Package ‘coMethDMR’

January 23, 2026

Title Accurate identification of co-methylated and differentially
methylated regions in epigenome-wide association studies
Version 1.15.0

Description coMethDMR identifies genomic regions associated with continuous
phenotypes by optimally leverages covariations among CpGs within predefined
genomic regions. Instead of testing all CpGs within a genomic region,
coMethDMR carries out an additional step that selects co-methylated
sub-regions first without using any outcome information. Next, coMethDMR tests
association between methylation within the sub-region and continuous phenotype
using a random coefficient mixed effects model, which models both variations
between CpG sites within the region and differential methylation
simultaneously.

Depends R (>=4.1)
License GPL-3
Encoding UTF-8
LazyData false
RoxygenNote 7.1.2

Imports AnnotationHub, BiocParallel, bumphunter, ExperimentHub,
GenomicRanges, IRanges, ImerTest, methods, stats, utils

Suggests BiocStyle, corrplot, knitr, rmarkdown, testthat,
IlluminaHumanMethylation450kanno.ilmn12.hg19,
INluminaHumanMethylationEPICanno.ilm10b4.hg19

biocViews DNAMethylation, Epigenetics, MethylationArray,
DifferentialMethylation, GenomeWideAssociation

VignetteBuilder knitr
BugReports https://github.com/TransBioInfolLab/coMethDMR/issues

URL https://github.com/TransBioInfolLab/coMethDMR
git_url https://git.bioconductor.org/packages/coMethDMR
git_branch devel

git_last_commit 721129


https://github.com/TransBioInfoLab/coMethDMR/issues
https://github.com/TransBioInfoLab/coMethDMR

2 Contents
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-23
Author Fernanda Veitzman [cre],
Lissette Gomez [aut],
Tiago Silva [aut],
Ning Lijiao [ctb],
Boissel Mathilde [ctb],
Lily Wang [aut],
Gabriel Odom [aut]
Maintainer Fernanda Veitzman <fveit@@l@fiu.edu>
Contents
AnnotateResults . . . . . . ..o 3
betaMatrix_ex1 . . . . . . . . e 4
betaMatrix_exX2 . . . . . . ... e e e e e e 4
betaMatrix_e€X3 . . . . . . . e e e e e e e 5
betaMatriX_eX4 . . . . . . . e e e e 5
betasChr22_df . . . . . . . . . e 6
CloseBySingleRegion . . . . . . . . . . . 6
CoMethAlIRegIONS . . . . . . . . o o e e e 7
coMethDMR _setup . . . . . . . . . . . o e 9
CoMethSingleRegion . . . . . . . . . . .. L 10
CpGsInfoAllRegions . . . . . . . . . . . . 11
CpGsInfoOneRegion . . . . . . . . . . . e 13
CreateOutputDF . . . . . . . . . . e 14
CreateParallelWorkers . . . . . . . . . . L 15
CreateRdrop . . . . . . . . . o e 16
FindComethylatedRegions . . . . . . . . . . . . . . ... ... . 17
GetCpGsInRegion . . . . . . . . .. e 18
GetResiduals . . . . . . . .. e e e 19
ImportSesameData . . . . . . . . . ... 20
ImmTest . . . . . . . e e e e e 21
ImmTestAllRegions . . . . . . . . . . . e 23
MarkComethylatedCpGs . . . . . . . . . .. . 25
MarkMissing . . . . . . . o o e e e e e 27
NameRegion . . . . . . . . . . e e e e e 28
OrderCpGsByLocation . . . . . . . . ... e 29
pheno_df . . . . .. 30
RegionsToRanges . . . . . . . . . . . . e 30
SplitCpGDFbyRegion . . . . . . . . . . .. e 31
WriteCloseByAllRegions . . . . . . . . . . . . .. 32
Index 34



AnnotateResults 3

AnnotateResults Annotate coMethDMR Pipeline Results

Description

Given a data frame with regions in the genome, add gene symbols, UCSC reference gene accession,
UCSC reference gene group and relation to CpG island.

Usage
AnnotateResults(lmmRes_df, arrayType = c("450k", "EPIC"), nCores_int = 1L, ...)
Arguments
1mmRes_df A data frame returned by ImmTestAllRegions. This data frame must contain
the following columns:
* chrom : the chromosome the region is on, e.g. “chr22”
* start : the region start point
* end : the region end point
arrayType Type of array: 450k or EPIC
nCores_int Number of computing cores to be used when executing code in parallel. Defaults
to 1 (serial computing).
Dots for additional arguments passed to the cluster constructor. See CreateParallelWorkers
for more information.
Details

The region types include "NSHORE", "NSHELF ", "SSHORE", "SSHELF", "TSS1500", "TSS200", "UTR5",
"EXON1", "GENEBODY", "UTR3", and "ISLAND".

Value

A data frame with

* the location of the genomic region’s chromosome (chrom), start (start), and end (end);

¢ UCSC annotation information (UCSC_RefGene_Group, UCSC_RefGene_Accession, and UCSC_RefGene_Name);
and

* alist of all of the probes in that region (probes).

Examples

ImmResults_df <- data.frame(
chrom = c("chr22"”, "chr22", "chr22", "chr22", "chr22"),
start = c("39377790", "50987294", "19746156", "42470063", "43817258"),
end = c("39377930", "50987527", "19746368", "42470223", "43817384"),
regionType = c("TSS1500", "EXON1", "ISLAND", "TSS200", "ISLAND"),



4 betaMatrix_ex2

stringsAsFactors = FALSE
)

AnnotateResults(
ImmRes_df = ImmResults_df,
arrayType = "450k"

)

betaMatrix_ex1 Alzheimer’s Prefrontal Cortex (PFC) Methylation Data

Description
Subset of an Alzheimer’s Disease methylation data set, with beta values for measured CpGs methy-
lation levels.

Usage

data("betaMatrix_ex1")

Format
A data frame containing beta values for 4 CpGs in one CpG islands for 110 subjects. Each column
is a CpG, each row is a sample.

Source

GEO accession: GSE59685

betaMatrix_ex2 Alzheimer’s Prefrontal Cortex (PFC) Methylation Data

Description
Subset of an Alzheimer’s Disease methylation data set, with beta values for measured CpGs methy-
lation levels.

Usage

data("betaMatrix_ex2")

Format

A data frame containing beta values for 4 CpGs in one CpG islands for 110 subjects. Each column
is a CpG, each row is a sample.



betaMatrix_ex3 5

Source

GEO accession: GSE59685

betaMatrix_ex3 Alzheimer’s Prefrontal Cortex (PFC) Methylation Data

Description
Subset of an Alzheimer’s Disease methylation data set, with beta values for measured CpGs methy-
lation levels.

Usage

data("betaMatrix_ex3")

Format
A data frame containing beta values for 6 CpGs in one CpG islands for 110 subjects. Each column
is a CpG, each row is a sample.

Source

GEO accession: GSE59685

betaMatrix_ex4 Alzheimer’s Prefrontal Cortex (PFC) Methylation Data

Description
Subset of an Alzheimer’s Disease methylation data set, with beta values for measured CpGs methy-
lation levels.

Usage

data("betaMatrix_ex4")

Format
A data frame containing beta values for 52 CpGs in one CpG islands for 110 subjects. Each column
is a CpG, each row is a sample.

Source

GEO accession: GSE59685



6 CloseBySingleRegion

betasChr22_df Prefrontal Cortex (PFC) Methylation Data from Alzheimer’s Disease
subjects

Description

Subset of an Alzheimer’s methylation dataset, with beta values for CpGs.

Usage
data("betasChr22_df")

Format

A data frame containing beta values for 8552 CpGs in Chr22 for a subset of 20 subjects.

Source

GEO accession: GSE59685

CloseBySingleRegion Extract clusters of CpGs located closely in a genomic region.

Description

Extract clusters of CpGs located closely in a genomic region.

Usage
CloseBySingleRegion(
CpGs_char,
genome = c("hg19”, "hg38"),
arrayType = c("450k", "EPIC"),
manifest_gr = NULL,
maxGap = 200,
minCpGs = 3
)
Arguments
CpGs_char a list of CpG IDs
genome Human genome of reference hg19 or hg38

arrayType Type of array, 450k or EPIC



CoMethAllRegions 7

manifest_gr A GRanges object with the genome manifest (as returned by ExperimentHub
or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

maxGap an integer, genomic locations within maxGap from each other are placed into
the same cluster
minCpGs an integer, minimum number of CpGs for the resulting CpG cluster
Details

Note that this function depends only on CpG locations, and not on any methylation data. The
algorithm is based on the clusterMaker function in the bumphunter R package. Each cluster is
essentially a group of CpG locations such that two consecutive locations in the cluster are separated
by less than maxGap.

Value

a list, each item in the list is a character vector of CpG IDs located closely (i.e. in the same cluster)

Examples

CpGs_char <- c(
"cg02505293", "cg03618257", "cgd4421269", "cgl17885402", "cgl19890033",
"cg20566587", "cg27505880"

)

cluster_ls <- CloseBySingleRegion(
CpGs_char,
genome = "hgl19”,
arrayType = "450k",

maxGap = 100,
minCpGs = 3
)
CoMethAllRegions Extract contiguous co-methylated genomic regions from a list of pre-
defined genomic regions
Description

Extract contiguous co-methylated genomic regions from a list of pre-defined genomic regions

Usage

CoMethAllRegions(
dnam,
betaToM = FALSE,
method = c("pearson”, "spearman”),



CoMethAllRegions

rDropThresh_num = 0.4,

minCpGs = 3,

genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),

CpGs_ls,

file = NULL,

returnAllCpGs = FALSE,
output = c("CpGs”, "dataframe"),
nCores_int = 1L,

Arguments

dnam

betaToM
method

rDropThresh_num

minCpGs

genome
arrayType
CpGs_1s

file

returnAllCpGs

output

nCores_int

Details

matrix (or data frame) of beta values, with row names = CpG IDs, column names
= sample IDs. This is typically genome-wide methylation beta values.

indicates if converting methylation beta values to mvalues

method for computing correlation, can be "spearman” or "pearson”

threshold for min correlation between a cpg with sum of the rest of the CpGs

minimum number of CpGs to be considered a "region". Only regions with more
than minCpGs will be returned.

Human genome of reference hg19 or hg38
Type of array, can be "450k" or "EPIC"

list where each item is a character vector of CpGs IDs. This should be CpG
probes located closely on the array.

an RDS file with clusters of CpG locations (i.e. CpGs located closely to each
other on the genome). This file can be generated by the WriteCloseByAllRegions
function.

When there is not a contiguous comethylated region in the inputting pre-defined
region, returnAl1CpGs = TRUE indicates outputting all the CpGs in the input
regions (regardless of statistical significance), while returnA11CpGs = FALSE
indicates not returning any CpGs not contained in comethylated clusters. De-
faults to FALSE, and we provide this option for debugging purposes only.

a character vector of CpGs or a dataframe of CpGs along with rDrop info

Number of computing cores to be used when executing code in parallel. Defaults
to 1 (serial computing).

Dots for additional arguments passed to the cluster constructor. See CreateParallelWorkers
for more information.

There are two ways to input genomic regions for this function: (1) use CpGs_1s argument, or (2)
use file argument. Examples of these files are in /inst/extdata/ folder of the package.



coMethDMR_setup 9

Value

When output = "dataframe” is selected, returns a list of data frames, each with CpG (CpG name),
Chr (chromosome number), MAPINFO (genomic position), r_drop (correlation between the CpG
with rest of the CpGs), keep (indicator for co-methylated CpG), keep_contiguous (index for con-
tiguous comethylated subregions).

When output = "CpGs” is selected, returns a list, each item is a list of CpGs in the contiguous
co-methylated subregion.

Examples

data(betasChr22_df)

CpGisland_ls <- readRDS(
system.file(
"extdata",
"CpGislandsChr22_ex.rds",
package = 'coMethDMR',
mustWork = TRUE
)
)

coMeth_1s <- CoMethAllRegions (
dnam = betasChr22_df,
betaToM = TRUE,
method = "pearson”,
CpGs_ls = CpGisland_ls,
arrayType = "450k",
returnAllCpGs = FALSE,
output = "CpGs”

coMethDMR_setup Cache sesameData at Package Load

Description

Check if the user has both the HM540 and EPIC manifests in their cache. The contents of the cache
are checked via a call to the ExperimentHub function. If not all data components are available in
the cache for these two platforms, we query the necessary data to save them to the cache for later
use.

Arguments

libname path to package library

pkgname package name



10 CoMethSingleRegion

Details

arguments are unused

CoMethSingleRegion Wrapper function to find contiguous and comethyalted sub-regions
within a pre-defined genomic region

Description

Wrapper function to find contiguous and comethyalted sub-regions within a pre-defined genomic
region

Usage

CoMethSingleRegion(
CpGs_char,
dnam,
betaToM = TRUE,
rDropThresh_num = 0.4,
method = c("pearson”, "spearman"),
minCpGs = 3,
genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),
manifest_gr = NULL,
returnAllCpGs = FALSE

)
Arguments
CpGs_char vector of CpGs in the inputting pre-defined genomic region.
dnam matrix (or data frame) of beta values, with row names = CpG ids, column names
= sample ids. This should include the CpGs in CpGs_char, as well as additional
CpGs.
betaToM indicates if converting methylation beta values mvalues

rDropThresh_num
threshold for min correlation between a cpg with sum of the rest of the CpGs

method method for computing correlation, can be "pearson” or "spearman”

minCpGs minimum number of CpGs to be considered a "region". Only regions with more
than minCpGs will be returned.

genome Human genome of reference hg19 or hg38

arrayType Type of array, can be "450k" or "EPIC"

manifest_gr A GRanges object with the genome manifest (as returned by ExperimentHub

or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

returnAllCpGs  When there is not a contiguous comethylated region in the inputing pre-defined
region, returnAl1CpGs = 1 indicates outputting all the CpGs in the input region,
while returnAllCpGs = @ indicates not returning any CpG.



CpGsInfoAllRegions 11

Value

A list with two components:

* Contiguous_Regions: adata frame with CpG (CpG ID), Chr (chromosome number), MAPINFO
(genomic position), r_drop (correlation between the CpG with rest of the CpGs), keep (indi-
cator for co-methylated CpG), keep_contiguous (index for contiguous comethylated subre-
gion)

* CpGs_subregions : lists of CpGs in each contiguous co-methylated subregion

Examples

data(betasChr22_df)

CpGsChr22_char <- c(
"cg02953382", "cg12419862", "cg24565820", "cg04234412", "cg04824771",
"cg09033563", "cgl0150615", "cg18538332", "cg20007245", "cg23131131",
"cg25703541"

)

CoMethSingleRegion(
CpGs_char = CpGsChr22_char,
dnam = betasChr22_df

)

data(betaMatrix_ex3)
CpGsEx3_char <- c(
"cgl14221598", "cg@2433884", "cgd7372974", "cgl13419809", "cg26856676",
"cg25246745"
)
CoMethSingleRegion(
CpGs_char = CpGsEx3_char,
dnam = t(betaMatrix_ex3),
returnAllCpGs = TRUE
)

CpGsInfoAllRegions Test Associations Between Regions and Phenotype

Description

Test associations of individual CpGs in multiple genomic regions with a continuous phenotype

Usage

CpGsInfoAllRegions(
AllRegionNames_char,
allRegions_gr = NULL,
betas_df,



CpGsInfoAllRegions

genome = c("hg19”, "hg38"),
arrayType = c("450k", "EPIC")

12
pheno_df,
contPheno_char,
covariates_char,
)
Arguments

AllRegionNames_char

allRegions_gr

betas_df

pheno_df

contPheno_char

covariates_char

genome

arrayType

Value

vector of character strings with location info for all the genomic regions. Each
region should be specified in this format: "chrxx: XXXxXx=xXxXxxxx"

An object of class GRanges with location information for the regions. If this
argument is NULL, then the regions in A11RegionNames_char are used. If this
argument is not NULL, then region_gr will overwrite any supplied ranges in
AllRegionNames_char.

data frame of beta values for all genomic regions, with row names = CpG IDs
amd column names = sample IDs

a data frame with phenotype and covariate variables, with variable "Sample" for
sample IDs.

character string of the continuous phenotype to be tested against methylation
values

character vector of covariate variables names
human genome of reference hg19 (default) or hg38
Type of array, can be "450k" or "EPIC"

a data frame with locations of the genomic region (Region), CpG ID (cpg), chromosome (chr),
position (pos), results for testing association of methylation in individual CpGs with the continuous
phenotype (slopeEstimate, slopePval), UCSC_RefGene_Name, UCSC_RefGene_Accession, and
UCSC_RefGene_Group

Examples

data(betasChr22_df)

data(pheno_df)

AllRegionNames_char <- c(
"chr22:18267969-18268249",
"chr22:18531243-18531447"

)

CpGsInfoAllRegions(
AllRegionNames_char,
betas_df = betasChr22_df,
pheno_df = pheno_df,
contPheno_char = "stage",



CpGsInfoOneRegion 13
covariates_char = c("age.brain"”, "sex")
)
CpGsInfoOneRegion Test Associations Between a Region and Phenotype
Description

Test associations of individual CpGs in a genomic region with a continuous phenotype

Usage

CpGsInfoOneRegion(
regionName_char,
region_gr = NULL,

betas_df,
pheno_df,

contPheno_char,
covariates_char = NULL,
genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),

manifest_gr =

Arguments

regionName_char

region_gr

betas_df

pheno_df

contPheno_char
covariates_char
genome

arrayType

manifest_gr

NULL

character string of location information for a genomic region, specified in the
format of "chrxx: XXXXXx=XXXXxX"

An object of class GRanges with location information for one region. If this
argument is NULL, then the region in regionName_char is used.

data frame of beta values with row names = CpG IDs, column names = sample
IDs

a data frame with phenotype and covariate variables, with variable "Sample" for
sample IDs.

character string of the continuous phenotype to be tested against methylation
values

character vector of covariate variables names
human genome of reference hg19 (default) or hg38
Type of array, can be "450k" or "EPIC"

A GRanges object with the genome manifest (as returned by ExperimentHub
or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.



14 CreateOutputDF

Details

This function implements linear models that test association between methylation values in a ge-
nomic region with a continuous phenotype. Note that methylation M values are used as regression
outcomes in these models. The model for each CpG is:

methylation M value ~ contPheno_char + covariates_char

Value

a data frame with location of the genomic region (Region), CpG ID (cpg), chromosome (chr),
position (pos), results for testing association of methylation in individual CpGs with continuous
phenotype (slopeEstimate, slopePval) and annotations for the region.

Examples

data(betasChr22_df)
data(pheno_df)
myRegion_gr <- RegionsToRanges("chr22:18267969-18268249")

CpGsInfoOneRegion(
region_gr = myRegion_gr,
betas_df = betasChr22_df,
pheno_df = pheno_df,

contPheno_char = "stage",
covariates_char = c("age.brain", "sex"),
arrayType = "450k"
)
CreateOutputDF Create Output Dataframe
Description

Create Output Dataframe

Usage

CreateOutputDF(
keepCpGs_df,
keepContiguousCpGs_df,
CpGsOrdered_df,
returnAllCpGs = FALSE

)



CreateParallel Workers

Arguments

keepCpGs_df

15

a data frame with CpG = CpG name, keep = indicator for co-methylated CpGs,
and r_drop = correlation between the CpG with rest of the CpGs

keepContiguousCpGs_df

CpGsOrdered_df

returnAllCpGs

Value

a data frame with

a data frame with ProbeID = CpG name and Subregion = contiguous comethy-
lated subregion number

a data frame of CpG location with chr = chromosome number, pos = genomic
position, and cpg = CpG name

indicates if outputting all the CpGs in the region when there is not a contiguous
comethylated region or only the CpGs in the contiguous comethylated regions

CpG = CpG name, Chr = chromosome number, MAPINFO = genomic position,

r_drop = correlation between the CpG with rest of the CpGs, keep = indicator for co-methylated
CpG, and keep_contiguous = contiguous comethylated subregion number

Examples

data(betasChr2
CpGsChr22_char
"cg02953382"
"cg09033563"
"cg25703541"
)

CpGsOrdered_df

2_df)

<- c(

, "cgl12419862", "cg24565820", "cg04234412", "cg04824771",
, "cgl0150615", "cg18538332", "cg20007245", "cg23131131",

<- OrderCpGsByLocation(

CpGsChr22_char, arrayType="450k", output = "dataframe”

)

betaCluster_mat <- t(betasChr22_df[CpGsOrdered_df$cpg, 1)

keepCpGs_df <-

MarkComethylatedCpGs(betaCluster_mat = betaCluster_mat)

keepContiguousCpGs_df <- FindComethylatedRegions(CpGs_df = keepCpGs_df)

CreateOutputDF

(keepCpGs_df, keepContiguousCpGs_df, CpGsOrdered_df)

CreateParallelWorkers Create a Parallel Computing Cluster

Description

This function is an operating-system agnostic wrapper for the SnowParam and MulticoreParam
constructor functions.

Usage

CreateParallelWorkers(nCores, ...)



16 CreateRdrop

Arguments
nCores The number of computing cores to make available for coMethDMR computation
Additional arguments passed to the cluster constructors.
Details

This function checks the operating system and then creates a cluster of workers using the SnowParam
function for Windows machines and the MulticoreParam function for non-Windows machines.

Value

A parameter class for use in parallel evaluation

Examples

workers_cl <- CreateParallelWorkers(nCores = 4)

CreateRdrop Computes leave-one-out correlations (rDrop) for each CpG

Description

Computes leave-one-out correlations (rDrop) for each CpG

Usage
CreateRdrop(data, method = c("pearson”, "spearman”), use = "complete.obs")
Arguments
data a dataframe with rownames = sample IDs, column names = CpG IDs.
method method for computing correlation, can be "pearson” or "spearman", and is passed
to the cor function.
use method for handling missing values when calculating the correlation. Defaults
to "complete.obs” because the option "pairwise.complete.obs” only works
for Pearson correlation.
Details

An outlier CpG in a genomic region will typically have low correlation with the rest of the CpGs
in a genomic region. On the other hand, in a cluster of co-methylated CpGs, we expect each CpG
to have high correlation with the rest of the CpGs. The r.drop statistic is used to identify these
co-methylated CpGs here.



FindComethylatedRegions 17

Value

A data frame with the following columns:
* CpG: CpGID
e r_drop : The correlation between each CpG with the sum of the rest of the CpGs
Examples
data(betaMatrix_ex1)

CreateRdrop(data = betaMatrix_ex1, method = "pearson”)

FindComethylatedRegions
Find Contiguous Co-Methylated Regions

Description

Find contiguous comethylated regions based on output file from function MarkComethylatedCpGs

Usage

FindComethylatedRegions(CpGs_df, minCpGs_int = 3)

Arguments
CpGs_df an output dataframe from function MarkComethylatedCpGs, with variables: CpG,
keep, ind, r_drop. See details in documentation for MarkComethylatedCpGs.
minCpGs_int an integer indicating the minimum number of CpGs for output genomic regions
Value

A data frame with variables ProbeID and Subregion (index for each output contiguous comethy-
lated region)

Examples

data(betaMatrix_ex4)
CpGs_df <- MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex4)

FindComethylatedRegions(CpGs_df)



18 GetCpGsInRegion

GetCpGsInRegion Extract probe IDs for CpGs located in a genomic region

Description

Extract probe IDs for CpGs located in a genomic region

Usage

GetCpGsInRegion(
regionName_char,
region_gr = NULL,
genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),
manifest_gr = NULL,
ignoreStrand = TRUE

Arguments

regionName_char
character string with location information for one region in the format " chrxx : XXXxXx=XXxxxx"

4

region_gr An object of class GRanges with location information for one region. If this
argument is NULL, then the region in regionName_char is used.

genome human genome of reference hg19 (default) or hg38

arrayType Type of array, 450k or EPIC

manifest_gr A GRanges object with the genome manifest (as returned by ExperimentHub

or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

ignoreStrand Whether strand can be ignored, default is TRUE

Value

vector of CpG probe IDs mapped to the genomic region

Examples

myRegion_gr <- RegionsToRanges("chr22:18267969-18268249")

GetCpGsInRegion(
region_gr = myRegion_gr,
genome = "hgl19",
arrayType = "450k",
ignoreStrand = TRUE



GetResiduals

19

GetResiduals

Get Linear Model Residuals

Description

Remove covariate effects from methylayion values by fitting probe-specific linear models

Usage

GetResiduals(

dnam,

betaToM = TRUE,

epsilon

pheno_df,

1e-08,

covariates_char,
nCores_int = 1L,

Arguments

dnam

betaToM

epsilon

pheno_df

covariates_char

nCores_int

Details

data frame or matrix of methylation values with row names = CpG IDs and
column names = sample IDs. This is often the genome-wide array data.

indicates if methylation beta values (ranging from [0, 1]) should be converted
to M values (ranging from (-Inf, Inf)). Note that if beta values are the input to
dnam, then betaToM should be set to TRUE, otherwise FALSE.

When transforming beta values to M values, what should be done to values
exactly equal to 0 or 1? The M value transformation would yield -Inf or Inf
which causes issues in the statistical model. We thus replace all values exactly
equal to 0 with O + epsilon, and we replace all values exactly equal to 1 with 1
- epsilon. Defaults to epsilon = 1e-08.

a data frame with phenotype and covariates, with variable Sample indicating
sample IDs.

character vector for names of the covariate variables

Number of computing cores to be used when executing code in parallel. Defaults
to 1 (serial computing).

Dots for additional arguments passed to the cluster constructor. See CreateParallelWorkers

for more information.

This function fits an ordinary linear model predicting methylation values for each probe from the
specified covariates. This process will be useful in scenarios where methylation values in a region
or at an individual probe are known a priori to have differential methylation independent of the
disease or condition of interest.



20 ImportSesameData

Value

output a matrix of residual values in the same dimension as dnam

Examples

data(betasChr22_df)
data(pheno_df)

GetResiduals(
dnam = betasChr22_df[1:10, 1:10],
betaToM = TRUE,
pheno_df = pheno_df,

covariates_char = c("age.brain”, "sex", "slide")
)
ImportSesameData Import lllumina manifests (sesameData versions)
Description

Load either the HM540 and EPIC manifests into working memory

Usage

ImportSesameData(manifest_char)

Arguments

manifest_char Which manifest should be loaded? Currently, this package has been tested to
work with 450k and EPIC arrays for HG19 and HG38.

Details
This function assumes that the .onLoad() function has executed properly and (therefore) that the

necessary data sets are in the cache.

Examples

hm450k_gr <- ImportSesameData("HM450.hg19.manifest"”)
head(hm450k_gr)



ImmTest 21

ImmTest Fit mixed model to methylation values in one genomic region

Description

Fit mixed model to methylation values in one genomic region

Usage

ImmTest(
betalOne_df,
pheno_df,
contPheno_char,
covariates_char,
modelType = c("randCoef”, "simple"),
genome = c("hg19”, "hg38"),
arrayType = c("450k", "EPIC"),
manifest_gr = NULL,
ignoreStrand = TRUE,
outLogFile = NULL

)
Arguments
betaOne_df matrix of beta values for one genomic region, with row names = CpG IDs and
column names = sample IDs
pheno_df a data frame with phenotype and covariates, with variable Sample indicating

sample IDs.

contPheno_char character string of the main effect (a continuous phenotype) to be tested for
association with methylation values in the region

covariates_char
character vector for names of the covariate variables

modelType type of mixed model: can be randCoef for random coefficient mixed model or
simple for simple linear mixed model.

genome Human genome of reference: hg19 or hg38

arrayType Type of array: "450k" or "EPIC"

manifest_gr A GRanges object with the genome manifest (as returned by ExperimentHub

or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

ignoreStrand Whether strand can be ignored, default is TRUE

outLogFile Name of log file for messages of mixed model analysis



22 ImmTest

Details

This function implements a mixed model to test association between methylation M values in a ge-
nomic region with a continuous phenotype. In our simulation studies, we found both models shown
below are conservative, so p-values are estimated from normal distributions instead of Student’s ¢
distributions.

When modelType = "randCoef”, the model is:
M~ contPheno_char + covariates_char + (1|Sample) + (contPheno_char |CpG).

The last term specifies random intercept and slope for each CpG. When modelType = "simple”,
the model is

M~ contPheno_char + covariates_char + (1|Sample).

Value

A dataframe with one row for association result of one region and the following columns: Estimate,
StdErr, and pvalue showing the association of methylation values in the genomic region tested
with the continuous phenotype supplied in contPheno_char

Examples

data(betasChr22_df)

CpGsChr22_char <- c(
"cg02953382", "cg12419862", "cg24565820", "cg04234412", "cgo4824771",
"cg09033563", "cgl@150615", "cg18538332", "cg20007245", "cg23131131",
"cg25703541"

)

coMethCpGs <- CoMethSingleRegion(CpGsChr22_char, betasChr22_df)

# test only the first co-methylated region
coMethBeta_df <- betasChr22_df[coMethCpGs$CpGsSubregions[[1]], ]

data(pheno_df)

res <- lmmTest(
betaOne_df = coMethBeta_df,

pheno_df,
contPheno_char = "stage"”,
covariates_char = c("age.brain”, "sex"),

modelType = "randCoef”,
arrayType = "450k",
ignoreStrand = TRUE



ImmTestAllRegions 23

ImmTestAllRegions Linear Mixed Models by Region

Description

Fit mixed model to test association between a continuous phenotype and methylation values in a
list of genomic regions

Usage

ImmTestAllRegions(
betas,
region_ls,
pheno_df,
contPheno_char,
covariates_char,
modelType = c("randCoef”, "simple"),
genome = c("hgl19"”, "hg38"),
arrayType = c("450k", "EPIC"),
ignoreStrand = TRUE,
outFile = NULL,
outLogFile = NULL,
nCores_int = 1L,

Arguments
betas data frame or matrix of beta values for all genomic regions, with row names =
CpG IDs and column names = sample IDs. This is often the genome-wide array
data.
region_ls a list of genomic regions; each item is a vector of CpG IDs within a genomic re-
gion. The co-methylated regions can be obtained by function CoMethAllRegions.
pheno_df a data frame with phenotype and covariates, with variable Sample indicating

sample IDs.

contPheno_char character string of the main effect (a continuous phenotype) to be tested for
association with methylation values in each region

covariates_char
character vector for names of the covariate variables

modelType type of mixed model; can be randCoef for random coefficient mixed model or
simple for simple linear mixed model.

genome Human genome of reference: hg19 or hg38

arrayType Type of array: "450k" or "EPIC"

ignoreStrand Whether strand can be ignored, default is TRUE



24 ImmTestAllRegions

outFile output .csv file with the results for the mixed model analysis
outLogFile log file for mixed models analysis messages
nCores_int Number of computing cores to be used when executing code in parallel. Defaults

to 1 (serial computing).

Dots for additional arguments passed to the cluster constructor. See CreateParallelWorkers
for more information.

Details

This function implements a mixed model to test association between methylation M values in a ge-
nomic region with a continuous phenotype. In our simulation studies, we found both models shown
below are conservative, so p-values are estimated from normal distributions instead of Student’s ¢
distributions.

When modelType = "randCoef”, the model is:
M~ contPheno_char + covariates_char + (1|Sample) + (contPheno_char |CpG).

The last term specifies random intercept and slope for each CpG. When modelType = "simple”,
the model is

M~ contPheno_char + covariates_char + (1|Sample).

For the results of mixed models, note that if the mixed model failed to converge, p-value for mixed
model is set to 1. Also, if the mixed model is singular, at least one of the estimated variance
components for intercepts or slopes random effects is 0, because there isn’t enough variability in
the data to estimate the random effects. In this case, the mixed model reduces to a fixed effects
model. The p-values for these regions are still valid.

Value

If outFile is NULL, this function returns a data frame as described below. If outFile is specified,
this function writes a data frame in .csv format with the following information to the disk: location
of the genomic region (chrom, start, end), number of CpGs (nCpGs), Estimate, Standard error
(StdErr) of the test statistic, p-value and False Discovery Rate (FDR) for association between
methylation values in each genomic region with phenotype (pValue).

If outLogFile is specified, this function also writes a .txt file that includes messages for mixed
model fitting to the disk.

Examples

data(betasChr22_df)
data(pheno_df)

CpGisland_1ls <- readRDS(
system.file(
"extdata",
"CpGislandsChr22_ex.rds",
package = 'coMethDMR',
mustWork = TRUE



MarkComethylatedCpGs 25

coMeth_1ls <- CoMethAllRegions(
dnam = betasChr22_df,
betaToM = TRUE,
CpGs_1s = CpGisland_ls,
arrayType = "450k",
rDropThresh_num = 0.4,
returnAllCpGs = FALSE

results_df <- ImmTestAllRegions(
betas = betasChr22_df,
region_ls = coMeth_ls,
pheno_df = pheno_df,
contPheno_char = "stage”,
covariates_char = "age.brain”,
modelType = "randCoef”,
arrayType = "450k",
ignoreStrand = TRUE,
# generates a log file in the current directory
# outLogFile = paste@(”"lmmLog_", Sys.Date(), ".txt")

MarkComethylatedCpGs  Mark CpGs in contiguous and co-methylated region

Description

Mark CpGs in contiguous and co-methylated region

Usage

MarkComethylatedCpGs(
betaCluster_mat,
betaToM = TRUE,
epsilon = 1e-08,
rDropThresh_num = 0.4,

method = c("pearson”, "spearman"),
use = "complete.obs”
)
Arguments

betaCluster_mat
matrix of beta values, with rownames = sample ids and column names = CpG
ids. Note that the CpGs need to be ordered by their genomic positions, this can
be accomplished by the OrderCpGbyLocation function.



26

betaToM

epsilon

rDropThresh_num

method

use

Details

An outlier CpG in

MarkComethylatedCpGs

indicates if beta values should be converted to M values before computing cor-
relations. Defaults to TRUE.

When transforming beta values to M values, what should be done to values
exactly equal to O or 1? The M value transformation would yield -Inf or Inf
which causes issues in the statistical model. We thus replace all values exactly
equal to 0 with O + epsilon, and we replace all values exactly equal to 1 with 1
- epsilon. Defaults to epsilon = 1e-08.

threshold for minimum correlation between a cpg with the rest of the CpGs.
Defaults to 0.4.

correlation method; can be "pearson" or "spearman"”

method for handling missing values when calculating the correlation. Defaults
to "complete.obs” because the option "pairwise.complete.obs” only works
for Pearson correlation.

a genomic region will typically have low correlation with the rest of the CpGs

in a genomic region. On the other hand, in a cluster of co-methylated CpGs, we expect each CpG

to have high correl

ation with the rest of the CpGs. The r.drop statistic is used to identify these

co-methylated CpGs here.

Value

A data frame with the following columns:

* CpG: CpGID

* keep : The CpGs with keep = 1 belong to the contiguous and co-methylated region

* ind: Index for the CpGs

e r_drop: The

Examples

data(betaMatri

MarkComethylat
betaCluster_|
betaToM = FA
method = "pe

)

correlation between each CpG with the sum of the rest of the CpGs

x_ex1)

edCpGs (

mat = betaMatrix_ex1,
LSE,

arson”



MarkMissing 27

MarkMissing Return Column and Row Names of Samples and Probes under the
Missingness Theshold

Description

Return Column and Row Names of Samples and Probes under the Missingness Theshold

Usage
MarkMissing(dnaM_df, sampMissing_p = 0.5, probeMissing_p = 0.25)

Arguments

dnaM_df A data frame of DNA methylation values. Samples are columns. Row names
are probe IDs.

sampMissing_p The maximum proportion of missingness allowed in a sample. Defaults to 50%.

probeMissing_p The maximum proportion of missingness allowed in a probe. Defaults to 25%.

Details

Before calculating the missing proportion of samples, probes with missingness greater than the
threshold are dropped first.

Value
A list of four entries:
* dropSamples: the column names of samples with more than sampMissing_p percent missing
values

* keepSamples: the column names of samples with less than or equal to sampMissing_p per-
cent missing values

* dropProbes: the row names of probes with more than probeMissing_p percent missing val-
ues

* keepProbes: the row names of probes with less than or equal to probeMissing_p percent
missing values

Examples

### Setup #H##
values_num <- c(

0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, NA,
0.1, 0.1, 0.1, 0.1, NA,
0.1, 0.1, 0.1, NA, NA,
0.1, 0.1, 0.1, NA, NA,
0.1, 0.1, NA, NA, NA,

’



28 NameRegion
0.1, 0.1, NA, NA, NA,
9.1, NA, NA, NA, NA,
NA, NA, NA, NA, NA
)
values_mat <- matrix(values_num, nrow = 9, ncol = 5, byrow = TRUE)
rownames (values_mat) <- paste@("probe_0", 1:9)
colnames(values_mat) <- paste@(”sample_0", 1:5)
values_df <- as.data.frame(values_mat)
### Simple Calculations #if#
MarkMissing(values_df)
MarkMissing(values_df, probeMissing_p = 0.5)
MarkMissing(values_df, sampMissing_p = 0.25)
### Using the Output ###
mark_ls <- MarkMissing(values_df, probeMissing_p = 0.5)
valuesPurged_df <- values_df[ mark_ls$keepProbes, mark_ls$keepSamples ]
valuesPurged_df
NameRegion Name a region with several CpGs based on its genomic location
Description

Name a region with several CpGs based on its genomic location

Usage

NameRegion(CpGsOrdered_df)

Arguments

CpGsOrdered_df dataframe with columns for Probe IDs as character (cpg), chromosome number
as character (chr), and genomic location as integer (pos)

Value

genome location of the CpGs formatted as "chrxx: XXXxXxx=Xxxxxx"

Examples

# Consider four probe IDs:
CpGs_char <- c("cg@4677227", "cg@7146435", "cgl11632906”, "cg20214853")

# After querying these four probes against an EPIC array via the
#  OrderCpGsByLocation() function, we get the following data frame:
CpGsOrdered_df <- data.frame(



OrderCpGsByLocation

29

chr = c("chr10”, "chr10”, "chr10"”, "chrio"),

pos

c(100028236L, 100028320L, 100028468L, 100028499L),

cpg = ¢("cg20214853", "cgP4677227", "cgl1632906", "cgd7146435"),
stringsAsFactors = FALSE

)

# Now, we can name the region that contains these four probes:
NameRegion(CpGsOrdered_df)

OrderCpGsByLocation Order CpGs by genomic location

Description

Order CpGs by genomic location

Usage

OrderCpGsByLocation(

CpGs_char,

genome = c("hg19”, "hg38"),
arrayType = c("450k", "EPIC"),

manifest_gr =

NULL,

ignoreStrand = TRUE,

output = c("vector”, "dataframe")
)
Arguments
CpGs_char vector of CpGs
genome Human genome of reference: hg19 or hg38
arrayType Type of array: 450k or EPIC

manifest_gr

ignoreStrand

output

Value

A GRanges object with the genome manifest (as returned by ExperimentHub
or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

Whether strand can be ignored, default is TRUE
vector of CpGs or dataframe with CpGs, CHR, MAPINFO

vector of CpGs ordered by location or dataframe with CpGs ordered by location (cpg), chromosome
(chr), position (pos)



30 RegionsToRanges

Examples

CpGs_char <- c("cg@4677227", "cgd7146435", "cgl11632906", "cg20214853")
OrderCpGsByLocation(

CpGs_char,

genome = "hgl19”,

arrayType = "450k",

ignoreStrand = TRUE,

output = "dataframe”
)
pheno_df Example phenotype data file from Prefrontal Cortex (PFC) Methyla-
tion Data of Alzheimer’s Disease subjects
Description

Subset of phenotype information for Alzheimer’s methylation dataset.

Usage
data("pheno_df")

Format
A data frame containing variables for Braak stage (stage), subject.id, Batch (slide), Sex, Sample,
age of brain sample (age.brain)

Source

GEO accession: GSE59685

RegionsToRanges Convert genomic regions in a data frame to GRanges format

Description

Convert genomic regions in a data frame to GRanges format

Usage

RegionsToRanges(regionName_char)

Arguments

regionName_char
a character vector of regions in the format "chrxx: XXXXxX=Xxxxxx"



SplitCpGDFbyRegion 31

Value

genomic regions in GRanges format

Examples

regions <- c("chr22:19709548-19709755", "chr2:241721922-241722113")
RegionsToRanges(regions)

SplitCpGDFbyRegion Split CpG dataframe by Subregion

Description

Split a dataframe of CpGs and comethylated subregions to a list of CpGs in each subregion

Usage

SplitCpGDFbyRegion(
CpGsSubregions_df,
genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),
manifest_gr = NULL,
returnAllCpGs = TRUE

Arguments

CpGsSubregions_df
data frame with CpG and subregion number

genome Human genome of reference: hg19 or hg38
arrayType Type of array: 450k or EPIC
manifest_gr A GRanges object with the genome manifest (as returned by ExperimentHub

or by ImportSesameData). This function by default ignores this argument in
favour of the genome and arrayType arguments.

returnAllCpGs indicates if outputting all the CpGs in the region when there is not a contiguous
comethylated region or only the CpGs in the contiguous comethylated regions

Value

a list of comethylated subregions CpGs for a pre-defined region



32 WriteCloseByAllRegions

Examples

data(betaMatrix_ex4)
CpGs_df <- MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex4)
CpGsSubregions_df <- FindComethylatedRegions(CpGs_df)

SplitCpGDFbyRegion(
CpGsSubregions_df,
genome = "hgl19”,
arrayType = "450k"

)

WriteCloseByAllRegions
Extract clusters of CpG probes located closely

Description

Extract clusters of CpG probes located closely

Usage

WriteCloseByAllRegions(
fileName,
regions,
genome = c("hg19"”, "hg38"),
arrayType = c("450k", "EPIC"),
ignoreStrand = TRUE,

maxGap = 200,
minCpGs = 3,
)
Arguments
fileName Name of the RDS file where the output genomic regions will be saved.
regions GRanges of input genomic regions
genome Human genome of reference: hg19 or hg38
arrayType Type of array: "450k" or "EPIC"

ignoreStrand Whether strand can be ignored, default is TRUE

maxGap an integer, genomic locations within maxGap from each other are placed into
the same cluster

minCpGs an integer, minimum number of CpGs for each resulting region

Dots for internal arguments. Currently unused.



WriteCloseByAllRegions 33

Details

For maxGap = 200 and minCpGs = 3, we have already calculated the clusters of CpGs. They are
saved in folder /inst/extdata/.

Value

Nothing. Instead, file with the genomic regions containing CpGs located closely within each in-
putting pre-defined genomic region will be written to the disk

Examples

regions <- GenomicRanges: :GRanges(
segnames = c("chr4", "chre", "chr16", "chr16"”, "chr22", "chri9"),
ranges = c(
"174202697-174203520", "28226203-28227482", "89572934-89574634",
"67232460-67234167", "38244199-38245362", "39402823-39403373"
)
)

# Uncomment out the example code below:
# WriteCloseByAllRegions(

# regions = regions,

arrayType = "EPIC",

maxGap = 50,

minCpGs = 3,

fileName = "closeByRegions.rds"

*od o



Index

x datasets ImmTest, 21
betaMatrix_ex1, 4 1mmTestAllRegions, 3, 23
betaMatrix_ex2, 4
betaMatrix_ex3, 5 MarkComethylatedCpGs, 17, 25
betaMatrix_ex4, 5 MarkMissing, 27
betasChr22_df, 6 MulticoreParam, 15
pheno_df, 30 )

% internal NameRegion, 28

coMethDMR_setup, 9
CreateOutputDF, 14
SplitCpGDFbyRegion, 31 pheno_df, 30

OrderCpGsByLocation, 29

AnnotateResults, 3
query, 9

betaMatrix_ex1, 4
betaMatrix_ex2, 4
betaMatrix_ex3, 5
betaMatrix_ex4, 5
betasChr22_df, 6

RegionsToRanges, 30

SnowParam, 15
SplitCpGDFbyRegion, 31
CloseBySingleRegion, 6 WriteCloseByAllRegions, 8, 32
clusterMaker, 7
CoMethAllRegions, 7,23
coMethDMR_setup, 9
CoMethSingleRegion, 10

cor, 16

CpGsInfoAllRegions, 11
CpGsInfoOneRegion, 13
CreateOutputDF, 14
CreateParallelWorkers, 3,8, 15, 19, 24
CreateRdrop, 16

ExperimentHub, 7, 10, 13,18, 21, 29, 31
FindComethylatedRegions, 17

GetCpGsInRegion, 18
GetResiduals, 19
GRanges, 12, 13,18

ImportSesameData, 7, 10, 13, 18, 20, 21, 29,
31

34



	AnnotateResults
	betaMatrix_ex1
	betaMatrix_ex2
	betaMatrix_ex3
	betaMatrix_ex4
	betasChr22_df
	CloseBySingleRegion
	CoMethAllRegions
	coMethDMR_setup
	CoMethSingleRegion
	CpGsInfoAllRegions
	CpGsInfoOneRegion
	CreateOutputDF
	CreateParallelWorkers
	CreateRdrop
	FindComethylatedRegions
	GetCpGsInRegion
	GetResiduals
	ImportSesameData
	lmmTest
	lmmTestAllRegions
	MarkComethylatedCpGs
	MarkMissing
	NameRegion
	OrderCpGsByLocation
	pheno_df
	RegionsToRanges
	SplitCpGDFbyRegion
	WriteCloseByAllRegions
	Index

