

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam in BiocParallel package for details.

args_mmd arguments passed to the mmd test. See mmd_test.
args_classifier

arguments passed to the classifier test. See classifier_test.

args_wass arguments passed to the wasserstein permutation test. See wasserstein_permut.

nmax How many samples to use to compute the mmd test. See details.
distinct_samples

The samples to which each cell belong to. Only use with method ‘distinct‘. See
‘distinct_test‘ for help.

Details

If there is only two conditions, default to ‘KS_mean‘. Otherwise, uses a classifier.

More than one method can be specified at once, which avoids running slingshot on the permutations
more than once (as it is the slowest part).

For the ‘mmd_test‘, if ‘null=unbiased‘, it is recommand to set ‘nmax=2000‘ or something of that
order of magnitude to avoid overflowing the memory.

Value

A list containing the following components:

• *method* The method used to test

• *thresh* The threshold (if relevant)

• *statistic* the value of the test statistic.

• *p.value* the p-value of the test.

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::getLineages(rd, cl)
topologyTest(sds, condition, rep = 10)

topologyTest_multipleSamples 19

topologyTest_multipleSamples

Differential Topology Test with multiple samples

Description

Test whether or not slingshot should be fitted independently for different conditions or not, per
sample, with samples not being confounded by conditions.

Usage

topologyTest_multipleSamples(sds, ...)

S4 method for signature 'SlingshotDataSet'
topologyTest_multipleSamples(sds, conditions, Samples, ...)

S4 method for signature 'SingleCellExperiment'
topologyTest_multipleSamples(sds, conditions, Samples, ...)

S4 method for signature 'PseudotimeOrdering'
topologyTest_multipleSamples(sds, conditions, Samples, ...)

Arguments

sds A slingshot object already run on the full dataset. Can be either a SlingshotDataSet
or a SingleCellExperiment object.

... Other arguments passed to topologyTest.

conditions Either the vector of conditions, or a character indicating which column of the
metadata contains this vector.

Samples A vector assigning each cell to a sample. Samples must be shared across all
conditions.

Value

The same object has the topologyTest with one more column per sample.

Examples

data('slingshotExample', package = "slingshot")
rd <- slingshotExample$rd
cl <- slingshotExample$cl
condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
condition[110:139] <- 'A'
sds <- slingshot::slingshot(rd, cl)
samples <- sample(1:2, 140, replace = TRUE)
topologyTest_multipleSamples(sds = sds, conditions = condition,

Samples = samples, rep = 10)

20 weights_from_pst

toy_dataset A toy dataset used in the vignette and in the examples

Description

This example has been created using the ‘create_differential_topology‘ function.

Usage

data(toy_dataset)

Format

A list with two dataframes

• *sd* A dataframe containing, for 1000 cells, the dimensions in two coordinates, and cluster,
lineage and condition assignment.

• mst: a data.frame that contains the skeleton of the trajectories

Source

The following code reproduces the object set.seed(21) library(condiments) data <- create_differential_topology(n_cells
= 1000, shift = 0) datasdDim2 <- datasdDim2 * 5 datamstDim2 <- datamstDim2 * 5 datasdcl
<- kmeans(as.matrix(data$sd[, 1:2]), 8)$cluster datasdcl <- as.character(datasdcl)

weights_from_pst weights_from_pst

Description

Most trajectory inference methods do not perform soft assignment but instead assign cells to all
possible lineages before a branching point, and then to one or another. This function re-creates a
weight matrix from those matrices of pseudotime

Usage

weights_from_pst(pseudotime, ...)

S4 method for signature 'matrix'
weights_from_pst(pseudotime)

S4 method for signature 'data.frame'
weights_from_pst(pseudotime)

weights_from_pst 21

Arguments

pseudotime A matrix or data.frame of \[ncells\] by \[nCurves\].

... Other parameters including:

Value

A object of the same type and dimensions as the original object, with the weights for each curve
and cell.

Examples

data(list = 'slingshotExample', package = "slingshot")
if (!"cl" %in% ls()) {

rd <- slingshotExample$rd
cl <- slingshotExample$cl

}
sds <- slingshot::slingshot(rd, cl)
weights_from_pst(slingshot::slingPseudotime(sds))

Index

∗ datasets
toy_dataset, 20

∗ internal
condiments-package, 2

classifier_test, 6, 12, 18
colData, 8
condiments (condiments-package), 2
condiments-package, 2
create_differential_topology, 3

differentiationTest, 4
distinct_test, 18

fateSelectionTest, 4, 4, 7
fateSelectionTest,matrix-method

(fateSelectionTest), 4
fateSelectionTest,PseudotimeOrdering-method

(fateSelectionTest), 4
fateSelectionTest,SingleCellExperiment-method

(fateSelectionTest), 4
fateSelectionTest,SlingshotDataSet-method

(fateSelectionTest), 4
fateSelectionTest_multipleSamples, 7
fateSelectionTest_multipleSamples,matrix-method

(fateSelectionTest_multipleSamples),
7

fateSelectionTest_multipleSamples,PseudotimeOrdering-method
(fateSelectionTest_multipleSamples),
7

fateSelectionTest_multipleSamples,SingleCellExperiment-method
(fateSelectionTest_multipleSamples),
7

fateSelectionTest_multipleSamples,SlingshotDataSet-method
(fateSelectionTest_multipleSamples),
7

getCurves, 16

imbalance_score, 8

imbalance_score,matrix-method
(imbalance_score), 8

imbalance_score,SingleCellExperiment-method
(imbalance_score), 8

ks_test, 13, 18

merge_sds, 9
mmd_test, 6, 12, 18

nLineages, 10
nLineages,PseudotimeOrdering-method

(nLineages), 10
nLineages,SingleCellExperiment-method

(nLineages), 10
nLineages,SlingshotDataSet-method

(nLineages), 10

progressionTest, 11, 14
progressionTest,matrix-method

(progressionTest), 11
progressionTest,PseudotimeOrdering-method

(progressionTest), 11
progressionTest,SingleCellExperiment-method

(progressionTest), 11
progressionTest,SlingshotDataSet-method

(progressionTest), 11
progressionTest_multipleSamples, 14
progressionTest_multipleSamples,matrix-method

(progressionTest_multipleSamples),
14

progressionTest_multipleSamples,PseudotimeOrdering-method
(progressionTest_multipleSamples),
14

progressionTest_multipleSamples,SingleCellExperiment-method
(progressionTest_multipleSamples),
14

progressionTest_multipleSamples,SlingshotDataSet-method
(progressionTest_multipleSamples),
14

22

INDEX 23

SingleCellExperiment, 6–8, 10, 12, 14, 16,
17, 19

slingshot_conditions, 15
slingshot_conditions,PseudotimeOrdering-method

(slingshot_conditions), 15
slingshot_conditions,SingleCellExperiment-method

(slingshot_conditions), 15
slingshot_conditions,SlingshotDataSet-method

(slingshot_conditions), 15
SlingshotDataSet, 6, 7, 10, 12, 14, 16, 17, 19

topologyTest, 16, 19
topologyTest,PseudotimeOrdering-method

(topologyTest), 16
topologyTest,SingleCellExperiment-method

(topologyTest), 16
topologyTest,SlingshotDataSet-method

(topologyTest), 16
topologyTest_multipleSamples, 19
topologyTest_multipleSamples,PseudotimeOrdering-method

(topologyTest_multipleSamples),
19

topologyTest_multipleSamples,SingleCellExperiment-method
(topologyTest_multipleSamples),
19

topologyTest_multipleSamples,SlingshotDataSet-method
(topologyTest_multipleSamples),
19

toy_dataset, 20

wasserstein_permut, 6, 12, 18
weights_from_pst, 20
weights_from_pst,data.frame-method

(weights_from_pst), 20
weights_from_pst,matrix-method

(weights_from_pst), 20

	condiments-package
	create_differential_topology
	differentiationTest
	fateSelectionTest
	fateSelectionTest_multipleSamples
	imbalance_score
	merge_sds
	nLineages
	progressionTest
	progressionTest_multipleSamples
	slingshot_conditions
	topologyTest
	topologyTest_multipleSamples
	toy_dataset
	weights_from_pst
	Index

