Package ‘biodb’

January 23, 2026

Title Biodb, a Library and a Development Framework for Connecting to
Chemical and Biological Databases

Version 1.19.0

Description The biodb package provides access to standard remote chemical and
biological databases (ChEBI, KEGG, HMDB, ...), as well as to in-house local
database files (CSV, SQLite), with easy retrieval of entries, access to web
services, search of compounds by mass and/or name, and mass spectra matching
for LCMS and MSMS. Its architecture as a development framework facilitates
the development of new database connectors for local projects or inside
separate published packages.

URL https://gitlab.com/rbiodb/biodb

BugReports https://gitlab.com/rbiodb/biodb/-/issues
biocViews Software, Infrastructure, Datalmport, KEGG
Depends R (>=4.1.0)

License AGPL-3

Encoding UTF-8

VignetteBuilder knitr

Suggests BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr,
rmarkdown, xml2

Imports R6, RSQLite, Repp, XML, chk, fscache (>= 1.0.2), jsonlite,
lgr, lifecycle, methods, openssl, plyr, progress, rappdirs,
sched (>=1.0.1), sqlq, stats, stringr, tools, withr, yaml

LinkingTo Rcpp, testthat
NeedsCompilation yes

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

Collate 'BiodbConfig.R' 'BiodbConnBase.R' '‘BiodbConn.R' '‘BiodbEntry.R'
'‘BiodbCsvEntry.R' 'BiodbDbInfo.R' '‘BiodbDbsInfo.R'
'BiodbEntryField.R' '‘BiodbMain.R' 'BiodbEntryFields.R'
'‘BiodbFactory.R' 'BiodbXmlEntry.R' 'BiodbHtmIEntry.R'

1

https://gitlab.com/rbiodb/biodb
https://gitlab.com/rbiodb/biodb/-/issues

2 Contents

'BiodbJsonEntry.R' 'BiodbListEntry.R' 'BiodbTxtEntry.R'
'‘BiodbSdfEntry.R' 'BiodbTestMsgAck.R' 'CsvFileConn.R'
'CompCsvFileConn.R' 'CompCsvFileEntry.R' 'SqliteConn.R'
'CompSqliteConn.R' 'CompSqliteEntry.R' 'FileTemplate.R'
'MassCsvFileConn.R' 'MassCsvFileEntry.R' 'MassSqliteConn.R'
'MassSqliteEntry.R' Progress.R' 'Range.R' RcppExports.R'
"TestRefEntries.R' 'catch-routine-registration.R'

'fcts_biodb.R' 'fcts_deprecated.R' 'fcts_mass.R' 'fcts_misc.R'
'generic_tests.R' 'package.R' 'spec-dist.R' 'test_framework.R'

git_url https://git.bioconductor.org/packages/biodb
git_branch devel

git_last_commit 8a361b3

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Pierrick Roger [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8177-4873>),
Alexis Delabriere [ctb] (ORCID:
<https://orcid.org/0000-0003-3308-4549>)

Maintainer Pierrick Roger <pierrick.roger@cea.fr>

Contents
biodb-package 4
abstractClass L e 4
abstractMethod 5
BiodbConfig e 5
BiodbConn e 10
BiodbConnBase e e 30
BiodbCsVEntry o e 37
BiodbDbInfo e e 39
BiodbDbsInfo 40
BiodbEntry 42
BiodbEntryField 50
BiodbEntryFields e 58
BiodbFactory e 62
BiodbHtmlEntry e 67
BiodbJsonEntry 68
BiodbListEntry e 68
BiodbMain 69
BiodbSdAfEntry 77
BiodbTestMsgAck e e e 78
BiodbTxtEntry e 79
BiodbXmlIEntry e e 80

checkDeprecatedCacheFolders 81

https://orcid.org/0000-0001-8177-4873
https://orcid.org/0000-0003-3308-4549

Contents

Index

3
closeMatchPpm e 82
CompCsvFileConn e 82
CompCsvFileEntry e 84
CompSqliteConn e 85
CompSqliteEntry 86
connNameToClassPrefix 87
createBiodbTestlnstance L L L 87
CsvFileConn e 88
df2str . . . e 92
CITOT . . o o v i i it e e e e e e e e e e e 93
errorQ . . .o e 93
FileTemplate e 94
getConnClassName e 95
getConnTypes L 96
getDefaultCacheDir e 96
getEntryClassName 97
getEntryTypes L e 97
getlogger e 98
listTestRefEntries o e 98
loadFileContents 99
logDebug 99
logDebugQ e 100
logInfo. 100
logInfoO e 101
logTrace e 102
logTrace0 o L e 102
ISt2Str . . . e 103
MassCsvFileConn o e 103
MassCsvFileEntry e 105
MassSqliteConn 107
MassSqliteEntry Lo 108
newlnsto e 109
Progress e 109
Range e 111
runGenericTests L 113
SqliteConn e e 114
teStCONtEXt e e e 116
TestRefEntries L 116
testThat e 119
WAITL © . v v v e 120
warnO e 120

4 abstractClass

biodb-package biodb: Biodb, a Library and a Development Framework for Connect-
ing to Chemical and Biological Databases

Description

The biodb package provides access to standard remote chemical and biological databases (ChEBI,
KEGG, HMDB, ...), as well as to in-house local database files (CSV, SQLite), with easy retrieval of
entries, access to web services, search of compounds by mass and/or name, and mass spectra match-
ing for LCMS and MSMS. Its architecture as a development framework facilitates the development
of new database connectors for local projects or inside separate published packages.

Details

To get a presentation of the biodb package and get started with it, please see the "biodb" vignette.
vignette('biodb', package='biodb')

Author(s)

Maintainer: Pierrick Roger <pierrick.roger@cea.fr> (ORCID)

Other contributors:

¢ Alexis Delabri¢re <delabriere@imsb.biol.ethz.ch> (ORCID) [contributor]

See Also
BiodbMain, BiodbConfig, BiodbFactory, BiodbDbsInfo, BiodbEntryFields.

abstractClass Declares a class as abstract.

Description
Forbids instantiation of an abstract class. This method must be called from within a constructor of
an abstract class. It will throw an error if a direct call is made to this constructor.

Usage

abstractClass(cls, obj)

Arguments

cls The name of the abstract class to check.

obj The object being instantiated.

https://orcid.org/0000-0001-8177-4873
https://orcid.org/0000-0003-3308-4549

abstractMethod 5

Value

Nothing.

abstractMethod Declares a method as abstract

Description

This method must be called from within the abstract method.

Usage

abstractMethod(obj)

Arguments

obj The object on which the abstract method is called.

Value

Nothing.

BiodbConfig A class for storing configuration values.

Description

A class for storing configuration values.

A class for storing configuration values.

Details

This class is responsible for storing configuration. You must go through the single instance of this
class to create and set and get configuration values. To get the single instance of this class, call the
getConfig() method of class BiodbMain.

Methods

Public methods:
e BiodbConfig$new()
¢ BiodbConfig$getKeys()
e BiodbConfig$getTitle()
* BiodbConfig$getDescription()
* BiodbConfig$getDefaultValue()

BiodbConfig

¢ BiodbConfig$hasKey ()

e BiodbConfig$isDefined()

* BiodbConfig$isEnabled()

¢ BiodbConfig$get()

e BiodbConfig$set()

e BiodbConfig$reset()

* BiodbConfig$enable()

* BiodbConfig$disable()

e BiodbConfig$print()

¢ BiodbConfig$listKeys()

* BiodbConfig$getAssocEnvVar()
* BiodbConfig$define()

e BiodbConfig$notifyNewObservers()
* BiodbConfig$terminate()

* BiodbConfig$clone()

Method new(): New instance initializer. No BiodbConfig object must not be created directly.
Instead, access the config instance through the BiodbMain instance using the getConfig() method.

Usage:
BiodbConfig$new(parent)

Arguments:

parent The BiodbMain instance.

Returns: Nothing.

Method getKeys(): Get the list of available keys.

Usage:
BiodbConfig$getKeys(deprecated = FALSE)

Arguments:

deprecated If set to TRUE returns also the deprecated keys.

Returns: A character vector containing the config key names.

Method getTitle(): Get the title of a key.

Usage:
BiodbConfig$getTitle(key)

Arguments:

key The name of a configuration key.

Returns: The title of the key as a character value.

Method getDescription(): Get the description of a key.

Usage:
BiodbConfig$getDescription(key)

Arguments:

BiodbConfig 7

key The name of a configuration key.

Returns: The description of the key as a character value.

Method getDefaultValue(): Get the default value of a key.

Usage:
BiodbConfig$getDefaultValue(key, as.chr = FALSE)

Arguments:
key The name of a configuration key.
as.chr If set to TRUE, returns the value as character.

Returns: The default value for that key.

Method hasKey(): Test if a key exists.

Usage:
BiodbConfig$hasKey(key)

Arguments:
key The name of a configuration key.

Returns: TRUE if a key with this name exists, FALSE otherwise.

Method isDefined(): Testif a key is defined (i.e.: if a value exists for this key).

Usage:
BiodbConfig$isDefined(key, fail = TRUE)

Arguments:

key The name of a configuration key.
fail If set to TRUE and the configuration key does not exist, then an error will be raised.

Returns: TRUE if the key has a value, FALSE otherwise.
Method isEnabled(): Test if a boolean key is set to TRUE. This method will raise an error if
the key is not a boolean key.

Usage:
BiodbConfig$isEnabled(key)

Arguments:
key The name of a configuration key.

Returns: TRUE if the boolean key has a value set to TRUE, FALSE otherwise.

Method get(): Get the value of a key.

Usage:
BiodbConfig$get(key)

Arguments:
key The name of a configuration key.

Returns: The value associated with the key.

Method set(): Set the value of a key.

BiodbConfig

Usage:
BiodbConfig$set(key, value)

Arguments:
key The name of a configuration key.
value A value to associate with the key.

Returns: Nothing.

Method reset(): Reset the value of a key.

Usage:
BiodbConfig$reset(key = NULL)

Arguments:
key The name of a configuration key. If NULL, all keys will be reset.

Returns: Nothing.

Method enable(): Seta boolean key to TRUE.

Usage:
BiodbConfig$enable(key)

Arguments:

key The name of a configuration key.

Returns: Nothing.

Method disable(): Setaboolean key to FALSE.

Usage:
BiodbConfig$disable(key)

Arguments:
key The name of a configuration key.

Returns: Nothing.

Method print(): Print list of configuration keys and their values.

Usage:
BiodbConfig$print ()

Returns: Nothing.

Method listKeys(): Get the full list of keys as a data frame.

Usage:
BiodbConfig$listKeys()

Returns: A data frame containing keys, titles, types, and default values.

Method getAssocEnvVar(): Returns the environment variable associated with this configura-
tion key.

Usage:

BiodbConfig$getAssocEnvVar (key)

BiodbConfig

Arguments:

key The name of a configuration key.

Returns: The environment variable’s value.

Method define(): Defines config properties from a structured object, normally loaded from a
YAML file.

Usage:
BiodbConfig$define(def)

Arguments:

def The list of key definitions.

Returns: Nothing.

Method notifyNewObservers(): Called by BiodbMain when a new observer is registered.

Usage:
BiodbConfig$notifyNewObservers(obs)

Arguments:
obs The new observers registered by the BiodbMain instance.

Returns: Nothing.
Method terminate(): Terminates the instance. This method will be called automatically by the
BiodbMain instance when you call

Usage:
BiodbConfig$terminate()

Arguments:

BiodbMain :terminate().

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbConfig$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

BiodbMain.

10

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get the config instance:
config <- mybiodb$getConfig()

Print all available keys
config$getKeys()

Get a configuration value:
value <- config$get('cache.directory')

Set a configuration value:
config$set('dwnld.timeout', 600)

For boolean values, you can use boolean methods:

config$get('offline')
config$enable('offline') # set to TRUE
config$disable('offline') # set to FALSE
config$isEnabled('offline')

Terminate instance.
mybiodb$terminate()

BiodbConn

BiodbConn

The mother abstract class of all database connectors.

Description

The mother abstract class of all database connectors.

The mother abstract class of all database connectors.

Details

This is the super class of all connector classes. All methods defined here are thus common to all

connector classes. All connector classes inherit from this abstract class.

See section Fields for a list of the constructor’s parameters. Concrete classes may have direct web
services methods or other specific methods implemented, in which case they will be described inside
the documentation of the concrete class. Please refer to the documentation of each concrete class

for more information. The database direct web services methods will be named "ws.*".

The constructor has the following arguments:
id: The identifier of the connector.

cache.id: The identifier used in the disk cache.

BiodbConn

Super class

biodb: :BiodbConnBase -> BiodbConn

Methods

Public methods:

¢ BiodbConn$new()

* BiodbConn$getBiodb ()

* BiodbConn$getId()

* BiodbConn$print()

e BiodbConn$correctIds()

* BiodbConn$getEntry()

* BiodbConn$getCacheFile()

e BiodbConn$getEntryContent()

* BiodbConn$getEntryContentFromDb()
* BiodbConn$getEntryContentRequest()
* BiodbConn$getEntryIds()

e BiodbConn$getNbEntries()

* BiodbConn$isEditable()

e BiodbConn$editingIsAllowed()

* BiodbConn$allowEditing()

e BiodbConn$disallowEditing()

* BiodbConn$setEditingAllowed()

¢ BiodbConn$addNewEntry()

* BiodbConn$isWritable()

e BiodbConn$allowWriting()

* BiodbConn$disallowWriting()

e BiodbConn$setWritingAllowed()

* BiodbConn$writingIsAllowed()

e BiodbConn$write()

* BiodbConn$isSearchableByField()
* BiodbConn$getSearchableFields()
¢ BiodbConn$searchForEntries()

* BiodbConn$searchByName ()

¢ BiodbConn$isDownloadable()

* BiodbConn$isDownloaded()

¢ BiodbConn$requiresDownload()

* BiodbConn$getDownloadPath()

¢ BiodbConn$setDownloadedFile()

* BiodbConn$isExtracted()

¢ BiodbConn$download()

* BiodbConn$isRemotedb()

12

BiodbConn

¢ BiodbConn$isCompounddb()

* BiodbConn$searchCompound()

e BiodbConn$annotateMzValues()

* BiodbConn$isMassdb()

* BiodbConn$checkDb()

e BiodbConn$getAllVolatileCacheEntries()
* BiodbConn$getAllCacheEntries()

* BiodbConn$deleteAllEntriesFromVolatileCache()
¢ BiodbConn$deleteAllEntriesFromPersistentCache()
* BiodbConn$deleteWholePersistentCache()
¢ BiodbConn$deleteAllCacheEntries()

* BiodbConn$getCacheId()

* BiodbConn$makesRefToEntry()

¢ BiodbConn$makeRequest()

* BiodbConn$getEntryImageUrl()

* BiodbConn$getEntryPageUrl()

e BiodbConn$getChromCol ()

* BiodbConn$getMatchingMzField()

* BiodbConn$setMatchingMzField()

¢ BiodbConn$getMzValues()

* BiodbConn$getNbPeaks ()

e BiodbConn$filterEntriesOnRt ()

¢ BiodbConn$searchForMassSpectra()

* BiodbConn$searchMsEntries()

¢ BiodbConn$searchMsPeaks ()

* BiodbConn$msmsSearch()

* BiodbConn$collapseResultsDataFrame()

* BiodbConn$searchMzRange ()

* BiodbConn$searchMzTol ()

e BiodbConn$clone()

Method new(): New instance initializer. Connector objects must not be created directly. Instead,
you create new connector instances through the BiodbFactory instance.

Usage:
BiodbConn$new(id = NA_character_, cache.id = NA_character_, bdb, ...)
Arguments:
id The ID of the connector instance.
cache.id The Cache ID of the connector instance.
bdb The BiodbMain instance.
. Remaining arguments will be passed to the constructor of the super class.

Returns: Nothing.

Method getBiodb(): Returns the biodb main class instance to which this object is attached.

BiodbConn 13

Usage:
BiodbConn$getBiodb()

Returns: The main biodb instance.

Method getId(): Get the identifier of this connector.

Usage:
BiodbConn$getId()

Returns: The identifier of this connector.

Method print(): Prints a description of this connector.

Usage:
BiodbConn$print()

Returns: Nothing.

Method correctIds(): Correct a vector of IDs by formatting them to the database official
format, if required and possible.

Usage:

BiodbConn$correctIds(ids)

Arguments:

ids A character vector of IDs.

Returns: The vector of IDs corrected.

Method getEntry(): Return the entry corresponding to this ID. You can pass a vector of IDs,
and you will get a list of entries.

Usage:

BiodbConn$getEntry(id, drop = TRUE, nulls = TRUE)

Arguments:
id A character vector containing entry identifiers.

drop If set to TRUE and only one entry is requrested, then the returned value will be a single
BiodbEntry object, otherwise it will be a list of BiodbEntry objects.

nulls If set to TRUE, NULL entries are preserved. This ensures that the output list has the
same length than the input vector id. Otherwise they are removed from the final list.

Returns: A list of BiodbEntry objects, the same size of the vector of IDs. The list will contain
NULL values for invalid IDs. If drop is set to TRUE and only one etrny was requested then a
single BiodbEntry is returned instead of a list.

Method getCacheFile(): Get the path to the persistent cache file.
Usage:
BiodbConn$getCacheFile(entry.id)
Arguments:
entry.id The identifiers (e.g.: accession numbers) as a character vector of the database entries.

Returns: A character vector, the same length as the vector of IDs, containing the paths to the
cache files corresponding to the requested entry IDs.

BiodbConn

Method getEntryContent(): Get the contents of database entries from IDs (accession num-
bers).

Usage:

BiodbConn$getEntryContent(id)

Arguments:

id A character vector of entry IDs.

Returns: A character vector containing the contents of the requested IDs. If no content is
available for an entry ID, then NA will be used.

Method getEntryContentFromDb(): Get the contents of entries directly from the database. A
direct request or an access to the database will be made in order to retrieve the contents. No access
to the biodb cache system will be made.

Usage:

BiodbConn$getEntryContentFromDb(entry.id)

Arguments:

entry.id A character vector with the IDs of entries to retrieve.

Returns: A character vector, the same size of entry.id, with contents of the requested entries.
An NA value will be set for the content of each entry for which the retrieval failed.

Method getEntryContentRequest(): Gets the URL to use in order to get the contents of the
specified entries.

Usage:

BiodbConn$getEntryContentRequest(entry.id, concatenate = TRUE, max.length = @)

Arguments:

entry.id A character vector with the IDs of entries to retrieve.

concatenate If set to TRUE, then try to build as few URLs as possible, sending requests with
several identifiers at once.
max.length The maximum length of the URLSs to return, in number of characters.

Returns: A vector of URL strings.
Method getEntryIds(): Get entry identifiers from the database. More arguments can be given,

depending on implementation in specific databases. For mass databases the ms.level argument
can also be set.

Usage:
BiodbConn$getEntryIds(max.results = @, ...)

Arguments:
max.results The maximum of elements to return from the method.

. Arguments specific to connectors.
Returns: A character vector containing entry IDs from the database. An empty vector for a
remote database may mean that the database does not support requesting for entry accessions.
Method getNbEntries(): Get the number of entries contained in this database.
Usage:

BiodbConn 15

BiodbConn$getNbEntries(count = FALSE)

Arguments:

count If set to TRUE and no straightforward way exists to get number of entries, count the
output of getEntrylds().

Returns: The number of entries in the database, as an integer.
Method isEditable(): Tests if this connector is able to edit the database (i.e.: the connector

class implements the interface BiodbEditable). If this connector is editable, then you can call
allowEditing() to enable editing.

Usage:
BiodbConn$isEditable()

Returns: Returns TRUE if the database is editable.

Method editingIsAllowed(): Tests if editing is allowed.

Usage:
BiodbConn$editingIsAllowed()

Returns: TRUE if editing is allowed for this database, FALSE otherwise.

Method allowEditing(): Allows editing for this database.

Usage:
BiodbConn$allowEditing()

Returns: Nothing.

Method disallowEditing(): Disallows editing for this database.

Usage:
BiodbConn$disallowEditing()

Returns: Nothing.

Method setEditingAllowed(): Allow or disallow editing for this database.
Usage:
BiodbConn$setEditingAllowed(allow)
Arguments:

allow A logical value.
Returns: Nothing.
Method addNewEntry(): Adds a new entry to the database. The passed entry must have been

previously created from scratch using BiodbFactory :createNewEntry() or cloned from an existing
entry using BiodbEntry :clone().

Usage:
BiodbConn$addNewEntry(entry)

Arguments:

entry The new entry to add. It must be a valid BiodbEntry object.

16

BiodbConn

Returns: Nothing.
Method isWritable(): Tests if this connector is able to write into the database. If this connector
is writable, then you can call allowWriting() to enable writing.

Usage:
BiodbConn$isWritable()

Returns: Returns TRUE if the database is writable.

Method allowWriting(): Allows the connector to write into this database.

Usage:
BiodbConn$allowWriting()

Returns: Nothing.

Method disallowWriting(): Disallows the connector to write into this database.

Usage:
BiodbConn$disallowWriting()

Returns: Nothing.

Method setWritingAllowed(): Allows or disallows writing for this database.

Usage:
BiodbConn$setWritingAllowed(allow)

Arguments:
allow If set to TRUE, allows writing.

Returns: Nothing.

Method writingIsAllowed(): Tests if the connector has access right to the database.

Usage:
BiodbConn$writingIsAllowed()

Returns: TRUE if writing is allowed for this database, FALSE otherwise.

Method write(): Writes into the database. All modifications made to the database since the
last time write() was called will be saved.

Usage:

BiodbConn$write()

Returns: Nothing.
Method isSearchableByField(): Tests if a field can be used to search entries when using
method searchForEntries().

Usage:

BiodbConn$isSearchableByField(field = NULL, field.type = NULL)

Arguments:
field The name of the field.
field. type The field type.

BiodbConn 17

Returns: Returns TRUE if the database is searchable using the specified field or searchable by
any field of the specified type, FALSE otherwise.
Method getSearchableFields(): Get the list of all searchable fields.

Usage:
BiodbConn$getSearchableFields()

Returns: A character vector containing all searchable fields for this connector.
Method searchForEntries(): Searches the database for entries whose name matches the spec-
ified name. Returns a character vector of entry IDs.

Usage:
BiodbConn$searchForEntries(fields = NULL, max.results = @)

Arguments:

fields A list of fields on which to filter entries. To get a match, all fields must be matched
(i.e. logical AND). The keys of the list are the entry field names on which to filter, and the
values are the filtering parameters. For character fields, the filter parameter is a character
vector in which all strings must be found inside the field’s value. For numeric fields, the
filter parameter is either a list specifying a min-max range (list(min=1.0, max=2.5))ora
value with a tolerance in delta (list(value=2.0, delta=0.1))or ppm (1ist(value=2.0,

ppm=1.0)).
max.results If set, the number of returned IDs is limited to this number.

Returns: A character vector of entry IDs whose name matches the requested name.

Method searchByName(): DEPRECATED. Use searchForEntries() instead.

Usage:
BiodbConn$searchByName(name, max.results = @)

Arguments:
name A character value to search inside name fields.
max.results If set, the number of returned IDs is limited to this number.

Returns: A character vector of entry IDs whose name matches the requested name.

Method isDownloadable(): Tests if the connector can download the database.

Usage:
BiodbConn$isDownloadable()

Returns: Returns TRUE if the database is downloadable.

Method isDownloaded(): Tests if the database has been downloaded.

Usage:
BiodbConn$isDownloaded()

Returns: TRUE if the database content has already been downloaded.

Method requiresDownload(): Tests if the connector requires the download of the database.

Usage:

18

BiodbConn

BiodbConn$requiresDownload()

Returns: TRUE if the connector requires download of the database.

Method getDownloadPath(): Gets the path where the downloaded content is written.

Usage:
BiodbConn$getDownloadPath()

Returns: The path where the downloaded database is written.

Method setDownloadedFile(): Set the downloaded file into the cache.

Usage:
BiodbConn$setDownloadedFile(src, action = c("copy”, "move"))

Arguments:
src Path to the downloaded file.
action Specifies if files have to be moved or copied into the cache.

Returns: Nothing.
Method isExtracted(): Tests if the downloaded database has been extracted (in case the
database needs extraction).

Usage:
BiodbConn$isExtracted()

Returns: TRUE if the downloaded database content has been extracted, FALSE otherwise.

Method download(): Downloads the database content locally.

Usage:
BiodbConn$download()

Returns: Nothing.

Method isRemotedb(): Tests if the connector is connected to a remote database.

Usage:
BiodbConn$isRemotedb ()

Returns: Returns TRUE if the database is a remote database."

Method isCompounddb(): Tests if the connector’s database is a compound database.

Usage:
BiodbConn$isCompounddb ()

Returns: Returns TRUE if the database is a compound database.
Method searchCompound(): This method is deprecated. Use searchForEntries() instead. Searches
for compounds by name and/or by mass. At least one of name or mass must be set.

Usage:

BiodbConn 19

BiodbConn$searchCompound(
name = NULL,
mass = NULL,
mass.field = NULL,
mass.tol = 0.01,
mass.tol.unit = "plain”,
max.results = @

)

Arguments:

name The name of a compound to search for.

mass The searched mass.

mass.field For searching by mass, you must indicate a mass field to use ('monoisotopic.mass’,
’molecular.mass’, ’average.mass’ or ‘'nominal.mass’).

mass.tol The tolerance value on the molecular mass.

mass.tol.unit The type of mass tolerance. Either "plain’ or 'ppm’.

max.results The maximum number of matches to return.

description A character vector of words or expressions to search for inside description field.
The words will be searched in order. A match will be made only if all words are inside the
description field.

Returns: A character vector of entry IDs."

Method annotateMzValues(): Annotates a mass spectrum with the database. For each match-
ing entry the entry field values will be set inside columns appended to the data frame. Names of
these columns will use a common prefix in order to distinguish them from other data from the
input data frame.
Usage:
BiodbConn$annotateMzValues(
X,
mz.tol,
ms.mode,
mz.tol.unit = c("plain”, "ppm"),
mass.field = "monoisotopic.mass”,
max.results = 3,
mz.col = "mz",
fields = NULL,
prefix = NULL,
insert.input.values = TRUE,
fieldsLimit = @
)

Arguments:

x FEither a data frame or a numeric vector containing the M/Z values.

mz.tol The tolerance on the M/Z values.

ms.mode The MS mode. Set it to either 'neg’ or *pos’.

mz.tol.unit The type of the M/Z tolerance. Set it to either to *ppm’ or ’plain’.

mass.field The mass field to use for matching M/Z values. One of: *monoisotopic.mass’,
’molecular.mass’, ’average.mass’, ‘'nominal.mass’.

20

BiodbConn

max.results If set, it is used to limit the number of matches found for each M/Z value. To get
all the matches, set this parameter to NA_integer_. Default value is 3.

mz.col The name of the column where to find M/Z values in case X is a data frame.

fields A character vector containing the additional entry fields you would like to get for each
matched entry. Each field will be output in a different column.

prefix A prefix that will be inserted before the name of each added column in the output. By
default it will be set to the name of the database followed by a dot.

insert.input.values Insert input values at the beginning of the result data frame.

fieldsLimit The maximum of values to output for fields with multiple values. Set it to O to
get all values.

Returns: A data frame containing the input values, and annotation columns appended at the
end. The first annotation column contains the IDs of the matched entries. The following columns
contain the fields you have requested through the fields parameter.

Method isMassdb(): Tests if the connector’s database is a mass spectra database.

Usage:
BiodbConn$isMassdb ()

Returns: Returns TRUE if the database is a mass database.

Method checkDb(): Checks that the database is correct by trying to retrieve all its entries.
Usage:
BiodbConn$checkDb ()
Returns: Nothing.
Method getAllVolatileCacheEntries(): Get all entries stored in the memory cache (volatile
cache).

Usage:
BiodbConn$getAllVolatileCacheEntries()

Returns: A list of BiodbEntry instances.
Method getAllCacheEntries(): This method is deprecated. Use getAllVolatileCacheEntries()
instead.

Usage:
BiodbConn$getAllCacheEntries()

Returns: All entries cached in memory.
Method deleteAllEntriesFromVolatileCache(): Delete all entries from the volatile cache
(memory cache).

Usage:
BiodbConn$deleteAllEntriesFromVolatileCache()

Returns: Nothing.

Method deleteAllEntriesFromPersistentCache(): Delete all entries from the persistent
cache (disk cache).

BiodbConn 21

Usage:

BiodbConn$deleteAllEntriesFromPersistentCache(deleteVolatile = TRUE)
Arguments:

deleteVolatile If TRUE deletes also all entries from the volatile cache (memory cache).

Returns: Nothing.

Method deleteWholePersistentCache(): Delete all files associated with this connector from
the persistent cache (disk cache).

Usage:

BiodbConn$deleteWholePersistentCache(deleteVolatile = TRUE)

Arguments:

deleteVolatile If TRUE deletes also all entries from the volatile cache (memory cache).

Returns: Nothing.

Method deleteAllCacheEntries(): Delete all entries from the memory cache. This method
is deprecated, please use delete AllEntriesFromVolatileCache() instead.

Usage:

BiodbConn$deleteAllCacheEntries()

Returns: Nothing.

Method getCacheId(): Gets the ID used by this connector in the disk cache.

Usage:
BiodbConn$getCacheld()

Returns: The cache ID of this connector.

Method makesRefToEntry(): Tests if some entry of this database makes reference to another
entry of another database.
Usage:
BiodbConn$makesRefToEntry(id, db, oid, any = FALSE, recurse = FALSE)
Arguments:
id A character vector of entry IDs from the connector’s database.
db Another database connector.
oid A entry ID from database db.
any If set to TRUE, returns a single logical value: TRUE if any entry contains a reference to
oid, FALSE otherwise.
recurse If setto TRUE, the algorithm will follow all references to entries from other databases,
to see if it can establish an indirect link to oid.

Returns: A logical vector, the same size as id, with TRUE for each entry making reference to
oid, and FALSE otherwise.
Method makeRequest(): Makes a sched::Request instance using the passed parameters.

Usage:
BiodbConn$makeRequest(...)

22 BiodbConn

Arguments:
. Those parameters are passed to the initializer of sched::Request.

Returns: The sched::Request instance.
Method getEntryImageUrl(): Gets the URL to a picture of the entry (e.g.: a picture of the
molecule in case of a compound entry).

Usage:
BiodbConn$getEntryImageUrl(entry.id)

Arguments:
entry.id A character vector containing entry IDs.

Returns: A character vector, the same length as entry. id, containing for each entry ID either
a URL or NA if no URL exists.
Method getEntryPageUrl(): Gets the URL to the page of the entry on the database web site.

Usage:
BiodbConn$getEntryPageUrl(entry.id)

Arguments:
entry.id A character vector with the IDs of entries to retrieve.

Returns: A list of sched::URL objects, the same length as entry. id.

Method getChromCol(): Gets a list of chromatographic columns contained in this database.

Usage:
BiodbConn$getChromCol(ids = NULL)

Arguments:
ids A character vector of entry identifiers (i.e.: accession numbers). Used to restrict the set of
entries on which to run the algorithm.

Returns: A data.frame with two columns, one for the ID ’id’ and another one for the title ’title’.

Method getMatchingMzField(): Gets the field to use for M/Z matching.

Usage:
BiodbConn$getMatchingMzField()

Returns: The name of the field (one of peak.mztheo or peak.mzexp).

Method setMatchingMzField(): Sets the field to use for M/Z matching.

Usage:
BiodbConn$setMatchingMzField(field = c("peak.mztheo”, "peak.mzexp"))

Arguments:
field The field to use for matching.

Returns: Nothing.

Method getMzValues(): Gets a list of M/Z values contained inside the database.

Usage:

BiodbConn 23

BiodbConn$getMzValues(
ms.mode = NULL,
max.results = 0,
precursor = FALSE,
ms.level = @

)

Arguments:

ms.mode The MS mode. Set it to either *neg’ or *pos’ to limit the output to one mode.
max.results If set, it is used to limit the size of the output.

precursor If set to TRUE, then restrict the search to precursor peaks.

ms.level The MS level to which you want to restrict your search. 0 means that you want to

search in all levels.

Returns: A numeric vector containing M/Z values.

Method getNbPeaks(): Gets the number of peaks contained in the database.

Usage:
BiodbConn$getNbPeaks(mode = NULL, ids = NULL)

Arguments:
mode The MS mode. Set it to either 'neg’ or pos’ to limit the counting to one mode.

ids A character vector of entry identifiers (i.e.: accession numbers). Used to restrict the set of
entries on which to run the algorithm.

Returns: The number of peaks, as an integer.

Method filterEntriesOnRt(): Filters a list of entries on retention time values.

Usage:
BiodbConn$filterEntriesOnRt(

entry.ids,

rt,

rt.unit,

rt.tol,

rt.tol.exp,

chrom.col.ids,

match.rt

)
Arguments:
entry.ids A character vector of entry IDs.

rt A vector of retention times to match. Used if input.df is not set. Unit is specified by rt.unit
parameter.

rt.unit The unit for submitted retention times. Either ’s’ or 'min’.
rt.tol The plain tolerance (in seconds) for retention times: input.rt
* rt.tol <= database.rt <= input.rt + rt.tol.

rt.tol.exp A special exponent tolerance for retention times: input.rt

24

BiodbConn

* input.rt ** rt.tol.exp <= database.rt <= input.rt + input.rt ** rt.tol.exp. This exponent is
applied on the RT value in seconds. If both rt.tol and rt.tol.exp are set, the inequality
expression becomes input.rt - rt.tol - input.rt ** rt.tol.exp <= database.rt <= input.rt +
rt.tol + input.rt ** rt.tol.exp.

chrom.col.ids IDs of chromatographic columns on which to match the retention time.
match.rt If set to TRUE, filters on RT values, otherwise does not do any filtering.

Returns: A character vector containing entry IDs after filtering.

Method searchForMassSpectra(): Searches for entries (i.e.: spectra) that contain a peak
around the given M/Z value. Entries can also be filtered on RT values. You can input either a
list of M/Z values through mz argument and set a tolerance with mz.tol argument, or two lists of
minimum and maximum M/Z values through mz.min and mz.max arguments.
Usage:
BiodbConn$searchForMassSpectra(
mz.min = NULL,
mz.max = NULL,
mz = NULL,
mz.tol = NULL,
mz.tol.unit = c("plain”, "ppm"),
rt = NULL,
rt.unit = c("s", "min"),
rt.tol = NULL,
rt.tol.exp = NULL,
chrom.col.ids = NULL,
precursor = FALSE,
min.rel.int = 0,
ms.mode = NULL,
max.results = 0,
ms.level = 0,
include.ids = NULL
)
Arguments:
mz.min A vector of minimum M/Z values.
mz.max A vector of maximum M/Z values. Its length must be the same as mz.min.
mz A vector of M/Z values.
mz.tol The M/Z tolerance, whose unit is defined by mz.tol.unit.
mz.tol.unit The type of the M/Z tolerance. Set it to either to "ppm’ or ’plain’.

rt A vector of retention times to match. Used if input.df is not set. Unit is specified by rt.unit
parameter.
rt.unit The unit for submitted retention times. Either ’s’ or *min’.
rt.tol The plain tolerance (in seconds) for retention times: input.rt
* rt.tol <= database.rt <= input.rt + rt.tol.
rt.tol.exp A special exponent tolerance for retention times: input.rt
* input.rt ** rt.tol.exp <= database.rt <= input.rt + input.rt ** rt.tol.exp. This exponent is
applied on the RT value in seconds. If both rt.tol and rt.tol.exp are set, the inequality
expression becomes input.rt - rt.tol - input.rt ** rt.tol.exp <= database.rt <= input.rt +
rt.tol + input.rt ** rt.tol.exp.

BiodbConn 25

ch

pr
mi

ms
ma
ms

in

rom.col.ids IDs of chromatographic columns on which to match the retention time.

ecursor If set to TRUE, then restrict the search to precursor peaks.

n.rel.int The minimum relative intensity, in percentage (i.e.: float number between 0 and
100).

.mode The MS mode. Set it to either 'neg’ or "pos’.

x.results If set, it is used to limit the number of matches found for each M/Z value.

.level The MS level to which you want to restrict your search. O means that you want to
search in all levels.

clude.ids A list of IDs to which to restrict the final results. All IDs that are not in this list
will be excluded.

Returns: A character vector of spectra IDs.

Met

hod searchMsEntries(): DEPRECATED. Use searchForMassSpectra() instead.

Usage:

Bi

)

odbConn$searchMsEntries(
mz.min = NULL,

mz.max = NULL,

mz = NULL,

mz.tol = NULL,
mz.tol.unit = c("plain”, "ppm"),
rt = NULL,

rt.unit = c("s”, "min"),
rt.tol = NULL,
rt.tol.exp = NULL,
chrom.col.ids = NULL,
precursor = FALSE,
min.rel.int = 0,

ms.mode = NULL,
max.results = 0,
ms.level = @

Arguments:

mz.
mz.

mz

mz.
mz.

rt

rt.
rt.

rt.

min A vector of minimum M/Z values.

max A vector of maximum M/Z values. Its length must be the same as mz.min.
A vector of M/Z values.

tol The M/Z tolerance, whose unit is defined by mz.tol.unit.

tol.unit The type of the M/Z tolerance. Set it to either to "ppm’ or "plain’.

A vector of retention times to match. Used if input.df is not set. Unit is specified by rt.unit
parameter.

unit The unit for submitted retention times. Either ’s’ or 'min’.
tol The plain tolerance (in seconds) for retention times: input.rt

* rt.tol <= database.rt <= input.rt + rt.tol.
tol.exp A special exponent tolerance for retention times: input.rt

* input.rt ** rt.tol.exp <= database.rt <= input.rt + input.rt ** rt.tol.exp. This exponent is
applied on the RT value in seconds. If both rt.tol and rt.tol.exp are set, the inequality

26

BiodbConn

expression becomes input.rt - rt.tol - input.rt ** rt.tol.exp <= database.rt <= input.rt +
rt.tol + input.rt ** rt.tol.exp.
chrom.col.ids IDs of chromatographic columns on which to match the retention time.
precursor If set to TRUE, then restrict the search to precursor peaks.
min.rel.int The minimum relative intensity, in percentage (i.e.: float number between 0 and
100).
ms.mode The MS mode. Set it to either 'neg’ or "pos’.
max.results If set, it is used to limit the number of matches found for each M/Z value.

ms.level The MS level to which you want to restrict your search. 0 means that you want to
search in all levels.

Returns: A character vector of spectra IDs.

Method searchMsPeaks(): For each M/Z value, searches for matching MS spectra and returns
the matching peaks.

Usage:
BiodbConn$searchMsPeaks (
input.df = NULL,
mz = NULL,
mz.tol = NULL,
mz.tol.unit = c("plain”, "ppm"),
min.rel.int = 0,
ms.mode = NULL,
ms.level = 0,
max.results = 0,

chrom.col.ids = NULL,
rt = NULL,
rt.unit = c("s", "min"),

rt.tol = NULL,
rt.tol.exp = NULL,
precursor = FALSE,
precursor.rt.tol = NULL,
insert.input.values = TRUE,
prefix = NULL,
compute = TRUE,
fields = NULL,
fieldsLimit = 0,
input.df.colnames = c(mz = "mz", rt = "rt"),
match.rt = FALSE

)

Arguments:

input.df A data frame taken as input for searchMsPeaks(). It must contain a columns 'mz’,
and optionaly an ’rt’ column.

mz A vector of M/Z values to match. Used if input.df is not set.
mz.tol The M/Z tolerance, whose unit is defined by mz.tol.unit.
mz.tol.unit The type of the M/Z tolerance. Set it to either to "ppm’ or ’plain’.

BiodbConn 27

min.rel.int The minimum relative intensity, in percentage (i.e.: float number between 0 and
100).
ms.mode The MS mode. Set it to either 'neg’ or ’pos’.

ms.level The MS level to which you want to restrict your search. 0 means that you want to
search in all levels.

max.results If set, it is used to limit the number of matches found for each M/Z value.
chrom.col.ids IDs of chromatographic columns on which to match the retention time.
rt A vector of retention times to match. Used if input.df is not set. Unit is specified by rt.unit
parameter.
rt.unit The unit for submitted retention times. Either ’s’ or "min’.
rt.tol The plain tolerance (in seconds) for retention times: input.rt
* rt.tol <= database.rt <= input.rt + rt.tol.
rt.tol.exp A special exponent tolerance for retention times: input.rt
* input.rt ** rt.tol.exp <= database.rt <= input.rt + input.rt ** rt.tol.exp. This exponent is
applied on the RT value in seconds. If both rt.tol and rt.tol.exp are set, the inequality
expression becomes input.rt - rt.tol - input.rt ** rt.tol.exp <= database.rt <= input.rt +
rt.tol + input.rt ** rt.tol.exp.
precursor If set to TRUE, then restrict the search to precursor peaks.
precursor.rt.tol The RT tolerance used when matching the precursor.
insert.input.values Insert input values at the beginning of the result data frame.
prefix Add prefix on column names of result data frame.
compute If set to TRUE, use the computed values when converting found entries to data frame.

fields A character vector of field names to output. The data frame output will be restricted to
this list of fields.

fieldsLimit The maximum of values to output for fields with multiple values. Set it to O to
get all values.

input.df.colnames Names of the columns in the input data frame.
match.rt If set to TRUE, match also RT values.

Returns: A data frame with at least input MZ and RT columns, and annotation columns prefixed
with prefix if set. For each matching found a row is output. Thus if n matchings are found
for M/Z value x, then there will be n rows for x, each for a different match. The number of
matching found for each M/Z value is limited to max.results.

Method msmsSearch(): Searches MSMS spectra matching a template spectrum. The mz.tol
parameter is applied on the precursor search.

Usage:
BiodbConn$msmsSearch(
spectrum,
precursor.mz,
mz.tol,
mz.tol.unit = c("plain”, "ppm"),
ms.mode,
npmin = 2,
dist.fun = c("wcosine"”, "cosine"”, "pkernel”, "pbachtttarya"),
msms.mz.tol = 3,

28

BiodbConn

msms.mz.tol.min = 0.005,

max.results = @
)
Arguments:
spectrum A template spectrum to match inside the database.
precursor.mz The M/Z value of the precursor peak of the mass spectrum.
mz.tol The M/Z tolerance, whose unit is defined by mz.tol.unit.
mz.tol.unit The type of the M/Z tolerance. Set it to either to "ppm’ or ’plain’.
ms.mode The MS mode. Set it to either ‘neg’ or *pos’.
npmin The minimum number of peak to detect a match (2 is recommended).
dist.fun The distance function used to compute the distance betweem two mass spectra.
msms.mz.tol M/Z tolerance to apply while matching MSMS spectra. In PPM.
msms.mz.tol.min Minimum of the M/Z tolerance (plain unit). If the M/Z tolerance computed

with msms.mz. tol is lower than msms.mz. tol.min, then msms.mz. tol.min will be used.

max.results If set, it is used to limit the number of matches found for each M/Z value.
Returns: A data frame with columns id, score and peak.*. Each peak.* column corresponds
to a peak in the input spectrum, in the same order and gives the number of the peak that was
matched with it inside the matched spectrum whose ID is inside the id column.

Method collapseResultsDataFrame(): Collapse rows of a results data frame, by outputing a
data frame with only one row for each MZ/RT value.
Usage:
BiodbConn$collapseResultsDataFrame(
results.df,
mz.col = "mz",
rt.col = "rt",
sep = "|"
)
Arguments:
results.df Results data frame.
mz.col The name of the M/Z column in the results data frame.
rt.col The name of the RT column in the results data frame.
sep The separator used to concatenate values, when collapsing results data frame.

Returns: A data frame with rows collapsed.”

Method searchMzRange(): Find spectra in the given M/Z range. Returns a list of spectra IDs.

Usage:
BiodbConn$searchMzRange (
mz.min,
mz.max,
min.rel.int = 0,
ms.mode = NULL,
max.results = 0,
precursor = FALSE,
ms.level = 0

BiodbConn 29

Arguments:

mz.min A vector of minimum M/Z values.

mz.max A vector of maximum M/Z values. Its length must be the same as mz.min.

min.rel.int The minimum relative intensity, in percentage (i.e.: float number between 0 and
100).

ms.mode The MS mode. Set it to either 'neg’ or *pos’.

max.results If set, it is used to limit the number of matches found for each M/Z value.

precursor If set to TRUE, then restrict the search to precursor peaks.

ms.level The MS level to which you want to restrict your search. 0 means that you want to
search in all levels.

Returns: A character vector of spectra IDs.

Method searchMzTol(): Find spectra containg a peak around the given M/Z value. Returns a
character vector of spectra IDs.

Usage:
BiodbConn$searchMzTol (
mz,
mz.tol,
mz.tol.unit = "plain”,

min.rel.int = 0,
ms.mode = NULL,
max.results = 0,
precursor = FALSE,
ms.level = @

)

Arguments:

mz A vector of M/Z values.

mz.tol The M/Z tolerance, whose unit is defined by mz.tol.unit.

mz.tol.unit The type of the M/Z tolerance. Set it to either to "ppm’ or ’plain’.

min.rel.int The minimum relative intensity, in percentage (i.e.: float number between 0 and
100).

ms.mode The MS mode. Set it to either 'neg’ or ’pos’.

max.results If set, it is used to limit the number of matches found for each M/Z value.

precursor If set to TRUE, then restrict the search to precursor peaks.

ms.level The MS level to which you want to restrict your search. 0 means that you want to
search in all levels.

Returns: A character vector of spectra IDs.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BiodbConn$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

30 BiodbConnBase

See Also

Super class BiodbConnBase, and BiodbFactory class.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a compound CSV file database
chebi.tsv <- system.file("extdata”, "chebi_extract.tsv"”, package='biodb')

Create a connector
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi.tsv)

Get 10 identifiers from the database:
ids <- conn$getEntryIds(10)

Get number of entries contained in the database:
n <- conn$getNbEntries()

Terminate instance.

mybiodb$terminate()
BiodbConnBase Base class of BiodbConn for encapsulating all needed information for
database access.
Description

Base class of BiodbConn for encapsulating all needed information for database access.

Base class of BiodbConn for encapsulating all needed information for database access.

Details

This is the base class for BiodbConn and BiodbDbInfo. When defining a new connector class, your
class must not inherit from BiodbBaseConn but at least from BiodbConn (or BiodbRemoteConn or
any subclass of BiodbConn). Its main purpose is to store property values. Those values are initial-
ized from YAML files. The default definition file is located inside the package in "inst/definitions.yml"
and is loaded at Biodb startup. However you can define your own files and load them using the
BiodbMain: :loadDefinitions() method.

Arguments to the contructor are:

other: Another object inheriting from BiodbBaseConn, and from which property values will be
copied.

non

db.class: The class of the database ("mass.csv.file"”, "comp.csv.file", ...).

properties: Some properties to set at initialization.

BiodbConnBase 31

Methods

Public methods:

* BiodbConnBase$new()

¢ BiodbConnBase$print ()

* BiodbConnBase$hasProp()

* BiodbConnBase$getPropSlots()

* BiodbConnBase$hasPropSlot()

* BiodbConnBase$propExists()

* BiodbConnBase$isSlotProp()

* BiodbConnBase$getPropValSlot()

* BiodbConnBase$updatePropertiesDefinition()
* BiodbConnBase$getEntryFileExt()

¢ BiodbConnBase$getDbClass()

¢ BiodbConnBase$getConnClassName()

¢ BiodbConnBase$getConnClass()

¢ BiodbConnBase$getEntryClassName()
* BiodbConnBase$getEntryClass()

* BiodbConnBase$getEntryIdField()

* BiodbConnBase$getPropertyValue()

* BiodbConnBase$setPropertyValue()

* BiodbConnBase$setPropValSlot()

* BiodbConnBase$getBaseUrl()

* BiodbConnBase$setBaseUrl()

* BiodbConnBase$getWsUrl()

* BiodbConnBase$setWsUrl()

* BiodbConnBase$getToken()

* BiodbConnBase$setToken()

* BiodbConnBase$getName()

* BiodbConnBase$getEntryContentType()
¢ BiodbConnBase$getSchedulerNParam()
* BiodbConnBase$setSchedulerNParam()
¢ BiodbConnBase$getSchedulerTParam()
¢ BiodbConnBase$setSchedulerTParam()
e BiodbConnBase$getUrls()

¢ BiodbConnBase$getUrl()

¢ BiodbConnBase$setUrl()

* BiodbConnBase$getXmlNs ()

¢ BiodbConnBase$clone()

Method new(): New instance initializer. Connector objects must not be created directly. Instead,
you create new connector instances through the BiodbFactory instance.

Usage:

32

BiodbConnBase

BiodbConnBase$new(other = NULL, db.class = NULL, properties = NULL, cfg = NULL)

Arguments:

other Another BiodbConnBase instance as a model from which to copy property values.
db.class The class of the connector (i.e.: "mass.csv.file").

properties Some new values for the properties.

cfg The BiodbConfig instance from which will be taken some property values.

Returns: Nothing.

Method print(): Prints a description of this connector.

Usage:
BiodbConnBase$print()

Returns: Nothing.

Method hasProp(): Tests if this connector has a property.

Usage:
BiodbConnBase$hasProp(name)

Arguments:

name The name of the property to check.

Returns: Returns true if the property name exists.

Method getPropSlots(): Gets the slot fields of a property.

Usage:
BiodbConnBase$getPropSlots(name)

Arguments:
name The name of a property.

Returns: Returns a character vector containing all slot names defined.

Method hasPropSlot(): Tests if a slot property has a specific slot.
Usage:
BiodbConnBase$hasPropSlot(name, slot)
Arguments:

name The name of a property.
slot The slot name to check.

Returns: Returns TRUE if the property name exists and has the slot slot defined, and FALSE
otherwise."
Method propExists(): Checks if property exists.
Usage:
BiodbConnBase$propExists(name)
Arguments:

name The name of a property.

BiodbConnBase 33

Returns: Returns TRUE if the property name exists, and FALSE otherwise.

Method isSlotProp(): Tests if a property is a slot property.

Usage:
BiodbConnBase$isSlotProp(name)

Arguments:

name The name of a property.

Returns: Returns TRUE if the property is a slot propert, FALSE otherwise.

Method getPropValSlot(): Retrieve the value of a slot of a property.

Usage:
BiodbConnBase$getPropValSlot(name, slot, hook = TRUE)

Arguments:
name The name of a property.
slot The slot name inside the property.

hook If set to TRUE, enables the calls to hook methods associated with the property. Otherwise,
all calls to hook methods are disabled.

Returns: The value of the slot slot of the property name.

Method updatePropertiesDefinition(): Update the definition of properties.

Usage:
BiodbConnBase$updatePropertiesDefinition(def)

Arguments:
def A named list of property definitions. The names of the list must be the property names.

Returns: Nothing.

Method getEntryFileExt(): Returns the entry file extension used by this connector.

Usage:
BiodbConnBase$getEntryFileExt ()

Returns: A character value containing the file extension.

Method getDbClass(): Gets the Biodb name of the database associated with this connector.

Usage:
BiodbConnBase$getDbClass()

Returns: A character value containing the Biodb database name.

Method getConnClassName(): Gets the name of the associated connector OOP class.

Usage:
BiodbConnBase$getConnClassName()

Returns: Returns the connector OOP class name.

Method getConnClass(): Gets the associated connector OOP class.

34

BiodbConnBase

Usage:
BiodbConnBase$getConnClass()

Returns: Returns the connector OOP class.

Method getEntryClassName(): Gets the name of the associated entry class.

Usage:
BiodbConnBase$getEntryClassName()

Returns: Returns the name of the associated entry class.

Method getEntryClass(): Gets the associated entry class.

Usage:
BiodbConnBase$getEntryClass()

Returns: Returns the associated entry class.

Method getEntryIdField(): Gets the name of the corresponding database ID field in entries.

Usage:
BiodbConnBase$getEntryIdField()

Returns: Returns the name of the database ID field.

Method getPropertyValue(): Gets a property value.
Usage:
BiodbConnBase$getPropertyValue(name, hook = TRUE)
Arguments:

name The name of the property.
hook If set to TRUE, enables the calls to hook methods associated with the property. Otherwise,
all calls to hook methods are disabled.

Returns: The value of the property.

Method setPropertyValue(): Sets the value of a property.
Usage:
BiodbConnBase$setPropertyValue(name, value)
Arguments:
name The name of the property.
value The new value to set the property to.

Returns: Nothing.

Method setPropValSlot(): Set the value of the slot of a property.
Usage:
BiodbConnBase$setPropValSlot(name, slot, value, hook = TRUE)
Arguments:

name The name of the property.
slot The name of the property’s slot.

BiodbConnBase 35

value The new value to set the property’s slot to.
hook If set to TRUE, enables the calls to hook methods associated with the property. Otherwise,
all calls to hook methods are disabled.

Returns: Nothing.

Method getBaseUrl(): Returns the base URL.

Usage:
BiodbConnBase$getBaseUrl()

Returns: THe baae URL.

Method setBaseUrl(): Sets the base URL.

Usage:
BiodbConnBase$setBaseUrl(url)

Arguments:

url A URL as a character value.

Returns: Nothing.

Method getWsUrl(): Returns the web sevices URL.
Usage:
BiodbConnBase$getWsUrl ()

Method setWsUrl(): Sets the web sevices URL.

Usage:
BiodbConnBase$setWsUrl(ws.url)

Arguments:
ws.url A URL as a character value.

Returns: Nothing.

Method getToken(): Returns the access token.
Usage:
BiodbConnBase$getToken()

Method setToken(): Sets the access token.

Usage:
BiodbConnBase$setToken(token)

Arguments:
token The token to use to access the database, as a character value.

Returns: Nothing.

Method getName(): Returns the full database name.

Usage:
BiodbConnBase$getName ()

36

Method getEntryContentType(): Returns the entry content type.
Usage:
BiodbConnBase$getEntryContentType()
Method getSchedulerNParam(): Returns the N parameter for the scheduler.
Usage:
BiodbConnBase$getSchedulerNParam()
Method setSchedulerNParam(): Sets the N parameter for the scheduler.

Usage:
BiodbConnBase$setSchedulerNParam(n)

Arguments:
n The N parameter as a whole number.

Returns: Nothing.

Method getSchedulerTParam(): Returns the T parameter for the scheduler.
Usage:
BiodbConnBase$getSchedulerTParam()

Method setSchedulerTParam(): Sets the T parameter for the scheduler.

Usage:
BiodbConnBase$setSchedulerTParam(t)

Arguments:
t The T parameter as a whole number.

Returns: Nothing.

Method getUrls(): Returns the URLs.
Usage:
BiodbConnBase$getUrls()

Method getUrl(): Returns a URL.

Usage:
BiodbConnBase$getUrl (name)

Arguments:
name The name of the URL to retrieve.

Returns: The URL as a character value.

Method setUrl(): Setsa URL.
Usage:
BiodbConnBase$setUrl(name, url)
Arguments:
name The name of the URL to set.
url The URL value.

BiodbConnBase

BiodbCsvEntry 37

Returns: Nothing.

Method getXmlNs(): Returns the XML namespace.
Usage:
BiodbConnBase$getXmlNs ()
Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbConnBase$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Sub-classes BiodbDbInfo and BiodbConn.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Accessing BiodbConnBase methods when using a BiodbDbInfo object
dbinf <- mybiodb$getDbsInfo()$get('comp.csv.file')

Test if a property exists
dbinf$hasProp('name')

Get a property value
dbinf$getPropertyValue('name')

Get a property value slot
dbinf$getPropValSlot('urls', 'base.url')

Terminate instance.
mybiodb$terminate()

BiodbCsvEntry Entry class for content in CSV format.

Description

Entry class for content in CSV format.

Entry class for content in CSV format.

Details

This is an abstract class for handling database entries whose content is in CSV format.

38 BiodbCsvEntry

Super class

biodb: :BiodbEntry -> BiodbCsvEntry

Methods

Public methods:

e BiodbCsvEntry$new()
* BiodbCsvEntry$clone()

Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
BiodbCsvEntry$new(sep = ","”, na.strings = "NA", quotes = "", ...)

Arguments:

sep The separator to use in CSV files.

na.strings The strings to recognize as NA values. This is a character vector.
quotes The characters to recognize as quotes. This is a single character value.

. The remaining arguments will be passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbCsvEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry”, inherit=biodb::BiodbCsvEntry)

BiodbDbInfo 39

BiodbDbInfo A class for describing the characteristics of a database.

Description

This class is used by BiodbDbsInfo for storing database characteristics, and returning them through
the get () method. This class inherits from BiodbConnBase.

Super class

biodb: :BiodbConnBase -> BiodbDbInfo

Methods

Public methods:
¢ BiodbDbInfo$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbDbInfo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Parent class BiodbDbsInfo and super class BiodbConnBase.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a BiodbDbInfo object for a database:
mybiodb$getDbsInfo()$get('comp.csv.file')

Terminate instance.
mybiodb$terminate()

40 BiodbDbsInfo

BiodbDbsInfo A class for describing the available databases.

Description

A class for describing the available databases.

A class for describing the available databases.

Details

The unique instance of this class is handle by the BiodbMain class and accessed through the
getDbsInfo() method.

Methods

Public methods:
e BiodbDbsInfo$new()
e BiodbDbsInfo$define()
* BiodbDbsInfo$getIds()
* BiodbDbsInfo$isDefined()
e BiodbDbsInfo$checkIsDefined()
¢ BiodbDbsInfo$get ()
* BiodbDbsInfo$getAll()
e BiodbDbsInfo$print()
¢ BiodbDbsInfo$clone()

Method new(): New instance initializer. The class must not be instantiated directly. Instead, ac-
cess the BiodbDbslInfo instance through the BiodbMain instance using the getDbsInfo() method.

Usage:
BiodbDbsInfo$new(cfg)

Arguments:

cfg The BiodbConfig instance.

Returns: Nothing.
Method define(): Define databases from a structured object, normally loaded from a YAML
file.

Usage:
BiodbDbsInfo$define(def, package = "biodb")

Arguments:
def A named list of database definitions. The names of the list will be the IDs of the databases.
package The package to which belong the new definitions.

Returns: Nothing.

BiodbDbslInfo 41

Method getIds(): Gets the database IDs.

Usage:
BiodbDbsInfo$getIds()
Returns: A character vector containing all the IDs of the defined databases.

Method isDefined(): Tests if a database is defined.

Usage:
BiodbDbsInfo$isDefined(db.id)

Arguments:
db.id A database ID, as a character string.
Returns: TRUE if the specified id corresponds to a defined database, FALSE otherwise.

Method checkIsDefined(): Checks if a database is defined. Throws an error if the specified id
does not correspond to a defined database.

Usage:
BiodbDbsInfo$checkIsDefined(db.id)

Arguments:
db.id A character vector of database IDs.

Returns: Nothing.

Method get(): Gets information on a database.

Usage:

BiodbDbsInfo$get(db.id = NULL, drop = TRUE)

Arguments:

db.id Database IDs, as a character vector. If set to NULL, informations on all databases will
be returned.

drop If TRUE and only one database ID has been submitted, returns a single BiodbDbInfo
instance instead of a list.
Returns: A list of BiodbDblnfo instances corresponding to the specified database IDs.

Method getAl1(): Gets informations on all databases.

Usage:
BiodbDbsInfo$getAll()
Returns: A list of all BiodbDblnfo instances."

Method print(): Prints informations about this instance, listing also all databases defined.

Usage:
BiodbDbsInfo$print()

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:

BiodbDbsInfo$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

42 BiodbEntry

See Also

BiodbMain and child class BiodbDbInfo.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Getting the entry content type of a database:
db.inf <- mybiodb$getDbsInfo()$get('comp.csv.file')
cont.type <- db.inf$getPropertyValue('entry.content.type')

Terminate instance.
mybiodb$terminate()

BiodbEntry The mother abstract class of all database entry classes.

Description

The mother abstract class of all database entry classes.

The mother abstract class of all database entry classes.

Details

An entry is an element of a database, identifiable by its accession number. Each contains a list
of fields defined by a name and a value. The details of all fields that can be set into an en-
try are defined inside the class BiodbEntryFields. From this class are derived other abstract
classes for different types of entry contents: BiodbTxtEntry, BiodbXmlEntry, BiodbCsvEntry,
BiodbJsonEntry and BiodbHtmlEntry. Then concrete classes are derived for each database:
CompCsvEntry, MassCsvEntry, etc. For biodb users, there is no need to know this hierarchy; the
knowledge of this class and its methods is sufficient.

Methods

Public methods:

* BiodbEntry$new()

e BiodbEntry$parentIsAConnector ()
e BiodbEntry$getParent()

* BiodbEntry$getBiodb()

* BiodbEntry$clonelInstance()

* BiodbEntry$getId()

e BiodbEntry$isNew()

* BiodbEntry$getDbClass()

* BiodbEntry$setFieldValue()

BiodbEntry 43

* BiodbEntry$appendFieldValue()

* BiodbEntry$getFieldNames()

* BiodbEntry$hasField()

e BiodbEntry$removeField()

* BiodbEntry$getFieldValue()

* BiodbEntry$getFieldsByType()

e BiodbEntry$getFieldsAsDataframe()
* BiodbEntry$getFieldsAsJson()

* BiodbEntry$parseContent()

* BiodbEntry$computeFields()

* BiodbEntry$print()

e BiodbEntry$getName()

* BiodbEntry$makesRefToEntry()

* BiodbEntry$getField()

* BiodbEntry$setField()

* BiodbEntry$getFieldClass()

e BiodbEntry$getFieldDef ()

* BiodbEntry$getFieldCardinality()
* BiodbEntry$fieldHasBasicClass()
e BiodbEntry$clone()

Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:

BiodbEntry$new(parent)

Arguments:

parent A valid BiodbConn instance.

Returns: Nothing.

Method parentIsAConnector(): Tests if the parent of this entry is a connector instance.
Usage:
BiodbEntry$parentIsAConnector()
Returns: TRUE if this entry belongs to a connector, FALSE otherwise.
Method getParent(): Returns the parent instance (A BiodbConn or BiodbFactory object) to
which this object is attached.

Usage:
BiodbEntry$getParent()

Returns: A BiodbConn instance or a BiodbFactory object.

Method getBiodb(): Returns the biodb main class instance to which this object is attached.

Usage:
BiodbEntry$getBiodb()

BiodbEntry

Returns: The main biodb instance.

Method cloneInstance(): Clones this entry.

Usage:
BiodbEntry$cloneInstance(db.class = NULL)

Arguments:

db.class The database class (the Biodb database ID) of the clone. By setting this parameter,
you can specify a different database for the clone, so you may clone an entry into another
database if you wish. By default the class of the clone will be the same as the original entry.

Returns: The clone, as a new BiodbEntry instance.

Method getId(): Gets the entry ID.

Usage:
BiodbEntry$getId()

Returns: the entry ID, which is the value if the accession field.

Method isNew(): Tests if this entry is new.

Usage:
BiodbEntry$isNew()

Returns: TRUE if this entry was newly created, FALSE otherwise.

Method getDbClass(): Gets the ID of the database associated with this entry.
Usage:
BiodbEntry$getDbClass()

Returns: The name of the database class associated with this entry.

Method setFieldValue(): Sets the value of a field. If the field is not already set for this entry,
then the field will be created. See BiodbEntryFields for a list of possible fields in biodb.

Usage:
BiodbEntry$setFieldValue(field, value)
Arguments:

field The name of a field.
value The value to set.

Returns: Nothing.
Method appendFieldValue(): Appends a value to an existing field. If the field is not defined

for this entry, then the field will be created and set to this value. Only fields with a cardinality
greater than one can accept multiple values.

Usage:
BiodbEntry$appendFieldValue(field, value)

Arguments:
field The name of a field.
value The value to append.

BiodbEntry 45

Returns: Nothing.

Method getFieldNames(): Gets a list of all fields defined for this entry.

Usage:
BiodbEntry$getFieldNames()

Returns: A character vector containing all field names defined in this entry.

Method hasField(): Tests if a field is defined in this entry.

Usage:
BiodbEntry$hasField(field)

Arguments:
field The name of a field.

Returns: TRUE if the specified field is defined in this entry, FALSE otherwise.

Method removeField(): Removes the specified field from this entry.

Usage:
BiodbEntry$removeField(field)

Arguments:
field The name of a field.

Returns: Nothing.

Method getFieldValue(): Gets the value of the specified field.

Usage:
BiodbEntry$getFieldValue(
field,
compute = TRUE,
flatten = FALSE,
last = FALSE,
limit = o,
withNa = TRUE,
duplicatedvValues = TRUE

)

Arguments:

field The name of a field.

compute If set to TRUE and a field is not defined, try to compute it using internal defined
computing rules. If set to FALSE, let the field undefined.

flatten If set to TRUE and a field’s value is a vector of more than one element, then export
the field’s value as a single string composed of the field’s value concatenated and separated
by the character defined in the *multival.field.sep’ config key. If set to FALSE or the field
contains only one value, changes nothing.

last If set to TRUE and a field’s value is a vector of more than one element, then export only
the last value. If set to FALSE, changes nothing.

limit The maximum number of values to get in case the field contains more than one value.

withNa If set to TRUE, keep NA values. Otherwise filter out NAs values in vectors.

BiodbEntry

duplicatedValues If set to TRUE, keeps duplicated values.
Returns: The value of the field.

Method getFieldsByType(): Gets the fields of this entry that have the specified type.

Usage:
BiodbEntry$getFieldsByType(type)

Arguments:

type The type of fields to retrieve.

Returns: A character vector containing the field names.

Method getFieldsAsDataframe(): Converts this entry into a data frame.

Usage:

BiodbEntry$getFieldsAsDataframe(
only.atomic = TRUE,
compute = TRUE,
fields = NULL,
fields.type = NULL,
flatten = TRUE,
limit = 0,
only.card.one = FALSE,
own.id = TRUE,
duplicate.rows = TRUE,
sort = FALSE,
virtualFields = FALSE

)

Arguments:
only.atomic If set to TRUE, only export field’s values that are atomic

compute If set to TRUE and a field is not defined, try to compute it using internal defined
computing rules. If set to FALSE, let the field undefined.

fields Set to character vector of field names in order to restrict execution to this set of fields.
fields.type If set, output all the fields of the specified type.

flatten If set to TRUE and a field’s value is a vector of more than one element, then export
the field’s value as a single string composed of the field’s value concatenated and separated
by the character defined in the *multival.field.sep’ config key. If set to FALSE or the field
contains only one value, changes nothing.

limit The maximum number of field values to write into new columns. Used for fields that
can contain more than one value.

only.card.one If set to TRUE, only fields with a cardinality of one will be extracted.

own.id If set to TRUE includes the database id field named <database_name>. id whose val-
ues are the same as the accession field.

duplicate.rows If set to TRUE and merging field values with cardinality greater than one,
values will be duplicated.

sort If set to TRUE sort the order of columns alphabetically, otherwise do not sort.
virtualFields If set to TRUE includes also virtual fields, otherwise excludes them.

BiodbEntry 47

(i.e. of type vector).

Returns: A data frame containg the values of the fields.

Method getFieldsAsJson(): Converts this entry into a JSON string.

Usage:
BiodbEntry$getFieldsAsJson(compute = TRUE)

Arguments:
compute If set to TRUE and a field is not defined, try to compute it using internal defined
computing rules. If set to FALSE, let the field undefined.

Returns: A JSON object from jsonlite package.

Method parseContent(): Parses content string and set values accordingly for this entry’s fields.
This method is called automatically and should be run directly by users.

Usage:
BiodbEntry$parseContent(content)

Arguments:
content A character string containing definition for an entry and
obtained from a database. The format can be CSV, HTML, JSON, XML, or just text.

Returns: Nothing.

Method computeFields(): Computes fields. Look at all missing fields, and try to compute
them using references to other databases, if a rule exists.

Usage:
BiodbEntry$computeFields(fields = NULL)

Arguments:
fields A list of fields to review for computing. By default all fields will be reviewed.

Returns: TRUE if at least one field was computed successfully, FALSE otherwise.

Method print(): Displays short information about this instance.

Usage:
BiodbEntry$print()

Returns: Nothing.

Method getName(): Gets a short text describing this entry instance.

Usage:
BiodbEntry$getName ()

Returns: A character value concatenating the connector name with the entry accession.

Method makesRefToEntry(): Tests if this entry makes reference to another entry.

Usage:
BiodbEntry$makesRefToEntry(db, oid, recurse = FALSE)

Arguments:

48

db Another database connector.
oid A entry ID from database db.

BiodbEntry

recurse If set to TRUE, the algorithm will follow all references to entries from other databases,

to see if it can establish an indirect link to oid.

Returns: TRUE if this entry makes reference to the entry oid from database db, FALSE other-

wise.

Method getField(): DEPRECATED. Gets the value of a field.

Usage:
BiodbEntry$getField(field)

Arguments:
field The name of the field.

Returns: The value of the field.

Method setField(): DEPRECATED. Sets the value of a field.

Usage:
BiodbEntry$setField(field, value)

Arguments:
field The name of the field.
value The new value of the field.

Returns: Nothing.

Method getFieldClass(): Gets the class of a field.

Usage:
BiodbEntry$getFieldClass(field)

Arguments:
field The name of the field.

Returns: The class of the field.

Method getFieldDef (): Gets the definition of an entry field.

Usage:
BiodbEntry$getFieldDef (field)

Arguments:

field The name of the field.

Returns: An object BiodbEntryField which defines the field.

Method getFieldCardinality(): Gets the cardinality of the field.

Usage:
BiodbEntry$getFieldCardinality(field)

Arguments:
field The name of the field.

BiodbEntry

Returns: The cardinality of the field.

Method fieldHasBasicClass(): DEPRECATED. Use BiodbEntryField::isVector() instead.
Usage:
BiodbEntry$fieldHasBasicClass(field)

Arguments:
field The name of the field.

Returns: TRUE if the field as a basic type (logical, numeric, character, ...).

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BiodbFactory, BiodbConn, BiodbEntryFields.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a compound CSV file database
chebi.tsv <- system.file("extdata”, "chebi_extract.tsv”, package='biodb')

Get the connector of a compound database
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi.tsv)

Get an entry:
entry <- conn$getEntry(conn$getEntryIds(1))

Get all defined fields:
entry$getFieldNames()

Get a field value:
accession <- entry$getFieldValue('accession')

Test if a field is defined:

if (entry$hasField('name'))
print(paste("The entry's name is
"', osep=""))

”

, entry$getFieldValue('name'),
Export an entry as a data frame:
df <- entry$getFieldsAsDataframe()

You can set or reset a field's value:
entry$setFieldValue('mass', 1893.1883)

49

50 BiodbEntryField

Terminate instance.
mybiodb$terminate()

BiodbEntryField A class for describing an entry field.

Description

A class for describing an entry field.

A class for describing an entry field.

Details

This class is used by BiodbEntryFields for storing field characteristics, and returning them through
the get () method. The constructor is not meant to be used, but for development purposes the con-
structor’s parameters are nevertheless described in the Fields section.

The constructor accepts the following arguments:
name: The name of the field.
alias: A character vector containing zero or more aliases for the field.

non

type: A type describing the field. One of: "mass", "name" or "id". Optional.

class: The class of the field. One of: "character”, "integer", "double", "logical", "object", "data.frame".
card: The cardinality of the field: either "1" or "*".

forbids.duplicates: If set to TRUE, the field forbids duplicated values.

description: A description of the field.

allowed.values: The values authorized for the field.

lower.case: Set to TRUE if you want all values set to the field to be forced to lower case.
case.insensitive: Set to TRUE of you want the field to ignore case when checking a value.
computable.from: The Biodb ID of a database, from which this field can be computed.

virtual: If set to TRUE, the field is computed from other fields, and thus cannot be modified.

virtual.group.by.type: For a virtual field of class data.frame, this indicates to gather all fields of the
specified type to build a data frame.

Methods

Public methods:
* BiodbEntryField$new()
¢ BiodbEntryField$getName ()
e BiodbEntryField$getType()
e BiodbEntryField$isOfType()
* BiodbEntryField$getDescription()

BiodbEntryField 51

* BiodbEntryField$hasAliases()

* BiodbEntryField$getAliases()

¢ BiodbEntryField$addAlias()

* BiodbEntryField$removeAlias()

* BiodbEntryField$getAllNames()

e BiodbEntryField$isComputable()

* BiodbEntryField$getComputableFrom()
* BiodbEntryField$getDataFrameGroup()
e BiodbEntryField$isComputableFrom()
* BiodbEntryField$addComputableFrom()
* BiodbEntryField$removeComputableFrom()
e BiodbEntryField$correctValue()

* BiodbEntryField$isEnumerate()

* BiodbEntryField$isVirtual()

e BiodbEntryField$getVirtualGroupByType()
* BiodbEntryField$getAllowedValues()
* BiodbEntryField$addAllowedValue()

e BiodbEntryField$checkValue()

* BiodbEntryField$hasCardOne()

* BiodbEntryField$hasCardMany ()

e BiodbEntryField$forbidsDuplicates()
* BiodbEntryField$isCaselnsensitive()
* BiodbEntryField$getClass()

e BiodbEntryField$isObject()

* BiodbEntryField$isDataFrame()

* BiodbEntryField$isAtomic()

e BiodbEntryField$isVector()

* BiodbEntryField$equals()

* BiodbEntryField$updateWithValuesFrom()
e BiodbEntryField$print()

* BiodbEntryField$getCardinality()

e BiodbEntryField$check()

e BiodbEntryField$clone()

Method new(): New instance initializer. This class must not be instantiated directly. Instead,
you access the instances of this class through the BiodbEntryFields instance that you get from the
BiodbMain instance.

Usage:
BiodbEntryField$new(
parent,
name,
alias = NA_character_,
type = NA_character_,

52 BiodbEntryField

class = c("character”, "integer”, "double", "logical”, "object”, "data.frame"),
card = c("one", "many"),
forbids.duplicates = FALSE,
description = NA_character_,
allowed.values = NULL,
lower.case = FALSE,
case.insensitive = FALSE,
computable.from = NULL,
virtual = FALSE,
virtual.group.by.type = NULL,
dataFrameGroup = NA_character_
)
Arguments:
parent The BiodbEntryFields parent instance.
name The field name.
alias The field aliases as a character vector.
type The field type.
class The field class.
card The field cardinality.
forbids.duplicates Setto TRUE to forbid duplicated values.
description The field description.
allowed.values Restrict possible values to a set of allowed values.
lower.case All values will be converted to lower case.
case.insensitive Comparison will be made case insensitive for this field.

computable.from A list of databases from which to compute automatically the value of this
field.

virtual Setto TRUE if this field is virtual.

virtual.group.by.type In case of a virtual field, set the type of fields to group together into
a data frame.

dataFrameGroup The data frame group.

Returns: Nothing.

Method getName(): Gets the name.

Usage:
BiodbEntryField$getName ()

Returns: The name of this field.

Method getType(): Gets field’s type.

Usage:
BiodbEntryField$getType()

Returns: The type of this field.

Method isOfType(): Tests if this field is of the specified type.
Usage:

BiodbEntryField 53

BiodbEntryField$isOfType(type)

Arguments:

type The type.
Returns: TRUE if this field is of the specified type, FALSE otherwise.

Method getDescription(): Get field’s description.

Usage:
BiodbEntryField$getDescription()

Returns: The description of this field.

Method hasAliases(): Tests if this field has aliases.

Usage:
BiodbEntryField$hasAliases()

Returns: TRUE if this entry field defines aliases, FALSE otherwise.

Method getAliases(): Get aliases.

Usage:
BiodbEntryField$getAliases()

Returns: The list of aliases if some are defined, otherwise returns NULL."

Method addAlias(): Adds an alias to the list of aliases.

Usage:
BiodbEntryField$addAlias(alias)

Arguments:

alias The name of a valid alias.

Returns: Nothing.

Method removeAlias(): Removes an alias from the list of aliases.

Usage:
BiodbEntryField$removeAlias(alias)

Arguments:

alias The name of a valid alias.

Returns: Nothing.

Method getAllNames(): Gets all names.

Usage:
BiodbEntryField$getAl1lNames()

Returns: The list of all names (main name and aliases).

Method isComputable(): Tests if this field is computable from another field or another database.

Usage:
BiodbEntryField$isComputable()

54

BiodbEntryField

Returns: TRUE if the field is computable, FALSE otherwise.
Method getComputableFrom(): Get the list of connectors that can be used to compute this
field.

Usage:
BiodbEntryField$getComputableFrom()

Returns: A list of list objects. Each list object contains the name of the database from which
the field is computable.
Method getDataFrameGroup(): Gets the defined data frame group, if any.

Usage:
BiodbEntryField$getDataFrameGroup()

Returns: The data frame group, as a character value.
Method isComputableFrom(): Gets the ID of the database from which this field can be com-
puted.

Usage:
BiodbEntryField$isComputableFrom()

Returns: The list of databases where to find this field’s value.

Method addComputableFrom(): Adds a directive from the list of computableFrom.

Usage:
BiodbEntryField$addComputableFrom(directive)

Arguments:
directive A valid \"computable from\" directive.

Returns: Nothing.

Method removeComputableFrom(): Removes a directive from the list of computableFrom.

Usage:
BiodbEntryField$removeComputableFrom(directive)

Arguments:
directive A valid \"computable from\" directive.

Returns: Nothing.

Method correctValue(): Corrects a value so it is compatible with this field.

Usage:
BiodbEntryField$correctValue(value)

Arguments:

value A value.

Returns: The corrected value.

Method isEnumerate(): Tests if this field is an enumerate type (i.e.: it defines allowed values).

Usage:

BiodbEntryField 55

BiodbEntryField$isEnumerate()
Returns: TRUE if this field defines some allowed values, FALSE otherwise.

Method isVirtual(): Tests if this field is a virtual field.

Usage:
BiodbEntryField$isVirtual()

Returns: TRUE if this field is virtual, FALSE otherwise.
Method getVirtualGroupByType(): Gets type for grouping field values when building a vir-
tual data frame.

Usage:
BiodbEntryField$getVirtualGroupByType()

Returns: The type, as a character value.

Method getAllowedValues(): Gets allowed values.

Usage:
BiodbEntryField$getAllowedValues(value = NULL)

Arguments:
value If this parameter is set to particular allowed values, then the method returns a list of
synonyms for this value (if any).

Returns: A character vector containing all allowed values.
Method addAllowedValue(): Adds an allowed value, as a synonym to already an existing
value. Note that not all enumerate fields accept synonyms.

Usage:
BiodbEntryField$addAllowedValue(key, value)

Arguments:
key The key associated with the value (i.e.: the key is the main name of an allowed value).

value The new value to add.

Returns: Nothing.

Method checkValue(): Checks if a value is correct. Fails if value is incorrect.

Usage:
BiodbEntryField$checkValue(value)

Arguments:
value The value to check.

Returns: Nothing.

Method hasCardOne(): Tests if this field has a cardinality of one.

Usage:
BiodbEntryField$hasCardOne()

Returns: TRUE if the cardinality of this field is one, FALSE otherwise.

56 BiodbEntryField

Method hasCardMany(): Tests if this field has a cardinality greater than one.
Usage:
BiodbEntryField$hasCardMany ()

Returns: TRUE if the cardinality of this field is many, FALSE otherwise.

Method forbidsDuplicates(): Tests if this field forbids duplicates.

Usage:
BiodbEntryField$forbidsDuplicates()

Returns: TRUE fif this field forbids duplicated values, FALSE otherwise.

Method isCaselInsensitive(): Tests if this field is case sensitive.
Usage:
BiodbEntryField$isCaselnsensitive()

Returns: TRUE if this field is case insensitive, FALSE otherwise.

Method getClass(): Gets the class of this field’s value.

Usage:
BiodbEntryField$getClass()

Returns: class) of this field.

Method isObject(): Tests if this field’s type is a class.

Usage:
BiodbEntryField$isObject()

Returns: TRUE if field’s type is a class, FALSE otherwise.

Method isDataFrame(): Tests if this field’s type is data. frame.

Usage:
BiodbEntryField$isDataFrame()

Returns: TRUE if field’s type is data frame, FALSE otherwise."

Method isAtomic(): Tests if this field’s type is an atomic type.
Usage:
BiodbEntryField$isAtomic()

Returns: character, integer, double or logical), FALSE otherwise.

Method isVector(): Tests if this field’s type is a basic vector type.

Usage:
BiodbEntryField$isVector()

Returns: character, integer, double or logical), FALSE otherwise.

Method equals(): Compares this instance with another, and tests if they are equal.
Usage:
BiodbEntryField$equals(other, fail = FALSE)

BiodbEntryField 57

Arguments:
other Another BiodbEntryField instance.
fail If set to TRUE, then throws error instead of returning FALSE.

Returns: TRUE if they are equal, FALSE otherwise.
Method updateWithValuesFrom(): Updates fields using values from other instance. The
updated fields

Usage:
BiodbEntryField$updateWithValuesFrom(other)

Arguments:
other Another BiodbEntryField instance.

are ’alias’ and ’computable.from’. No values will be removed from those vectors. The new
values will only be appended. This allows to extend an existing field inside a new connector
definition.

Returns: Nothing.

Method print(): Print informations about this entry.

Usage:
BiodbEntryField$print()

Returns: Nothing.

Method getCardinality(): Gets the field’s cardinality.

Usage:
BiodbEntryField$getCardinality()

Returns: The cardinality: "one" or "many".

Method check(): Checks if essential values are defined.

Usage:
BiodbEntryField$check()

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbEntryField$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Parent class BiodbEntryFields.

58 BiodbEntryFields

Examples

Get the class of the InChI field.
mybiodb <- biodb::newInst()
inchi.field.class <- mybiodb$getEntryFields()$get('inchi')$getClass()

Test the cardinality of a field
card.one <- mybiodb$getEntryFields()$get('name')$hasCardOne()
card.many <- mybiodb$getEntryFields()$get('name')$hasCardMany()

Get the description of a field
desc <- mybiodb$getEntryFields()$get('inchi')$getDescription()

Terminate instance.
mybiodb$terminate()

BiodbEntryFields A class for handling description of all entry fields.

Description

A class for handling description of all entry fields.
A class for handling description of all entry fields.

Details

The unique instance of this class is handle by the BiodbMain class and accessed through the
getEntryFields () method.

Methods

Public methods:

e BiodbEntryFields$new()

¢ BiodbEntryFields$notifyCfgUpdate()
* BiodbEntryFields$isAlias()

* BiodbEntryFields$formatName()

e BiodbEntryFields$isDefined()

* BiodbEntryFields$checkIsDefined()
* BiodbEntryFields$getRealName()

e BiodbEntryFields$get()

* BiodbEntryFields$getFieldNames()

* BiodbEntryFields$getDatabaseIdField()
e BiodbEntryFields$print()

e BiodbEntryFields$define()

* BiodbEntryFields$terminate()

BiodbEntryFields 59

* BiodbEntryFields$clone()
Method new(): New instance initializer. No BiodbEntryFields instance must be created directly.
Instead, call the getEntryFields() method of BiodbMain.

Usage:

BiodbEntryFields$new(parent)

Arguments:

parent The BiodbMain instance.

Returns: Nothing.
Method notifyCfgUpdate(): Call back method called when a value is modified inside the
configuration.

Usage:

BiodbEntryFields$notifyCfgUpdate(k, v)

Arguments:
k The config key name.
v The value associated with the key.

Returns: Nothing.

Method isAlias(): Tests if names are aliases.
Usage:
BiodbEntryFields$isAlias(name)

Arguments:
name A character vector of names or aliases to test.

Returns: A logical vector, the same length as name, with TRUE for name values that are an
alias of a field, and FALSE otherwise."
Method formatName(): Format field name(s) for biodb format: set to lower case and remove
dot or underscore characters depending on configuration.
Usage:
BiodbEntryFields$formatName (name)

Arguments:
name A character vector of names or aliases to test.

Returns: A character vector of formatted names.

Method isDefined(): Tests if names are defined fields.
Usage:
BiodbEntryFields$isDefined(name)
Arguments:
name A character vector of names or aliases to test.

Returns: A logical vector, the same length as name, with TRUE for name values that corre-
sponds to a defined field.

60

BiodbEntryFields

Method checkIsDefined(): Tests if names are valid defined fields. Throws an error if any
name does not correspond to a defined field.

Usage:
BiodbEntryFields$checkIsDefined(name)
Arguments:

name A character vector of names or aliases to test.

Returns: Nothing.

Method getRealName(): Gets the real names (main names) of fields. If some name is not found
neither in aliases nor in real names, an error is thrown.

Usage:

BiodbEntryFields$getRealName(name, fail = TRUE)

Arguments:

name A character vector of names or aliases.

fail Fails if name is unknown.

Returns: A character vector, the same length as name, with the real field name for each name
given (i.e. each alias is replaced with the real name).

Method get(): Gets a BiodbEntryField instance.

Usage:

BiodbEntryFields$get(name, drop = TRUE)

Arguments:

name A character vector of names or aliases.

drop If TRUE and only one name has been submitted, returns a single BiodbEntryField in-
stance instead of a list.

Returns: A named list of BiodbEntryField instances. The names of the list are the real names
of the entry fields, thus they may be different from the one provided inside the name argument.
Method getFieldNames(): Gets the main names of all fields.

Usage:

BiodbEntryFields$getFieldNames(type = NULL, computable = NULL)

Arguments:

type Set this parameter to a character vector in order to return only the names of the fields
corresponding to the types specified.

computable If set to TRUE, returns only the names of computable fields. If set to FALSE,
returns only the names of fields that are not computable.

Returns: A character vector containing all selected field names.

Method getDatabaseIdField(): Gets a database ID field.

Usage:
BiodbEntryFields$getDatabaseIdField(database)

Arguments:

BiodbEntryFields 61

database The name (i.e.: Biodb ID) of a database.

Returns:
accession numbers) for this database.

Method print(): Prints information about the instance.
Usage:
BiodbEntryFields$print()
Returns: Nothing.

Method define(): Defines fields.

Usage:
BiodbEntryFields$define(def)

Arguments:
def A named list of field definitions. The names of the list are the main names of the fields.

Returns: Nothing.

Method terminate(): Terminates the instance. This method will be called automatically by the
BiodbMain instance when you call

Usage:

BiodbEntryFields$terminate()

Arguments:
BiodbMain :terminate().
Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BiodbEntryFields$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also
BiodbMain and child class BiodbEntryField.

Examples

Getting information about the accession field:
mybiodb <- biodb::newInst()
entry.field <- mybiodb$getEntryFields()$get('accession')

Test if a name is an alias of a field
mybiodb$getEntryFields()$isAlias('genesymbols"')

Test if a name is associated with a defined field
mybiodb$getEntryFields()$isDefined('name"')

Terminate instance.
mybiodb$terminate()

62 BiodbFactory

BiodbFactory A class for constructing biodb objects.

Description

A class for constructing biodb objects.

A class for constructing biodb objects.

Details

This class is responsible for the creation of database connectors and database entries. You must go
through the single instance of this class to create and get connectors, as well as instantiate entries.
To get the single instance of this class, call the getFactory () method of class BiodbMain.

Methods

Public methods:

e BiodbFactory$new()

* BiodbFactory$getBiodb()

* BiodbFactory$createConn()

e BiodbFactory$connExists()

* BiodbFactory$deleteConn()

e BiodbFactory$deleteConnByClass()

* BiodbFactory$getAllConnectors()

* BiodbFactory$deleteAllConnectors()

* BiodbFactory$getConn()

* BiodbFactory$getEntry()

e BiodbFactory$createNewEntry()

* BiodbFactory$createEntryFromContent()
* BiodbFactory$getAllCacheEntries()

* BiodbFactory$deleteAllEntriesFromVolatileCache()
* BiodbFactory$deleteAllCacheEntries()
e BiodbFactory$print()

* BiodbFactory$clone()

Method new(): New instance initializer. The BiodbFactory class must not be instantiated di-
rectly. Instead, call the getFactory() method from the BiodbMain instance.

Usage:
BiodbFactory$new(bdb)

Arguments:
bdb The BiodbMain instance.

Returns: Nothing.

BiodbFactory 63

Method getBiodb(): Returns the biodb main class instance to which this object is attached.

Usage:
BiodbFactory$getBiodb()

Returns: The main biodb instance.

Method createConn(): Creates a connector to a database.

Usage:
BiodbFactory$createConn(
db.class,
url = NULL,
token = NA_character_,
fail.if.exists = TRUE,
get.existing.conn = TRUE,
conn.id = NULL,
cache.id = NULL

)

Arguments:

db.class The type of a database. The list of types can be obtained from the class BiodbDb-
sInfo.

url An URL to the database for which to create a connection. Each database connector is
configured with a default URL, but some allow you to change it.

token A security access token for the database. Some database require such a token for all
or some of their webservices. Usually you obtain the token through your account on the
database website.

fail.if.exists If set to TRUE, the method will fail if a connector for

get.existing.conn This argument will be used only if fail.if.exists is set to FALSE and an
identical connector already exists. If it set to TRUE, the existing connector instance will be
returned, otherwise NULL will be returned.

conn.id If set, this identifier will be used for the new connector. An error will be raised in case
another connector already exists with this identifier.

cache.id If set, this ID will be used as the cache ID for the new connector. An error will be
raised in case another connector already exists with this cache identifier.

Returns: An instance of the requested connector class.

Method connExists(): Tests if a connector exists.

Usage:
BiodbFactory$connExists(conn.id)

Arguments:
conn.id A connector ID.

Returns: TRUE if a connector with this ID exists, FALSE otherwise.

Method deleteConn(): Deletes an existing connector.
Usage:
BiodbFactory$deleteConn(conn)

BiodbFactory

Arguments:
conn A connector instance or a connector ID.

Returns: Nothing.

Method deleteConnByClass(): Deletes all existing connectors from a same class.
Usage:
BiodbFactory$deleteConnByClass(db.class)

Arguments:
db.class The type of a database. All connectors of this database type will be deleted.

Returns: Nothing.

Method getAllConnectors(): Gets all connectors.

Usage:
BiodbFactory$getAllConnectors()

Returns: A list of all created connectors.

Method deleteAllConnectors(): Deletes all connectors.

Usage:
BiodbFactory$deleteAllConnectors()

Returns: Nothing.

Method getConn(): Gets an instantiated connector instance, or create a new one.

Usage:
BiodbFactory$getConn(conn.id, class = TRUE, create = TRUE)

Arguments:

conn.id An existing connector ID.

class If set to TRUE, and \"conn.id\" does not correspond to any instantiated connector, then
interpret \"conn.id\" as a database class and looks for the first instantiated connector of that
class.

create If setto TRUE, and \"class\" is also set to TRUE, and no suitable instantiated connector
was found, then creates a new connector instance of the class specified by \"conn.id\".

Returns: The connector instance corresponding to the connector ID or to the database ID
submitted (if class \"parameter\" is set to TRUE).

Method getEntry(): Retrieves database entry objects from IDs (accession numbers), for the
specified connector.

Usage:

BiodbFactory$getEntry(conn.id, id, drop = TRUE, no.null = FALSE, limit = 0)

Arguments:
conn.id An existing connector ID.
id A character vector containing database entry IDs (accession numbers).

drop If set to TRUE and the list of entries contains only one element, then returns this element
instead of the list. If set to FALSE, then returns always a list.

BiodbFactory 65

no.null Setto TRUE to remove NULL entries.
limit Set to a positive value to limit the number of entries returned.

Returns: A list of BiodbEntry objects, the same length as id. A NULL value is put into the list
for each invalid ID of id.

Method createNewEntry(): Creates a new empty entry object from scratch. This entry is not
stored in cache, and is directly attached to the factory instance instead of a particular connector.
Usage:
BiodbFactory$createNewEntry(db.class)
Arguments:
db.class A database ID.
Returns: A new BiodbEntry object.

Method createEntryFromContent(): Creates an entry instance from a content.
Usage:
BiodbFactory$createEntryFromContent(conn.id, content, drop = TRUE)

Arguments:

conn.id A valid BiodbConn identifier.

content A list or character vector of contents to parse to create the entries.
drop If set to TRUE

Returns: A list of new BiodbEntry objects.

Method getAllCacheEntries(): For a connector, gets all entries stored in the cache.
Usage:
BiodbFactory$getAllCacheEntries(conn.id)
Arguments:
conn.id A connector ID.
Returns: A list of BiodbEntry objects.

Method deleteAllEntriesFromVolatileCache(): Deletes all entries stored in the cache of
the given connector. This method is deprecated, please use delete AllEntriesFromVolatileCache()

instead.
Usage:
BiodbFactory$deleteAllEntriesFromVolatileCache(conn.id)
Arguments:

conn.id A connector ID.

Returns: Nothing.

Method deleteAllCacheEntries(): Deletes all entries stored in the cache of the given con-
nector.

Usage:

BiodbFactory$deleteAllCacheEntries(conn.id)

66

Arguments:

conn.id A connector ID.

Returns: Nothing.

Method print(): Prints information about this instance.

Usage:
BiodbFactory$print ()

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbFactory$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BiodbMain, BiodbConn and BiodbEntry.

Examples

Create a BiodbMain instance with default settings:
mybiodb <- biodb::newInst()

Obtain the factory instance:
factory <- mybiodb$getFactory()

Get a compound CSV file database
chebi.tsv <- system.file("extdata”, "chebi_extract.tsv", package='biodb')

Create a connector:
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi.tsv)

Get a database entry:
entry <- conn$getEntry(conn$getEntryIds(1))

Terminate instance.
mybiodb$terminate()

BiodbFactory

BiodbHtmIEntry 67

BiodbHtmlEntry Entry class for content in HTML format.

Description

Entry class for content in HTML format.

Entry class for content in HTML format.

Details

This is an abstract class for handling database entries whose content is in HTML format.

Super classes

biodb: :BiodbEntry ->biodb: :BiodbXmlEntry ->BiodbHtmlEntry

Methods

Public methods:

e BiodbHtmlEntry$new()

e BiodbHtmlEntry$clone()
Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
BiodbHtmlEntry$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbHtmlEntry$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Super class BiodbXmlEntry.

Examples

Create a concrete entry class inheriting from this class:
MyEntry <- R6::R6Class("MyEntry"”, inherit=biodb::BiodbHtmlEntry)

68 BiodbListEntry

BiodbJsonEntry Entry class for content in JSON format.

Description

This is an abstract class for handling database entries whose content is in JSON format.

Super class

biodb: :BiodbEntry ->BiodbJsonEntry

Methods
Public methods:
e BiodbJsonEntry$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbJsonEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry"”, inherit=biodb::BiodbJsonEntry)

BiodbListEntry Entry class for content in list format.

Description

This is an abstract class for handling database entries whose content is in list format.

Super class

biodb: :BiodbEntry ->BiodbListEntry

BiodbMain 69

Methods
Public methods:
e BiodbListEntry$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbListEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry”, inherit=biodb::BiodbListEntry)

BiodbMain The central class of the biodb package.

Description

The central class of the biodb package.
The central class of the biodb package.

Details

The main class of the biodb package. In order to use the biodb package, you need first to create an
instance of this class.

The constructor takes a single argument, autoloadExtraPkgs, to enable (TRUE or default) or disable
(FALSE) autoloading of extra biodb packages.

Once the instance is created, some other important classes (BiodbFactory, BiodbConfig, ...) are
instantiated (just once) and their instances are later accessible through get*() methods.

Methods

Public methods:
e BiodbMain$new()
e BiodbMain$terminate()
¢ BiodbMain$loadDefinitions()
* BiodbMain$getConfig()

70

BiodbMain

BiodbMain$getPersistentCache()
BiodbMain$getDbsInfo()
BiodbMain$getEntryFields()
BiodbMain$getFactory()
BiodbMain$getRequestScheduler ()
BiodbMain$addObservers()
BiodbMain$getObservers()
BiodbMain$convertEntryIdFieldToDbClass()
BiodbMain$entriesFieldToVctOrLst()
BiodbMain$entriesToDataframe()
BiodbMain$entryIdsToDataframe()
BiodbMain$addColsToDataframe()
BiodbMain$entriesToJson()
BiodbMain$collapseRows ()
BiodbMain$entriesToSingleFieldValues()
BiodbMain$entrylIdsToSingleFieldValues()
BiodbMain$computeFields()
BiodbMain$saveEntriesAsJson()
BiodbMain$copyDb ()

BiodbMain$print()
BiodbMain$fieldIsAtomic()
BiodbMain$getFieldClass()
BiodbMain$clone()

Method new(): New instance initializer. The BiodbMain must not be instantiated directly.
Instead use the newlInst() global method.

Usage:
BiodbMain$new(autoloadExtraPkgs = NULL)

Arguments:

autoloadextraPkgs Set to TRUE to allow automatic loading of extension packages. Set to

FALSE to forbid it. If left to NULL, the default, autoload.extra.pkgs configuration value
will be used.

Returns: Nothing.

Method terminate(): Closes BiodbMain instance. Call this method when you are done with
your BiodbMain instance.

Usage:
BiodbMain$terminate()

Returns: Nothing.

Method loadDefinitions(): Loads databases and entry fields definitions from YAML file.
Usage:
BiodbMain$loadDefinitions(file, package = "biodb")

BiodbMain 71

Arguments:

file The path to a YAML file containing definitions for BiodbMain (databases, fields or con-
figuration keys).

package The package to which belong the new definitions.

Returns: Nothing.

Method getConfig(): Returns the single instance of the BiodbConfig class.

Usage:
BiodbMain$getConfig()

Returns: The instance of the BiodbConfig class attached to this BiodbMain instance.
Method getPersistentCache(): Returns the single instance of the BiodbPersistentCache
class.

Usage:
BiodbMain$getPersistentCache()

Returns: The instance of the BiodbPersistentCache class attached to this BiodbMain instance.

Method getDbsInfo(): Returns the single instance of the BiodbDbsInfo class.

Usage:
BiodbMain$getDbsInfo()

Returns: The instance of the BiodbDbsInfo class attached to this BiodbMain instance.

Method getEntryFields(): Returns the single instance of the BiodbEntryFields class.
Usage:
BiodbMain$getEntryFields()

Returns: The instance of the BiodbEntryFields class attached to this BiodbMain instance.

Method getFactory(): Returns the single instance of the BiodbFactory class.
Usage:
BiodbMain$getFactory()

Returns: The instance of the BiodbFactory class attached to this BiodbMain instance.

Method getRequestScheduler(): Returns the single instance of the Scheduler class.

Usage:
BiodbMain$getRequestScheduler ()

Returns: The instance of the Scheduler class attached to this BiodbMain instance.

Method addObservers(): Adds new observers. Observers will be called each time an event
occurs. This is the way used in biodb to get feedback about what is going inside biodb code.

Usage:
BiodbMain$addObservers(observers)
Arguments:

observers Either an object or a list of objects.

72

BiodbMain

Returns: Nothing.

Method getObservers(): Gets the list of registered observers.

Usage:
BiodbMain$getObservers()

Returns: The list or registered observers.

Method convertEntryIdFieldToDbClass(): Gets the database class name corresponding to
an entry ID field.

Usage:
BiodbMain$convertEntryIdFieldToDbClass(entry.id.field)

Arguments:
entry.id.field The name of an ID field. It must end with \".id\".

Method entriesFieldToVctOrLst(): Extracts the value of a field from a list of entries. Returns
either a vector or a list depending on the type of the field.

Usage:

BiodbMain$entriesFieldToVctOrLst(
entries,
field,
flatten
compute
limit = 0,
withNa = TRUE

FALSE,
TRUE,

)

Arguments:

entries A list of BiodbEntry instances.

field The name of a field.

flatten If set to TRUE and the field has a cardinality greater than one, then values be converted
into a vector of class character in which each entry values are collapsed.

compute If set to TRUE, computable fields will be output.

limit The maximum number of values to retrieve for each entry. Set to O to get all values.

withNa If set to TRUE, keep NA values. Otherwise filter out NAs values in vectors.

Returns: A vector if the field is atomic or flatten is set to TRUE, otherwise a list.

Method entriesToDataframe(): Converts a list of entries or a list of list of entries (BiodbEntry
objects) into a data frame.

Usage:
BiodbMain$entriesToDataframe(
entries,
only.atomic = TRUE,
null.to.na = TRUE,
compute = TRUE,
fields = NULL,
limit = o,

BiodbMain 73

drop = FALSE,
sort.cols = FALSE,
flatten = TRUE,
only.card.one = FALSE,
own.id = TRUE,
prefix = ""
)
Arguments:
entries A list of BiodbEntry instances or a list of list of BiodbEntry instances.

only.atomic If set to TRUE, output only atomic fields, i.e.: the fields whose value type is one
of integer, numeric, logical or character.

null.to.na If set to TRUE, each NULL entry in the list is converted into a row of NA values.
compute If set to TRUE, computable fields will be output.

fields A character vector of field names to output. The data frame output will be restricted to
this list of fields.

limit The maximum number of field values to write into new columns. Used for fields that
can contain more than one value. Set it to O to get all values.

drop If set to TRUE and the resulting data frame has only one column, a vector will be output
instead of data frame.

sort.cols Sort columns in alphabetical order.

flatten If set to TRUE, then each field with a cardinality greater than one, will be converted
into a vector of class character whose values are collapsed.

only.card.one Output only fields whose cardinality is one.

own.id If set to TRUE includes the database id field named <database_name>. id whose val-
ues are the same as the accession field.

prefix Insert a prefix at the start of all field names.

Returns: A data frame containing the entries. Columns are named according to field names.

Method entryIdsToDataframe(): Construct a data frame using entry IDs and field values of
the corresponding entries.
Usage:
BiodbMain$entryIdsToDataframe(
ids,
db,
fields = NULL,
limit = 3,
prefix = "",
own.id = FALSE
)
Arguments:
ids A character vector of entry IDs or a list of character vectors of entry IDs.
db The biodb database name for the entry IDs, or a connector ID, as a sinle character value.
fields A character vector containing entry fields to add.
limit The maximum number of field values to write into new columns. Used for fields that
can contain more than one value. Set it to O to get all values.

74

BiodbMain

prefix Insert a prefix at the start of all field names.

own.id If set to TRUE includes the database id field named <database_name>.id whose val-
ues are the same as the accession field.

A data frame containing in columns the requested field values, with one entry per line, in the
same order than in ids vector.

Method addColsToDataframe(): Add values from a database to an existing data frame using a
column containing entry identifiers.
Usage:
BiodbMain$addColsToDataframe(x, id.col, db, fields, limit = 3, prefix = "")
Arguments:

x A data frame containing at least one column with Biodb entry IDs identified by the parameter
id.col.

id.col The name of the column containing IDs inside the input data frame.
db The biodb database name for the entry IDs, or a connector ID, as a single character value.
fields A character vector containing entry fields to add.

limit The maximum number of field values to write into new columns. Used for fields that
can contain more than one value. Set it to O to get all values.

prefix Insert a prefix at the start of all field names.

Returns: A data frame containing x and new columns appended for the fields requested.

Method entriesToJson(): Converts a list of BiodbEntry objects into JSON. Returns a vector
of characters.

Usage:

BiodbMain$entriesToJson(entries, compute = TRUE)

Arguments:

entries A list of BiodbEntry instances. It may contain NULL elements.

compute If set to TRUE, computable fields will added to JSON too.

Returns: A list of JSON strings, the same length as entries list.

Method collapseRows(): Collapses rows of a data frame, by looking for duplicated values
in the reference columns (parameter cols). The values contained in the reference columns are
supposed to be ordered inside the data frame, in the sens that all duplicated values are supposed
to directly follow the original values. For all rows containing duplicated values, we look at values
in all other columns and concatenate values in each column containing different values.

Usage:

BiodbMain$collapseRows(x, sep = "|", cols = 1L)

Arguments:

x A data frame.

sep The separator to use when concatenating values in collapsed rows.

cols The indices or the names of the columns used as reference.

Returns: A data frame, with rows collapsed."

Method entriesToSingleFieldValues(): Extract all values of a field from a list of entries.

BiodbMain 75

Usage:
BiodbMain$entriesToSingleFieldValues(
entries,
field,
sortOutput = FALSE,
uniq = TRUE
)
Arguments:
entries A list of BiodbEntry objects.
field The field for which to extract values.
sortOutput Set to TRUE to sort the values.
uniqg Set to TRUE to remove duplicates.

Returns: The values of the field as a vector.

Method entryIdsToSingleFieldValues(): Extract all values of a field from a list of entries.

Usage:
BiodbMain$entryIdsToSingleFieldValues(
ids,
db,
field,
sortOutput = FALSE,
uniq = TRUE
)
Arguments:
ids A list of entry identifiers.
db The database ID or connector ID where to find the entries.
field The field for which to extract values.
sortOutput Set to TRUE to sort the values.
unig Set to TRUE to remove duplicates.

Returns: The values of the field as a vector.
Method computeFields(): Computes missing fields in entries, for those fields that are compt-
able.

Usage:
BiodbMain$computeFields(entries)

Arguments:

entries A list of BiodbEntry instances. It may contain NULL elements.

Returns: Nothing.
Method saveEntriesAsJson(): Saves a list of entries in JSON format. Each entry will be
saved in a separate file.

Usage:
BiodbMain$saveEntriesAsJson(entries, files, compute = TRUE)

76

BiodbMain

Arguments:

entries A list of BiodbEntry instances. It may contain NULL elements.
files A character vector of file paths, the same length as entries list.
compute If set to TRUE, computable fields will be saved too.

Returns: Nothing.
Method copyDb(): Copies all entries of a database into another database. The connector of the
destination database must be editable.

Usage:
BiodbMain$copyDb(conn.from, conn.to, limit = @)

Arguments:

conn. from The connector of the source datababase to copy.

conn.to The connector of the destination database.

limit The number of entries of the source database to copy. If set to NULL, copy the whole
database.

Returns: Nothing.

Method print(): Prints object information.

Usage:
BiodbMain$print()

Returns: Nothing.
Method fieldIsAtomic(): DEPRECATED method to test if a field is an atomic field. The new
method is BiodbEntryField :isVector()."

Usage:
BiodbMain$fieldIsAtomic(field)

Arguments:
field The name of the field.

Returns: TRUE if the field’s value is atomic.
Method getFieldClass(): DEPRECATED method to get the class of a field. The new method
is BiodbMain :getEntryFields()$get(field)$getClass().

Usage:
BiodbMain$getFieldClass(field)

Arguments:
field The name of the field.

Returns: The class of the field.

Method clone(): The objects of this class are cloneable with this method.
Usage:
BiodbMain$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

BiodbSdfEntry 77

See Also

BiodbFactory, BiodbConfig, BiodbEntryFields, BiodbDbsInfo.

Examples

Create an instance:
mybiodb <- biodb::newInst()

Get the factory instance
fact <- mybiodb$getFactory()

Terminate instance.
mybiodb$terminate()
mybiodb <- NULL

BiodbSdfEntry Entry class for content in SDF format.

Description

Entry class for content in SDF format.

Entry class for content in SDF format.

Details

This is an abstract class for handling database entries whose content is in SDF format.

Super classes

biodb: :BiodbEntry ->biodb: :BiodbTxtEntry -> BiodbSdfEntry

Methods

Public methods:

* BiodbSdfEntry$new()
¢ BiodbSdfEntry$clone()

Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
BiodbSdfEntry$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

78 BiodbTestMsgAck

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbSdfEntry$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Super class BiodbTxtEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry”, inherit=biodb::BiodbSdfEntry)

BiodbTestMsgAck A class for acknowledging messages during tests.

Description

A class for acknowledging messages during tests.

A class for acknowledging messages during tests.

Details

This observer is used to call a testthat::expect_*() method each time a message is received. This is
used when running tests on Travis-CI, so Travis does not stop tests because no change is detected

in output.

Methods

Public methods:

e BiodbTestMsgAck$new()
e BiodbTestMsgAck$notifyProgress()
e BiodbTestMsgAck$clone()

Method new(): New instance initializer.

Usage:
BiodbTestMsgAck$new()

Returns: Nothing.

Method notifyProgress(): Call back method used to get progress advancement of a long
process.

Usage:

BiodbTxtEntry 79

BiodbTestMsgAck$notifyProgress(what, index, total)

Arguments:
what The reason as a character value.
index The index number representing the progress.

total The total number to reach for completing the process.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbTestMsgAck$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

To use the acknowledger, set ack=TRUE when creating the Biodb test

instance:
biodb <- biodb::createBiodbTestInstance(ack=TRUE)

Terminate the BiodbMain instance
biodb$terminate()

BiodbTxtEntry Entry class for content in text format.

Description
Entry class for content in text format.

Entry class for content in text format.

Details

This is an abstract class for handling database entries whose content is in text format.

Super class

biodb: :BiodbEntry ->BiodbTxtEntry

80 BiodbXmlEntry

Methods

Public methods:

e BiodbTxtEntry$new()

e BiodbTxtEntry$clone()
Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
BiodbTxtEntry$new(...)

Arguments:
. All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbTxtEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also
Super class BiodbEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry”, inherit=biodb::BiodbTxtEntry)

BiodbXmlEntry Entry class for content in XML format.

Description
Entry class for content in XML format.
Entry class for content in XML format.

Details

This is an abstract class for handling database entries whose content is in XML format.

Super class

biodb: :BiodbEntry -> BiodbXmlEntry

checkDeprecatedCacheFolders

Methods

Public methods:

* BiodbXmlEntry$new()
e BiodbXmlEntry$clone()

81

Method new(): New instance initializer. Entry objects must not be created directly. Instead,

they are retrieved through the connector instances.
Usage:
BiodbXmlEntry$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BiodbXmlEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbEntry.

Examples

Create a concrete entry class inheriting from CSV class:
MyEntry <- R6::R6Class("MyEntry”, inherit=biodb::BiodbXmlEntry)

checkDeprecatedCacheFolders
Check deprecated default cache folders.

Description

Searches for a deprecated location of the default cache folder, and moves files to the new location

if possible. Otherwise raises a warning.

Usage
checkDeprecatedCacheFolders()

Value

Nothing.

82 CompCsvFileConn

Examples

biodb: :checkDeprecatedCacheFolders()

closeMatchPpm Close match PPM

Description

Matches peaks between two spectra.

Usage
closeMatchPpm(x, y, xidx, yidx, xolength, dppm, dmz)

Arguments
X sorted M/Z values (ascending order) of input spectrum (no NA).
y sorted M/Z values (ascending order) of reference spectrum (no NA).
xidx indices of the M/Z peaks of x, taken from the original spectrum ordered in de-
creasing intensity values.
yidx indices of the M/Z peaks of y, taken from the original spectrum ordered in de-
creasing intensity values.
xolength The length of the output.
dppm The M/Z tolerance in PPM.
dmz Minimum M/Z tolerance.
Value

A list of results.

CompCsvFileConn Compound CSV File connector class.

Description

Compound CSV File connector class.

Compound CSV File connector class.

Details

This is the connector class for a Compound CSV file database.

CompCsvFileConn 83

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> biodb: :CsvFileConn -> CompCsvFileConn

Methods

Public methods:

* CompCsvFileConn$new()
* CompCsvFileConn$clone()

Method new(): New instance initializer. Connector classes must not be instantiated directly.
Instead, you must use the createConn() method of the factory class.

Usage:
CompCsvFileConn$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CompCsvFileConn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class CsvFileConn.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a connector:
chebi_file <- system.file("extdata”, "chebi_extract.tsv", package="biodb")
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi_file)

Get an entry
e <- conn$getEntry('")

Terminate instance.
mybiodb$terminate()

84 CompCsvFileEntry

CompCsvFileEntry Compound CSV File entry class.

Description
Compound CSV File entry class.
Compound CSV File entry class.

Details
This is the entry class for Compound CSV file databases.

Super classes
biodb: :BiodbEntry ->biodb: :BiodbCsvEntry -> CompCsvFileEntry

Methods

Public methods:
e CompCsvFileEntry$new()

e CompCsvFileEntry$clone()
Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
CompCsvFileEntry$new(...)

Arguments:
All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CompCsvFileEntry$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Super class BiodbCsvEntry.

CompSqliteConn 85

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a connector that inherits from CsvFileConn:
chebi_file <- system.file("extdata”, "chebi_extract.tsv", package="biodb")
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi_file)

Get an entry
e <- conn$getEntry('")

Terminate instance.
mybiodb$terminate()

CompSqliteConn Class for handling a Compound database in SQLite format.

Description

This is the connector class for a Compound database.

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> biodb: :SqliteConn -> CompSqliteConn

Methods

Public methods:

* CompSqgliteConn$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CompSqgliteConn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class SgliteConn.

86 CompSqliteEntry

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a connector:
chebi_file <- system.file("extdata”, "chebi_extract.sqlite"”, package="biodb")
conn <- mybiodb$getFactory()$createConn('comp.sqlite', url=chebi_file)

Get an entry
e <- conn$getEntry('1018")

Terminate instance.
mybiodb$terminate()

CompSqliteEntry Compound SQLite entry class.

Description

This is the entry class for a Compound SQLite database.

Super classes

biodb: :BiodbEntry -> biodb: :BiodbListEntry -> CompSqliteEntry

Methods

Public methods:

e CompSqgliteEntry$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CompSqliteEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbListEntry.

connNameToClassPrefix 87

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get path to LCMS database example file
lcmsdb <- system.file("extdata”, "chebi_extract.sqlite”, package="biodb")

Create a connector
conn <- mybiodb$getFactory()$createConn('comp.sqlite', url=lcmsdb)

Get an entry
e <- conn$getEntry('34.pos.co0l12.0.78")

Terminate instance.
mybiodb$terminate()

connNameToClassPrefix Convert connector name into class prefix.

Description

Converts the connector name into the class prefix (e.g.: "mass.csv.file" —> "MassCsvFile").

Usage

connNameToClassPrefix(connName)

Arguments

connName A connector name (e.g.: "mass.csv.file").

Value

The corresponding class prefix (e.g.: "MassCsvFile").

createBiodbTestInstance
Creating a BiodbMain instance for tests.

Description

Creates a BiodbMain instance with options specially adapted for tests. You can request the logging
of all messages into a log file. It is also possible to ask for the creation of a BiodbTestMsgAck
observer, which will receive all messages and emit a testthat test for each message. This will allow
the testthat output to not stall a long time while, for example, downloading or extracting a database.
Do not forget to call terminate() on your instance at the end of your tests.

88 CsvFileConn

Usage
createBiodbTestInstance(ack = FALSE)

Arguments
ack If set to TRUE, an instance of BiodbTestMsgAck will be attached to the Biodb-
Main instance.
Value

The created BiodbMain instance.

Examples

Instantiate a BiodbMain instance for testing
biodb <- biodb::createBiodbTestInstance()

Terminate the instance
biodb$terminate()

CsvFileConn CSV File connector class.

Description

CSV File connector class.

CSV File connector class.

Details

This is the abstract connector class for all CSV file databases.

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> CsvFileConn

Methods
Public methods:

e CsvFileConn$new()

e CsvFileConn$getCsvQuote()

* CsvFileConn$setCsvQuote()

e CsvFileConn$getCsvSep()

* CsvFileConn$setCsvSep()

e CsvFileConn$getFieldNames()
* CsvFileConn$hasField()

CsvFileConn 89

e CsvFileConn$addField()

* CsvFileConn$getFieldColName()

* CsvFileConn$setField()

* CsvFileConn$getFieldsAndColumnsAssociation()
e CsvFileConn$getUnassociatedColumns()

e CsvFileConn$print()

e CsvFileConn$setDb()

e CsvFileConn$setIgnoreUnassignedColumns()

e CsvFileConn$clone()

Method new(): New instance initializer. Connector classes must not be instantiated directly.
Instead, you must use the createConn() method of the factory class.

Usage:
CsvFileConn$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method getCsvQuote(): Gets the characters used to delimit quotes in the CSV database file.

Usage:
CsvFileConn$getCsvQuote()

Returns: The characters used to delimit quotes as a single character value.

Method setCsvQuote(): Sets the characters used to delimit quotes in the CSV database file.

Usage:
CsvFileConn$setCsvQuote(quote)

Arguments:
quote The characters used to delimit quotes as a single character value.
You may specify several characters. Example \"\\"’\".

Returns: Nothing.

Method getCsvSep(): Gets the current CSV separator used for the database file.

Usage:
CsvFileConn$getCsvSep()

Returns: The CSV separator as a character value.
Method setCsvSep(): Sets the CSV separator to be used for the database file. If this method is
called after the loading of the database, it will throw an error.

Usage:

CsvFileConn$setCsvSep(sep)

Arguments:

sep The CSV separator as a character value.

90

CsvFileConn

Returns: Nothing.

Method getFieldNames(): Get the list of all biodb fields handled by this database.

Usage:
CsvFileConn$getFieldNames()

Returns: A character vector of the biodb field names.

Method hasField(): Tests if a field is defined for this database instance.

Usage:
CsvFileConn$hasField(field)

Arguments:
field A valid Biodb entry field name.

Returns: TRUE of the field is defined, FALSE otherwise.
Method addField(): Adds a new field to the database. The field must not already exist. The

same single value will be set to all entries for this field. A new column will be written in the
memory data frame, containing the value given.

Usage:
CsvFileConn$addField(field, value)

Arguments:
field A valid Biodb entry field name.
value The value to set for this field.

Returns: Nothing.

Method getFieldColName(): Get the column name corresponding to a Biodb field.

Usage:
CsvFileConn$getFieldColName(field)

Arguments:
field A valid Biodb entry field name. This field must be defined for this database instance.

Returns: The column name from the CSV file.

Method setField(): Sets a field by making a correspondence between a Biodb field and one
or more columns of the loaded data frame.

Usage:

CsvFileConn$setField(field, colname, ignore.if.missing = FALSE)

Arguments:

field A valid Biodb entry field name. This field must not be already defined for this database
instance.

colname A character vector containing one or more column names from the CSV file.

ignore.if.missing Deprecated parameter.

Returns: Nothing.

CsvFileConn 91

Method getFieldsAndColumnsAssociation(): Gets the association between biodb field names
and CSV file column names.

Usage:
CsvFileConn$getFieldsAndColumnsAssociation()

Returns: A list with names being the biodb field names and values being a character vector of
column names from the CSV file.
Method getUnassociatedColumns(): Gets the list of unassociated column names from the
CSV file.

Usage:
CsvFileConn$getUnassociatedColumns()

Returns: A character vector containing column names.

Method print(): Prints a description of this connector.

Usage:
CsvFileConn$print()

Returns: Nothing.
Method setDb(): Sets the database directly from a data frame. You must not have set the
database previously with the URL parameter.

Usage:
CsvFileConn$setDb(db)

Arguments:
db A data frame containing your database.

Returns: Nothing.
Method setIgnoreUnassignedColumns(): Tells the connector to ignore or not the columns
found in the CSV file for which no assighment were found.

Usage:
CsvFileConn$setIgnoreUnassignedColumns(ignore)

Arguments:
ignore Set to TRUE to ignore the unassigned columns, and to FALSE otherwise.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CsvFileConn$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Super classes BiodbConn, and sub-classes CompCsvFileConn, MassCsvFileConn.

92 df2str

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a connector that inherits from CsvFileConn:
chebi_file <- system.file("extdata”, "chebi_extract.tsv", package="biodb")
conn <- mybiodb$getFactory()$createConn('comp.csv.file', url=chebi_file)

Get an entry
e <- conn$getEntry('1018")

Terminate instance.
mybiodb$terminate()

df2str Convert a data.frame into a string.

Description

Prints a data frame (partially if too big) into a string.

Usage

df2str(x, rowCut = 5, colCut = 5)

Arguments
X The data frame object.
rowCut The maximum of rows to print.
colCut The maximum of columns to print.
Value

A string containing the data frame representation (or part of it).

Examples

Converts the first 5 rows and first 6 columns of a data frame into a
string:

x <- data.frame(matrix(1:160, nrow=1@, byrow=TRUE))

s <- df2str(x, rowCut=5, colCut=6)

error

93

error Throw an error and log it too.

Description

Throws am error and logs it too with biodb logger.

Usage

error(...)

Arguments

Values to be passed to sprintf().

Value

Nothing.

Examples

Throws an error:
tryCatch(biodb::error('Index is %d.', 10), error=function(e){e$message})

erroro Throw an error and log it too.

Description

Throws an error and logs it too with biodb logger, using paste0().

Usage

error@(...)

Arguments

Values to be passed to paste0().

Value

Nothing.

Examples

Throws an error:

tryCatch(biodb::error@('Index is ', 10, '."'), error=function(e){e$message})

94

FileTemplate

FileTemplate File template class.

Description

Methods

Public methods:

e FileTemplate$new()

* FileTemplate$replace()
e FileTemplate$choose()

e FileTemplate$select()

e FileTemplate$write()

* FileTemplate$getLines()
e FileTemplate$clone()

Method new(): Initializer.

Usage:
FileTemplate$new(path)

Arguments:
path The path to the template file.

Returns: Nothing.

Method replace(): Replace a tag by its value inside the template file.

Usage:
FileTemplate$replace(tag, value)
Arguments:

tag The tag to replace.
value The value to replace the tag with.

Returns: invisible(self) for chaining method calls.

Method choose(): Choose one case among a set of cases.

Usage:
FileTemplate$choose(set, case)
Arguments:

set The name of the case set.

case The name of case.

Returns: invisible(self) for chaining method calls.

Method select(): Select or remove sections that match a name.

A class for reading a file template, replacing tags inside, and writing the results in an output file.

getConnClassName 95

Usage:
FileTemplate$select(section, enable)

Arguments:
section The name of the section.
enable Set to TRUE to select the section (and keep it), and FALSE to remove it.

Returns: invisible(self) for chaining method calls.

Method write(): Write template with replaced values to disk.
Usage:
FileTemplate$write(path, overwrite = FALSE, checkRemainingTags = TRUE)
Arguments:

path Path to output file.

overwrite If set to FALSE and the destination file already exists, a message is thrown. Other-
wise writes into the destination.

checkRemainingTags If set to TRUE, checks first, before writing, if there any remaining tags
that have not been processed. A warning is thrown for each found tag.

Returns: Nothing.

Method getLines(): Get the lines of the templates.

Usage:
FileTemplate$getLines()

Returns: A vector containing the lines of the templates.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FileTemplate$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

getConnClassName Get connector class name.

Description

Gets the name of the connector class corresponding to a connector.

Usage

getConnClassName (connName)

Arguments

connName A connector name (e.g.: "mass.csv.file").

96

Value

The name of the corresponding connector class (e.g

Examples

biodb: :getConnClassName('foo.db")

.. "MassCsvFileConn").

getDefaultCacheDir

getConnTypes Get connector types.

Description

Get the list of available connector types.

Usage
getConnTypes()

Value

A character vector containing the connector types.

Examples

biodb: :getConnTypes()

getDefaultCacheDir Get default cache folder.

Description

Returns the path to the default cache folder.

Usage

getDefaultCacheDir ()

Value

The path to the cache folder.

Examples

cacheFolderPath <- biodb::getDefaultCacheDir()

getEntryClassName

97

getEntryClassName Get entry class name.

Description

Gets the name of the entry class corresponding to a connector.

Usage

getEntryClassName (connName)

Arguments

connName A connector name (e.g.: "mass.csv.file").

Value

The name of the corresponding entry class (e.g.: "MassCsvFileEntry").

Examples

biodb: :getEntryClassName('foo.db")

getEntryTypes Get entry types.

Description

Get the list of available entry types.

Usage

getEntryTypes()

Value

A character vector containing the entry types.

Examples

biodb::getEntryTypes()

98 listTestRefEntries

getlLogger Get the main package logger.

Description

Gets the main package logger, parent of all loggers of this package.

Usage

getLogger()

Value

The main package logger (named "biodb") as a lgr::Logger object.

Examples

biodb: :getLogger()

listTestRefEntries List test reference entries.

Description

DEPRECATED. Use TestRefEntries class instead.

Usage

listTestRefEntries(conn.id, pkgName, limit = @)

Arguments

conn.id A valid Biodb connector ID.

pkgName The name of the

limit The maximum number of entries to retrieve.
Details

Lists the reference entries in the test folder for a specified connector. The test reference files must be
in <pkg>/inst/testref/ folder and their names must match entry-<database_name>-<entry_accession>. json
(e.g.: entry-comp.csv.file-1018.json).

Value

A list of entry IDs.

loadFileContents 99

Examples

List IDs of test reference entries:
biodb::1listTestRefEntries('comp.csv.file', pkgName='biodb')

loadFileContents Loads the contents of files in memory.

Description

This function loads the contents of a list of files and returns the contents as a list, each element
being the content of a single file, in the same order. If a file could not be opened, a NULL value is
used as the content. NA values are interpreted by default, but this behaviour can be turned off.

Usage
loadFileContents(x, naValues = "NA", outVect = FALSE)

Arguments
X A character vector containing the paths of the files.
naValues A character vector listing the content values to convert into NA value. Set to
NULL to disable the interpretation of NA values. set to a different set of values
to be interpreted.
outVect If set to TRUE outputs a character vector (converting any NULL value into NA),
otherwise outputs a list.
Value

A list with the contents of the files.

logDebug Log debug message.

Description

Logs a debug level message with biodb logger.

Usage
logDebug(...)

Arguments

Values to be passed to sprintf().

100

Value

Nothing.

Examples

Logs a debug message:
biodb: :logDebug('Index is %d.', 10)

logInfo

logDebug@ Log debug message.

Description

Logs a debug level message with biodb logger, using paste0().

Usage
logDebugo(...)

Arguments

Values to be passed to paste0()

Value

Nothing.

Examples

Logs a debug message:
biodb: :logDebugd('Index is ', 10, '.")

logInfo Log information message.

Description

Logs an information level message with biodb logger.

Usage
logInfo(...)

logInfo0 101

Arguments

Values to be passed to sprintf().

Value

Nothing.

Examples

Logs an info message:
biodb::logInfo('Index is %d.', 10)

logInfo®@ Log information message.

Description

Logs an information level message with biodb logger, using paste0().

Usage

logInfo@(...)

Arguments

Values to be passed to paste0().

Value

Nothing.

Examples

Logs an info message:
biodb::logInfo@('Index is ', 10, '."')

102

logTrace0

logTrace Log trace message.

Description

Logs a trace level message with biodb logger.

Usage

logTrace(...)

Arguments

Values to be passed to sprintf().

Value

Nothing.

Examples

Logs a trace message:
biodb::logTrace('Index is %d.', 10)

logTrace® Log trace message.

Description

Logs a trace level message with biodb logger, using paste0().

Usage

logTrace@(...)

Arguments

Values to be passed to paste0()

Value

Nothing.

Examples

Logs a trace message:
biodb::logTrace@('Index is ', 10, '.")

Ist2str

103

1st2str Convert a list into a string.

Description

Prints a string (partially if too big) into a string.

Usage

Ist2str(x, nCut = 10)

Arguments
X The list to convert into a string.
nCut The maximum of elements to print.
Value

A string containing the list representation (or part of it).

Examples

Converts the first 5 elements of a list into a string:

s <- lst2str(1:10, nCut=5)

MassCsvFileConn Mass CSV File connector class.

Description

Mass CSV File connector class.

Mass CSV File connector class.

Details

This is the connector class for a MASS CSV file database.

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> biodb: :CsvFileConn -> MassCsvFileConn

104 MassCsvFileConn

Methods
Public methods:

¢ MassCsvFileConn$new()

* MassCsvFileConn$getPrecursorFormulae()
* MassCsvFileConn$isAPrecursorFormula()
* MassCsvFileConn$setPrecursorFormulae()
* MassCsvFileConn$addPrecursorFormulae()
* MassCsvFileConn$clone()

Method new(): New instance initializer. Connector classes must not be instantiated directly.
Instead, you must use the createConn() method of the factory class.

Usage:
MassCsvFileConn$new(...)

Arguments:
. All parameters are passed to the super class initializer.

Returns: Nothing.

Method getPrecursorFormulae(): Gets the list of formulae used to recognize precursors.

Usage:
MassCsvFileConn$getPrecursorFormulae()

Returns: A character vector containing chemical formulae.

Method isAPrecursorFormula(): Tests if a formula is a precursor formula.

Usage:
MassCsvFileConn$isAPrecursorFormula(formula)

Arguments:
formula A chemical formula, as a character value.

Returns: TRUE if the submitted formula is considered a precursor.

Method setPrecursorFormulae(): Sets the list precursor formulae.

Usage:

MassCsvFileConn$setPrecursorFormulae(formulae)

Arguments:

formulae A character vector containing formulae.

Returns: Nothing.
Method addPrecursorFormulae(): Adds new formulae to the list of formulae used to recog-
nize precursors.

Usage:

MassCsvFileConn$addPrecursorFormulae(formulae)

Arguments:
formulae A character vector containing formulae.

MassCsvFileEntry 105

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MassCsvFileConn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class CsvFileConn.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get path to LCMS database example file
lcmsdb <- system.file("extdata”,
"massbank_extract_lcms_2.tsv", package="biodb")

Create a connector
conn <- mybiodb$getFactory()$createConn('mass.csv.file', url=1lcmsdb)

Get an entry
e <- conn$getEntry('PRO10001")

Terminate instance.
mybiodb$terminate()

MassCsvFileEntry Mass CSV File entry class.

Description

Mass CSV File entry class.
Mass CSV File entry class.

Details

This is the entry class for Mass CSV file databases.

Super classes

biodb: :BiodbEntry ->biodb: :BiodbCsvEntry ->MassCsvFileEntry

106 MassCsvFileEntry

Methods

Public methods:

¢ MassCsvFileEntry$new()
¢ MassCsvFileEntry$clone()

Method new(): New instance initializer. Entry objects must not be created directly. Instead,
they are retrieved through the connector instances.

Usage:
MassCsvFileEntry$new(...)

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MassCsvFileEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbCsvEntry.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get path to LCMS database example file
lcmsdb <- system.file("extdata”,
"massbank_extract_lcms_2.tsv", package="biodb")

Create a connector
conn <- mybiodb$getFactory()$createConn('mass.csv.file', url=lcmsdb)

Get an entry
e <- conn$getEntry('PRO10001")

Terminate instance.
mybiodb$terminate()

MassSqliteConn 107

MassSqliteConn Class for handling a Mass spectrometry database in SQLite format.

Description

This is the connector class for a MASS SQLite database.

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> biodb: :SgliteConn ->MassSqliteConn

Methods

Public methods:
¢ MassSqgliteConn$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MassSqgliteConn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class SqliteConn.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get path to LCMS database example file
lcmsdb <- system.file("extdata”, "massbank_extract.sqlite”, package="biodb")

Create a connector
conn <- mybiodb$getFactory()$createConn('mass.sqlite', url=1lcmsdb)

Get an entry
e <- conn$getEntry('34.pos.co0l12.0.78")

Terminate instance.
mybiodb$terminate()

108 MassSqliteEntry

MassSqliteEntry Mass spectra SQLite entry class.

Description

This is the entry class for a Mass spectra SQLite database.

Super classes

biodb: :BiodbEntry ->biodb: :BiodbListEntry ->MassSqliteEntry

Methods

Public methods:
* MassSqliteEntry$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MassSqgliteEntry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbListEntry.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get path to LCMS database example file
lcmsdb <- system.file("extdata”, "massbank_extract.sqlite”, package="biodb")

Create a connector
conn <- mybiodb$getFactory()$createConn('mass.sqlite', url=lcmsdb)

Get an entry
e <- conn$getEntry('34.pos.co0l12.0.78")

Terminate instance.
mybiodb$terminate()

newlnst 109

newInst Create a new BiodbMain instance.

Description

Instantiates a new BiodbMain object by calling the constructor.

Usage

newInst(...)

Arguments

The parameters to pass to the BiodbMain constructor. See BiodbMain.

Value

A new BiodbMain instance.

See Also

BiodbMain.

Examples

Create a new BiodbMain instance:
mybiodb <- biodb::newInst()

Terminate the instance:
mybiodb$terminate()

Progress Progress class.

Description

A class for informing user about the progress of a process.

Details

This class displays progress of a process to user, and sends notifications of this progress to observers
too.

110 Progress

Methods

Public methods:

e Progress$new()
* Progress$increment()

* Progress$clone()

Method new(): Initializer.

Usage:
Progress$new(biodb = NULL, msg, total = NA_integer_)

Arguments:
biodb A BiodbMain instance that will be used to notify observers of progress.
msg The message to display to the user.

total The total number of elements to process or NA if unknown.

Returns: Nothing.

Method increment(): Increment progress.

Usage:

Progress$increment()

Returns: Nothing.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Progress$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Create an instance
prg <- biodb::Progress$new(msg='Processing data.', total=10L)

Processing

for (i in seq_len(10)) {
print("Doing something.")
prg$increment()

Range

111

Range

Range class.

Description

Range class.

Range class.

Details

A class for storing min/max range or value/tolerance.

Methods

Public methods:

Range$new()
Range$getValue()
Range$getMin()
Range$getMax ()
Range$getMinMax ()
Range$getDelta()
Range$getPpm()
Range$getTolExpr()
Range$clone()

Method new(): Initializer.

Usage:

Range$new(

)

min = NULL,
max = NULL,
value = NULL,
delta = NULL,
ppm = NULL,
tol = NULL,

tolType = c("delta”, "plain”, "ppm")

Arguments:

min The minimum value of the range.
max The maximum value of the range.

value The value.
delta The delta tolerance.
ppm The PPM tolerance.

tol The tolerance value, whose type (ppm or delta) is specified by the "tolType" parameter.

112

tolType The type of the tolerance value specified by the "tol" parameter.
Returns: Nothing.
Examples:
Create an instance from min and max:
Range$new(min=1.2, max=1.5)
Method getValue(): Gets the middle value of the range.
Usage:
Range$getValue()

Returns: The middle value.

Method getMin(): Gets the minimum value of the range.
Usage:
Range$getMin()

Returns: The minimum value.

Method getMax(): Gets the maximum value of the range.
Usage:
Range$getMax ()

Returns: The maximum value.

Method getMinMax(): Get the min/max range.
Usage:
Range$getMinMax ()

Returns: A list containing two fields: "min" and "max.

Method getDelta(): Gets the delta tolerance of the range.
Usage:
Range$getDelta()
Returns: The delta tolerance.

Method getPpm(): Gets the PPM tolerance of the range.
Usage:
Range$getPpm()
Returns: The tolerance in PPM.

Method getTolExpr(): Gets the tolerance expression as a list.
Usage:
Range$getTolExpr()

Returns: A list containing the tolerance range expression.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Range$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Range

runGenericTests 113

Examples

Convert a min/max range into a value/ppm tolerance:
rng <- Range$new(min=0.4, max=0.401)

value <- rng$getValue()

ppm <- rng$getPpm()

e
Method “Range$new”
H m o

Create an instance from min and max:
Range$new(min=1.2, max=1.5)

runGenericTests Run generic tests.

Description

This function must be used in tests on all connector classes, before any specific tests.

Usage

runGenericTests(
conn,
pkgName,
testRefFolder = NULL,
opt = NULL,
short = TRUE,
long = FALSE,
maxShortTestRefEntries = 1

Arguments

conn A valid biodb connector.
pkgName The name of your package.
testRefFolder The folder where to find test reference files.

opt A set of options to pass to the test functions.
short Run short tests.
long Run long tests.

maxShortTestRefEntries
The maximum number of reference entries to use in short tests.

Value

Nothing.

114 SqliteConn

Examples

Instantiate a Biodb instance for testing
biodb <- biodb::createBiodbTestInstance()

Create a connector instance
lcmsdb <- system.file("extdata”, "massbank_extract.tsv”, package="biodb")
conn <- biodb$getFactory()$createConn('mass.csv.file', lcmsdb)

Run generic tests
Not run:
biodb: :runGenericTests(conn, 'mypkg')

End(Not run)

Terminate the instance
biodb$terminate()

SqliteConn SQLite connector class.

Description

SQLite connector class.

SQLite connector class.

Details

This is the abstract connector class for all SQLite databases.

Super classes

biodb: :BiodbConnBase -> biodb: :BiodbConn -> SqliteConn

Methods

Public methods:
e SqgliteConn$new()
* SqliteConn$hasField()
e SqliteConn$getQuery()
e SgliteConn$clone()

Method new(): New instance initializer. Connector classes must not be instantiated directly.
Instead, you must use the createConn() method of the factory class.

Usage:
SqliteConn$new(...)

SqliteConn 115

Arguments:

. All parameters are passed to the super class initializer.

Returns: Nothing.

Method hasField(): Tests if a field is defined for this database instance.

Usage:
SqliteConn$hasField(field)

Arguments:
field A valid Biodb entry field name.

Returns: TRUE of the field is defined, FALSE otherwise.

Method getQuery(): Run a query using a biodb SQL object.

Usage:
SqliteConn$getQuery(query)

Arguments:

query A valid BiodbSqlQuery object.
Returns: The result returned by DBI::dbGetQuery() call.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SqliteConn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Super class BiodbConn and sub-classes CompSqliteConn, and MassSqliteConn.

Examples

Create an instance with default settings:
mybiodb <- biodb::newInst()

Get a connector that inherits from SqliteConn:
chebi_file <- system.file("extdata”, "chebi_extract.sqlite"”, package="biodb")
conn <- mybiodb$getFactory()$createConn('comp.sqlite', url=chebi_file)

Get an entry
e <- conn$getEntry('1018")

Terminate instance.
mybiodb$terminate()

116 TestRefEntries

testContext Set a test context.

Description

Define a context for tests using testthat framework. In addition to calling testthat: :context().

Usage

testContext(text)
Arguments

text The text to print as test context.
Value

No value returned.

Examples

Define a context before running tests:
biodb::testContext("Test my database connector."”)

Instantiate a BiodbMain instance for testing
biodb <- biodb::createBiodbTestInstance()

Terminate the instance
biodb$terminate()

TestRefEntries A class for accessing the test reference entries.

Description

A class for accessing the test reference entries.

A class for accessing the test reference entries.

Details

The test reference entries are stored as JSON files inside inst/testref folder of each extension
package.

TestRetEntries 117

Methods

Public methods:
e TestRefEntries$new()
e TestRefEntries$getAllIds()
e TestRefEntries$getContents()
* TestRefEntries$getRealEntries()
* TestRefEntries$saveEntriesAsJson()
e TestRefEntries$getRealEntry()
e TestRefEntries$getRefEntry()
e TestRefEntries$getAllRefEntriesDf ()
* TestRefEntries$clone()

Method new(): New instance initializer.
Usage:
TestRefEntries$new(db.class, pkgName, folder = NULL, bdb = NULL)

Arguments:

db.class Identifier of the database.

pkgName Name of the package in which are stored the reference entry files.

folder The folder where to find test reference files for the package. Usually it is "inst/testref".
bdb A valid BiodbMain instance or NULL.

Returns: Nothing.

Method getAl1lIds(): Retrieve all identifiers.

Usage:
TestRefEntries$getAllIds(limit = @)

Arguments:

limit The maximum number of identifiers to return.

Returns: A character vector containing the IDs.

Method getContents(): Get the reference contents for the specfied IDs.

Usage:
TestRefEntries$getContents(ids)

Arguments:

ids The reference IDs for which to get the contents.

Returns: A character vector.
Method getRealEntries(): Retrieve all real entries from database corresponding to the refer-
ence entris.

Usage:

TestRefEntries$getRealEntries(ids = NULL)

Arguments:

118 TestRefEntries

ids A character vector of entry identifiers.

Returns: A list containing BiodbEntry instances.

Method saveEntriesAsJson(): Saves a list of entries into separate JSON files, inside the test
output folder.

Usage:
TestRefEntries$saveEntriesAsJson(ids, entries)

Arguments:

ids The IDs of the entries.
entries A list of entries. It can contain NULL values.

Returns: Nothing.
Method getRealEntry(): Retrieves one real entry from database corresponding to one refer-

ence entry.

Usage:
TestRefEntries$getRealEntry(id)

Arguments:

id The identifier of the entry.

Returns: A BiodbEntry instance.

Method getRefEntry(): Retrieves the content of a single reference entry.

Usage:
TestRefEntries$getRefEntry(id)

Arguments:

id The identifier of the reference entry to retrieve.

Returns: The content of the reference entry as a list.

Method getAllRefEntriesDf (): Load all reference entries.

Usage:
TestRefEntries$getAllRefEntriesDf ()

Returns: A data frame containing all the reference entries with their values.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TestRefEntries$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

testThat 119

Examples

Creates an instance
refEntries <- TestRefEntries$new('comp.sqlite', pkgName='biodb")

Gets identifiers of all reference entries
refEntries$getAllIds()

Gets a data frame with the content of the reference entries
refEntries$getAllRefEntriesDf ()

testThat Run a test.

Description

Run a test function, using testthat framework. In addition to calling testthat: :test_that().

Usage

testThat(msg, fct, biodb = NULL, conn = NULL, opt = NULL)

Arguments
msg The test message.
fct The function to test.
biodb A valid BiodbMain instance to be passed to the test function.
conn A connector instance to be passed to the test function.
opt A set of options to pass to the test function.
Value

No value returned.

Examples

Define a context before running tests:
biodb: :testContext("Test my database connector."”)

Instantiate a BiodbMain instance for testing
biodb <- biodb::createBiodbTestInstance()

Define a test function

my_test_function <- function(biodb) {
Do my tests...

}

Run test

120 warn(

biodb::testThat("My test works"”, my_test_function, biodb=biodb)

Terminate the instance
biodb$terminate()

warn Throw a warning and log it too.

Description

Throws a warning and logs it too with biodb logger.

Usage

warn(...)

Arguments

Values to be passed to sprintf().

Value

Nothing.

Examples

Throws a warning:
tryCatch(biodb: :warn('Index is %d.', 10), warning=function(w){w$message})

warne@ Throw a warning and log it too.

Description

Throws a warning and logs it too with biodb logger, using paste(().

Usage

warn@(...)

Arguments

Values to be passed to paste0().

Value

Nothing.

warn(Q 121

Examples

Throws a warning:
tryCatch(biodb: :warn@('Index is ', 10, '.'), warning=function(w){w$message})

Index

abstractClass, 4
abstractMethod, 5

biodb (biodb-package), 4
biodb-package, 4

biodb: :BiodbConn, 83, 85, 88, 103, 107, 114

biodb: :BiodbConnBase, /1, 39, 83, 85, 88,
103,107,114
:BiodbCsvEntry, 84, 105
:BiodbEntry, 38, 67, 68, 77, 79, 80,
84, 86, 105, 108
:BiodbListEntry, 86, 108
:BiodbTxtEntry, 77
:BiodbXmlEntry, 67
biodb::CsvFileConn, 83, 103
biodb: :SgliteConn, 85, 107
BiodbConfig, 4,5, 77
BiodbConn, 10, 37, 49, 66, 91, 115
BiodbConnBase, 30, 30, 39
BiodbCsvEntry, 37, 84, 106
BiodbDbInfo, 37, 39, 42
BiodbDbsInfo, 4, 39, 40, 77
BiodbEntry, 38, 42, 66, 68, 69, 80, 81
BiodbEntryField, 50, 61
BiodbEntryFields, 4, 49, 50, 57, 58, 77
BiodbFactory, 4, 30, 49, 62, 77
BiodbHtmlEntry, 67
BiodbJsonEntry, 68
BiodbListEntry, 68, 86, 108
BiodbMain, 4, 9, 40, 42, 58, 61, 66, 69, 109
BiodbSdfEntry, 77
BiodbTestMsgAck, 78
BiodbTxtEntry, 78, 79
BiodbXmlEntry, 67, 80

biodb:
biodb:

biodb:
biodb:
biodb:

checkDeprecatedCacheFolders, 81
closeMatchPpm, 82
CompCsvFileConn, 82, 91
CompCsvFileEntry, 84
CompSqgliteConn, 85, 115

122

CompSqliteEntry, 86

connNameToClassPrefix, 87
createBiodbTestInstance, 87

CsvFileConn, 83, 88, 105
df2str, 92

error, 93
error0, 93

FileTemplate, 94

getConnClassName, 95
getConnTypes, 96
getDefaultCacheDir, 96
getEntryClassName, 97
getEntryTypes, 97
getlLogger, 98

listTestRefEntries, 98
loadFileContents, 99
logDebug, 99
logDebug@, 100
logInfo, 100
logInfoo, 101
logTrace, 102
logTraceo, 102
1st2str, 103

MassCsvFileConn, 91, 103
MassCsvFileEntry, 105
MassSqliteConn, 107, 115
MassSqliteEntry, 108

newInst, 109
Progress, 109

Range, 111
runGenericTests, 113

SqliteConn, 85, 107,114

INDEX

testContext, 116
TestRefEntries, 116
testThat, 119

warn, 120
warn@, 120

123

	biodb-package
	abstractClass
	abstractMethod
	BiodbConfig
	BiodbConn
	BiodbConnBase
	BiodbCsvEntry
	BiodbDbInfo
	BiodbDbsInfo
	BiodbEntry
	BiodbEntryField
	BiodbEntryFields
	BiodbFactory
	BiodbHtmlEntry
	BiodbJsonEntry
	BiodbListEntry
	BiodbMain
	BiodbSdfEntry
	BiodbTestMsgAck
	BiodbTxtEntry
	BiodbXmlEntry
	checkDeprecatedCacheFolders
	closeMatchPpm
	CompCsvFileConn
	CompCsvFileEntry
	CompSqliteConn
	CompSqliteEntry
	connNameToClassPrefix
	createBiodbTestInstance
	CsvFileConn
	df2str
	error
	error0
	FileTemplate
	getConnClassName
	getConnTypes
	getDefaultCacheDir
	getEntryClassName
	getEntryTypes
	getLogger
	listTestRefEntries
	loadFileContents
	logDebug
	logDebug0
	logInfo
	logInfo0
	logTrace
	logTrace0
	lst2str
	MassCsvFileConn
	MassCsvFileEntry
	MassSqliteConn
	MassSqliteEntry
	newInst
	Progress
	Range
	runGenericTests
	SqliteConn
	testContext
	TestRefEntries
	testThat
	warn
	warn0
	Index

