
Package ‘biovizBase’
January 23, 2026

Version 1.59.0

Title Basic graphic utilities for visualization of genomic data.

Description The biovizBase package is designed to provide a set of
utilities, color schemes and conventions for genomic data. It
serves as the base for various high-level packages for
biological data visualization. This saves development effort
and encourages consistency.

Depends R (>= 3.5.0), methods

Imports grDevices, stats, scales, Hmisc, RColorBrewer, dichromat,
BiocGenerics, S4Vectors (>= 0.23.19), IRanges (>= 1.99.28),
Seqinfo, GenomeInfoDb (>= 1.45.5), GenomicRanges (>= 1.61.1),
SummarizedExperiment (>= 1.39.1), Biostrings (>= 2.77.2),
Rsamtools (>= 2.25.1), GenomicAlignments (>= 1.45.1),
GenomicFeatures (>= 1.61.4), AnnotationDbi, VariantAnnotation
(>= 1.55.1), ensembldb (>= 2.33.1), AnnotationFilter (>=
0.99.8), rlang

Suggests BSgenome.Hsapiens.UCSC.hg19,
TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome, rtracklayer,
EnsDb.Hsapiens.v75, RUnit

License Artistic-2.0

LazyLoad Yes

LazyData Yes

Collate utils.R color.R AllGenerics.R crunch-method.R mold-method.R
addStepping-method.R getFragLength-method.R
shrinkageFun-method.R maxGap-method.R spliceSummary-method.R
ideogram.R pileup.R coverage.R labs.R original.R transform.R
facets-method.R aes.R scale.R zzz.R biovizBase-package.R

biocViews Infrastructure, Visualization, Preprocessing

git_url https://git.bioconductor.org/packages/biovizBase

git_branch devel

git_last_commit 7895cbf

git_last_commit_date 2025-10-29

1

2 Contents

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Tengfei Yin [aut],
Michael Lawrence [aut, ths, cre],
Dianne Cook [aut, ths],
Johannes Rainer [ctb]

Maintainer Michael Lawrence <lawremi@gmail.com>

Contents
biovizBase-package . 3
addStepping-method . 3
colorBlindSafePal . 5
containLetters . 6
CRC . 7
crc1.GeRL . 8
crunch . 8
darned_hg19_subset500 . 10
estimateCoverage . 10
flatGrl . 11
GCcontent . 12
genesymbol . 13
getBioColor . 13
getFormalNames . 15
getGaps . 16
getIdeoGR . 17
getIdeogram . 18
getScale . 19
getXScale . 19
getYLab-method . 20
hg19Ideogram . 21
hg19IdeogramCyto . 21
ideo . 22
ideoCyto . 22
isIdeogram . 23
isMatchedWithModel . 23
isSimpleIdeogram . 24
maxGap-method . 25
mold . 26
parseArgsForAes . 27
pileupAsGRanges . 28
pileupGRangesAsVariantTable . 29
plotColorLegend . 30
showColor . 31
shrinkageFun-method . 32
splitByFacets . 33
strip_formula_dots . 34

biovizBase-package 3

subsetArgsByFormals . 35
transformGRangesForEvenSpace . 36
transformToGenome . 37

Index 40

biovizBase-package biovizBase is a package which provides utilities and color scheme...

Description

biovizBase is a package which provides utilities and color scheme for higher level graphic package
which aim to visualize biological data especially genetic data.

Details

This package provides default color scheme for nucleotide, strand, amino acid, try to pass colorblind
checking as possible as we can. And also provide giemsa stain result color scheme used to show
cytoband. This package also provides utilites to manipulate and summarize raw data to get them
ready to be visualized.

addStepping-method Adding disjoint levels to a GenomicRanges object

Description

Adding disjoint levels to a GenomicRanges object

Usage

S4 method for signature 'GenomicRanges'
addStepping(obj, group.name, extend.size = 0,

fix = "center",
group.selfish = TRUE)

Arguments

obj A GenomicRanges object

group.name Column name in the elementMetadata which specify the grouping information
of all the entries. If provided, this will make sure all intervals belong to the same
group will try to be on the same level and nothing falls in between.

extend.size Adding invisible buffered region to the GenomicRanges object, if it’s 10, then
adding 5 at both end. This make the close neighbors assigned to the different
levels and make your eyes easy to identify.

fix "start", "end", or "center"(default) passed to resize, denoting what to use as an
anchor for each element of obj, and add extend.size to it’s current width.

4 addStepping-method

group.selfish Passed to addStepping, control whether to show each group as unique level or
not. If set to FALSE, if two groups are not overlapped with each other, they will
probably be layout in the same level to save space.

Details

This is a tricky question, for example, pair-end RNA-seq data could be represented as two set of
GenomicRanges object, one indicates the read, one indicates the junction. At the same time, we
need to make sure pair-ended read are shown on the same level, and nothing falls in between. For
better visualization of the data, we may hope to add invisible extended buffer to the reads, so closely
neighbored reads will be on the different levels.

Value

A modified GenmicRanges object with stepping as one column.

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
set.seed(1)
N <- 500
sample GRanges
gr <- GRanges(seqnames =

sample(c("chr1", "chr2", "chr3", "chrX", "chrY"),
size = N, replace = TRUE),

IRanges(
start = sample(1:300, size = N, replace = TRUE),
width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-", "*"), size = N,
replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
group = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),
pair = sample(letters, size = N,

replace = TRUE))

grouping and extending
head(addStepping(gr))
head(addStepping(gr, group.name = "pair"))
gr.close <- GRanges(c("chr1", "chr1"), IRanges(c(10, 20), width = 9))
addStepping(gr.close)
addStepping(gr.close, extend.size = 5)

colorBlindSafePal 5

colorBlindSafePal Color blind safe palette generator

Description

This function help users create a function based on specified color blind safe palette. And the
returned function could be used for color generation.

Usage

genDichromatPalInfo()
genBrewerBlindPalInfo()
genBlindPalInfo()
colorBlindSafePal(palette)
blind.pal.info
brewer.pal.blind.info
dichromat.pal.blind.info

Arguments

palette A index numeric value or character. Please see blind.pal.info, the palette
could be "pal_id" or names the row in which users could specify the palette you
want to use.

Details

We get those color-blind safe palette based on http://colorbrewer2.org/ and http://geography.
uoregon.edu/datagraphics/color_scales.htm those color are implemented in two packages,
RColorBrewer and dichromat. But RColorBrewer doesn’t provide subset of color-blind safe palette
info. And dichromat doesn’t group color based on "quality", "sequential" and "divergent", so we
pick those color manually and create a combined palette, blind.pal.info.

colorBlindSafePal will return a function, this function will take two arguments, n and repeatable.
if n is smaller than 3(n >= 3 is required by RColorBrewer), we use 3 instead and return a color vector.
If n is over the maxcolors column in blind.pal.info, we use maxcolors instead when repeatable
set to FALSE, if repeatable set to TRUE we repeat the color of all the allowed colors(length equals
maxcolors) in the same order. This has special case in certain graphics which is always displayed
side by side and don’t worry about the repeated colors being neighbors.

genBrewerBlindPalInfo return brewer.pal.blind.info data frame containing all color-blind
safe palettes from brewer.pal.info defined in RColorBrewer, but it’s not only just subset of it, it
also changes some maxcolors info.

genDichromatPalInfo return dichromat.pal.blind.info data frame.

genBlindPalInfo return blind.pal.info data frame.

http://colorbrewer2.org/
http://geography.uoregon.edu/datagraphics/color_scales.htm
http://geography.uoregon.edu/datagraphics/color_scales.htm

6 containLetters

Value

A color generating function with arguments n and repeatable. n specifying how many different
discrete colors you want to get from them palette, and if repeatable turned on and set to TRUE, you
can specify n even larger than maximum color. The color will be repeated following the same order.

Author(s)

Tengfei Yin

Examples

Not run:
library(scales)
brewer subse of only color blind palette
brewer.pal.blind.info
genBrewerBlindPalInfo()
dichromat info
dichromat.pal.blind.info
genDichromatPalInfo()
all color blind palette, adding id/pkg.
blind.pal.info
with no parameters, just return blind.pal.info
colorBlindSafePal()
mypal <- colorBlindSafePal(20)
or pass character name
mypal <- colorBlindSafePal("Set2")
mypal12 <- colorBlindSafePal(22)
show_col(mypal(12, repeatable = FALSE)) # warning
show_col(mypal(11, repeatable = TRUE)) # no warning, and repeat
show_col(mypal12(12))

End(Not run)

containLetters Checking if string contains letters or not

Description

Test if a string contain any letters

Usage

containLetters(obj, all=FALSE)

Arguments

obj String

all If set to FALSE, return TRUE when any letters appears; if all is set to TRUE,
return TRUE only when the string is composed of just letters.

CRC 7

Details

Useful when processing/sorting seqnames

Value

Logical value

Author(s)

tengfei

Examples

containLetters("XYZ123")
containLetters("XYZ123", TRUE)

CRC CRC

Description

Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion
sample data set

Usage

data(CRC)

Details

The data used in this study is from this a paper http://www.nature.com/ng/journal/v43/n10/full/ng.936.html.

Examples

data(CRC)

8 crunch

crc1.GeRL crc1.GeRL

Description

CRC-1 mutation and structural rearrangment

Usage

data(crc1.GeRL)

Details

GenomicRangesList contains somatic mutation, reaarangment etc for a tumor sample, please check
the reference for detials.

References

Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion

Examples

data(crc1.GeRL)
crc1.GeRL

crunch Fetching GRanges from various data source

Description

Fetching Granges from various data source, currently supported objects are TxDb, EnsDb, GAlign-
ments and BamFile.

Usage

S4 method for signature 'TxDb'
crunch(obj, which, columns = c("tx_id", "tx_name","gene_id"),

type = c("all", "reduce"), truncate.gaps = FALSE,
truncate.fun = NULL, ratio = 0.0025)

S4 method for signature 'EnsDb'
crunch(obj, which, columns = c("tx_id", "gene_name","gene_id"),

type = c("all", "reduce"), truncate.gaps = FALSE,
truncate.fun = NULL, ratio = 0.0025)

S4 method for signature 'GAlignments'
crunch(obj, which, truncate.gaps = FALSE,

truncate.fun = NULL, ratio = 0.0025)

crunch 9

S4 method for signature 'BamFile'
crunch(obj, which, ..., type = c("gapped.pair", "raw", "all"),

truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025)

Arguments

obj supported objects are TxDb, GAlignments and BamFile.

which GRanges object. For TxDb object, could aslo be a list. For EnsDb, it can also be a
single filter object extending AnnotationFilter-class, an AnnotationFilterList
combining several such objects or a filter expression in form of a formula (see
AnnotationFilter for examples).

columns columns to include in the output.

type default ’all’ is to show the full model, ’reduce’ is to show a single model.

truncate.gaps logical value, default FALSE. Whether to truncate gaps or not.

truncate.fun shrinkage function.

ratio numeric value, shrinking ratio.

... arguments passed to function readGAlignments.

Value

GRanges object.

Author(s)

Tengfei Yin

Examples

library(biovizBase)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
data(genesymbol, package = "biovizBase")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
obj <- txdb
temp <- crunch(txdb, which = genesymbol["BRCA1"], type = "all")
temp <- crunch(txdb, which = genesymbol["BRCA1"], type = "reduce")

Fetching data from a EnsDb object.
library(EnsDb.Hsapiens.v75)
edb <- EnsDb.Hsapiens.v75
gr <- genesymbol["BRCA1"]
seqlevels(gr) <- sub(seqlevels(gr), pattern="chr", replacement="")
temp <- crunch(edb, which = gr)

Alternatively, use the GenenameFilter from the AnnotationFilter package:
temp <- crunch(edb, which = GenenameFilter("BRCA1"))

Or a filter expression
temp <- crunch(edb, which = ~ genename == "BRCA1")

10 estimateCoverage

darned_hg19_subset500 Subset of RNA editing sites in hg19...

Description

Subset of RNA editing sites in hg19

Usage

data(darned_hg19_subset500)

Details

This data set provides a subset(500 sites only) of hg19 RNA editing sites, and originally from
DARNED http://darned.ucc.ie/ for the hg19 assembly.

Examples

data(darned_hg19_subset500)
darned_hg19_subset500

estimateCoverage Estimation of Coverage

Description

Estimation of Coverage

Usage

S4 method for signature 'BamFile'
estimateCoverage(x, maxBinSize = 2^14)

Arguments

x A BamFile object.

maxBinSize Max bin size.

Value

A GRanges object.

Author(s)

Michael Lawrence

http://darned.ucc.ie/

flatGrl 11

flatGrl Transform GRangesList to GRanges

Description

Transform GRangesList to GRanges.

Usage

flatGrl(object, indName = "grl_name")

Arguments

object a GRangesList object.

indName column named by ’indName’ that groups the records by their original element
in ’object’.

Details

This method is different from default stack, it integrate elementMetadata of GRangesList to the
final coerced GRanges.

Value

A GRanges object.

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
gr1 <- GRanges("chr1", IRanges(1:10, width = 5))
gr2 <- GRanges("chr2", IRanges(1:10, width = 5))
obj <- GRangesList(gr1, gr2)
values(obj) <- data.frame(a = 1:2, b = letters[1:2])
stack(obj)
flatGrl(obj)

12 GCcontent

GCcontent GC content computation for BSgenome

Description

Compute GC content in a certain region of a BSgenome object

Usage

GCcontent(obj, ..., view.width, as.prob = TRUE)

Arguments

obj BSgenome object

... Arguments passed to getSeq method for BSgenome package.

view.width Passed to letterFrequencyInSlidingView, the constant (e.g. 35, 48, 1000)
size of the "window" to slide along obj. The specified letters are tabulated in
each window of length view.width. The rows of the result (see value) corre-
spond to the various windows.

as.prob If TRUE return percentage of GC content, otherwise return counts.

Details

GC content is an interesting variable may be related to various biological questions. So we need
a way to compute GC content in a certain region of a reference genome. GCcontent function is a
wrapper around getSeq function in BSgenome package and letterFrequency, letterFrequencyInSlidingView
in Biostrings package.

if the view.width is specified, the GC content will be computed in the sliding view

Value

Numeric value indicate count or percentage

Author(s)

Tengfei Yin

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
GCcontent(Hsapiens, GRanges("chr1", IRanges(1e6, 1e6 + 1000)))

genesymbol 13

genesymbol Gene symbols with position...

Description

Gene symbols with position

Usage

data(genesymbol)

Details

This data set provides genen symbols in human with position and starnd information, stored as
GRanges object.

Examples

data(genesymbol)
head(genesymbol)
genesymbol["RBM17"]

getBioColor Color scheme getter for biological data

Description

This function tries to get default color scheme either from fixed palette or options for specified data
set, usually just biological data.

Usage

getBioColor(type = c("DNA_BASES_N", "DNA_BASES", "DNA_ALPHABET",
"RNA_BASES_N", "RNA_BASES", "RNA_ALPHABET",
"IUPAC_CODE_MAP", "AMINO_ACID_CODE", "AA_ALPHABET",
"STRAND", "CYTOBAND"),

source = c("option", "default"))

Arguments

type Color set based on which you want to get.

source "option" tries to get color scheme from Options. This allow user to edit the
color globally. "default" gets fixed color scheme.

14 getBioColor

Details

Most data set specified in the type argument are defined in Biostrings package, such as "DNA_BASES",
"DNA_ALPHABET", "RNA_BASES", "RNA_ALPHABET", "IUPAC_CODE_MAP", "AMINO_ACID_CODE",
"AA_ALPHABET", please check the manual for more details.

"DNA_BASES_N" is just "DNA_BASES" with extra "N" used in certain cases, like the result from
applyPileup in Rsamtools package. We start with the five most used nucleotides, A,T,C,G,N, In
genetics, GC-content usually has special biological significance because GC pair is bound by three
hydrogen bonds instead of two like AT pairs. So it has higher thermostability which could result
in different significance, like higher annealing temperature in PCR. So we hope to choose warm
color for G,C and cold color for A,T, and a color in between to represent N. They are chosen from
diverging color set of color brewer. So we should be able to easily tell the GC enriched region.
This set of color also passed vischeck for colorblind people.

In GRanges object, we have strand which contains three levels, +, -, *. We are using a qualitative
color set from Color Brewer. This color set pass the colorblind test. It should be a safe color set to
use to color strand.

For most default color scheme if they are under 18, we are trying to use package dichromat to set
color for color blind people. But for data set that contains more than 18 objects, it’s not possible
to assign colorblind-safe color to them anymore. So we need to repeat some color. It should not
matter too much, because even normal people cannot tell the difference anymore.

Here are the definition for the data sets.

DNA_BASES Contains A,C,T,G.

DNA_ALPHABET This alphabet contains all letters from the IUPAC Extended Genetic Alphabet
(see "?IUPAC_CODE_MAP") + the gap ("-") and the hard masking ("+") letters.

DNA_BASES_N Contains A,C,T,G,N

RNA_BASES_N Contains A,C,U,G,N

RNA_BASES Contains A,C,T,G

RNA_ALPHABET This alphabet contains all letters from the IUPAC Extended Genetic Alpha-
bet (see ?IUPAC_CODE_MAP) where "T" is replaced by "U" + the gap ("-") and the hard
masking ("+") letters.

IUPAC_CODE_MAP The "IUPAC_CODE_MAP" named character vector contains the mapping
from the IUPAC nucleotide ambiguity codes to their meaning.

AMINO_ACID_CODE Single-Letter Amino Acid Code (see "?AMINO_ACID_CODE").

AA_ALPHABET This alphabet contains all letters from the Single-Letter Amino Acid Code (see
"?AMINO_ACID_CODE") + the stop ("*"), the gap ("-") and the hard masking ("+") letters

STRAND Contains "+", "-", "*"

CYTOBAND Contains giemsa stain results:gneg, gpos25, gpos50, gpos75,gpos100, gvar, stalk,
acen. Color defined in package geneplotter.

Value

A character of vector contains color(rgb), and the names of the vector is originally from the name
of different data set. e.g. for DNA_BASES, it’s just A,C,T,G. This allow users to get color for a
vector of specified names. Please see the examples below.

getFormalNames 15

Author(s)

Tengfei Yin

Examples

opts <- getOption("biovizBase")
opts$DNABasesNColor[1] <- "red"
options(biovizBase = opts)
get from option(default)
getBioColor("DNA_BASES_N")
get default fixed color
getBioColor("DNA_BASES_N", source = "default")
seqs <- c("A", "C", "T", "G", "G", "G", "C")
get colors for a sequence.
getBioColor("DNA_BASES_N")[seqs]

getFormalNames Get formals from functions

Description

Get formals from functions, used for dispatching arguments inside.

Usage

getFormalNames(..., remove.dots = TRUE)

Arguments

... functions.

remove.dots logical value, indicate remove dots in formals or not, default is TRUE.

Value

A character vector for formal arguments.

Author(s)

Tengfei Yin

Examples

getFormalNames(plot, sapply)

16 getGaps

getGaps get gaps for a stepping transformed GRanges object

Description

Get gaps for a stepping transformed GRanges object, for visualization purpose. So a extra "step-
ping" column is required. Please see details below for motivation.

Usage

S4 method for signature 'GRanges'
getGaps(obj, group.name = NULL, facets = NULL)

Arguments

obj A GRanges object.

group.name group name, such as transcript ID, this is the group method within each panel of
facets and gaps will be computed for each group of intervals.

facets formula used for creating graphics, all variables must be present in the data.

Details

Since faceting is a subset and group process in visualization stage, some statistical computation
need to be taken place after that. This leaves some computation like computing gaps hard based
on solely GRanges object. Extra information like facets formula and group method would help to
generate gaps which make sure they are aligned on the same level and within the same panel for
grouped intervals. facets variables will be added to gaps GRanges along with group.name.

Value

A GRanges object representing gaps and for each row, the "stepping" column help later visualization
and make sure gaps and intervals they are generated from are showed on the expected place.

Author(s)

Tengfei Yin

Examples

set.seed(1)
N <- 100
library(GenomicRanges)
gr <- GRanges(seqnames =

sample(c("chr1", "chr2", "chr3"),
size = N, replace = TRUE),

IRanges(
start = sample(1:300, size = N, replace = TRUE),
width = sample(70:75, size = N,replace = TRUE)),

getIdeoGR 17

strand = sample(c("+", "-", "*"), size = N,
replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),
pair = sample(letters, size = N,

replace = TRUE))

grl <- splitByFacets(gr, sample ~ seqnames)
gr <- unlist(endoapply(grl, addStepping))
gr.gaps <- getGaps(gr, group.name = "stepping", facets = sample ~ seqnames)

getIdeoGR Get ideogram information

Description

This function tries to parse ideogram information from seqlengths of a GRanges object. This in-
formation is usually used to plot chromosome background for kaytogram or esitmate proper lengths
of chromosomes from data space for showing overview.

Usage

getIdeoGR(gr)

Arguments

gr A GRanges object with or without lengths information.

Value

A ideogram GRanges object, each row indicate one single chromosome, and start with 1 and end
with real chromosome length or estimated lengths.

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
data("hg19IdeogramCyto", package = "biovizBase")
hg19IdeogramCyto
without seqlengths, simply reduce
getIdeoGR(hg19IdeogramCyto)
with seqlengths
gr <- GRanges("chr1", IRanges(1,3))
seqlevels(gr) <- c("chr1", "chr2", "chr3")
nms <- c(100, 200, 300)

18 getIdeogram

names(nms) <- c("chr1", "chr2", "chr3")
seqlengths(gr) <- nms
gr
getIdeoGR(gr)

getIdeogram Get ideogram.

Description

Get ideogram w/o cytoband for certain genome

Usage

getIdeogram(genome, subchr, cytobands=TRUE)

Arguments

genome Single specie names, which must be one of the result from ucscGenomes()$db.
If missing, will invoke a menu for users to choose from.

subchr A character vector used to subset the result.

cytobands If TRUE, return ideogram with gieStain and name column. If FALSE, simply
return the genome information for each chromosome.

Details

This function require a network connection, it will parse the data on the fly, function is a wrapper of
some functionality from rtracklayer package to get certain table like cytoBand, a full table schema
could be found http://genome.ucsc.edu/cgi-bin/hgTables in UCSC genome browser.This is
useful for visualization of the whole genome or single chromosome, you can see some examples in
ggbio package.

Value

A GRanges object.

Author(s)

Tengfei Yin

Examples

Not run: hg19IdeogramCyto <- getIdeogram("hg19", cytoband = TRUE)

http://genome.ucsc.edu/cgi-bin/hgTables

getScale 19

getScale Get scale information from a GRanges

Description

Trying to get scale information from a GRanges object, used for circular view for geom "scale".

Usage

getScale(gr, unit = NULL, n = 100, type = c("M", "B", "sci"))

Arguments

gr a GRanges object.

unit A numeric value for scale unit. Default NULL use argument n to estimate the
unit.

n Integer value to indicate how many scale ticks to make.

type unit types to shown.

Value

A GRanges object, with extra column: "type" indicate it’s longer major ticks or shorter minor ticks.
"scale.y" indicates y height for major and minor ticks. Default ratio is 3:1.

Author(s)

Tengfei Yin

getXScale get x scale breaks and labels

Description

get x scale breaks and labels for GRanges with different coordintes(currently only "truncate_gaps"
and "genome" supported).

Usage

S4 method for signature 'GRanges'
getXScale(obj, type = c("default", "all", "left", "right"))

Arguments

obj a GRanges object. "coord" in metadata shows proper coordinates transformation
for this object.

type types of labels for transformed data.

20 getYLab-method

Value

list of breaks and labels.

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
gr1 <- GRanges("chr1", IRanges(start = c(100, 300, 600),

end = c(200, 400, 800)))
shrink.fun1 <- shrinkageFun(gaps(gr1), max.gap = maxGap(gaps(gr1), 0.15))
shrink.fun2 <- shrinkageFun(gaps(gr1), max.gap = 0)
s1 <- shrink.fun1(gr1)
getXScale(s1)
coord:genome
set.seed(1)
gr1 <- GRanges("chr1", IRanges(start = as.integer(runif(20, 1, 100)),
width = 5))
gr2 <- GRanges("chr2", IRanges(start = as.integer(runif(20, 1, 100)),
width = 5))
gr <- c(gr1, gr2)
gr.t <- transformToGenome(gr, space.skip = 1)
getXScale(gr.t)

getYLab-method parse x and y label information from a specific object

Description

parse y label information, object specific.

Usage

S4 method for signature 'TxDb'
getYLab(obj)
S4 method for signature 'GRanges'
getXLab(obj)
S4 method for signature 'GRangesList'
getXLab(obj)
S4 method for signature 'GAlignments'
getXLab(obj)

Arguments

obj A TxDb object.

hg19Ideogram 21

Value

a string.

Author(s)

Tengfei Yin

hg19Ideogram Hg19 ideogram without cytoband information...

Description

Hg19 ideogram without cytoband information

Usage

data(hg19Ideogram)

Details

This data set provides hg19 genome information wihout cytoband information.

Examples

data(hg19Ideogram)
hg19Ideogram

hg19IdeogramCyto Hg19 ideogram with cytoband information...

Description

Hg19 ideogram with cytoband information

Usage

data(hg19IdeogramCyto)

Details

This data set provides hg19 genome information with cytoband information.

Examples

data(hg19IdeogramCyto)
hg19IdeogramCyto

22 ideoCyto

ideo ideogram without cytoband information

Description

ideogram without cytoband information

Usage

data(ideo)

Details

This data set provides hg19, hg18, mm10, mm9 genome information wihout cytoband information
as a lit.

Examples

data(ideo)
ideo

ideoCyto ideogram with cytoband information

Description

ideogram with cytoband information

Usage

data(ideoCyto)

Details

This data set provides hg19, hg18, mm10, mm9 genome information with cytoband information as
a lit.

Examples

data(ideoCyto)
ideoCyto

isIdeogram 23

isIdeogram Ideogram checking

Description

Check if an object is ideogram or not

Usage

isIdeogram(obj)

Arguments

obj object

Details

Simply test if it’s the result coming from getIdeogram function or not, make sure it’s a GRanges
and with extra column

Value

A logical value to indicate it’s a ideogram or not.

Author(s)

Tengfei Yin

Examples

data(hg19IdeogramCyto)
data(hg19Ideogram)
isIdeogram(hg19IdeogramCyto)
isIdeogram(hg19Ideogram)

isMatchedWithModel Utils for Splicing Summary

Description

Utilities used for summarizing isoforms

Usage

isJunctionRead(cigar)
isMatchedWithModel(model, gr)

24 isSimpleIdeogram

Arguments

cigar A CIGAR string vector.

model A GRanges object.

gr A GRanges object.

Details

isJunctionRead simply parsing the CIGAR string to see if there is "N" in between and return a
logical vector of the same length as cigar parameters, indicate it’s junction read or not.

isMatchedWithModel mapping gr to model, and counting overlapped cases for each row of model,
If gr contains all the read, this will return a logical vector of the same length as gr, and indicate
if each read is the support for this model. NOTICE: we only assume it’s a full model, so each
model here is simply one isoform. So we only treat the gaped reads which only overlapped with
two consecutive exons in model as one support for it.

Value

Logical vectors.

Author(s)

Tengfei Yin

Examples

library(GenomicAlignments)
bamfile <- system.file("extdata", "SRR027894subRBM17.bam",

package="biovizBase")
get index of junction read
which(isJunctionRead(cigar(readGAlignments(bamfile))))
##
model <- GRanges("chr1", IRanges(c(10, 20, 30, 40), width = 5))
gr <- GRanges("chr1", IRanges(c(10, 10, 12, 22, 33), c(31, 40, 22, 32,

44)))
isMatchedWithModel(model, gr)

isSimpleIdeogram Simple ideogram checking

Description

Check if an object is a simple ideogram or not

Usage

isSimpleIdeogram(obj)

maxGap-method 25

Arguments

obj object

Details

test if it’s GRanges or not, doesn’t require cytoband information. But it double check to see if there
is only one entry per chromosome

Value

A logical value to indicate it’s a simple ideogram or not.

Author(s)

tengfei

Examples

data(hg19IdeogramCyto)
data(hg19Ideogram)
isSimpleIdeogram(hg19IdeogramCyto)
isSimpleIdeogram(hg19Ideogram)

maxGap-method Estimated max gaps

Description

Compute an estimated max gap information, which could be used as max.gap argument in shringkageFun.

Usage

S4 method for signature 'GenomicRanges'
maxGap(obj, ratio = 0.0025)

Arguments

obj GenomicRanges object

ratio Multiple by the range of the provided gaps as the max gap.

Details

This function tries to estimate an appropriate max gap to be used for creating a shrinkage function.

Value

A numeric value

26 mold

Author(s)

Tengfei Yin

See Also

shrinkageFun

Examples

require(GenomicRanges)
gr1 <- GRanges("chr1", IRanges(start = c(100, 300, 600),
end = c(200, 400, 800)))
gr2 <- GRanges("chr1", IRanges(start = c(100, 350, 550),
end = c(220, 500, 900)))
gaps.gr <- intersect(gaps(gr1, start = min(start(gr1))),
gaps(gr2, start = min(start(gr2))))
shrink.fun <- shrinkageFun(gaps.gr, max.gap = maxGap(gaps.gr))
shrink.fun(gr1)
shrink.fun(gr2)

mold mold data into data.frame

Description

mold data into data.frame usued for visualization, so it’s sometimes not as simple as coersion, for
example, we add midpoint varialbe for mapping.

Usage

S4 method for signature 'IRanges'
mold(data)
S4 method for signature 'GRanges'
mold(data)
S4 method for signature 'GRangesList'
mold(data,indName = "grl_name")
S4 method for signature 'Seqinfo'
mold(data)
S4 method for signature 'matrix'
mold(data)
S4 method for signature 'eSet'
mold(data)
S4 method for signature 'ExpressionSet'
mold(data)
S4 method for signature 'RangedSummarizedExperiment'
mold(data, assay.id = 1)
S4 method for signature 'Views'
mold(data)

parseArgsForAes 27

S4 method for signature 'Rle'
mold(data)
S4 method for signature 'RleList'
mold(data)
S4 method for signature 'VRanges'
mold(data)

Arguments

data data to be mold into data.frame with additional column that helped mapping.For
example we add ’midpoint’ variable to a ranged converted data.frame.

indName when collapsing a GRangesList, list names are aggregated into extra column
named by this parameter.

assay.id define the assay id you want to convert into a data.frame.

Value

a data.frame object.

Author(s)

Tengfei Yin

parseArgsForAes Utils for parsing (un)evaluated arguments

Description

Utilities for parsing (un)evaluated arguments

Usage

parseArgsForAes(args)
parseArgsForNonAes(args)

Arguments

args arguments list.

Value

For parseArgsForAes return a unevaluated arguments.

For parseArgsNonForAes return a evaluated/quoted arguments.

Author(s)

Tengfei Yin

28 pileupAsGRanges

Examples

args <- alist(a = color, b = "b")
parseArgsForAes(args)

pileupAsGRanges Summarize reads for certain region

Description

This function summarize reads from bam files for nucleotides on single base unit in a given region,
this allows the downstream mismatch summary analysis.

Usage

pileupAsGRanges(bams, regions, DNABases=c("A", "C", "G", "T", "N"), ...)

Arguments

bams A character which specify the bam file path.

regions A GRanges object specifying the region to be summarized. This passed to which
arguments in ApplyPileupsParam.

DNABases Nucleotide type you want to summarize in the result and in specified order. It
must be one or more of A,C,G,T,N.

... Extra parameters passed to ApplyPileupsParam.

Details

It’s a wrapper around applyPileup function in Rsamtools package, more detailed control could
be found under manual of ApplyPileupsParam function in Rsamtools. pileupAsGRanges function
return a GRanges object which including summary of nucleotides, depth, bam file path. This object
could be read directly into pileupGRangesAsVariantTable function for mismatch summary.

Value

A GRanges object, each row is one single base unit. and elementMetadata contains summary about
this position about all nucleotides specified by DNABases. and depth for total reads, bam for file
path.

Author(s)

Michael Lawrence, Tengfei Yin

pileupGRangesAsVariantTable 29

Examples

Not run:
library(Rsamtools)
data(genesymbol)
library(BSgenome.Hsapiens.UCSC.hg19)
bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase")
test <- pileupAsGRanges(bamfile, region = genesymbol["RBM17"])
test.match <- pileupGRangesAsVariantTable(test, Hsapiens)
head(test[,-7])
head(test.match[,-5])

End(Not run)

pileupGRangesAsVariantTable

Mismatch summary

Description

Compare to reference genome and compute mismatch summary for certain region of reads.

Usage

pileupGRangesAsVariantTable(gr, genome, DNABases=c("A", "C", "G", "T", "N"))

Arguments

gr A GRanges object, with nucleotides summary, each base take one column in ele-
mentMetadata or user can simply passed the returned result from pileupAsGRanges
function to this function.

genome BSgenome object, need to be the reference genome.

DNABases Nucleotide types contained in passed GRanges object. Default is A/C/G/T/N,
it tries to match the column names in elementMetadata to those default nu-
cleotides. And treat the matched column as base names.

Details

User need to make sure to pass the right reference genome to this function to get the right summary.
This function drop the position has no reads and only keep the region with coverage in the summary.
The result could be used to show stacked barchart for mismatch summary.

Value

A GRanges object. Containing the following elementMetadata

• refNucleotide in reference genome.

• readNucleotide contained in the reads at particular position, if multiple nucleotide, either
matched or unmatched are found, they will be summarized in different rows.

30 plotColorLegend

• countCount for read column.

• matchLogical value, whether matched to reference genome or not

• bamCharacter indicate bam file path.

Author(s)

Michael Lawrence, Tengfei Yin

Examples

Not run:
library(Rsamtools)
data(genesymbol)
library(BSgenome.Hsapiens.UCSC.hg19)
bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package="biovizBase")
test <- pileupAsGRanges(bamfile, region = genesymbol["RBM17"])
test.match <- pileupGRangesAsVariantTable(test, Hsapiens)
head(test[,-7])
head(test.match[,-5])

End(Not run)

plotColorLegend Show colors

Description

Plot color legend, simple way to check your default color scheme

Usage

plotColorLegend(colors, labels, title)

Arguments

colors A character vector of colors

labels Labels to put aside colors, if missing, use names of the colors character vector.

title Title for the color legend.

Details

Show color sheme as a legend style, labels

Value

A graphic device showing color legend.

showColor 31

Author(s)

Tengfei Yin

Examples

cols <- getOption("biovizBase")$baseColor
plotColorLegend(cols, title = "strand legend")

showColor Show colors

Description

Show colors with color string or names of color vectors.

Usage

showColor(colors, label = c("color", "name"))

Arguments

colors A color character vector.

label "color" label color with simple color string, and "name" label color with names
of the vectors.

Value

A plot.

Author(s)

Tengfei Yin

Examples

Not run:
showColor(getBioColor("CYTOBAND"))

End(Not run)

32 shrinkageFun-method

shrinkageFun-method Shrinkage function

Description

Create a shrinkage function based on specified gaps and shrinkage rate.

Usage

For IRanges
S4 method for signature 'IRanges'
shrinkageFun(obj, max.gap = 1L)

For GenomicRanges
S4 method for signature 'GenomicRanges'
shrinkageFun(obj, max.gap = 1L)

is_coord_truncate_gaps(obj)

Arguments

obj GenomicRanges object which represent gaps

max.gap Gaps to be kept, it’s a fixed value, if this value is bigger than certain gap interval,
then that gap is not going to be shrunk.

Details

shrinkageFun function will read in a GenomicRanges object which represent the gaps, and return
a function which works for another GenomicRanges object, to shrink that object based on previ-
ously specified gaps shrinking information. You could use this function to treat multiple tracks(e.g.
GRanges) to make sure they shrunk based on the common gaps and the same ratio.

is_coord_truncate_gaps is used to check if a GRanges object is in "truncate_gaps" coordiantes
or not.

Value

A shrinkage function which could shrink a GenomicRanges object, this function will add coord
"truncate_gaps" and max.gap to metadata, ".ori" for oringal data as extra column

Author(s)

Michael Lawrence, Tengfei Yin

splitByFacets 33

Examples

library(GenomicRanges)
gr1 <- GRanges("chr1", IRanges(start = c(100, 300, 600),

end = c(200, 400, 800)))

shrink.fun1 <- shrinkageFun(gaps(gr1), max.gap = maxGap(gaps(gr1), 0.1))
shrink.fun2 <- shrinkageFun(gaps(gr1, start(gr1), end(gr1)), max.gap = maxGap(gaps(gr1), 0.1))
shrink.fun3 <- shrinkageFun(gaps(gr1), max.gap = 0)
s1 <- shrink.fun1(gr1)
s2 <- shrink.fun2(gr1)
s3 <- shrink.fun3(gr1)
metadata(s1)$coord
values(s1)$.ori
is_coord_truncate_gaps(s1)

splitByFacets split a GRanges by formula

Description

Split a GRanges by formula into GRangesList. Parse variables in formula and form a interaction
factors then split the GRanges by the factos.

Usage

S4 method for signature 'GRanges,formula'
splitByFacets(object, facets)
S4 method for signature 'GRanges,GRanges'
splitByFacets(object, facets)
S4 method for signature 'GRanges,NULL'
splitByFacets(object, facets)
S4 method for signature 'GRanges,missing'
splitByFacets(object, facets)

Arguments

object GRanges object.
facets formula object, such as . ~ seqnames. Or GRanges object, or NULL.

Details

if facets is formula, factors are crreated based on interaction of variables in formula, then split it
with this factor. If facets is GRanges object, it first subset the original data by facets GRanges, then
split by each region in the facets. If facets is NULL, split just by seqnames. This function is used to
perform computation in conjunction with facets argments in higher level graphic function.

Value

A GRangesList.

34 strip_formula_dots

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
N <- 1000
gr <- GRanges(seqnames =

sample(c("chr1", "chr2", "chr3"),
size = N, replace = TRUE),

IRanges(
start = sample(1:300, size = N, replace = TRUE),
width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-", "*"), size = N,
replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),
pair = sample(letters, size = N,

replace = TRUE))
facets <- sample ~ seqnames
splitByFacets(gr, facets)
splitByFacets(gr)
gr.sub <- GRanges("chr1", IRanges(c(1, 200, 250), width = c(50, 10,
30)))
splitByFacets(gr, gr.sub)

strip_formula_dots strip dots around a formula variables

Description

strip dots around variables in a formula.

Usage

strip_formula_dots(formula)

Arguments

formula A formula. such as coverage ~ seqnames, or ..coverage.. ~ seqnames.

Value

A formula wihout ".." around for all variables.

Author(s)

Tengfei Yin

subsetArgsByFormals 35

Examples

obj <- ..coverage.. ~ seqnames
strip_formula_dots(obj)

subsetArgsByFormals Subset list of arguments by functions

Description

find arguments matched by formals of passed functions,

Usage

subsetArgsByFormals(args, ..., remove.dots = TRUE)

Arguments

args list of arguments with names indicate the formals.

... functions used to parse formals.

remove.dots logical value indicate whether to include dots in formals or not.

Value

argumnets that matched with passed function.

Author(s)

Tengfei Yin

Examples

args <- list(x = 1:3, simplify = TRUE, b = "b")
subsetArgsByFormals(args, plot, sapply)

36 transformGRangesForEvenSpace

transformGRangesForEvenSpace

Transform GRanges with New Coordinates

Description

For graphics, like linked plot, e.g. generated by qplotRangesLinkedToData function in package
ggbio. we need to generate a new set of coordinates which is used for even spaced statistics track.

Usage

transformGRangesForEvenSpace(gr)

Arguments

gr A GRanges object.

Details

Most used internally for special graphics, like qplotRangesLinkedToData function in package
ggbio.

Value

A GRanges object as passed in, with new column x.new which indicate the static track coordinates,
in this way, we could map the new coordinates with the old one.

Author(s)

Tengfei Yin

Examples

library(GenomicRanges)
gr <- GRanges("chr1", IRanges(seq(1,100, length.out = 10), width = 5))
library(biovizBase)
transformGRangesForEvenSpace(gr)

transformToGenome 37

transformToGenome Transform GRanges to different coordinates and layout

Description

Used for coordiante genome transformation, other transformation in circular view.

Usage

S4 method for signature 'GRanges'
transformToGenome(data, space.skip = 0.1, chr.weight
= NULL)
S4 method for signature 'GRangesList'
transformToGenome(data, space.skip = 0.1,
chr.weight = NULL)

S4 method for signature 'GRanges'
transformToArch(data, width = 1)
transformToCircle(data, x = NULL, y = NULL, ylim = NULL,

radius = 10, trackWidth =10,
direction = c("clockwise", "anticlockwise"),
mul = 0.05)

transformToRectInCircle(data, y = NULL, space.skip = 0.1, trackWidth = 10, radius = 10,
direction = c("clockwise", "anticlockwise"),
n = 100, mul = 0.05, chr.weight = NULL)

transformToBarInCircle(data, y = NULL, space.skip = 0.1, trackWidth = 10, radius = 10,
direction = c("clockwise", "anticlockwise"),
n = 100, mul = 0.05, chr.weight = NULL)

transformToSegInCircle(data, y = NULL, space.skip = 0.1, trackWidth = 10, radius = 10,
direction = c("clockwise", "anticlockwise"), n =
100, chr.weight = NULL)

transformToLinkInCircle(data, linked.to, space.skip = 0.1, trackWidth = 10, radius = 10,
link.fun = function(x, y, n = 100) bezier(x, y, evaluation = n),
direction = c("clockwise", "anticlockwise"), chr.weight = NULL)

transformDfToGr(data, seqnames = NULL, start = NULL, end = NULL,
width = NULL, strand = NULL,
to.seqnames = NULL, to.start = NULL, to.end = NULL,
to.width = NULL, to.strand = NULL, linked.to
= to.gr)

38 transformToGenome

S4 method for signature 'GRanges'
transformToDf(data)

is_coord_genome(data)

Arguments

data a GRanges object.
for function transformDfToGr it’s data.frame.

x character for variable as x axis used for transformation.

y character for variable as y axis used for transformation.

ylim numeric range to control the ylimits on tracks when ’y’ information is involved.

space.skip numeric values indicates skipped ratio of whole space, not skipped space is iden-
tical between each space.

radius numeric value, indicates radius when transform to a circle.

trackWidth numeric value, for track width.

direction "clockwise" or "counterclockwise", for layout or transform direction to circle.

mul numeric value, passed to expand_range function, to control margin of y in the
track.

n integer value, control interpolated points numbers.

linked.to a column name of GRanges object, indicate the linked line’s end point which
represented as a GRanges too..

link.fun function used to generate linking lines.

seqnames character or integer values for column name or index indicate variable mapped
to seqnames, default NULL use "seqnames".

start character or integer values for column name or index indicate variable mapped
to start, default NULL use "start".

end character or integer values for column name or index indicate variable mapped
to end, default NULL use "end".

width character or integer values for column name or index indicate variable mapped
to width, default NULL use "width".

strand character or integer values for column name or index indicate variable mapped
to strand, default NULL use "strand".

to.seqnames character or integer values for column name or index indicate variable mapped to
linked seqnames, default NULL, create GRanges without new GRanges attached
as column. If this varialbe is not NULL, this mean you try to parse linked GRanges
object.

to.start character or integer values for column name or index indicate variable mapped
to start of linked GRanges, default NULL use "to.start".

to.end character or integer values for column name or index indicate variable mapped
to end of linked GRanges, default NULL use "to.end".

transformToGenome 39

to.width character or integer values for column name or index indicate variable mapped
to width of linked GRanges, default NULL use "to.width".

to.strand character or integer values for column name or index indicate variable mapped
to strand, default NULL use "to.strand" or just use *.

chr.weight numeric vectors which sum to <1, the names of vectors has to be matched
with seqnames in seqinfo, and you can only specify part of the seqnames, other
lengths of chromosomes will be assined proportionally to their seqlengths, for
example, you could specify chr1 to be 0.5, so the chr1 will take half of the space
and other chromosomes squeezed to take left of the space.

Value

A GRanges object, with calculated new variables, including ".circle.x" for transformed x position,
".circle.y" for transformed y position, ".circle.angle" for transformed angle.

Author(s)

Tengfei Yin

Examples

library(biovizBase)
library(GenomicRanges)
set.seed(1)
gr1 <- GRanges("chr1", IRanges(start = as.integer(runif(20, 1, 2e9)),
width = 5))
gr2 <- GRanges("chr2", IRanges(start = as.integer(runif(20, 1, 2e9)),
width = 5))
gr <- c(gr1, gr2)
gr.t <- transformToGenome(gr, space.skip = 0.1)
is_coord_genome(gr.t)
transformToCircle(gr.t)
transformToRectInCircle(gr)
transformToSegInCircle(gr)
values(gr1)$to.gr <- gr2
transformToLinkInCircle(gr1, linked.to = "to.gr")

Index

∗ datasets
CRC, 7
crc1.GeRL, 8
darned_hg19_subset500, 10
genesymbol, 13
hg19Ideogram, 21
hg19IdeogramCyto, 21
ideo, 22
ideoCyto, 22

addStepping (addStepping-method), 3
addStepping,GenomicRanges-method

(addStepping-method), 3
addStepping-method, 3
AnnotationFilter, 9
AnnotationFilterList, 9

biovizBase (biovizBase-package), 3
biovizBase-package, 3
blind.pal.info (colorBlindSafePal), 5
brewer.pal.blind.info

(colorBlindSafePal), 5

colorBlindSafePal, 5
containLetters, 6
CRC, 7
crc.gr (CRC), 7
crc1.GeRL, 8
crunch, 8
crunch,BamFile-method (crunch), 8
crunch,EnsDb-method (crunch), 8
crunch,GAlignments-method (crunch), 8
crunch,TxDb-method (crunch), 8

darned_hg19_subset500, 10
data.frame, 27
dichromat.pal.blind.info

(colorBlindSafePal), 5

estimateCoverage, 10

estimateCoverage,BamFile-method
(estimateCoverage), 10

flatGrl, 11

GCcontent, 12
genBlindPalInfo (colorBlindSafePal), 5
genBrewerBlindPalInfo

(colorBlindSafePal), 5
genDichromatPalInfo

(colorBlindSafePal), 5
genesymbol, 13
getBioColor, 13
getFormalNames, 15
getGaps, 16
getGaps,GRanges-method (getGaps), 16
getIdeoGR, 17
getIdeogram, 18
getScale, 19
getXLab (getYLab-method), 20
getXLab,GAlignments-method

(getYLab-method), 20
getXLab,GRanges-method

(getYLab-method), 20
getXLab,GRangesList-method

(getYLab-method), 20
getXLab-method (getYLab-method), 20
getXScale, 19
getXScale,GRanges-method (getXScale), 19
getYLab (getYLab-method), 20
getYLab,TxDb-method (getYLab-method), 20
getYLab-method, 20
GRangesList, 27

hg19Ideogram, 21
hg19IdeogramCyto, 21
hg19sub (CRC), 7

ideo, 22
ideoCyto, 22

40

INDEX 41

is_coord_genome (transformToGenome), 37
is_coord_truncate_gaps

(shrinkageFun-method), 32
isIdeogram, 23
isJunctionRead (isMatchedWithModel), 23
isMatchedWithModel, 23
isSimpleIdeogram, 24

maxGap (maxGap-method), 25
maxGap,GenomicRanges-method

(maxGap-method), 25
maxGap-method, 25
mold, 26
mold,eSet-method (mold), 26
mold,ExpressionSet-method (mold), 26
mold,GRanges-method (mold), 26
mold,GRangesList-method (mold), 26
mold,IRanges-method (mold), 26
mold,matrix-method (mold), 26
mold,RangedSummarizedExperiment-method

(mold), 26
mold,Rle-method (mold), 26
mold,RleList-method (mold), 26
mold,Seqinfo-method (mold), 26
mold,SummarizedExperiment-method

(mold), 26
mold,Views-method (mold), 26
mold,VRanges-method (mold), 26
mut.gr (CRC), 7

parseArgsForAes, 27
parseArgsForNonAes (parseArgsForAes), 27
pileupAsGRanges, 28
pileupGRangesAsVariantTable, 29
plotColorLegend, 30

showColor, 31
shrinkageFun, 26
shrinkageFun (shrinkageFun-method), 32
shrinkageFun,GenomicRanges-method

(shrinkageFun-method), 32
shrinkageFun,IRanges-method

(shrinkageFun-method), 32
shrinkageFun-method, 32
splitByFacets, 33
splitByFacets,GRanges,formula-method

(splitByFacets), 33
splitByFacets,GRanges,GRanges-method

(splitByFacets), 33

splitByFacets,GRanges,missing-method
(splitByFacets), 33

splitByFacets,GRanges,NULL-method
(splitByFacets), 33

strip_formula_dots, 34
subsetArgsByFormals, 35

transformDfToGr (transformToGenome), 37
transformGRangesForEvenSpace, 36
transformToArch (transformToGenome), 37
transformToArch,GRanges-method

(transformToGenome), 37
transformToBarInCircle

(transformToGenome), 37
transformToCircle (transformToGenome),

37
transformToDf (transformToGenome), 37
transformToDf,GRanges-method

(transformToGenome), 37
transformToDf-method

(transformToGenome), 37
transformToGenome, 37
transformToGenome,GRanges-method

(transformToGenome), 37
transformToGenome,GRangesList-method

(transformToGenome), 37
transformToLinkInCircle

(transformToGenome), 37
transformToRectInCircle

(transformToGenome), 37
transformToSegInCircle

(transformToGenome), 37

	biovizBase-package
	addStepping-method
	colorBlindSafePal
	containLetters
	CRC
	crc1.GeRL
	crunch
	darned_hg19_subset500
	estimateCoverage
	flatGrl
	GCcontent
	genesymbol
	getBioColor
	getFormalNames
	getGaps
	getIdeoGR
	getIdeogram
	getScale
	getXScale
	getYLab-method
	hg19Ideogram
	hg19IdeogramCyto
	ideo
	ideoCyto
	isIdeogram
	isMatchedWithModel
	isSimpleIdeogram
	maxGap-method
	mold
	parseArgsForAes
	pileupAsGRanges
	pileupGRangesAsVariantTable
	plotColorLegend
	showColor
	shrinkageFun-method
	splitByFacets
	strip_formula_dots
	subsetArgsByFormals
	transformGRangesForEvenSpace
	transformToGenome
	Index

