
Package ‘biosigner’
January 23, 2026

Type Package

Title Signature discovery from omics data

Version 1.39.0

Date 2025-07-02

Maintainer Etienne A. Thevenot <etienne.thevenot@cea.fr>

biocViews Classification, FeatureExtraction, Transcriptomics,
Proteomics, Metabolomics, Lipidomics, MassSpectrometry

Description Feature selection is critical in omics data analysis to extract
restricted and meaningful molecular signatures from complex and high-dimension
data, and to build robust classifiers. This package implements a new method to
assess the relevance of the variables for the prediction performances of the
classifier. The approach can be run in parallel with the PLS-DA, Random Forest,
and SVM binary classifiers. The signatures and the corresponding 'restricted'
models are returned, enabling future predictions on new datasets. A Galaxy
implementation of the package is available within the Workflow4metabolomics.org
online infrastructure for computational metabolomics.

Imports Biobase, methods, e1071, grDevices, graphics,
MultiAssayExperiment, MultiDataSet, randomForest, ropls, stats,
SummarizedExperiment, utils

Suggests BiocGenerics, BiocStyle, golubEsets, hu6800.db, knitr,
omicade4, rmarkdown, testthat

VignetteBuilder knitr

License CeCILL

Encoding UTF-8

LazyLoad yes

URL http://dx.doi.org/10.3389/fmolb.2016.00026

NeedsCompilation no

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/biosigner

git_branch devel

1

http://dx.doi.org/10.3389/fmolb.2016.00026

2 biosigner-package

git_last_commit 65312f0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Philippe Rinaudo [aut],
Etienne A. Thevenot [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1019-4577>)

Contents
biosigner-package . 2
biosign . 3
biosign-class . 8
biosignMultiDataSet-class . 10
diaplasma . 10
getAccuracyMN . 11
getBiosign . 12
getEset,biosign-method . 13
getMset,biosignMultiDataSet-method . 15
getSignatureLs . 16
plot,biosign,ANY-method . 17
predict,biosign-method . 19
show,biosign-method . 21
SpikePos . 22

Index 24

biosigner-package Molecular signature discovery from omics data

Description

Feature selection is critical in omics data analysis to extract restricted and meaningful molecular
signatures from complex and high-dimension data, and to build robust classifiers. This package
implements a new method to assess the relevance of the variables for the prediction performances
of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM
binary classifiers. The signatures and the corresponding ’restricted’ models are returned, enabling
future predictions on new datasets. A Galaxy implementation of the package is available within the
Workflow4metabolomics.org online infrastructure for computational metabolomics.

Author(s)

Philippe Rinaudo <phd.rinaudo@gmail.com> and Etienne A. Thevenot <etienne.thevenot@cea.fr>.

Maintainer: Etienne A. Thevenot <etienne.thevenot@cea.fr>

https://orcid.org/0000-0003-1019-4577

biosign 3

See Also

Useful links:

• http://dx.doi.org/10.3389/fmolb.2016.00026

biosign Builds the molecular signature.

Description

Main function of the ’biosigner’ package. For each of the available classifiers (PLS-DA, Random
Forest, and SVM), the significant features are selected and the corresponding models are built.

Usage

biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = NA,
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'matrix'
biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'data.frame'
biosign(
x,

http://dx.doi.org/10.3389/fmolb.2016.00026

4 biosign

y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'SummarizedExperiment'
biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'MultiAssayExperiment'
biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'ExpressionSet'
biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,

biosign 5

pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

S4 method for signature 'MultiDataSet'
biosign(
x,
y,
methodVc = c("all", "plsda", "randomforest", "svm")[1],
bootI = 50,
pvalN = 0.05,
permI = 1,
fixRankL = FALSE,
seedI = 123,
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

Arguments

x Numerical data frame or matrix (observations x variables), or SummarizedEx-
periment (or ExpressionSet) object ; NAs are allowed for PLS-DA but for SVM,
samples with NA will be removed

y Two-level factor corresponding to the class labels, or a character indicating the
name of the column of the pData to be used, when x is an ExpressionSet object

methodVc Character vector: Either one or all of the following classifiers: Partial Least
Squares Discriminant Analysis (’plsda’), or Random Forest (’randomforest’), or
Support Vector Machine (’svm’)

bootI Integer: Number of bootstaps for resampling

pvalN Numeric: To speed up the selection, only variables which significantly improve
the model up to two times this threshold (to take into account potential fluctua-
tions) are computed

permI Integer: Random permutation are used to assess the significance of each new
variable included into the model (forward selection)

fixRankL Logical: Should the initial ranking be computed with the full model only, or as
the median of the ranks from the models built on the sampled dataset?

seedI integer: optional seed to obtain exactly the same signature when rerunning
biosigner; default is ’123’; set to NULL to prevent seed setting

plotSubC Character: Graphic subtitle

6 biosign

fig.pdfC Character: File name with ’.pdf’ extension for the figure; if ’interactive’ (de-
fault), figures will be displayed interactively; if ’none’, no figure will be gener-
ated

info.txtC Character: File name with ’.txt’ extension for the printed results (call to sink()’);
if ’interactive’ (default), messages will be printed on the screen; if ’none’, no
verbose will be generated

Value

An S4 object of class ’biosign’ containing the following slots: 1) ’methodVc’ character vector:
selected classifier(s) (’plsda’, ’randomforest’, and/or ’svm’), 2) ’accuracyMN’ numeric matrix:
balanced accuracies for the full models, and the models restricted to the ’S’ and ’AS’ signatures
(predictions are obtained by using the resampling scheme selected with the ’bootI’ and ’crossvalI’
arguments), 3) ’tierMC’ character matrix: contains the tier (’S’, ’A’, ’B’, ’C’, ’D’, or ’E’) of each
feature for each classifier (features with tier ’S’ have been found significant in all backward selec-
tions; features with tier ’A’ have been found significant in all but the last selection, and so on), 4)
modelLs list: selected classifier(s) trained on the subset restricted to the ’S’ features, 5) signatureLs
list: ’S’ signatures for each classifier; and 6) ’AS’ list: ’AS’ signatures and corresponding trained
classifiers, in addition to the dataset restricted to tiers ’S’ and ’A’ (’xMN’) and the labels (’yFc’)

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

See Also

predict.biosign, plot.biosign

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

Application to a SummarizedExperiment

diaplasma.se <- SummarizedExperiment::SummarizedExperiment(assays = list(diaplasma = t(dataMatrix)),
colData = sampleMetadata,

biosign 7

rowData = variableMetadata)

restricting to the first 100 features to speed up the example

diaplasma.se <- diaplasma.se[1:100,]

diaplasma.se <- biosign(diaplasma.se, "type", bootI = 5)

head(SummarizedExperiment::rowData(diaplasma.se))

getting the biosign output

diaplasma_type.biosign <- getBiosign(diaplasma.se)[["type_plsda.forest.svm"]]

getAccuracyMN(diaplasma_type.biosign)

Application to an ExpressionSet

diaSet <- Biobase::ExpressionSet(assayData = t(dataMatrix),
phenoData = new("AnnotatedDataFrame",

data = sampleMetadata),
featureData = new("AnnotatedDataFrame",

data = variableMetadata),
experimentData = new("MIAME",

title = "diaplasma"))

restricting to the first 100 features to speed up the example

diaSet <- diaSet[1:100,]

diaSign <- biosign(diaSet, "type", bootI = 5)
diaSet <- getEset(diaSign)
head(Biobase::fData(diaSet))

detach(diaplasma)

Application to a MultiAssayExperiment

data("NCI60", package = "ropls")
nci.mae <- NCI60[["mae"]]
library(MultiAssayExperiment)

Cancer types

table(nci.mae$cancer)

Restricting to the 'ME' and 'LE' cancer types and to the 'agilent' and 'hgu95' datasets

nci.mae <- nci.mae[, nci.mae$cancer %in% c("ME", "LE"), c("agilent", "hgu95")]

Selecting the significant features for PLS-DA, RF, and SVM classifiers

nci.mae <- biosign(nci.mae, "cancer", bootI = 5)

8 biosign-class

Getting the tiers

SummarizedExperiment::rowData(nci.mae[["agilent"]])

Getting the models

mae_biosign.ls <- getBiosign(nci.mae)

Name of the models stored in the (metadata of) each SummarizedExperiment object

names(mae_biosign.ls[["agilent"]])

Visualizing the individual results

for (set.c in names(mae_biosign.ls))
plot(mae_biosign.ls[[set.c]][["cancer_plsda.forest.svm"]],

typeC = "tier",
plotSubC = set.c)

Application to a MultiDataSet

data("NCI60", package = "ropls")
nci.mds <- NCI60[["mds"]]

Restricting to the "agilent" and "hgu95" datasets

nci.mds <- nci.mds[, c("agilent", "hgu95")]

Restricting to the 'ME' and 'LE' cancer types

library(Biobase)
sample_names.vc <- Biobase::sampleNames(nci.mds[["agilent"]])
cancer_type.vc <- Biobase::pData(nci.mds[["agilent"]])[, "cancer"]
nci.mds <- nci.mds[sample_names.vc[cancer_type.vc %in% c("ME", "LE")],]

Selecting the significant features for PLS-DA, RF, and SVM classifiers

nci_cancer.biosign <- biosign(nci.mds, "cancer", bootI = 5)

Getting back the updated MultiDataSet

nci.mds <- getMset(nci_cancer.biosign)

biosign-class Class "biosign"

Description

The biosigner object class

biosign-class 9

Slots

methodVc character vector: selected classifier(s) (’plsda’, ’randomforest’, or ’svm’)

accuracyMN numeric matrix: balanced accuracies for the full models, and the models restricted to
the ’S’ and ’AS’ signatures

tierMC character matrix: contains the tier (’S’, ’A’, ’B’, ’C’, ’D’, or ’E’) of each feature for each
classifier

yFc factor with two levels: response factor

modelLs list: selected classifier(s) trained on the subset restricted to the ’S’ features

signatureLs list: ’S’ signatures for each classifier

xSubMN matrix: dataset restricted to the ’S’ tier

AS list: ’AS’ signatures and corresponding trained classifiers, in addition to the dataset restricted to
tiers ’S’ and ’A’ (’xMN’) and the labels (’yFc’)

eset ExpressionSet: when ’biosign’ has been applied to an ExpressionSet, the instance with addi-
tional columns in fData containing the selected features is stored here

Objects from the Class

Objects can be created by calls of the form new("biosign", ...) or by calling the biosign func-
tion

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

See Also

biosign

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

10 diaplasma

detach(diaplasma)

biosignMultiDataSet-class

Class "biosignMultiDataSet"

Description

An S4 class to store the the biosign objects generated by the application of the ’biosign’ method to
a MultiDataSet instance

Slots

biosignLs List: List of instances from the ’biosign’ class corresponding to the models built on
each ExpresssionSet

Objects from the Class

Objects can be created by calls of the form new("biosignMultiDataSet", ...) or by applying
the biosign function to a MultiDataSet instance

See Also

biosign

Examples

In progress

diaplasma Analysis of plasma from diabetic patients by LC-HRMS

Description

Plasma samples from 69 diabetic patients were analyzed by reversed-phase liquid chromatography
coupled to high-resolution mass spectrometry (Orbitrap Exactive) in the negative ionization mode.
The raw data were pre-processed with XCMS and CAMERA (5,501 features), corrected for signal
drift, log10 transformed, and annotated with an in-house spectral database. The patient’s age, body
mass index, and diabetic type are recorded. These three clinical covariates are strongly associated,
most of the type II patients being older and with a higher bmi than the type I individuals.

getAccuracyMN 11

Format

A list with the following elements:

dataMatrix a 69 samples x 5,501 features matrix of numeric type corresponding to the intensity
profiles (values have been log10-transformed),

sampleMetadata a 69 x 3 data frame, with the patients’ diabetic type (’type’, factor), age (’age’,
numeric), and body mass index (’bmi’, numeric),

variableMetadata a 5,501 x 8 data frame, with the median m/z (’mzmed’, numeric) and the me-
dian retention time in seconds (’rtmed’, numeric) from XCMS, the ’isotopes’ (character),
’adduct’ (character) and ’pcgroups’ (numeric) annotations from CAMERA, and the names of
the m/z and RT matching compounds from an in-house database of pure spectra from com-
mercial metabolites (’spiDb’, character).

Value

List containing the ’dataMatrix’ matrix (numeric) of data (samples as rows, variables as columns),
the ’sampleMetadata’ data frame of sample metadata, and the variableMetadata data frame of vari-
able metadata. Row names of ’dataMatrix’ and ’sampleMetadata’ are identical. Column names of
’dataMatrix’ are identical to row names of ’variableMetadata’. For details see the ’Format’ section
above.

Source

’diaplasma’ dataset.

References

Rinaudo P., Boudah S., Junot C. and Thevenot E.A. (2016). biosigner: a new method for the
discovery of significant molecular signatures from omics data. Frontiers in Molecular Biosciences
3. doi:10.3389/fmolb.2016.00026

getAccuracyMN Accuracies of the full model and the models restricted to the signatures

Description

Balanced accuracies for the full models, and the models restricted to the ’S’ and ’AS’ signatures

Usage

getAccuracyMN(object)

S4 method for signature 'biosign'
getAccuracyMN(object)

Arguments

object An S4 object of class biosign, created by the biosign function.

12 getBiosign

Value

A numeric matrix containing the balanced accuracies for the full models, and the models restricted
to the ’S’ and ’AS’ signatures (predictions are obtained by using the resampling scheme selected
with the ’bootI’ and ’crossvalI’ arguments)

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

individual boxplot of the selected signatures

getAccuracyMN(diaSign)

detach(diaplasma)

getBiosign Getting the biosigner signature from the SummarizedExperiment ob-
ject

Description

The models are extracted as a list

Usage

getBiosign(object)

S4 method for signature 'SummarizedExperiment'

getEset,biosign-method 13

getBiosign(object)

S4 method for signature 'MultiAssayExperiment'
getBiosign(object)

Arguments

object An S4 object of class SummarizedExperiment, once processed by the biosign
method

Value

List of biosigner outputs contained in the SummarizedExperiment object

Author(s)

Etienne Thevenot, <etienne.thevenot@cea.fr>

Examples

Getting the diaplasma data set as a SummarizedExperiment

data(diaplasma)

diaplasma.se <- SummarizedExperiment::SummarizedExperiment(assays = list(diaplasma = t(diaplasma[["dataMatrix"]])),
colData = diaplasma[["sampleMetadata"]],

rowData = diaplasma[["variableMetadata"]])

diaplasma.se <- diaplasma.se[1:100,]

Selecting the features

diaplasma.se <- biosign(diaplasma.se, "type", bootI = 5, fig.pdfC = "none")

Getting the signatures

diaplasma.biosign <- getBiosign(diaplasma.se)[["type_plsda.forest.svm"]]

diaplasma.biosign

getEset,biosign-method

getEset method

Description

Extracts the complemented ExpressionSet when biosign has been applied to an ExpressionSet

14 getEset,biosign-method

Usage

S4 method for signature 'biosign'
getEset(object)

Arguments

object An S4 object of class biosign, created by biosign function.

Value

An S4 object of class ExpressionSet which contains the dataMatrix (t(exprs(eset))), and the sam-
pleMetadata (pData(eset)) and variableMetadata (fData(eset)) with the additional columns contain-
ing the computed tiers for each feature and each classifier.

Author(s)

Etienne Thevenot, <etienne.thevenot@cea.fr>

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

building the ExpresssionSet instance

diaSet <- Biobase::ExpressionSet(assayData = t(dataMatrix),
phenoData = new("AnnotatedDataFrame",

data = sampleMetadata),
featureData = new("AnnotatedDataFrame",

data = variableMetadata),
experimentData = new("MIAME",

title = "diaplasma"))

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
diaSet <- diaSet[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(diaSet, "type", bootI = 5)

diaSet <- biosigner::getEset(diaSign)
head(Biobase::pData(diaSet))
head(Biobase::fData(diaSet))

getMset,biosignMultiDataSet-method 15

detach(diaplasma)

getMset,biosignMultiDataSet-method

getMset method

Description

Extracts the complemented MultiDataSet when biosign has been applied to a MultiDataSet

Usage

S4 method for signature 'biosignMultiDataSet'
getMset(object)

Arguments

object An S4 object of class biosignMultiDataSet, created by biosign function ap-
plied to a MultiDataSet

Value

An S4 object of class MultiDataSet.

Examples

Loading the 'NCI60_4arrays' from the 'omicade4' package
data("NCI60_4arrays", package = "omicade4")
Selecting two of the four datasets
setNamesVc <- c("agilent", "hgu95")
Creating the MultiDataSet instance
nciMset <- MultiDataSet::createMultiDataSet()
Adding the two datasets as ExpressionSet instances
for (setC in setNamesVc) {

Getting the data
exprMN <- as.matrix(NCI60_4arrays[[setC]])
pdataDF <- data.frame(row.names = colnames(exprMN),

cancer = substr(colnames(exprMN), 1, 2),
stringsAsFactors = FALSE)

fdataDF <- data.frame(row.names = rownames(exprMN),
name = rownames(exprMN),
stringsAsFactors = FALSE)

Building the ExpressionSet
eset <- Biobase::ExpressionSet(assayData = exprMN,

phenoData = new("AnnotatedDataFrame",
data = pdataDF),

featureData = new("AnnotatedDataFrame",
data = fdataDF),

16 getSignatureLs

experimentData = new("MIAME",
title = setC))

Adding to the MultiDataSet
nciMset <- MultiDataSet::add_eset(nciMset, eset, dataset.type = setC,

GRanges = NA, warnings = FALSE)
}
Restricting to the 'ME' and 'LE' cancer types
sampleNamesVc <- Biobase::sampleNames(nciMset[["agilent"]])
cancerTypeVc <- Biobase::pData(nciMset[["agilent"]])[, "cancer"]
nciMset <- nciMset[sampleNamesVc[cancerTypeVc %in% c("ME", "LE")],]
Summary of the MultiDataSet
nciMset
Selecting the significant features for PLS-DA, RF, and SVM classifiers, and getting back the updated MultiDataSet
nciBiosign <- biosign(nciMset, "cancer")
nciMset <- getMset(nciBiosign)
In the updated MultiDataSet, the updated featureData now contains the cancer_biosign_'classifier' columns
indicating the selected features
lapply(Biobase::fData(nciMset), head)

getSignatureLs Signatures selected by the models

Description

List of ’S’ (or ’S’ and ’A’) signatures for each classifier

Usage

getSignatureLs(object, tierC = c("S", "AS")[1])

S4 method for signature 'biosign'
getSignatureLs(object, tierC = c("S", "AS")[1])

Arguments

object An S4 object of class biosign, created by the biosign function.

tierC Character: defines whether signatures from the ’S’ tier only (default) or the (’S’
and ’A’) tiers should be returned

Value

List of ’S’ (or ’S’ and ’A’) signatures for each classifier

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

plot,biosign,ANY-method 17

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

individual boxplot of the selected signatures

getSignatureLs(diaSign)

detach(diaplasma)

plot,biosign,ANY-method

Plot method for ’biosign’ signature objects

Description

Displays classifier tiers or individual boxplots from selected features

This function plots signatures obtained by biosign.

Usage

S4 method for signature 'biosign,ANY'
plot(
x,
y,
tierMaxC = "S",
typeC = c("tier", "boxplot")[1],
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

18 plot,biosign,ANY-method

S4 method for signature 'biosignMultiDataSet,ANY'
plot(
x,
y,
tierMaxC = "S",
typeC = c("tier", "boxplot")[1],
plotSubC = "",
fig.pdfC = c("none", "interactive", "myfile.pdf")[2],
info.txtC = c("none", "interactive", "myfile.txt")[2]

)

Arguments

x An S4 object of class biosign, created by the biosign function.

y Currently not used.

tierMaxC Character: Maximum level of tiers to display: Either ’S’ and ’A’, (for boxplot),
or also ’B’, ’C’, ’D’, and ’E’ (for tiers) by decreasing number of selections

typeC Character: Plot type; either ’tier’ [default] displaying the comparison of signa-
tures up to the selected ’tierMaxC’ or ’boxplot’ showing the individual boxplots
of the features selected by all the classifiers

plotSubC Character: Graphic subtitle

fig.pdfC Character: File name with ’.pdf’ extension for the figure; if ’interactive’ (de-
fault), figures will be displayed interactively; if ’none’, no figure will be gener-
ated

info.txtC Character: File name with ’.txt’ extension for the printed results (call to sink()’);
if ’interactive’ (default), messages will be printed on the screen; if ’none’, no
verbose will be generated

Value

A plot is created on the current graphics device.

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

predict,biosign-method 19

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

individual boxplot of the selected signatures

plot(diaSign, typeC = "boxplot")

detach(diaplasma)

data("NCI60", package = "ropls")
nci.mds <- NCI60[["mds"]]

Restricting to the "agilent" and "hgu95" datasets

nci.mds <- nci.mds[, c("agilent", "hgu95")]

Restricting to the 'ME' and 'LE' cancer types

library(Biobase)
sample_names.vc <- Biobase::sampleNames(nci.mds[["agilent"]])
cancer_type.vc <- Biobase::pData(nci.mds[["agilent"]])[, "cancer"]
nci.mds <- nci.mds[sample_names.vc[cancer_type.vc %in% c("ME", "LE")],]

Selecting the significant features for PLS-DA, RF, and SVM classifiers

nci_cancer.biosign <- biosign(nci.mds, "cancer", bootI = 5)
Plotting the selected signatures
plot(nci_cancer.biosign)

predict,biosign-method

Predict method for ’biosign’ signature objects

Description

This function predicts values based upon biosign classifiers trained on the ’S’ signature

Usage

S4 method for signature 'biosign'
predict(object, newdata, tierMaxC = "S")

Arguments

object An S4 object of class biosign, created by biosign function.

20 predict,biosign-method

newdata Either a data frame or a matrix, containing numeric columns only, with column
names identical to the ’x’ used for model training with ’biosign’.

tierMaxC Character: Maximum level of tiers to display: Either ’S’or ’A’.

Value

Data frame with the predictions for each classifier as factor columns.

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

training the classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

fitted values (for the subsets restricted to the 'S' signatures)
sFitDF <- predict(diaSign)

confusion tables
print(lapply(sFitDF, function(predFc) table(actual = sampleMetadata[,
"type"], predicted = predFc)))

balanced accuracies
sapply(sFitDF, function(predFc) { conf <- table(sampleMetadata[,
"type"], predFc)
conf <- sweep(conf, 1, rowSums(conf), "/")
mean(diag(conf))
})
note that these values are slightly different from the accuracies
returned by biosign because the latter are computed by using the
resampling scheme selected by the bootI or crossvalI arguments
getAccuracyMN(diaSign)["S",]

detach(diaplasma)

show,biosign-method 21

show,biosign-method Show method for ’biosign’ signature objects

Description

Prints the selected features and the accuracies of the classifiers.

Usage

S4 method for signature 'biosign'
show(object)

Arguments

object An S4 object of class biosign, created by the biosign function.

Value

Invisible.

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example

featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

diaSign

detach(diaplasma)

22 SpikePos

SpikePos Spike-in metabolomics data for apple extracts (from the BioMark
package)

Description

Data from a spike-in experiment for apple extracts. Twenty apple extracts are divided in two groups,
one control, and one spike-in group. The control group is measured without any spiking - the spike-
in group is spiked with nine chemical compounds in three different combinations of concentrations.
The data provide the experimental data of the forty apple extracts in the list ’SpikePos’ for positive
ionization, and in the separate data.frame ’pos.markers’ that contains information about the features
of the standards, i.e., the spike-in compounds. The data use CAMERA grouping to automatically
determine which features are corresponding to which spike-in compounds. Raw data in CDF format
are available from the MetaboLights repository (MTBLS59).

Format

’SpikePos’ is a list with the following three elements:

data a 40 samples x 1,632 features matrix of numeric type, describing for each of the forty in-
jections the intensity of the features (columns). Column names consist of a combination of
retention time (in seconds) and m/z values, and are sorted on retention time,

classes a factor containing the class labels for the forty injections (control, or group1, 2 or 3),

annotation a 1,632 features x 11 metadata data.frame, containing for each of the features XCMS
and CAMERA information, such as mz, rt, number of times a feature is identified in the
control or spike-in samples, possible isotope or adduct annotation, and whether or not the
feature is identified in the standards (the spike-in data).

In addition, ’pos.markers’ is a data frame that contains the information of the standards, i.e. the
compounds that are spiked in. These data.frames describe in their rows single features identified
with XCMS and CAMERA, using the same settings as the experimental apple data, and have the
following columns:

comp The (short) name of the spiked-in compound giving rise to this particular feature,

mz, rt, isotope, adduct Feature information, similar to the information in the ’annotation’ fields in
’SpikePos’,

feature.nr The number of the corresponding feature in ’SpikePos’,

group1, group2, group3 Approximate spiking levels for the three groups. A value of 1.0 corre-
sponds to an increase that is roughly equal to the naturally occuring concentration in apple. Ex-
ceptions are trans-resveratrol and cyanidin-3-galactoside, both not naturally occuring. These
two compounds have been spiked in at one constant level which gives features of comparable
size.

Value

’SpikePos’ list and ’pos.markers’ data frame. For details see the ’Format’ section above.

SpikePos 23

Author(s)

Pietro Franceschi

Source

’SpikePos’ dataset.

References

Franceschi,P. et al. (2012) A benchmark spike-in data set for biomarker identification in metabolomics.
Journal of Chemometrics, 26, 16–24. DOI:10.1002/cem.1420.

Examples

data(SpikePos)
plot(SpikePos$annotation[,c('rt', 'mz')], xlab = 'Time (s)', ylab = 'm/z', main = 'Positive ionization mode')
points(pos.markers[!is.na(pos.markers$feature.nr), c('rt', 'mz')], pch = 19, col = 2)

Index

∗ datasets
diaplasma, 10
SpikePos, 22

∗ package
biosigner-package, 2

biosign, 3, 9, 10
biosign,data.frame-method (biosign), 3
biosign,ExpressionSet-method (biosign),

3
biosign,matrix-method (biosign), 3
biosign,MultiAssayExperiment-method

(biosign), 3
biosign,MultiDataSet-method (biosign), 3
biosign,MultiDataSet_method (biosign), 3
biosign,SummarizedExperiment-method

(biosign), 3
biosign-class, 8
biosign-method

(getEset,biosign-method), 13
biosigner (biosigner-package), 2
biosigner-package, 2
biosignMultiDataSet-class, 10
biosignMultiDataSet-method

(getMset,biosignMultiDataSet-method),
15

diaplasma, 10

getAccuracyMN, 11
getAccuracyMN,biosign-method

(getAccuracyMN), 11
getBiosign, 12
getBiosign,MultiAssayExperiment-method

(getBiosign), 12
getBiosign,SummarizedExperiment-method

(getBiosign), 12
getEset (getEset,biosign-method), 13
getEset, (getEset,biosign-method), 13
getEset,biosign-method, 13

getMset
(getMset,biosignMultiDataSet-method),
15

getMset,
(getMset,biosignMultiDataSet-method),
15

getMset,biosignMultiDataSet-method, 15
getSignatureLs, 16
getSignatureLs,biosign-method

(getSignatureLs), 16

plot,biosign,ANY-method, 17
plot,biosign-method

(plot,biosign,ANY-method), 17
plot,biosignMultiDataSet,ANY-method

(plot,biosign,ANY-method), 17
plot,biosignMultiDataSet-method

(plot,biosign,ANY-method), 17
plot.biosign, 6
plot.biosign (plot,biosign,ANY-method),

17
plot.biosignMultiDataSet

(plot,biosign,ANY-method), 17
predict,biosign-method, 19
predict.biosign, 6
predict.biosign

(predict,biosign-method), 19

show,biosign-method, 21
show.biosign (show,biosign-method), 21
SpikePos, 22

24

	biosigner-package
	biosign
	biosign-class
	biosignMultiDataSet-class
	diaplasma
	getAccuracyMN
	getBiosign
	getEset,biosign-method
	getMset,biosignMultiDataSet-method
	getSignatureLs
	plot,biosign,ANY-method
	predict,biosign-method
	show,biosign-method
	SpikePos
	Index

