Package ‘TargetSearch’

January 24, 2026

Type Package

Title A package for the analysis of GC-MS metabolite profiling data
Version 2.13.0

Date 2025-08-04

Maintainer Alvaro Cuadros-Inostroza <acuadros+bioc@gmail.com>
Imports graphics, grDevices, methods, ncdf4, stats, utils, assertthat
Suggests TargetSearchData, BiocStyle, knitr, tinytest
VignetteBuilder knitr

Description This packages provides a flexible, fast and accurate method
for targeted pre-processing of GC-MS data. The user provides a (often
very large) set of GC chromatograms and a metabolite library of targets.
The package will automatically search those targets in the chromatograms
resulting in a data matrix that can be used for further data analysis.

biocViews MassSpectrometry, Preprocessing, DecisionTree,
ImmunoOncology

License GPL (>=2)
URL https://github.com/acinostroza/TargetSearch

BugReports https://github.com/acinostroza/TargetSearch/issues
git_url https://git.bioconductor.org/packages/TargetSearch

git_branch devel

git_last_commit ealec73

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Alvaro Cuadros-Inostroza [aut, cre],
Jan Lisec [aut],
Henning Redestig [aut],
Matt Hannah [aut]


https://github.com/acinostroza/TargetSearch
https://github.com/acinostroza/TargetSearch/issues

2 Contents

Contents
TargetSearch-package . . . . . . . . . .. Lo L 3
baseline . . . . . . . .. e e e e e e 3
baselineCorrection . . . . . . . . ... e e e e e e e e e 5
baselineCorrectionQuant . . . . . . . . . . . . .. ... 7
checkRimLim . . . . . . . . . . . e 9
FAMEoutliers . . . . . . . . . . e e e e e e 11
FindAllPeaks . . . . . . . . . . e 12
FindPeaks . . . . . . . . . . e 15
ixRI . . . e 16
ImportFameSettings . . . . . . . . . .. 18
ImportLibrary . . . . . . . . . e 20
ImportSamples . . . . . . . L e e 23
makelndex . . . . . . .. e 25
medianRILib . . . . . ... e 26
ncdf4Convert,tsSample-method . . . . . . . . ... 0oL oo 27
nedfd _convert . . . ... L 28
ncdf4_convert_from_path . . . . .. ..o 30
nedfd_data_extract . . . . . . ... e e e 32
nedfd_plot_peak . . . .. 34
nedfd_update_ri . . . . ... e e 36
NetCDFPeakFinding . . . . . . . . . . . . . . e 38
peakCDFextraction . . . . . . . . . . . .. ... e 39
peakFind . . . . ..o 41
PlotFAME . . . . . . 42
plotPeak . . . . . .. 43
plotPeakRI . . . . . . L 44
plotPeakSimple . . . . . . ... 46
plotRefSpectra . . . . . . . L. 48
plotRIdev . . . . . . . e 49
plotSpectra . . . . . .. L 51
Profile . . . . . . e e e 52
ProfileCleanUp . . . . . . . . . . . . e 54
quantMatrixX . . . . ... e e e e 56
TI2UE . o o e e e 57
Rlcorrect . . . . . . . . e 58
TIMAtriX . . . . o e e e e e 61
ri_data_extraCt . . . . . . . .. e e e e e e 62
ri_plot_peak . . . . . . 64
TE2MT . o o e e e e e e e e e e 67
sampleRI . . . . . . . 68
TargetSearch-defunct . . . . . . . . . . . . .. ... 69
TargetSearch-deprecated . . . . . . . . . . . ... 70
text2bin . . ... e 70
TSExample . . . . . . . e 73
tsLib-class . . . . . .. e e e e 74

tsMSdata-class . . . . . . .. e 78



TargetSearch-package 3

tsProfile-class . . . . . . . . . . .. e e 79
tSRim-class . . . . . . . .. e 82
tsSample-class . . . . . . .. 84
tsUpdate,tsSample-method . . . . . . . . . . . ... . 87
updateRI . . . . . . . 87
Write.Results . . . . . . . . . e 89
writeLibText . . . . . . . . . e e e e e e e 91
writeMSP . . . e e 92
Index 93

TargetSearch-package A targeted approach for GC-MS data.

Description

This packages provides a targeted method for GC-MS data analysis. The workflow includes a peak
picking algorithm to convert from netcdf files to tab delimited files, retention time correction using
retention time markers provided by the user, and a library search using multiple marker masses and
retention time index optimisation.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

Maintainer: Alvaro Cuadros-Inostroza <inostroza@mpimp-golm.mpg.de>

baseline Baseline correction - wrapper function

Description

This function perform baseline correction by wrapping around the methods implemented on baselineCorrection
and baselineCorrectionQuant.

Usage
baseline(ncdf, bsline_method = c('classic', 'quantiles', 'none'), ...)
Arguments
ncdf A list containing the raw chromatogram data. The list can be generated by

peakCDFextraction. Expected elements are "Peaks” which is matrix of inten-
sities where the rows are retention times and columns are mass traces, "Time"
which is a vector of retention time in seconds.



4 baseline

bsline_method A string to select the baseline retention method. Options are "classic” which
implements Chang’s method (the old or classic TargetSearch method), "quantiles”
the quantiles based method, and "none"” which does nothing (returns the same
input).

Extra parameters to be passed to baselineCorrection or baselineCorrectionQuant

Details

This is a wrapper function around the different baseline correction algorithms. It is not intended to
be executed by the average user. Please refer to the respective man pages for details.

Value

Returns a list with the same elements as the input, but the element "Peaks” containing baseline
corrected values.

Author(s)

Alvaro Cuadros-Inostroza

See Also

RIcorrect, baselineCorrection, baselineCorrectionQuant

Examples

# get a random sample CDF from TargetSearchData
require(TargetSearchData)

cdffile <- sample(tsd_cdffiles(), 1)

pdata <- peakCDFextraction(cdffile)

# restrict mass range to reduce computing time (not needed for
# actual data)
pdata$Peaks <- pdata$Peaks[, 1:10] ; pdata$massRange <- c(85, 94)

# make a fake baseline as constant + noise (the CDF files have been
# already baseline corrected by the vendor software).

nscans <- length(pdata$Time)

noise <- as.integer(1000 + rnorm(nscans, sd=5))

pdata$Peaks <- pdata$Peaks + noise

# use Classic and Quantile methods for baseline correction (def parameters)
pdata_c <- baseline(pdata, 'classic')

# use Quantile method

pdata_q <- baseline(pdata, 'quantiles')

# plot function to compare traces

plfun <- function(p, q, k, n, titl) {
plot(p$Time, p$Peaks[, k], col='blue', type='l', xlab='time', ylab='intensity')
lines(q$Time, g$Peaks[, k] - n, col='red')



baselineCorrection 5

legend('topleft', c('corrected', 'original'), col=c('blue', 'red'), lty=1, lwd=2)
title(paste('method: ', titl))
}

op <- par(mfrow=c(2,2))
plfun(pdata_c, pdata, 1, noise, 'classic')
plfun(pdata_q, pdata, 1, noise, 'quantile')
plfun(pdata_c, pdata, 7, noise, 'classic')
plfun(pdata_qg, pdata, 7, noise, 'quantile')
par(op)

baselineCorrection Baseline correction - Chang’s method

Description

Function for baseline correction of GC-MS chromatograms using Chang’s method described below.

Usage
baselineCorrection(peaks, threshold = 0.5, alpha = 0.95, bfraction = 0.2,
segments = 100, signalWindow = 10, method = "linear")
Arguments
peaks Either a matrix object of spectra peak intensities to be baseline corrected, where
the rows are retention times and columns are mass traces; or, a named list con-
taining an element called "Peaks” which such matrix. The list can be generated
by peakCDFextraction
threshold A numeric value between 0 and 1. A value of one sets the baseline above the
noise, 0.5 in the middle of the noise and 0 below the noise.
alpha The alpha parameter of the high pass filter.
bfraction The percentage of the fragments with the lowest intensities of the filtered signal
that are assumed to be baseline signal.
segments The number of segments in which the filtered signal is divided.

signalWindow  The window size (number of points) used in the signal windowing step.

method The method used to approximate the baseline. "linear” (default) uses linear
interpolation. "spline” fits a cubic smoothing spline (warning: really slow).

Details

The baseline correction algorithm is based on the work of Chang et al, and it works as follows. For
every mass trace, i.e., columns of matrix peaks, the signal intensity is filtered by a first high pass
filter:

Yi = a(yic1 + 2 — xi—1)



6 baselineCorrection

The filtered signal is divided into evenly spaced segments (segments) and the standard deviation of
each segment is calculated. A percentage (bfraction) of the segments with the lowest values are
assumed to be baseline signal and the standard deviation (o) of the points within those segments is
calculated.

Once o has been determined, the points with absolute filtered values larger than 20 are considered
signal. After that, the signal windowing step takes every one of the points found to be signal as the
center of a signal window (signalWindow) and marks the points within that window as signal. The
remaining points are now considered to be noise.

The baseline signal is obtained by either using linear interpolation (default) or fitting a cubic
smoothing spline taking only the noise. The baseline can be shifted up or down by using the
parameter threshold, which is done by the formula:

B' = B +40(t—0.5)
where B is the fitted spline, o the standard deviation of the noise, and ¢ is the threshold between
0 and 1. Finally, the corrected signal is calculated by subtracting B’ to the original signal.

Value

The output depends on whether the input peaks is a matrix or a list. If it is a matrix, then the
function returns a matrix of the same dimensions with the baseline corrected intensities. If instead
peaks is a list, then the element called "Peaks"” will hold the output.

Note

This function is intended to be run internally, but it is exported for advanced users.

Author(s)

Alvaro Cuadros-Inostroza

References

David Chang, Cory D. Banack and Sirish L. Shah, Robust baseline correction algorithm for signal
dense NMR spectra. Journal of Magnetic Resonance 187 (2007) 288-292

See Also

RIcorrect, baseline

Examples

# get a random sample CDF from TargetSearchData
require(TargetSearchData)

cdffile <- sample(tsd_cdffiles(), 1)

pdata <- peakCDFextraction(cdffile)

# restrict mass range to reduce computing time (not needed for
# actual data)
pdata$Peaks <- pdata$Peaks[, 1:10] ; pdata$massRange <- c(85, 94)



baselineCorrectionQuant 7

# make a fake baseline as constant + noise (the CDF files have been
# already baseline corrected by the vendor software).

nscans <- length(pdata$Time)

noise <- as.integer(1000 + rnorm(nscans, sd=5))

pdata$Peaks <- pdata$Peaks + noise

# change parameters and see how the results change
pdatal <- baselineCorrection(pdata)
pdata2 <- baselineCorrection(pdata, threshold = 1, alpha = 0.97)

# pick random trace k

k <- 6

m <- cbind(pdata$Peaks[, k] - noise, pdatal$Peaks[, k], pdata2$Peaks[, k1)

matplot(pdata$Time, m, type='l"', lty=1, xlab='time', ylab="intensity')

legend('topleft', c('original', 'base correct 1', 'base correct 2'),
col=1:3, 1lty=1, 1lwd=1)

baselineCorrectionQuant
Baseline correction - quantiles method

Description

This function perform baseline correction using a quantiles around a moving window algorithm.

Usage
baselineCorrectionQuant(peaks, time, smooth=0, gntl=0.50, width=30,
unit=c("seconds”, "points"), steps=10)
Arguments
peaks Either a matrix object of spectra peak intensities to be baseline corrected, where
the rows are retention times and columns are mass traces; or, a named list con-
taining an element called "Peaks"” which such matrix and another called "Time"
with the retention time in seconds. The list can be generated by peakCDFextraction
time A vector of retention time in seconds. This parameter is used if peaks is a
matrix. Otherwise, the element called "Time" is used instead and this parameter
is ignored.
smooth An integer. Smooth each signal by this number of points using a moving aver-
age. Smoothing is disabled if this value is less or equal than 1. Note that the
smoothing is applied after the baseline correction.
gntl Numeric scalar. The quantile for baseline estimation. The value must be in [0,
1].
width Numeric scalar. The size of the window centered around a scan for baseline

estimation. The size depends on the parameter unit below.



8 baselineCorrectionQuant

unit A string which chooses if the width are points (scans) or seconds.

steps Integer scalar greater than zero. To speed up computation, the baseline algorithm
does not compute the baseline estimate in each single scan, but in intervals of
steps steps. The intermediate points are estimated by simple linear regression.

Details

Applies a quantile based baseline estimation method. The method is applied for each ion mass
trace (column of peaks) individually. It simple computes for each data point of the trace the gntl
quantile, for example the 50% quantile, i.e., the median, of all the points which are within a width
distance or it.

In order for the method to work, select a width much larger than the widest peak.

For speed efficiency, and assuming that the baseline is a smooth curve, the quantiles are computed
every step points. For example, if step=3, then the quantiles will be computed every third scan
instead of every point. If instead step=1, then it will computed in every scan. The baseline of the
points in between (if step > 1) are approximated by linear interpolation.

Value

Returns a list with the same elements as the input, but the element "Peaks” containing baseline
corrected values. In case peaks is a matrix, it returns a matrix of the same dimension instead.

Author(s)

Alvaro Cuadros-Inostroza

See Also

RIcorrect, baseline, baselineCorrection

Examples

# get a random sample CDF from TargetSearchData
require(TargetSearchData)

cdffile <- sample(tsd_cdffiles(), 1)

pdata <- peakCDFextraction(cdffile)

# restrict mass range to reduce computing time (not needed for
# actual data)
pdata$Peaks <- pdata$Peaks[, 1:10] ; pdata$massRange <- c(85, 94)

# make a fake baseline as constant + noise (the CDF files have been
# already baseline corrected by the vendor software).

nscans <- length(pdata$Time)

noise <- as.integer(1000 + rnorm(nscans, sd=5))

pdata$Peaks <- pdata$Peaks + noise

# change parameters and see how the results change. Note that the default
# width of 30 seconds might be too small
pdatal <- baselineCorrectionQuant(pdata, steps=5)



checkRimLim

pdata2 <- baselineCorrectionQuant(pdata, width=50, steps=5)

# pick random trace k and compare correction values

k <-6

m <- cbind(pdata$Peaks[, k] - noise, pdatal$Peaks[, k], pdata2$Peaks[, kI)
matplot(pdata$Time, m, type='l"', lty=1, xlab='time', ylab="intensity')
legend('topleft', c('original', 'base correct 1', 'base correct 2'),

col=1:3, 1lty=1, lwd=1)

checkRimLim

Visually check retention index marker limits

Description

A function to visually check if the retention time search limits of the retention index markers (aka
FAMEs) are correct or need some adjustment.

Usage

checkRimLim(samples, rim, layout, show = TRUE, single = TRUE, extend = 0.5,
rect.col = "#e7e7e7", mar = c(2, 2, 2, 2), oma = c(3, 3, 2, 0.5),

cex.main

Arguments
samples
rim
layout

show

single

extend

rect.col

mar
oma
cex.main

type

1, type = "1", ...)

A tsSample object created by ImportSamples.
A tsRim object describing the retention index markers. See ImportFameSettings.

A vector of the form c(nr, nc) to arrange the panel by nr rows and nc columns.
If missing then the layout is created automatically.

Logical. If FALSE the plot is not shown, but the data points can be used for
further inspection or for custom plots.

Logical. If TRUE a single sample will be selected randomly for plotting. This
was the old default behavior. If FALSE all samples will be used for plotting (but
see note below).

a numeric coefficient to extend the time window search of the respective time
marker. Defaults to 0. 5.

the color for the background rectangle which indicates the current retention time
limits.

the subplots margins, passed to par().
the outer plot margins, passed to par().
The magnification to be used for main titles, passed to par().

A character vector indicating the type of plots. Default "1" for lines. Passed to
matplot().

extra plotting arguments passed to matplot() such as col, 1ty, pch, 1wd.



10 checkRimLim

Details

The function takes a tsSample object and creates a panel plot of the m/z traces around the area in
which a marker is expected to be, one panel for each marker. By default, a single (random) sample
is chosen (see option single) for plotting, but it is also possible to visualize many samples at the
same time (but see note below).

For multiple sample visualization, it is recommended to use sub-setting for the samples and rim
arguments in order to avoid over crowded plots, specially when there are several samples and several
retention index markers. See the examples below.

Plotting options such as col, 1ty, pch, lwd can be passed; these are in turn passed to matplot().
Note that these are passed to each panel; it not possible to pass different options to different panels
(for example to have different line colors). Moreover, using options such as x1im and ylim may
result in ‘empty’ plots (because each panel needs its own limits). If different styles are required,
then either make your own function from the output or use subsets of the rim (tsRim) object.

Value

The output value is either invisible or it depends on the option single. If this option is TRUE (the
old behavior), then the output will be a list of n times 2 matrices, each element corresponding to
a retention marker. Columns are retention time and intensities of the respective marker’s m/z. The
rows can be as many data points are within the search window.

If single=FALSE, the output is a list whose length is equal to length(samples) and its names are
equal to sampleNames(samples). Each element is in turn a list with exactly the same structure
described in the paragraph above.

Note

If single=TRUE, all CDF files will be scanned, which can take a significant amount of time to parse,
in particular, if there are hundred of them. Also due to this, each panel of the plot could be extremely
crowded. It is therefore recommended to use sample sub-setting to reduce this number, as shown in
the examples below.

See Also
matplot for plotting parameters, par for inner and outer margins parameters, tsSample, sampleNames,

tsRim, ImportFameSettings

Examples

require(TargetSearchData)

# get the cdf path TargetSearchData
cdfpath <- tsd_data_path()

# import samples (see ImportSamples() for details)
samples <- ImportSamples(tsd_file_path(”samples.txt”), CDFpath = cdfpath)

# Import RI markers (see ImportFameSettings())
rim <- ImportFameSettings(tsd_file_path("rimLimits.txt"))



FAMEoutliers 11

# choose a sample at random and plot the m/z traces around the retention time window
ret <- checkRimLim(samples, rim)

# to choose a specific sample and marker, use subsetting
ret <- checkRimLim(samples[3], rim[1:2])

# to display many samples at the same time, set the option “single” to “FALSE™ and select a subset
# of samples (recommended). In this example the first three samples are chosen.
ret <- checkRimLim(samples[1:3], rim, single=FALSE)

# in general, visualizing all samples (as shown below) at the same time it is not recommended
# for large number of samples.
## Not run:

ret <- checkRimLim(samples, rim, single=FALSE)

## End(Not run)

FAMEoutliers FAME outlier detection

Description

A function to detect retention time marker (FAME) outliers.

Usage

FAMEoutliers(samples, RImatrix, pdffile = NA, startDay = NULL, endDay = NULL,
threshold = 3, group.threshold = 0.05)

Arguments
samples A tsSample object created by ImportSamples function.
RImatrix A retention time matrix of the found retention time markers.
pdffile A character string naming a PDF file where the FAMEs report will be saved.
startDay A character vector with the starting days of your day groups.
endDay A character vector with the ending days of your day groups.
threshold A standard deviations cutoff to detect outliers.

group.threshold
A numeric cutoff to detect day groups based on hierarchical clustering. Must be
between 0. . 1.

Details
If no pdffile argument is given, the report will be saved on a file called "TargetSearch-YYYY-MM-DD.FAME-report.pdf"”,
where YYYY-MM-DD is a date.

If both startDay and endDay are not given (both set to either NULL or NA), the function will try to de-
tect day groups using a hierarchical clustering approach by cutting the tree using group. threshold



12 FindAllPeaks

as cutoff height. Otherwise, both must have the same length, must not contain NAs, and must match
the measurement days of the object samples. See example below.

Retention time markers that deviate more than threshold standard deviations from the mean of
their day group will be identified as outliers.

Value
A logical matrix of the same size of RImatrix. A TRUE value indicates that the retention time
marker in that particular sample is an outlier.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

RIcorrect, ImportSamples, TSExample

Examples

# load pre-calculated example data and objects
data(TSExample)

# find the retention marker outliers of the example data and save it in "outlier.pdf”
outliers <- FAMEoutliers(sampleDescription, RImatrix, pdffile = "outlier.pdf")

# find the outliers (although they are reported in the output PDF file)
apply(outliers, 1, which)

# using “startDay” and “endDay” to set day groups manually
sampleDays(sampleDescription) <- rep(letters[1:3], each=5) # make fake days a, b, c

# set days 'a' and 'b' in a group and day 'c' by itself
startDay <- c('a', 'c')
endDay <- c('b', 'c'")

outliers <- FAMEoutliers(sampleDescription, RImatrix, pdffile="outlier.pdf"”,
startDay=startDay, endDay=endDay)

FindAllPeaks Extract peaks from chromatogram files - low level function

Description

This function extracts all peaks of a given metabolite in a given retention time (RT) or retention
index (RI) window. This function is intended for fine-tuning metabolite search parameters.



FindAllPeaks 13

Usage

FindAllPeaks(samples, Lib, 1ibID, dev=NULL, mz=NULL, RI=NULL, RT=NULL,
mz_type = c('selMass', 'quantMass', 'topMass'),
columns = NULL)

Arguments
samples A tsSample object created by ImportSamples function.
Lib A tsLib object created by ImportLibrary function.
1ibID An index (integer or character) value representing the respective metabolite in
the reference library Lib. It must be a scalar.
dev The allowed retention index (RI) deviation or NULL. See details below.
mz A list of m/z values to search or NULL.
RI The expected retention index or NULL.
RT The expected retention time to search for instead of retention index, or NULL.
mz_type whether to search for the selective, quantification or top masses of the respective
metabolite.
columns Either NULL, a character vector, or an integer vector. In most cases, leave
it as NULL. This parameter is used to configure the column names or positions
of RI text files. See the documentation on the text2bin function for further
details.
Details

The function searches for all peaks of a metabolite in all samples within a time window (RT or RI).
The parameters dev, mz, RI, and RT have preference over the settings of the metabolite indexed by
1ibID. Moreover, the parameter RI has preference of over RT (see below). In fact, if all of these
parameters are not NULL, then refLib and 1ibID are not used.

The metabolite search can be performed using retention index (RI) or retention time (RT). To search
using RI, either specify the value by setting RI, or set both RI and RT to NULL, which defaults to
searching by the library RI. To search using RT, you must set RI to NULL and set dev to a value (i.e.,
not NULL), otherwise an error will be thrown. See examples below.

The dev parameter can either be NULL (as stated above), or a numeric vector. If the length is equal
to 1, then the RI search window is the given RI plus or minus dev. If the length is 2, then the search
window is from RI + dev[1] to RI + dev[2]. Note than in this case dev[1] is usually a negative
value. An error is raised if the length is greater than 2. Note that as mentioned above, this parameter
is required to search by RT. Needless to say, the dev parameter units should correspond with the
units of RI or RT accordingly.

The columns parameter is only needed for custom text RI files. There is (usually) no need to change
it.

Value

It returns a matrix in which each row represent a hit. Note that there can be zero rows if no hits are
found. The columns are named and these are:



14 FindAllPeaks

Int Peak intensity

RI Retention Index

RI Retention Time

mz the searched m/z value

fid the respective file or sample index. An integer value.
Note

This is an internal function not intended to be invoked directly, but it is exposed for convenience
and advanced users.

In the future it may replace FindPeaks.

See also the function ri_data_extract which offers a similar functionality but with different input
parameters.

Author(s)

Alvaro Cuadros-Inostroza

See Also

FindPeaks, ri_data_extract,

Examples

# load pre-calculated example data files and objects
require(TargetSearchData)
data(TSExample)

# get and set the RI file path
RIpath(sampleDescription) <- tsd_data_path()

# search all peaks of Valine (GC.3) and selective masses
peaks <- FindAllPeaks(sampleDescription, reflLibrary, 'GC.3')
head(peaks)

# a numeric index is also allowed
peaks <- FindAllPeaks(sampleDescription, reflLibrary, 3)
head(peaks)

# an asymmetric deviation search
peaks <- FindAllPeaks(sampleDescription, reflLibrary, 'GC.3', dev=c(-1000, 2000))
head(peaks)

# search arbitrary masses at arbitrary RI. The reference library and ID

# must be set set to NULL.

peaks <- FindAllPeaks(sampleDescription, NULL, NULL, dev=3000, RI=270000, mz=c(144, 100))
head(peaks)

# to search for RT, set the RT parameter to not NULL
peaks <- FindAllPeaks(sampleDescription, reflLibrary, 'GC.3', dev=3.0, RT=250)



FindPeaks 15

peaks <- FindAllPeaks(sampleDescription, NULL, NULL, dev=3.0, RT=250, mz=c(144, 100))
## Not run:
# note that 'dev' is required; this throws an error

peaks <- FindAllPeaks(sampleDescription, NULL, NULL, RT=250, mz=c(144, 100))

## End(Not run)

FindPeaks Extract peaks from chromatogram files

Description

This function extracts the maximum intensity of a list of masses in a given RI window.

Usage

FindPeaks(my.files, reflLib, columns = NULL, showProgressBar = FALSE)

Arguments
my.files A character vector naming RI files to be searched.
refLib A numeric matrix with three columns or a list of three column matrices. The
second column contains the masses and the first and third column contains the
RI limits.
showProgressBar
Logical. Should the progress bar be displayed?
columns Either NULL, a character vector, or an integer vector. In most cases, leave
it as NULL. This parameter is used to configure the column names or positions
of RI text files. See the documentation on the text2bin function for further
details.
Details

The reference library parameter refLib can be either a single three-column matrix or a list of such
matrices. If it is a list, the length must match the length of my. files. In this case, every component
will be used to iteratively search in the corresponding file.

The RI files format can be either "text" or "binary". The type is detected dynamically.

Value

A tsMSdata object.

Note

This is an internal function not intended to be invoked directly.



16 fixRI

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

medianRILib, sampleRI, peakFind, tsMSdata

Examples

# load example CDF files
require(TargetSearchData)

# load pre-calculated example data and objects
data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path
RIpath(sampleDescription) <- RI.path

my.files <- RIfiles(sampleDescription)

# make a three column matrix: lower RI, mass, upper RI
refLib  <- refLib(reflLibrary)

head(refLib)

# extract the peaks
peaks <- FindPeaks(my.files, reflLib)

fixRI Fixing Retention Time Index Correction

Description

This function can be used to correct the detected retention time index (RI) markers or to manually
force their location to specific retention times if, for example, the RI markers were not co-injected
with the biological samples.

Usage

fixRI(samples, rimLimits, RImatrix=NULL, sampleNames=NULL, quiet=TRUE)

Arguments
samples A tsSample object created by ImportSamples function.
rimLimits A tsRim object. See ImportFameSettings.
RImatrix Optional. A retention time matrix of the found retention time markers that was
obtained after running RIcorrect.
sampleNames Optional. A character vector naming the samples that are to be RI corrected.

quiet Logical. Do not print a list of converted files.



fixRI 17

Details

Sometimes the retention index limits (see ImportFameSettings) are not set correctly and you will
have to run the peak detection and RI correction function (RIcorrect) again, which may take a
long time specially if there are many samples.

Instead, a simple approach is to fix the RI limits and use this function to correct the generated RI
files. Since these files are much smaller than CDF files (chromatograms), this runs much faster.

Other possibility is that the time positions of one or more RI markers were wrongly detected because
there was just simply no peak or the RI markers where not co-injected in some samples. You
could manually force the locations of the RI markers. This case is discussed in the “RICorrection”
vignette.

The behavior of this function depends on whether the parameter RImatrix is NULL or not. If NULL,
the RI markers will be searched again (using the settings of rimLimits parameters, which you
should have already fixed) and the resulting values will be used to correct the RI files. If it is
a numeric matrix, then these values will be used to correct the RI files. Note that this matrix
dimensions are exactly m samples (rows) times n (columns) RI markers.

sampleNames controls which samples will be corrected. If NULL then all samples will be corrected.
It could be character vector (sample names) or a numeric vector representing the sample indexes.
Value

Invisible NULL. It prints the corrected samples if quiet is FALSE.

Note

In case the RI files are in text format and their column names are not standard (for example, when the
files were generated with another software), use the global option 'TS_RI_columns' or transform
the RI files to TargetSearch binary format. See the documentation in function text2bin.

Author(s)

Alvaro Cuadros-Inostroza

See Also

RIcorrect, FAMEoutliers,ImportSamples, ImportFameSettings

Examples

require(TargetSearchData)

# import reflLibrary, rimLimits and sampleDescription.
data(TSExample)

# get the CDF files

cdfpath <- tsd_data_path()

# select a subset of samples
smp <- sampleDescription[1:4]

# update the CDF path
CDFpath(smp) <- cdfpath



18 ImportFameSettings

# make a copy of the RI markers object
rim <- rimLimits

# mess up the limits of marker 3 (real value is 369 seconds app.)
rimLimits(rim)[3,] <- c(375, 400)

# run RIcorrect (skip CDF-4 conversion)
RImat <- RIcorrect(smp, rim, writeCDF4path=FALSE,
Window = 15, IntThreshold = 50)

# fix the limits of marker 3
rimLimits(rim)[3,] <- c(360, 400)

# you could run again RIcorrect, but this is faster
fixRI(smp, rim)

# get the RI matrix
RImat <- riMatrix(smp, rim)

# compare the values with the real ones (previously stored in RImatrix)
stopifnot( all.equal(RImat[, 1:4], RImatrix[,1:4], tolerance=1e-8) )

# manual adjustment or RI markers for sample 3.

# Warning: this is just an example to illustrate how to use this function.
# don't do this unless you know what you're doing.

RImat[,3] <- c(252, 311, 369)

fixRI(smp, rim, RImat, 3)

ImportFameSettings Retention time markers settings

Description

This function imports a list of retention standard markers for RI correction.

Usage
ImportFameSettings(file, mass=NULL, standard=NULL, colnames=FALSE, ...)
Arguments
file A character string naming a tab-delimited text file with standard markers OR a
matrix-like object.
mass Optional. The m/z standard marker(s). Either a scalar, which applies to every
marker, or a vector.
standard Optional. The RI values of the standards. A numeric vector.
colnames Logical flag. If TRUE, the column names will be used to look up for the settings,

otherwise the column positions will be used. See details below.
Options passed to read.delim, which is used internally to read the settings file.



ImportFameSettings 19

Details

The standard marker file is a tab-delimited text file with 2, 3 or 4 columns. Additional columns are
ignored. If the parameter colnames is FALSE, then the column names are ignored and they must be
in the following specified below. If TRUE, use the column names below (case is ignored). Note that
some columns are optional as they can be specified by the options mass and standard.

* LowerLimit - The Retention time lower limit in seconds (required).
* UpperLimit - The Retention time upper limit in seconds (required).
* RIstandard - The RI value of that standard. This is optional (option standard).

* mass - The m/z standard marker. This is optional (option mass).

Instead of passing a file via the file option, one can pass a matrix or a data.frame, The same
aforementioned conditions apply in terms of column names and number.

In general, the mass and the standard should be to NULL. If not, then they take precedence over the
values defined by the file parameter.

If no arguments are given, a default object will be returned.

Value

A tsRim object.

Note

If the parameter colnames is set to TRUE, then care needs to be taken regarding the column names:
they must be named exactly as described in the details section, otherwise they can be silently ig-
nored and a default value might be used instead. This has been the default behavior.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

RIcorrect, tsRim, read.delim

Examples

require(TargetSearchData)
# get the RI marker definition file
rim.file <- tsd_file_path("rimLimits.txt")

# set the mass marker to 87
mass <- 87

# load the definition
rimLimits <- ImportFameSettings(rim.file, mass = mass)

# sometimes you need to change the limits of a particular standard
rimLimits(rimLimits)[2,] <- c(410, 450)



20 ImportLibrary

# to change the mass value
rimMass(rimLimits) <- 85

# alternatively, you can pass a two column matrix as limits and pass the
# rest as parameters separately (toy example).

limits <- cbind(c(10, 20, 30), c(15, 25, 35))

mass <- 100

standard <- c(100, 200, 300)

rimLimits <- ImportFameSettings(limits, mass, standard)

# or combine all into a matrix (note the column order!)
def <- cbind(limits, standard, mass)
rimLimits <- ImportFameSettings(def)

ImportLibrary Library import

Description
These functions import a metabolite library file that will be used to processed the GC-MS data. Two
file formats are supported: a tab-delimited format and the more common NIST MSP format.
Usage
ImportLibrary(x, type = c("auto", "tab"”, "msp"), ...)
ImportLibrary.tab(libfile, fields = NULL, RI_dev = c(2000,1000,200),

SelMasses = 5, TopMasses = 15, ExcludeMasses = NULL,
libdata, file.opt=NULL)

ImportLibrary.msp(libfile, fields = NULL, RI_dev = c(2000,1000,200),

SelMasses = 5, TopMasses = 15, ExcludeMasses = NULL)
Arguments

X A character string or adata. frame. If data. frame, it will be passed to ImportLibrary.tab
as parameter libdata. If character, it will be passed as libfile to either
ImportLibrary.tab or ImportLibrary.msp according to the file type (option
type).

libfile A character string naming a library file. See details.

type The library file format. Possible options are "tab" for a tab-delimited file, "msp"
for NIST MSP format, or "auto” for autodetection. Default to "auto”.

fields A two component list. Each component contains a regular expression used to

parse and extract the fields for retention index and selection masses. Only mean-
ingful for MSP format.



ImportLibrary 21

RI_dev A three component vector with RI windows.
SelMasses The number of selective masses that will be used.
TopMasses The number of most intensive masses that will be taken from the spectrum, if no

TOP_MASS is provided.
ExcludeMasses Optional. A vector containing a list of masses that will be excluded.

libdata Optional. A data frame with library data. The format is the same as the library
file. It is equivalent to importing the library file first with read. table and call-
ing ImportLibrary.tab after. This might be preferable for "fine tuning", for
example, if the library file is in CSV format instead of tab-delimited.

file.opt Optional. A list containing arguments to be passed to read. table.

Further arguments passed to ImportLibrary.tab or ImportLibrary.msp

Details
ImportLibrary is a wrapper for functions ImportLibrary.tab and ImportLibrary.msp which
detects automatically which function should be called.

ImportLibrary.tab reads a tab delimited text file by calling the function read. table which will
be parsed and converted to a tsLib object. The following arguments are used by default (which are
not exactly the defaults for read. table):

header=TRUE, sep="\t", quote="", dec=".", fill=TRUE, comment.char="#"

The argument file.opt can be used to change these options. Other alternative is to import first the
file with read.table and friends, and call ImportLibrary with the resulting data.frame. This
allows more flexibility with libraries with unusual characters, for example.

These columns are needed:

e 1ibID - A unique identifier for the metabolite.

* Name - The metabolite name.

* RI - The expected RI.

e SEL_MASS - A list of selective masses separated with semicolon.

* TOP_MASS - A list of the most abundant masses to be searched, separated with semicolons.

* Win_k - The RI windows, k = 1,2,3. Mass search is performed in three steps. A RI window
required for each one of them.

* SPECTRUM - The metabolite spectrum. m/z and intensity values are separated by spaces, colons
or semicolons (see notes on the format below).

* QUANT_MASS - A list of masses that might be used for quantification. One value per metabolite
and it must be one of the selective masses. (optional)

The columns Name and RI are mandatory. At least one of columns SEL_MASS, TOP_MASS and
SPECTRUM must be given as well. By using the parameters SelMasses or TopMasses it is possi-
ble to set the selective masses or the top masses from the spectra. The parameter ExcludeMasses
is used only when masses are obtained from the spectra. The parameter RI_dev can be used to set
the RI windows. Note that in this case, all metabolites would have the same RI windows.

The SPECTRUM format can be a list of m/z-intensity pairs separated by colons: 85:8 86:13 87:5
88:4 ..., or similar to the MSP spectrum format (shown below): 85 8; 86 13; 87 5; 884; ....



22

ImportLibrary

The internal parser is not strict, so even a list of integers separated by spaces is allowed, for example,
86 8 86 13 .. .. The only restriction is that the number of integers is even, otherwise the input is
truncated. If the spectrum is not available for some analytes, simply leave the respective cell empty
or use NA. Note: Only digits(0-9), spaces, colons(:) and semicolons(;) are allowed in this column;
the presence of other characters will generate and error, unless it is NA.

A unique identifier may be provided as well (1ibID). This could be a external database identifier. If
it is not provided, a random identifier will be created of the form GC.k, k = 1,...,N.

The MSP format is a text file that can be imported/exported from NIST. A typical MSP file looks
like this:

Name: Pyruvic Acid

Synon: Propanoic acid, 2-(methoxyimino)-, trimethylsilyl ester

Synon: RI: 223090

Synon: SEL MASS: 89]|115|158|174]189

Formula: C7H15NO3Si

MW: 189

Num Peaks: 41
85 8; 86 13; 87
99 55; 91 28; 92 98 13; 99 257;
100 169; 101 30; 102 103 13; 104 1;
113 3; 114 35; 115 358; 116  44; 117 73;
118 10; 119 4; 128 2; 129 1; 130 10;
131 3; 142 1; 143  19; 144 4; 145 1;
157 1; 158 69; 159 22; 160 4; 173 1;
174 999; 175 115; 176  40; 177 2; 189 16;
190 2;

88  4; 89 649;

~N = O

Name: another metabolite

Different entries must be separated by empty lines. In order to parse the retention time index
(RD) and selective masses (SEL MASS), a two component list containing the field names of RI
and SEL._MASS must be provided by using the parameter fields. In this example, use field
=1list("RI: ", "SEL MASS: "). Note that ImportLibrary expects to find those fields next to
"Synon:". Alternatively, you could provide the RI and SEL._MASS using the tsLib methods.

Libraries for TargetSearch and for different retention index systems, such as VARS or MDN35, can
be downloaded from http://gmd.mpimp-golm.mpg.de/.

Value

A tsLib object.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportSamples, tsLib


http://gmd.mpimp-golm.mpg.de/

ImportSamples 23

Examples

# get the reference library file
require(TargetSearchData)
lib.file <- tsd_file_path("library.txt")

# Import the reference library
refLibrary <- ImportLibrary(lib.file)

# set new names for the first 3 metabolites
libName(refLibrary)[1:3] <- c("Metab@1"”, "Metab@2", "Metab03")

# change the retention time deviations of Metabolite 3
RIdev(reflLibrary)[3,] <- c(3000,1500,150)

ImportSamples Sample definitions

Description

These functions import sample information from either a tab delimited file or a file system path.
The sample information contain sample names, CDF files and their measurement day, also known
as, measurement run or measurement batch.

Usage
ImportSamples(sampfile, CDFpath, RIpath, ftype=c("binary”, "text"”), ...)
ImportSamplesFromDir (CDFpath=".", RIfiles=FALSE, ftype=c("binary"”, "text"),
verbose=FALSE, ...)
Arguments
sampfile A character string naming a sample file or a data. frame. See details.
CDFpath A character string naming a directory where the CDF files are located (by default
is the current directory)
RIpath A character string naming a directory where the RI corrected text files are/will
be located.
RIfiles Logical. If TRUE, the function will look for for RI files (RI_*) instead of CDF
files (the default).
ftype A character string giving the file type for RI files. Options are "binary" and
"text".
verbose Logical. Show more output if TRUE.

Extra options whose meaning depend on the function: for ImportSamples, the
options will be passed to read. delim, while for ImportSamplesFromDir, these
are passed to dir



24 ImportSamples

Details

The sample file is a tab-delimited text file or, alternatively, a data.frame like the one would get
by calling read.delim. The following columns are expected, though only the first one below is
mandatory.

e CDF_FILE - The list of baseline corrected CDF files (mandatory).
* MEASUREMENT_DAY - The day or batch when the sample was measured (optional).
e SAMPLE_NAME - A unique sample identifier (optional).

The function first looks for columns matching those names. If they are not found, then it looks for
columns with the substrings *cdf’, ’day’ and "name’ respectively. If the *cdf’ column is not found,
the function raises an error, but if ’day’ is not found, then it assumes the measurement day is the
same for all. Moreover, if the column for sample names/identifiers is missing, then the function
uses the "cdf’ file names as identifiers.

During the column matching, the first match is taken in case of ambiguity. The column order does
not matter. Other columns could be included in that file. They won’t be used by the script, but will
be included in the "sample" R object.

The files given in the *cdf’ column may optionally include a relative path, such as mypath/myfile. cdf,
which will be relative to the working directory or relative to the argument CDFpath. Optionally, the
file extension can be omitted because ‘TargetSearch’ adds the . cdf extension automatically if miss-
ing. Note: it may fail in case sensitive file systems as a lower case extension is appended.

If the parameter CDFpath is missing, then the current directory is used. If RIpath is missing, the
value of CDFpath will be used.

The ftype parameter sets the file format of the RI files, which are created by the function RIcorrect.
"text" is the classic text format and "binary" is a binary version, designed for speed, of the text for-
mat (TargetSearch >= 1.12.0). The file format can be identified by the file extension (".txt" for text,
".dat" for binary), but this is just an indicator: the file format is detected dynamically during file
reading. Use the method fileFormat to set or get this parameter.

The function ImportSamplesFromDir scans for cdf files in the current or given directory. The
search can be made recursive by passing the parameter recursive=TRUE (actually passed to dir).

The parameter verbose will print a list of detected files is set to TRUE. This can be used for debug-
ging.

Value

A tsSample object.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportLibrary, tsSample



makelndex 25

Examples

# get the sample definition definition file
require(TargetSearchData)
cdfpath <- tsd_data_path()
sample.file <- tsd_file_path("samples.txt")

# set a path where the RI files will be created
RIpath <- "."

# import samples
sampleDescription <- ImportSamples(sample.file, CDFpath = cdfpath, RIpath = RIpath)

# change the sample names. It is required that the names must be unique.
sampleNames(sampleDescription) <- paste(”Sample”, 1:length(sampleDescription), sep = "_")

# change the file paths (relative to the working path)
CDFpath(sampleDescription) <- "my_cdfs”
RIpath(sampleDescription) <- "my_RIs”

makeIndex Make an index vector out of selective/top masses

Description

A function that makes an index for selective or top masses. Replaces the method 1ibId.

Usage

makeIndex(lib, sel=TRUE)

Arguments
lib A tsLib object.
sel A logical flag. If TRUE return an integer index for selective masses, otherwise
for top masses.
Details

This is an internal function that should not be used. It is exposed because the method it replaces,
1ibId, was originally exposed, so compatibility is not lost.
Value

An integer vector, where each number is associated with an element of the library object, and its
multiplicity with the number of selective or top masses.



26 medianRILib

Note

It is equivalent to the deprecated method 1ibId.

Author(s)

Alvaro Cuadros-Inostroza

See Also
tsLib

Examples

# load example objects

data(TSExample)

# generate an index for selective masses
(idx <- makeIndex(reflLibrary, TRUE))

medianRILib Median Rl library correction

Description

Return a tsLib object with the median RI of the selective masses across samples.

Usage

medianRILib(samples, Lib, makeReport = FALSE, pdfFile = "medianLibRep.pdf",
columns = NULL, showProgressBar = FALSE)

Arguments
samples A tsSample object created by ImportSamples function.
Lib A tsLib object created by ImportLibrary function.
makeReport Logical. If TRUE will report the RI deviations for every metabolite in the library.
pdfFile The file name where the report will be saved.
columns Either NULL, a character vector, or an integer vector. In most cases, leave
it as NULL. This parameter is used to configure the column names or positions
of RI text files. See the documentation on the text2bin function for further
details.
showProgressBar
Logical. Should the progress bar be displayed?
Value

A tsLib object. It will update the slot med_RI which contains the median RI of every searched
metabolite.



ncdf4Convert,tsSample-method 27

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportSamples, ImportLibrary, tsLib-class

Examples

require(TargetSearchData)
data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path
RIpath(sampleDescription) <- RI.path
# Import Library

refLibrary <- ImportLibrary(tsd_file_path('library.txt"))
# update median RI
refLibrary <- medianRILib(sampleDescription, reflLibrary)

# perhaps you need to adjust the library RI of one metabolite and the allowed time
# deviation (first time deviation window)

libRI(refLibrary)[5] <- 306500

RIdev(refLibrary)[5,1] <- 2000

refLibrary <- medianRILib(sampleDescription, reflLibrary)

ncdf4Convert, tsSample-method
Method for converting CDF-3 files to CDF-4

Description

ncdf4Convert is a high level method used to convert from CDF-3 to ‘TargetSearch’ new CDF-4
custom file format.

Usage
ncdf4Convert(obj, path, ...)
Arguments
obj A tsSample object
path A character vector representing file path in which the newly created CDF-4 files

will be stored. If missing, the files will be save in the same directory as the
source CDF-3 files

Extra arguments passed to ncdf4_convert, such as baseline correction options.



28 ncdf4_convert

Details

This is a high level interface to ncdf4_convert which uses a tsSample as input. The advantage of
using this function is that it updates the paths to the CDF-4 files for downstream analysis.

The parameter path can be used to change the original paths, which may be necessary if those files
are on a read-only file-system. If this parameter is missing, the same paths are used. Note that the
path are re-cycled to match the length of the samples.

The ...can be used to pass extra arguments to ncdf4_convert and to baseline. Refer to those
man pages for details.

Value

A new tsSample object with updated CDF-4 file paths. The files are converted in the background.

Author(s)

Alvaro Cuadros-Inostroza

See Also

ncdf4_convert

Examples

require(TargetSearchData)
data(TSExample)

# get the CDF files
cdfpath <- tsd_data_path()

# update the CDF path
CDFpath(sampleDescription) <- cdfpath

# transform the CDF (the files are copied in the current directoru)

newSamples <- ncdf4Convert(sampleDescription, path=".")
ncdf4_convert Convert from a NetCDF file format 3 to format 4
Description

Convert from NetCDF format 3 into a custom TargetSearch NetCDF format 4. The new NetCDF
just contains the raw data in a matrix format in order to allow easier and faster data manipulation.

Usage

ncdf4_convert(cdfFile, outFile = NULL, force = FALSE,
baseline = FALSE, ...)



ncdf4_convert

Arguments

cdfFile

outFile

force

baseline

Details

29

The NetCDF file to be converted

The new output file. If NULL, it replaces the cdfFile’s file extension (which
should be .cdf) by .nc4. If the file extension is not .cdf, then .nc4 is just
appended. If the path to the file does not exist, it will be created automatically.

Logical. Set to TRUE to allow file overwrites, for example if the destination file
still exists, in which case a warning is thrown. Default to FALSE.

Logical. Whether or not baseline correct the input file.

extra options passed to baseline().

Starting from version 1.42.0, TargetSearch introduces a custom NetCDF file which is used for
faster and easier data manipulation. This means, ion traces within a retention time can be quickly
extracted, which if often required before plotting. Formerly, this process required parsing the whole
file before the data could be extracted.

Note that this function only takes one file at the time. To convert many files at the same time, see the
function ncdf4_convert_from_path() or the high level method ncdf4Convert(). Alternatively,
you can call this function in a loop or using the lapply family of functions.

Keep in mind this function is intended for internal use (or advanced users); it is exported for conve-
nience. Using the method ncdf4Convert() is recommended.

Value

A string. The path to the converted file or invisible.

File structure

The structure of the NetCDF format 4 is straightforward and the variables and attributes are self-
evident. The following variables are defined.

* retention_time is a vector representing the retention time in seconds (double).

* retention_index is a vector representing the retention time indices (double). If missing,
then the variable contains zeros. Its length is equal to the length of retention_time.

* mass_range is vector of length two containing the minimum and maximum m/z values (inte-

ger).

* intensity is matrix of intensity values (integer) where columns represent ion traces and rows
are scans. The dimensions are length of "retention time" times the number of ions, i.e., mass
max - mass min + 1.

In addition, the following attributes are defined. Note that only creator and version are manda-

tory.

* creator a string equal to "TargetSearch" (for identification purposes).

* version file format version (string). Currently "1.1".

* time_corrected (optional) a flag (short integer) to indicate RI correction. If missing it de-
faults to false.



30 ncdf4_convert_from_path

* baseline_corrected (optional) a flag (short integer) to indicate that the file was baseline
corrected by TargetSearch. If missing it defaults to false.
Note

Currently, it is not possible to reconstruct the original NetCDF file from the converted file, especially
if nominal mass or baseline correction was applied. On the other hand, if the NetCDF files are
exported from custom chromatogram files (such as thermo raw files or LECO peg files), then the
NetCDF 3 files can be deleted safely as there is always a way to recover them.

Author(s)

Alvaro Cuadros-Inostroza

See Also

ncdf4Convert (), ncdf4_convert_from_path(), baseline()

Examples

require(TargetSearchData)

# get files from package TargetSearchData
cdfpath <- tsd_data_path()

# choose any file
cdf <- file.path(cdfpath, '7235eg@4.cdf')
nc4 <- '7235eg@4.nc4' # save file in current path

# run the function
ret <- ncdf4_convert(cdf, nc4)

# the output should match the output file
stopifnot(ret == nc4)

# Use mapply to convert many files at the same time.

cdf <- paste@('7235egd', 6:8, '.cdf')

nc4 <- paste0@('7235egd', 6:8, '.nc4')

ret <- mapply(ncdf4_convert, file.path(cdfpath, cdf), nc4)
stopifnot(ret == nc4)

ncdf4_convert_from_path
Convert CDF files to CDF4 from a path automatically

Description

Scan and convert NetCDF format 3 files into a custom TargetSearch NetCDF format 4 automatically.
The function scans the given input path(s) for files with "cdf” extension. This function simply
wraps around ncdf4_convert(), so that function will then convert each detected file.



ncdf4_convert_from_path 31

Usage

n on

ncdf4_convert_from_path(cdf_path =

Arguments
cdf_path Character string. The path(s) to scan for CDF files.
out_path Character string. The output path(s) in which the converted files will be saved.
recursive Logical. Should the search recurse into directories?
ignore.case Logical. Should the file extension matching be case insensitive?
Extra options passed to ncdf4_convert (), which in turn can be passed to baseline().
Details

This function simply searches for CDF-3 files and converts them to CDF-4 (custom format). By
default the current path is scanned and files are converted and save in the same place.

Multiple input directories can be given. If this is the case, the output path out_path must be either a
single path (in which case all files will be copied to the same directory) or an equal number of paths,
such that there is a corresponding match between input and output directories. If not, an assertion
error will be raised.

By default the search is case insensitive (see parameter ignore.case). For sensitive case matching,
the function looks for all lowercase extension cdf. At the moment, it is not possible to change this
pattern.

If recursive is TRUE, the search will also descend into subdirectories and the converted files will
follow a similar directory structure. Output directories will be created on demand if required (this
is actually done by ncdf4_convert() internally).

Value

A character vector of generated files or invisible.

Author(s)

Alvaro Cuadros-Inostroza

See Also

ncdf4_convert(), baseline()

Examples

# in this example we'll use a temporary directory as source
# and storage of CDF (because we need to reduce testing time in Bioc)

# get some files from package TargetSearchData and copy them
# to “srcdir”

require(TargetSearchData)

cdffiles <- tsd_cdffiles()[1:4]

srcdir <- file.path(tempdir(), 'gc-ms-data')

, out_path = cdf_path, recursive = FALSE, ignore.case = TRUE, ...



32

ncdf4_data_extract

dir.create(srcdir)
file.copy(cdffiles, srcdir)

# convert to output directory set above
outdir <- tempfile()
ncdf4_convert_from_path(srcdir, outdir)

# recursive search. note that output files will be saved under "gc-ms-data”
# in the output directory

cdfpath <- tempdir() # (base path where we copy the CDF files)
ncdf4_convert_from_path(cdfpath, outdir, recursive=TRUE)

# clean-up the mess
unlink(c(srcdir, outdir), recursive=TRUE)

ncdf4_data_extract Extract data ranges from a NetCDF file format 4

Description

A flexible and convenient function to extract raw data from a NetCDF file format 4 using time ranges
and m/z ranges or values. This is a better (and faster) alternative to the old peakCDFextraction()
function, which reads the whole CDF into memory, specially when only sections of the CDF are

needed.

Usage

ncdf4_data_extract(cdfFile, massValues, timeRange, useRT = FALSE)

Arguments

cdfFile
massValues
timeRange

useRT

Details

A path to a NetCDF file format 4.
A numeric vector representing m/z values.
A numeric vector of length 2 representing the lower and upper time limits.

Logical. If TRUE, the time range is in seconds, otherwise if FALSE (default), the
time range is in retention time index units (TRUE).

The function takes a NetCDF format 4 generated by "TargetSearch" and extracts raw intensity
values from given m/z ion traces within a given time range. The time range can be in seconds or
arbitrary retention time index units. For the latter case, the function expects a time corrected CDF

file.

If the given time range is out of range, a NULL value will be returned. In contrast, if the m/z
values are out of range, then zeros will be returned for out of range masses (provided that the
time range is not out of range). If timeRange is missing, then the whole time range. Similarly, if



ncdf4_data_extract 33

massRange is missing, then all the masses are extracted. If both are missing, the function behaves
as peakCDFextraction(), but the output (a named list) uses slightly different names.

The NetCDF must be have been previously converted to the custom "TargetSearch" format, other-
wise an error will be raised. See ncdf4_convert () for the conversion.

Value
A named list with the following components.

e Time Numeric vector: the retention time in seconds

¢ Index Numeric vector: the retention time index (or zero if the file was was not retention time
corrected

e Intensity Matrix: Rows are the retention times (or scans) and columns are masses.

* massRange Numeric vector of length 2: the mass range of the CDF

Note

An error will be produced for invalid files. Also, this function is intended to be used internally, but
it is exposed for convenience, for example, to create custom plots.

Author(s)

Alvaro Cuadros-Inostroza

See Also

ncdf4_convert(), peakCDFextraction()

Examples

# If you already have a NCDF4 file set the variable accordingly
# and skip the following section
# nc4file <- "/path/to/netcdf4.nc4”

### create NCDF4 from NCDF3 from the package TargetSearchData
require(TargetSearchData)

# pick first file

cdffile <- tsd_cdffiles()[1]

nc4file <- tempfile(fileext=".nc4")

ncdf4_convert(cdffile, nc4file)

# update RI data using pre-computed values
ncdf4_update_ri(nc4file, c(252, 311, 269), c(262320, 323120, 381020))
### end

# extract all data (behaves like peakCDFextraction)
data <- ncdf4_data_extract(nc4file)

# extract only certain m/z values
data <- ncdf4_data_extract(nc4file, massValues=c(116, 192))



34 ncdt4_plot_peak

# to use mass ranges, use the colon (:) operator for example
data <- ncdf4_data_extract(nc4file, massValues=c(120:130, 200, 203:209))

# restrict extraction to a retention index interval
data <- ncdf4_data_extract(nc4file, massValues=c(116, 192),
timeRange=c (200000, 220000))

# same, but using retention time in seconds.
data <- ncdf4_data_extract(nc4file, massValues=c(116, 192),
timeRange=c (200, 300), useRT=TRUE)

ncdf4_plot_peak Plot peaks from ncdf4 files

Description

A simple function to plot m/z ion traces from a CDF-4 file. This new interface supersedes the
function plotPeakSimple (but that can be used for CDF-3 files).

Usage

ncdf4_plot_peak(obj, massValues, timeRange, useRT = TRUE, showRT = useRT, plot = TRUE, ..

Arguments
obj Either a tsSample object or a path to NetCDF format 4 files.
massValues A numeric vector representing m/z values.
timeRange A numeric vector of length 2 representing the lower and upper time limits.
useRT Logical. If TRUE (default), the time range is expressed in seconds, otherwise if
FALSE, the time range is in retention time index units. This requires retention
time corrected CDF files or an error will be raised.
showRT Logical. Whether the x-axis of the resulting plot should represent seconds
(TRUE) or retention index units (FALSE). This allows, for example, to search for
a time range in seconds and display a graph in index units.
plot Logical. If FALSE nothing is plotted. This option may be used to simply extract
the data from the CDF files, but see also ncdf4_data_extract.
Extra arguments, such as pch, col, ..., to be passed to the plotting functions. See
details below.
Details

The function takes a list of path to CDF-4 files or an object of class tsSample as input; a list a m/z
values to select for; and a time range, which can be in seconds (default) or retention time index
(RI) units. For the RI units to work, the CDF files must have been previously time corrected (See
RIcorrect, updateRI).

>



ncdf4_plot_peak 35

The selection of the time range units depends on the parameter useRT. If TRUE, then the search
will be restricted to the specified range in seconds, otherwise RI units will be used. However, the
displayed time units are defined by the parameter showRT. The default behavior is to use the same
time units that were search for, but using seconds to search and RI units to display is possible by
setting showRT = luseRT (or the reverse). This is useful if the retention time correction was not
performed correctly and you want to verify what retention time correspond to what retention index.

The logical parameter plot controls whether a plot is drawn. This might be useful for simply ex-
tracting the data used for the plot and not caring about the plot itself. The function ncdf4_data_extract
can be used for that purpose as well (in fact that function is run under the hood).

Plot styling can be achieved by passing plotting extra parameters such as col, pch, 1ty, and others
(see par and plot). There is however a caveat due to how this function is implemented: the function
calls matlines once per each file (or sample), so parameters such as col, 1ty, etc., apply only to
the m/z values, not to the samples.

If you want to display different color lines for different samples (for example), add a ‘s’ to the
respective parameter name as a prefix. Currently, these parameters are allowed: scol, stype, slty,
slwd, spch, sbg, scex. See the examples below for details.

Finally, all plotting parameters are cycled over and in case of conflicts, the ‘s’ parameters take
precedence.

Value

Either a named list, one element per sample or CDF file, or invisible. Each element is in itself a
list with the following components (same as the output of ncdf4_data_extract).
e Time Numeric vector: the retention time in seconds

¢ Index Numeric vector: the retention time index (or zero if the file was was not retention time
corrected

e Intensity Matrix: Rows are the retention times (or scans) and columns are masses.

* massRange Numeric vector of length 2: the mass range of the CDF

Note

This function is only for CDF-4 files. Use the method ncdf4Convert or the function ncdf4_convert
for conversion of CDF-3 files. You may also use function plotPeakSimple if you don’t want to
convert the files.

Not all graphical parameters passed by ... will work, in particular panel.first and panel.last
are known to not work. Therefore, for more personalized plots, it is recommended to set plot=FALSE
and use the returned data for plotting.

Author(s)

Alvaro Cuadros-Inostroza

See Also

plotPeak, plotPeakSimple, ncdf4_data_extract, RIcorrect, updateRI



36 ncdf4_update_ri

Examples

require(TargetSearchData)

# load CDF files, convert them and save them in a temporary directory

dest <- tempdir()

cdf <- tsd_cdffiles()[1:3]

cdf <- sapply(cdf, function(x) ncdf4_convert(x, outFile=file.path(dest, basename(x))))

# plot single m/z on many cdf files

ncdf4_plot_peak(cdf, massValues=c(144), timeRange=c(255, 265))

# add some style (note the usage of “slty”™ and “scol”)

ncdf4_plot_peak(cdf, massValues=c(144), timeRange=c(255, 265), scol=1:3, slty=1:3,
main='Example Plot')

# plot many m/z on single cdf file (colors are set by matlines)

ncdf4_plot_peak(cdf[1], massValues=c(144, 145, 100, 218), timeRange=c(255, 265))

# add some styling (here simply use “1ty~ and “col”)

ncdf4_plot_peak(cdf[1], massValues=c(144, 145, 100, 218), timeRange=c(255, 265),
col=1:4, 1lty=1, main='Example Plot')

# multiple m/z and files is possible but it gets messy
ncdf4_plot_peak(cdf, massValues=c(144, 145, 218), timeRange=c(255, 265),
scol=1:3, main='Example Plot')

# do not plot anything and just get the data
z <- ncdf4_plot_peak(cdf, massValues=c(144, 145, 218), timeRange=c(255, 265), plot=FALSE)
str(z)

# using a tsSample object can achieve the same results
smp <- ImportSamplesFromDir(dest)
ncdf4_plot_peak(smp, massValues=c(144), timeRange=c(255, 265))

ncdf4_update_ri Update retention time index on a NCDF4 file

Description

Performs retention time index (RI) correction on a CDF file, using the retention markers found by
RIcorrect(), or to force the markers time if, for example, the RI markers were not co-injected
with the biological samples. It wraps around rt2ri()

Usage

ncdf4_update_ri(cdfFile, observed, standard)



ncdf4_update_ri 37

Arguments
cdfFile Path to the CDF file
observed The observed RI markers retention times’.
standard The RI of said markers.

Details

This function is similar to fixRI(), with the difference that is acts upon a single file, whereas
fixRI () requires a tsSample object.

Value

Returns invisible

Note

This function is meant to be used internally. It is exposed for convenience.

Author(s)

Alvaro Cuadros-Inostroza

See Also

fixRI, RIcorrect, ImportFameSettings

Examples

# pull a CDF file from package TargetSearchData as example
require(TargetSearchData)
cdffile <- tsd_cdffiles()[9]

# we need to convert from NCDF3 to NCDF4 in this example
# (NCDF3 files do not work)
nc4file <- ncdf4_convert(cdffile, 'example.nc4')

# to update the RI we need to pass two equal-length vectors of
# observed RT and standard RI values.

obsRT <- c(252, 311, 369) # approx time of RI markers

stdRI <- c(262320, 323120, 381020) # the exact RI of the markers

# finally update the RI for these file
ncdf4_update_ri(nc4file, obsRT, stdRI)



38 NetCDFPeakFinding

NetCDFPeakFinding Peak picking algorithm from CDF files

Description

This function reads a netcdf chromatogram file, finds the apex intensities and returns a list contain-
ing the retention time and the intensity matrices.

Usage
NetCDFPeakFinding(ncdf, massRange = NULL, Window = 15, IntThreshold = 10,
pp.method = "ppc”, baseline = FALSE, ...)
Arguments
ncdf A character string naming a netcdf file or a list generated by the function peakCDFextraction.
massRange Deprecated. It is completely ignored but it is kept for compatibility with old
scripts.
Window The window used by peak picking method. The number of points actually used

is 2xWindow + 1.

IntThreshold  Apex intensities lower than this value will be removed from the RI files.

pp.method The pick picking method to be used. Options are "smoothing"”, "gaussian”
and "ppc”.
baseline Logical. Should baseline correction be performed?

Extra options passed to baseline.

Details

The parameter ncdf should be either a path to a NetCDF file or a list generated by the function

peakCDFextraction. This list contains elements named "Time", "Peaks", "massRange", "Index",
and "baselineCorrected". Refer to the function’s man page for details.

Formerly, the massRange parameter was a numeric vector with two components: lower and higher
masses. Now, the mass range is detected automatically and it has no effect if it is set. It is kept only
for compatibility reasons.

There are three peak picking algorithms that can be used. The "smoothing” method smooths the
m/z curves by a moving average and then looks for a change of sign of the intensity difference be-
tween two consecutive points. The "gaussian” is exactly the same, but it uses a gaussian smoother
instead of a moving average.

The "ppc"” uses a sliding window and looks for the local maxima. This method is based on the
R-package ppc (now unavailable).



peakCDFextraction 39

Value

A three component list.

Time The retention time vector.
Peaks The intensity matrix. Rows are the retention times and columns are masses. The
first column is the lower mass value and the last one is the higher mass.
massRange The mass range.
Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

peakCDFextraction

Examples

require(TargetSearchData)
# pick first CDF file
CDFfile <- tsd_cdffiles()[1]

# extract peaks of first chromatogram

peaks.1 <- NetCDFPeakFinding(CDFfile, Window = 15, IntThreshold = 10, pp.method = "ppc")
# scan acquisition times

head(peaks.1$Time)

# peaks in matrix form. first column is mass 85, last one is mass 320.

head(peaks. 1$Peaks)

peakCDFextraction NetCDF to R

Description

This function reads a netcdf chromatogram (format 3 or 4) file and returns a list containing raw data
(retention time, intensity matrix) for easy manipulation.

Usage

peakCDFextraction(cdfFile, massRange)

Arguments

cdfFile A character string naming a netcdf file.

massRange Deprecated. The mass range is extracted automatically.



40 peakCDFextraction

Details

The cdfFile is a path to a CDF-3 or a CDF-4 format file. The CDF-4 format file is a custom file
used on TargetSearch.

The massRange parameter is deprecated but kept for compatibility. The actual m/z range is detected
automatically and returned to the user.

Value

A list with the following components:

Time The retention time vector.

Index The retention time index vector or NULL if unavailable.

Peaks The intensity matrix. Rows are the retention times and columns are masses. The
first column is the lower mass value and the last one is the higher mass.

massRange The mass range.

baselineCorrected

Logical. It is TRUE if the file was baseline corrected by the function baseline.
See note below.

Note

This function does not look for peaks, just extracts all the raw intensity values of the chromatogram
file. Use NetCDFPeakFinding instead.

The function does not know whether a CDF file was baseline corrected (for example by the GC-MS
software vendor), unless it was performed by the function baseline. It is perfectly possible to have
a baseline corrected file and the element baselineCorrected be FALSE.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ncdf4_data_extract for an updated and more flexible version of this function, NetCDFPeakFinding,
baseline.

Examples

### take a NCDF3 file from the package TargetSearchData
require(TargetSearchData)

# pick a CDF file and extract its data

cdffile <- tsd_cdffiles()[4]

peakData <- peakCDFextraction(cdffile)

# it also works for NCDF4 files (we need to convert the file first)
nc4file <- ncdf4_convert(cdffile, tempfile(fileext='.nc4'))
peakData2 <- peakCDFextraction(nc4file)



peakFind 41

# clean-up
unlink(nc4file)

peakFind Intensities and RI matrices

Description

This function returns a list of the intensities and RI matrices that were searched.

Usage

peakFind(samples, Lib, cor_RI, columns = NULL, showProgressBar = FALSE)

Arguments
samples A tsSample object created by ImportSamples function.
Lib A tsLib object created by ImportLibrary function with corrected RI values.
See medianRIL1ib.
cor_RI A matrix of correlating selective masses RI for every sample. See sampleRI.
columns Either NULL, a character vector, or an integer vector. In most cases, leave
it as NULL. This parameter is used to configure the column names or positions
of RI text files. See the documentation on the text2bin function for further
details.
showProgressBar
Logical. Should the progress bar be displayed?
Value

A tsMSdata object.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportSamples, ImportLibrary, medianRILib, sampleRI, tsMSdata, tsLib, tsSample

Examples

require(TargetSearchData)
data(TSExample)

# get RI file path
RI.path <- tsd_data_path()
refLibrary <- ImportLibrary(tsd_file_path("library.txt"))



42 plotFAME

# update RI file path
RIpath(sampleDescription) <- RI.path

peakData <- peakFind(sampleDescription, reflLibrary, corRI)
# show peak Intensities.
head(Intensity(peakData), 2)

# How to get intensities for a particular metabolite

# just select the identifier. Here extract the intensities
# for the first metabolite in the library

IntMatrix <- Intensity(peakData)[[1]]

plotFAME Plot a standard marker

Description

Plots a given standard marker.

Usage

plotFAME (samples, RImatrix, whichFAME)

Arguments
samples A tsSample object created by ImportSamples function.
RImatrix A retention time matrix of the found retention time markers.
whichFAME The retention marker to plot. Must be a number between 1 and the number of
markers.
Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

RIcorrect, FAMEoutliers, tsSample

Examples

data(TSExample)

# plot Retention index standards 1 to 3
plotFAME (sampleDescription, RImatrix, 1)
plotFAME (sampleDescription, RImatrix, 2)
plotFAME (sampleDescription, RImatrix, 3)



plotPeak

43

plotPeak

Plot peaks

Description

Plot a peak of a given metabolite in a given sample showing the search windows.

Usage

plotPeak(samples, Lib, metProf, rawpeaks, which.smp=1, which.met=1,
massRange=NULL, corMass=FALSE)

Arguments
samples
Lib
metProf

rawpeaks

which.smp
which.met

massRange

corMass

Value

A tsSample object created by ImportSamples function.
A tsLib object created by ImportLibrary function.
A metabolite profile object. See Profile

A three component list containing the retention time, the intensity matrix, and
the mass range. See peakCDFextraction.

A numeric value indicating the sample.
A numeric value indicating the metabolite.

A two component numeric vector with the scan mass range to extract. Use NULL
for automatic detection.

Logical. If TRUE, show only correlating masses for the selected metabolite.
Show all masses otherwise.

The output is the same as the function peakCDFextraction, that is, a list containing the retention
time (Time), the intensity matrix (Peaks), the retention index (Index), the m/z range (massRange),
and a flag indicating whether the chromatogram was baseline corrected (baselineCorrected).

The list can be recycled as the rawpeaks parameter for further plots (for example in a loop), so the
CDF file doesn’t need to be read again.

Note

This function was completely rewritten. For the old function, see plotPeakSimple.

In case the RI files are in text format and their column names are not standard (for example, when the
files were generated with another software), use the global option 'TS_RI_columns' or transform
the RI files to TargetSearch binary format. See the documentation in function text2bin.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig



44 plotPeakRI

See Also

plotPeakSimple, RIcorrect, tsMSdata, tsRim, peakCDFextraction, matplot

Examples

require(TargetSearchData)
data(TSExample)

# update CDF and RI paths
CDFpath(sampleDescription) <- tsd_data_path()
RIpath(sampleDescription) <- tsd_data_path()

# Plot the peak "Valine"” for sample number 1
grep(”Valine"”, libName(refLibrary)) # answer: 3

# plot peak from the cdf file. The rawpeaks object can be recycled in order to plot

# other metabolites.

rawpeaks <- plotPeak(sampleDescription, reflLibrary, metabProfile, which.smp=1,
which.met=3, massRange=c(85,500), corMass=FALSE)

plotPeakRI Plot peak RI across samples

Description

Plot peak RI of the quant mass of a given metabolite across samples. This function can be used to
visualize the elution time of a metabolite in the RI and RT dimension, and in combination with the
function sampleRI for fine tuning.

Usage

plotPeakRI(samples, Lib, 1ibID, dev=NULL, mz=NULL, RI=NULL, RT=NULL,
method=c('RI', 'Intensity'), useRI=TRUE, main=NULL,
col=NULL, int_range=c(2,6), cex_range=c(.7,6), key_width=2)

Arguments
samples A tsSample object created by ImportSamples function.
Lib A tsLib object created by ImportLibrary function.
1ibID An index (integer or character) value representing the respective metabolite in
the reference library Lib.
dev The allowed retention index (RI) deviation or NULL.
mz A list of m/z values to search or NULL.
RI The expected retention index or NULL.

RT The expected retention time to search for instead of retention index, or NULL.



plotPeakRI 45

method A character vector used to decided what peak should be chosen in case there are
ambiguous peaks. If 'RI', then the closest peak to the expected RI (or RT) is
chosen. If 'Intensity', then the highest is taken.

useRI Logical. Should the RI or RT be displayed in the y-axis?

main The title for the plot. If NULL, then the metabolite name is displayed.

col A color vector (length > 2) to show different levels of peak intensity.

int_range A length-two vector. The limits of the intensity for the color key. Note that the
intensity is expressed in log10, for example, a value of 2 represents an intensity
of 100.

cex_range The ’cex’ range value of the points. Lower-intense peaks are represented as

points of smaller size.

key_width The width in cm of the area allocated for the color key.

Details

This function uses internally FindAl1Peaks, so the same rules apply, i.e., the parameters dev, mz,
RI, and RT have preference over the settings of the metabolite indexed by 1ibID.

In the plot, the x-axis are samples as defined by the object samples. The y-axis is retention index
(RI) as shown on the left-hand-size. On the right-hand-size y-axis the approximate retention time
(RT) is shown. This is because the RT varies across samples, therefore it is averaged for displays
purposes. If useRI==FALSE, then the RT is displayed on the left hand size and the RI is averaged
and shown on the left.

Note that in general, the RI of the library or the RI given by the user is used for peak searching,
regardless of the value of parameter useRI. To search for RT instead, then the parameter RT is
required, as well as the deviation parameter dev, as in the function FindAl1lPeaks.

The point size is proportional to the logl0 of the peak intensity. Their size is controlled by the
parameters int_range and cex_range. By default, intensities of 100 (logl0 => 2) or lower are
shown with cex=0. 7, while intensities greater than 1000000 (log10 => 6) as displayed with cex=6.
This also affects the scaling of the color key.

The best peaks, selected according to method, are shown with a black border, while the other are
shown with no border and slightly transparent.

The output is the RI of the best peaks or invisible. Note that if no peak is found, then no plot is
drawn.

Value

Returns invisible or a numeric vector with the corresponding RI of the best peak chosen by method.
The Rl is returned even when the parameters useRI is set to TRUE or the parameter RT is specified.

For a more comprehensive output (but less nicer plot), check the function ri_plot_peak.

Author(s)

Alvaro Cuadros-Inostroza



46 plotPeakSimple

See Also

The function ri_plot_peak which is a low level version of this function, as well as FindAl11Peaks
for details of the peak searching parameters. Check also referenced functions sampleRI, ImportSamples,
and ImportLibrary

Examples

def.par <- par(no.readonly = TRUE) # save parameters for resetting

# load pre-calculated example data files and objects
require(TargetSearchData)
data(TSExample)

# get and set the RI file path
RIpath(sampleDescription) <- tsd_data_path()

# search all peaks of Valine (GC.3) and selective masses. Retention index
ri <- plotPeakRI(sampleDescription, reflLibrary, 'GC.3")

# increase deviation, change m/z to search, change colors and title

main <- 'Valine'

cols <- c('red', 'blue', 'green')

ri <- plotPeakRI(sampleDescription, reflLibrary, 'GC.3', dev=4000, mz=144,
main=main, col=cols)

# plot by RT instead. Note the RI is still returned and used for searching
ri <- plotPeakRI(sampleDescription, reflLibrary, 'GC.3', useRI=FALSE)

# same, but search by RT instead of RI. Note that the deviation 'dev' is
# required
ri2 <- plotPeakRI(sampleDescription, reflLibrary, 'GC.3', useRI=FALSE, RT=261, dev=2)

stopifnot(ri == ri2) # should be the same

par(def.par) # reset to default

plotPeakSimple Plot peaks - simple (old) interface

Description
Plot selected ions in a given time range. This is the old plot peak interface. Note: This function is
considered deprecated and its usage is discouraged; users should use ncdf4_plot_peak.

Usage

plotPeakSimple(rawpeaks, time.range, masses, cdfFile = NULL, useRI = FALSE,
rimTime = NULL, standard = NULL, massRange = NULL, ...)



plotPeakSimple 47

Arguments
rawpeaks A three component list containing the retention time, the intensity matrix, and
the mass range. See peakCDFextraction.
time.range The time range to plot in retention time or retention time index units to plot.
masses A vector containing the ions or masses to plot.
cdfFile The name of a CDF file. If a file name is specified, the ions will be extracted
from there instead of using rawpeaks.
useRI Logical. Whether to use Retention Time Indices or not.
rimTime A retention time matrix of the found retention time markers. It is only used
when useRI is TRUE.
standard A numeric vector with RI values of retention time markers. It is only used when
useRI is TRUE.
massRange A two component numeric vector with the scan mass range to extract or NULL
for automatic detection.
Further options passed to matplot.
Note

This function used to be named ’plotPeak’. This function was completely rewritten so we kept the
old version and renamed it ’plotPeakSimple’.

Important: This function is considered deprecated, though it is not yet labeled as such. Please
consider using ncdf4_plot_peak. This function, however, needs CDF files version 4.

That said, this function can still be used to plot peaks for CDF files version 3 without the need to
convert them to CDF format 4.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

plotPeak, RIcorrect, tsMSdata, tsRim, peakCDFextraction, matplot, ncdf4_plot_peak for
the new interface.

Examples

require(TargetSearchData)
data(TSExample)

# update CDF path
CDFpath(sampleDescription) <- tsd_data_path()

# Plot the peak "Valine” for sample number 1
grep(”Valine"”, libName(refLibrary)) # answer: 3
# select the first file

cdfFile <- CDFfiles(sampleDescription)[1]



48 plotRefSpectra

# select "Valine" top masses
top.masses <- topMass(refLibrary)[[3]]

# plot peak from the cdf file

plotPeakSimple(cdfFile = cdfFile, time.range = libRI(reflLibrary)[3] + c(-2000,2000),
masses = top.masses, useRI = TRUE, rimTime = RImatrix[,1],
standard = rimStandard(rimLimits), massRange = c(85, 500))

# the same, but extracting the peaks into a list first. This may be better if
# you intend to loop through several peaks.
rawpeaks <- peakCDFextraction(cdfFile, massRange = c(85,500))
plotPeakSimple(rawpeaks, time.range = libRI(reflLibrary)[3] + c(-2000,2000),
masses = top.masses, useRI = TRUE, rimTime = RImatrix[,1],
standard = rimStandard(rimLimits), massRange = c(85, 500))

plotRefSpectra Plot reference spectrum of a compound

Description

A simple function to plot the reference spectrum of a compound in the style of common visualiza-
tion tools. This is useful when comparing the spectrum of a metabolite with such software tools.

Usage
plotRefSpectra(lib, 1ibID, col='darkblue', main=NULL, xlab='m/z', ylab='Intensity',
label=TRUE, cex=0.8, label_col=NULL, sel_font=4, type='h', ...)
Arguments
lib A tsLib object created by ImportLibrary function.
1ibID An index (integer or character) value representing the respective metabolite in
the reference library 1ib. If missing, the first metabolite in the library is taken.
col The color(s) of the vertical lines. This option is passed to plot.
main The title for the plot. If NULL, then the metabolite name is displayed.
xlab The x axis label. Passed to plot.
ylab The y axis label. Passed to plot.
label Logical. It controls whether the m/z labels are displayed.
cex The cex values (numerical vector) used to scale the m/z labels of the plot.
label_col The color vector for the m/z labels.
sel_font The font for the m/z labels of the selective masses. This should be an integer like
the parameter font documented in par.
type A character that specifies the plot type. Defaults to 'h' (for vertical bars) and

cannot be changed by the user (it has no effect).

Extra graphical parameters passed to plot.



plotRIdev 49

Details

This is a simple function to plot the spectrum of a reference metabolite. It is expected that the
spectrum for that metabolite is not empty, in which case nothing is plotted and a warning is thrown.

The m/z label positions are determined automatically such that they do not intersect with each other
and do not touch the vertical lines of the plot.
Value

Returns invisible().

Author(s)

Alvaro Cuadros-Inostroza

See Also

See the function ImportLibrary for importing a metabolite library. See plot and par for graphical
parameters.

Examples

def.par <- par(no.readonly = TRUE) # save parameters for resetting

# load pre-calculated example data files and objects
data(TSExample)

# plot the reference spectrum of the compound ID 'GC.3'
plotRefSpectra(refLibrary, 'GC.3'")

# that is equivalent to
plotRefSpectra(refLibrary['GC.3"']1)

# change some graphical parameter and add a grid via 'panel.first'

plotRefSpectra(refLibrary, 'GC.3', col='darkred', main='Valine', xlab='mz',
ylab="intensity', cex=0.7, label_col='blue', sel_font=2,
panel.first=grid())

par(def.par) # reset to default

plotRIdev Plot Retention Time Index Deviation

Description

plotRIdev plots the Retention Time Index Deviation of a given set of metabolites. plotAl1RIdev
saves the plots of the RI deviations of all the metabolites in the library object into a PDF file.



50 plotRIdev
Usage

plotRIdev(Lib, peaks, 1ibID =1, ...)

plotAllRIdev(Lib, peaks, pdfFile, width = 8, height = 8, ...)
Arguments

Lib A tsLib object created by ImportLibrary function.

peaks A tsMSdata object. See peakFind.

1ibID A numeric vector providing the indices of the metabolites to plot.

pdfFile A file name where the plot will be saved. Only plotAl1RIdev.

width, height The width and height of the plots in inches. Only plotAl1RIdev.
Further options passed to pdf.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportLibrary, tsLib, tsMSdata, pdf

Examples

require(TargetSearchData)
data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path
RIpath(sampleDescription) <- RI.path

peakData <- peakFind(sampleDescription, reflLibrary, corRI)
# Plot RI deviation of metabolite "Valine"

grep("Valine”, libName(refLibrary)) # answer: 3
plotRIdev(refLibrary, peakData, libID = 3)

# Plot an RI deviation overview of the first nine metabolites
plotRIdev(refLibrary, peakData, 1libID = 1:9)

# Save all RI deviation into a pdf file
plotAllRIdev(reflLibrary, peakData, pdfFile = "RIdeviations.pdf")



plotSpectra 51

plotSpectra Plot a Spectra Comparison

Description

plotSpectra plots a contrast between the reference spectra and the median spectra of a given
metabolite in the library. plotAl1lRIdev saves the plots of the median-reference spectra compar-
isons of all the metabolites in the reference library into a PDF file.

Usage

plotSpectra(Lib, peaks, 1libID = 1, type = c("ht", "ss"”, "diff"))

plotAllSpectra(Lib, peaks, type = "ht", pdffFile, width = 8, height =8, ...)
Arguments

Lib A tsLib object created by ImportLibrary function.

peaks A tsMSdata object. See peakFind.

1ibID A numeric vector providing the indices of the metabolites to plot.

type The type of the plot. Options are "ht", head-tail plot, "ss", side by side plot,

and "diff", spectrum difference plot.
pdfFile A file name where the plot will be saved. Only plotAl11RIdev.
width, height  The width and height of the plots in inches. Only plotAl1RIdev.

Further options passed to pdf.

Details

The median spectra is obtained by computing the median intensity of every ion across the samples.
The median and the reference spectra values are scaled to vary between 0 and 999 in order to make
them comparable.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

tsLib, tsMSdata,pdf



52

Examples

Profile

require(TargetSearchData)

data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path
RIpath(sampleDescription) <- RI.path

peakData <- peakFind(sampleDescription, reflLibrary, corRI)

# Plot a comparison RI deviation of metabolite "Valine”
grep("Valine”, libName(refLibrary)) # answer: 3
plotSpectra(refLibrary, peakData, 1ibID = 3, type = "ht")

# Plot the spectra "side by side”

plotSpectra(refLibrary, peakData, 1ibID

”

SS")

3, type

# Plot the spectra difference
plotSpectra(refLibrary, peakData, 1ibID = 3, type = "diff")

Profile

Average the correlating masses for each metabolite

Description

This function makes a profile from the masses that correlate for each metabolite.

Usage

Profile(samples, Lib, peakData, r_thres = .95, method = "dayNorm”, minPairQObs = 5)

Arguments
samples

Lib

peakData
r_thres

method

minPairObs

A tsSample object created by ImportSamples function.

A tsLib object created by ImportLibrary function with corrected RI values.
See medianRILib.

A tsMSdata object. See peakFind.
A correlation threshold.

Normalisation method. Options are "dayNorm”, a day based median normalisa-
tion, "medianNorm”, normalisation using the median of all the intensities of a
given mass, and "none”, no normalisation at all.

Minimum number of pair observations. Correlations between two variables are
computed using all complete pairs of observations in those variables. If the
number of observations is too small, you may get high correlations values just
by chance, so this parameters is used to avoid that. Cannot be set lower than 5.



Profile

Value

A tsProfile object. The slots are:

Info A data frame with a profile of all masses that correlate.
Intensity A list containing peak-intensity matrices, one matrix per metabolite.
RI A list containing RI matrices, one matrix per metabolite.
profInt A matrix with the averaged intensities of the correlating masses.
profRI A matrix with the averaged RI of the correlating masses.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportSamples, ImportLibrary, medianRILib, peakFind, tsProfile

Examples

require(TargetSearchData)
data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path
RIpath(sampleDescription) <- RI.path
# Import Library

refLibrary <- ImportLibrary(tsd_file_path('library.txt"))

# update median RI

refLibrary <- medianRILib(sampleDescription, reflLibrary)

# get the sample RI

corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.95)
# obtain the peak Intensities of all the masses in the library

peakData <- peakFind(sampleDescription, reflLibrary, corRI)

# make a profile of the metabolite data

metabProfile <- Profile(sampleDescription, reflLibrary, peakData, r_thres

# same as above, but with different thresholds.
metabProfile <- Profile(sampleDescription, reflLibrary, peakData,
r_thres = 0.9, minPairObs = 5)

0.95)

53



54 ProfileCleanUp
ProfileCleanUp Reduce redundancy of the profile
Description
This function reduces/removes redundancy in a profile.
Usage
ProfileCleanUp(Profile, timeSplit=500, r_thres=0.95, minPairQObs=5,
prioritization=c('mass', 'score'), corMass=1, score=0,
show=c('unidentified', 'knowns"', 'full'))
Arguments
Profile A tsProfile object. See Profile.
timeSplit A RI window.
r_thres A correlation threshold.
minPairObs Minimum number of pair observations. Correlations between two variables are

computed using all complete pairs of observations in those variables. If the
number of observations is too small, you may get high correlations values just
by chance, so this parameters is used to avoid that. Cannot be set lower than 5.

prioritization Selects whether the metabolite suggestion should be based on the number of

correlation masses (mass) or the score (score).

corMass Metabolites with a number of correlation masses lower than score will be

marked as *Unidentified RI’

score Metabolites with a score lower than score will be marked as unidentified.

show A character vector. If unidentified, all non-redundant metabolites will be re-
turned; if knowns, only returns those metabolites with correlation masses and
score greater than the given values; and if full, it shows all redundant metabo-
lites, which may be useful to retrieve the data from misidentified metabolites.

Details

Metabolites that are inside a timeSplit window will be correlated to see whether the metabolites

are potentially the same or not, by using r_thres as a cutoff. If so, the best candidate will be chosen
according to the value of prioritization: If 'mass’, then metabolites will be suggested based on

number of correlating masses, and if ’score’, then the score will be used. Metabolites that don’t
have al least corMass correlating masses and score score will be marked as ’unidentified” and not
will be suggested, unless all the metabolites in group are unidentified.

For example, suppose that three metabolites A (CM=3, S=900), B (CM=6, S=700), C (CM=5,
S=800) correlate within the same time group, where CM is the number of correlating masses and S
is the score.

o If prioritization="mass’, corMass=3, score=650, then the suggested order is B, C, A.



ProfileCleanUp 55

* If prioritization="mass’, corMass=3, score=750, then the suggested order is C, A, B.
* If prioritization="mass’, corMass=3, score=850, then the suggested order is A, B, C.
* If prioritization="score’, corMass=3, score=650, then the suggested order is A, C, B.
e If prioritization="score’, corMass=4, score=650, then the suggested order is C, B, A.
* If prioritization="score’, corMass=4, score=850, then the suggested order is C, A, B.

Note that by choosing prioritization="'mass', score=0, and corMass=1 you will get the former
behavior (TargetSearch <=1.6).

Value

A tsProfile object with a non-redundant profile of the masses that were searched and correlated,
and intensity and RI matrices of the correlating masses.

slot "Info” A data frame with a profile of all masses that correlate and the metabolites that
correlate in a timeSplit window.
slot "profInt” A matrix with the averaged intensities of the correlating masses.

slot "profRI" A matrix with the averaged RI of the correlating masses.
slot "Intensity”
A list containing peak-intensity matrices, one matrix per metabolite.

slot "RI" A list containing RI matrices, one matrix per metabolite.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

Profile, tsProfile

Examples

# load example data
require(TargetSearchData)
data(TSExample)

RI.path <- tsd_data_path()

refLibrary <- ImportLibrary(tsd_file_path("library.txt"))
# update RI file path

RIpath(sampleDescription) <- RI.path

# Import Library

refLibrary <- ImportLibrary(tsd_file_path('library.txt"))

# update median RI

refLibrary <- medianRILib(sampleDescription, reflLibrary)

# get the sample RI

corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.95)
# obtain the peak Intensities of all the masses in the library

peakData <- peakFind(sampleDescription, reflLibrary, corRI)

metabProfile <- Profile(sampleDescription, reflLibrary, peakData, r_thres = 0.95)



56 quantMatrix

# here we use the metabProfile previously calculated and return a "cleaned” profile.
metabProfile.clean <- ProfileCleanUp(metabProfile, timeSplit = 500,
r_thres = 0.95)

# Different cutoffs could be specified
metabProfile.clean <- ProfileCleanUp(metabProfile, timeSplit = 1000,
r_thres = 0.9)

quantMatrix Create an intensity matrix using quantification masses

Description

Create an intensity matrix using quantification masses. The quantification masses can be specified
when importing the library file or automatically.

Usage

quantMatrix(Lib, metabProfile, value=c("quantmass”, "maxint"”, "maxobs"), selmass=FALSE)

Arguments

Lib A tsLib object created by ImportLibrary function.

metabProfile A tsProfile object. The final result of the package. This object is generated
by either Profile or ProfileCleanUp.

value The method to select automatically the quantification mass. The options are:
“maxint” which selects the selective mass with the highest median intensity
across all samples; “maxobs” which selects the mass which the most observa-
tions (the one with fewer missing values; or “quantmass” which uses the selected
quantification mass defined by the library

selmass Logical. If TRUE, then only selective masses are considered if the option value
is either “maxint” or “maxobs”, otherwise all masses are considered (the default
behavior). If value is “quantmass”, this argument has no effect

Value

An intensity matrix with metabolites as rows and samples as columns. The column names are the
sample names of the respective tsSample object and the rownames correspond with the library
unique identifiers.

In addition, the matrix has these attributes:

* “quantMass” is a numeric vector that contains the quantification masses that was selected.

* “isSelMass” is a logical vector that indicates whether the quantification mass is also a selected
mass.

» “isCorMass” to indicate that the mass is one of the correlating masses.

¢ “libNames” the metabolite names (a character vector).



ri2rt 57

Author(s)

Alvaro Cuadros-Inostroza

See Also

tsLib, tsMSdata

Examples

require(TargetSearchData)
data(TSExample)

# process chromatograms and get a profile

RI.path <- tsd_data_path()

RIpath(sampleDescription) <- RI.path

refLibrary <- ImportLibrary(tsd_file_path('library.txt"))

refLibrary <- medianRILib(sampleDescription, reflLibrary)
corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.95)
peakData <- peakFind(sampleDescription, reflLibrary, corRI)

metabProfile <- Profile(sampleDescription, reflLibrary, peakData, r_thres = 0.95)

# get a Matrix using use default values, ie, use the quantification masses
# defined in the library

quantMat <- quantMatrix(refLibrary, metabProfile)

quantMat

# use 'maxint' to select the metabolites with the highest median intensity
guantMat <- quantMatrix(refLibrary, metabProfile, 'maxint')

# use 'maxobs' to select the metabolites with the most observed values
guantMat <- quantMatrix(refLibrary, metabProfile, 'maxobs')

ri2rt Retention Time Index to Retention Time conversion

Description
Convert retention time indices to retention times indices based on observed FAME RI and their
standard values.

Usage

ri2rt(riTime, rt.observed, ri.standard)

Arguments
riTime And RI vector or matrix to convert to Retention Time.
rt.observed The observed FAME RT’s. It could be a vector or a matrix.

ri.standard The standard RI for each FAME



58 Rlcorrect

Details

This function is the inverse of rt2ri.

Value

The converted RT

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

RIcorrect, FAMEoutliers

Examples

# RI standards

standard <- c(100, 200, 300, 400, 500)

# observed standard retention times
observed <- c(10.4, 19.3, 32.4, 40.2, 50.3)
# a random set of retention times

RI <- runif(100,90,600)
# the corrected RIs
RT <- ri2rt(RI, observed, standard)
RIcorrect Peak picking from CDF files and RI correction
Description

This function reads from CDF files, finds the apex intensities, converts the retention time to retention
time index (RI), and writes RI corrected text files (a.k.a. RI files). In addition, it can perform
baseline correction and also convert files to the new NetCDF-4 TargetSearch format.

Usage

RIcorrect(samples, rimLimits = NULL, massRange=NULL, Window, IntThreshold,
pp.method="ppc"”, showProgressBar=FALSE, baseline=FALSE,

writeCDF4path=TRUE, ...)
Arguments
samples A tsSample object usually created by ImportSamples function.
rimLimits A tsRim object. If set to NULL, no retention time will be performed. See
ImportFameSettings.
massRange Deprecated. It is completely ignored but it is kept for compatibility with old

scripts.



Rlcorrect 59

Window The window used for smoothing. The number of points actually used is 2*xWindow
+ 1. It must be an integer. See details.

IntThreshold  Apex intensities lower than this value will be removed from the RI files.

pp.method Peak picking method. Options are "smoothing", "gaussian" and "ppc". See
details.

showProgressBar
Logical. Should the progress bar be displayed?

baseline Logical. Should baseline correction be performed?

writeCDF4path  Whether or not convert a CDF-3 into a CDF-4. It can take a logical value or a
character vector representing file paths. See details below.

A list of options passed to baseline.

Details

"non non

There are three pick picking methods available: "ppc", "smoothing", "gaussian".

The "ppc" method (default) implements the peak detection method described in the ppc package. It
looks for the local maxima within a 2*Window + 1 scans for every mass trace.

The "smoothing" method calculates a moving average of 2xWindow + 1 points for every mass trace.
Then it looks for a change of sign (from positive to negative) of the difference between two consec-
utive points. Those points will be returned as detected peaks.

The "gaussian" method behaves similar to the "smoothing" method, but instead a gaussian smoother
is used instead of the moving average.

To work out a suitable Window value, the following might be useful: Window = (SR*PW - 1) / 2,
where SR is the scan rate of the MS instrument and PW is the peak width. Because Window is an
integer, the resulting value must be rounded. For example, for SR = 20 scans per second, a PW =
1.5 seconds, then Window = 14.5, which can be rounded to 15.

The RI file type is determined by the output of fileFormat method applied to the tsSample input
object. To choose between the available formats ("binary" and "text"), select it with fileFormat
method before calling RIcorrect.

The parameter writeCDF4path is used to convert CDF-3 files into a custom CDF-4 format. It can be
logical or a character vector. If TRUE, the default, the CDF-3 files will be converted automatically to
CDF-4 format. The files will be saved in the same directory as the original CDF-3. If it is character
vector representing file paths, then the CDF-4 will be saved in those paths instead (re-cycled to
the length of samples). Finally, if FALSE, then no CDF conversion will be performed. This is not
recommended, but if possible if you want to match the old TargetSearch behaviour. Note that also
the baseline correction or the retention time indices will not be updated as well.

If baseline is TRUE, the CDF files will be baseline corrected by passing the extra parameters to
baseline. See there for details.

Value

A matrix of the retention time of the markers. Every column represents a sample, while rows are RT
markers. In addition the matrix has two extra attributes named "intensity" and "mass". The former
is a matrix of same dimensions which contain the peak intensity of the markers, while the latter
represents the m/z value of the respective marker (this is taken from the rimLimits object).



60 Rlcorrect

Note

This function expects that the file extension of the input files is not .nc4, unless those files were
created by TargetSearch. If this is the case, the function may throw an error, in particular if
writeCDF4path is used. However, this should not be an issue as most vendor software export the
chromatograms as . cdf files.

If the parameter writeCDF4path points to a new path, you may need to call the methods ncdf4Convert
or CDFpath to update the path of the tsSample object, as this is not done automatically.

Likewise, if the files are TargetSearch’s, but do not have the .nc4 extension, this function will
create new .nc4 files.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

The functions ImportSamples, ImportFameSettings, NetCDFPeakFinding, FAMEoutliers, the
method ncdf4Convert, and the class definitions tsSample, tsRim.

Examples

require(TargetSearchData)

# import reflLibrary, rimLimits and sampleDescription.
data(TSExample)

# get the CDF files

cdfpath <- tsd_data_path()

cdfpath

list.files(cdfpath)

# update the CDF path

CDFpath(sampleDescription) <- cdfpath

# change file format of RI files as bin
fileFormat(sampleDescription) <- 'binary'

# Parameters: Intensity Threshold = 50 peak detection method = "ppc”, window = 15
# To match the old behavior, the do not create CDF-4 Files (not recommended)
RImatrix <- RIcorrect(sampleDescription, rimLimits, writeCDF4path=FALSE,

Window = 15, pp.method = "ppc”, IntThreshold = 50)

# Convert to CDF-4 (recommended) with same parameters

# Note: save files in same directory (as

RImatrix <- RIcorrect(sampleDescription, rimLimits, writeCDF4path=".",
Window = 15, pp.method = "ppc”, IntThreshold = 50)

# we need to update the sampleDescription to use the new files
# this is not done automatically
sampleDescription <- ncdf4Convert(sampleDescription, ".")

# you can try other parameters and other peak picking algorithm
RImatrix <- RIcorrect(sampleDescription, rimLimits,



riMatrix 61

Window = 15, pp.method = "smoothing”, IntThreshold = 10)

RImatrix <- RIcorrect(sampleDescription, rimLimits,
Window = 15, pp.method = "ppc”, IntThreshold = 100)

# the attributes intensity and mass can be accessed with by the attr function
intensities <- attr(RImatrix, "intensity")
mass <- attr(RImatrix, "mass")

# they should be identical
identical(mass, rimMass(rimLimits))

riMatrix Retention Time Index Matrix

Description

A function to search for retention index RI markers.

Usage

riMatrix(samples, rim)

Arguments
samples A tsSample object created by ImportSamples function.
rim A tsRim object. See ImportFameSettings.

Details

This function works similar to RIcorrect, but searches for RI markers in RI files (not in CDF files).
Can be used to retrieve the retention times of RI markers in already processed files.

Note that it does not perform any RI adjustment. See fixRI.

Value

A matrix of the retention time of the markers. Every column represents a sample, while rows are RT
markers. In addition the matrix has two extra attributes named "intensity" and "mass". The former
is a matrix of same dimensions which contain the peak intensity of the markers, while the latter
represents the m/z value of the respective marker (this is taken from the rimLimits object).

Note

In case the RI files are in text format and their column names are not standard (for example, when the
files were generated with another software), use the global option 'TS_RI_columns' or transform
the RI files to TargetSearch binary format. See the documentation in function text2bin.



62 ri_data_extract

Author(s)

Alvaro Cuadros-Inostroza

See Also

RIcorrect, FAMEoutliers,ImportSamples, ImportFameSettings, fixRI

Examples

require(TargetSearchData)

# import reflLibrary, rimLimits and sampleDescription.
data(TSExample)

# get the CDF files

cdfpath <- tsd_data_path()

# select a subset of samples
smp <- sampleDescription[1:4]

# update the CDF path
CDFpath(smp) <- cdfpath

# make a copy of the RI markers object
rim <- rimLimits

# run RIcorrect
RImat <- RIcorrect(smp, rim, massRange = c(85,320), writeCDF4path=FALSE,
Window = 15, pp.method = "ppc”, IntThreshold = 50)

# extract the retention times of the markers
RImat2 <- riMatrix(smp, rim)

# both matrices should be equal
stopifnot( all.equal(RImat, RImat2, tolerance=1e-8) )

ri_data_extract Extract peak data from a Rl file

Description

A convenient function to extract peak data from a RI file. This function is mostly intended for
debugging purposes, for example, when a given peak is not found within a expected time range
(which could be because a faulty retention time correction). The arguments of this function are
similar as those of the ncdf4_data_extract function.

Usage

ri_data_extract(RIfile, massValues, timeRange, useRT = FALSE, ...)



ri_data_extract 63

Arguments
RIfile A path to a RI file format (binary or text).
massValues A numeric vector representing m/z values. The values will be converted to inte-
gers internally.
timeRange A numeric vector of even length, or, a two-column matrix. This parameter rep-
resents the lower and upper time limits. See details below.
useRT Logical. If TRUE, the time range is in seconds, otherwise if FALSE (default), the
time range is in retention time index units (TRUE).
Extra parameters passed to internal functions. Currently, only the columns pa-
rameter is used for text-format RI files. This, however, should not be necessary.
See also text2bin.
Details

The function takes a RI file generated by TargetSearch (binary or text works) and extracts all the
peaks detected of given m/z ion traces in a given time range. The time range can be in seconds or
arbitrary retention time index units.

The parameter timeRange can be either a numeric vector of even length or a two-column matrix. If
it is a matrix, the first column represent the lower bounds while the second the upper ones. If it is a
vector, it must have at least two elements, which in this case represent the lower and upper limits,
or if longer, it will be coerced to matrix internally (Important: the values are filled by columns).
In any case, the number of rows of the (coerced) matrix must divide the length of the massValues
parameter, such that each row corresponds to a time range for each m/z value. This is done so the
ranges can be recycled.

The output is simply a four column matrix in which a row is a peak of a given ion trace at a retention
time (index). The output is always a matrix even if no peaks are found, in which case the number
of rows is zero.

Value

A four column matrix with column names described below. Each row represents a peak in the
specified time range. Potentially, there could be zero rows if no peaks are found.

* RI retention time index of the peak.

* RT retention time.

* Intensity peak height intensity

* mz the m/z of the peak

Note

This function is intended to be used internally or by advances users. It can be used for debugging
when TargetSearch fails to find a peak.

See also the function FindAllPeaks which offers a similar functionality but with different input
parameters.



64 ri_plot_peak

Author(s)

Alvaro Cuadros-Inostroza

See Also

text2bin, ncdf4_data_extract, FindAl1lPeaks, FindPeaks

Examples

require(TargetSearchData)
path <- tsd_data_path()
rifile <- tsd_rifiles()[1]

# extract peak data for m/z 116 and 117 in time range 180 - 220 seconds
data <- ri_data_extract(rifile, c(116, 117), c(180, 220), useRT=TRUE)

# same but using Retention Time Index
data <- ri_data_extract(rifile, c(116, 117), c(205000, 228000), useRT=FALSE)

# different time ranges for each m/z
trange <- c(180, 240, 280, 190, 250, 290)
data <- ri_data_extract(rifile, c(116, 144, 147), trange, useRT=TRUE)

# Note: the range definition above is equivalent to
trange <- cbind(c(180,240,280), c(190, 250, 290))

ri_plot_peak Plot peak RI across samples - low level interface

Description

Plot retention index or time of peaks from RI files or samples. This is a low level interface to
plotPeakRI that not relies on a metabolite library. This function is useful for quick peak data
visualization.

Usage

ri_plot_peak(obj, massValues, timeRange, useRT = TRUE, showRT = useRT, sizefun = NULL, plot = TRUE, ...)

Arguments
obj Either a tsSample object or a character vector of paths to Rl files.
massValues A numeric vector representing m/z values.
timeRange A numeric vector of length 2 representing the lower and upper time limits.
useRT Logical. If TRUE (default), the time range is expressed in seconds, otherwise if

FALSE, the time range is in retention time index units.



ri_plot_peak 65

showRT Logical. Whether the x-axis of the resulting plot should represent seconds
(TRUE) or retention index units (FALSE). This allows, for example, to search for
a time range in seconds and display a graph in index units.

sizefun A function that could be used to scale the point size of the plot via the parameter
‘cex’, for example, to scale the peak intensity. This function should take a nu-
meric vector as input and return a positive value. If NULL, then a default function
will be used. This function is called using the peak intensity as input.

plot Logical. If FALSE nothing is plotted. This option may be used to simply extract
the data from the RI files, but see also ri_data_extract.

Extra arguments, such as pch, col, ..., to be passed to the plotting functions. See
details below.

Details

The function uses internally ri_data_extract wrapped with a call to 1apply. Because the output
of lapply is a list, the list is transformed to a matrix by calling rbind. A column of sample
indices called sample is added so each row can be traced back to a sample.

The x-axis of the plot are indexed samples (or RI files), i.e., first sample is 1, second 2, and so on.
The y-axis is retention time (RT) or retention index (RI) depending on the value of showRT. Note
that you can search by RT and plot by RI depending on the value of useRT.

Plot styling can be achieved by passing plotting extra parameters such as col, pch, 1ty, and others
(see par and plot). Because the styles can be applied per sample or per m/z value, it is possible
to prefix a ‘s’ to those parameters to specify that the style applies to samples and no masses. The
available parameters are scol, spch, sbg and scex. See examples and also the notes below.

The parameter sizefun is a function that takes a numeric vector as input and returns a positive
value which correspond to the point size (parameter cex). This function will be applied on the
peak intensities and the result will be used as cex. If NULL, the scaling function is implemented as
(log10(x/100) * (9/8) + (1/2), where x is the peak intensity. Note that if either cex or scex is
passed to the function, then sizefun will have no effect.

The logical parameter plot controls whether a plot is drawn. This might be useful for simply
extracting the data for custom plotting with other packages such as ggplot2.

Value

Returns invisible or a five-column matrix (see below), where the number of rows correspond to
the number of peaks (or points) in the searched range. If no peaks are found in the given range, then
it returns NULL.

* RI retention time index or the peak.

* RT retention time.

* Intensity peak height intensity.

* mz the m/z of the peak.

* sample an integer representing the sample index.

Compare this list with ri_data_extract.



66 ri_plot_peak

Note

This function is intended for advanced users and for debugging purposes when TargetSearch fails
to detect a peak.

Not all graphical parameters passed by ... will work, in particular panel.first and panel.last
are known to not work. Therefore, for more personalized plots, it is recommended to set plot=FALSE
and use the returned data for plotting.

Author(s)

Alvaro Cuadros-Inostroza

See Also

plotPeakRI, ri_data_extract

Examples
require(TargetSearchData)

# get RI files from TargetSearchData
path <- tsd_data_path()
rifiles <- tsd_rifiles()

# simple plot no style

z <- ri_plot_peak(rifiles, massValues=c(144, 145, 100, 218), timeRange=c(255, 265))
# watch output data

head(z)

# add some style

ri_plot_peak(rifiles, massValues=c(144, 145, 100, 218), timeRange=c(255, 265),
pch=1:4, col=1:4)

# display the Retention Index instead

ri_plot_peak(rifiles, massValues=c(144, 145, 100, 218), timeRange=c(255, 265),
pch=1:4, col=1:4, showRT=FALSE)

# use RI index for the time range

ri_plot_peak(rifiles, massValues=c(144, 145, 100, 218), timeRange=c(267000, 275000),
useRT=FALSE, pch=1:4, col=1:4)

# use styling per sample

scol <- rep(1:5, each=3)

ri_plot_peak(rifiles, massValues=c(144), timeRange=c(255, 265), pch=19, scol=scol)

# using a tsSample object can achieve the same results (RI files are in text format)
smp <- ImportSamplesFromDir(path, ftype = "text")
ri_plot_peak(smp, massValues=c(144), timeRange=c(255, 265), pch=19, scol=scol)



1t2ri 67

rt2ri Retention Time to Retention Time Index conversion

Description

Convert retention times to retention indices based on observed FAME RI and their standard values.

Usage

rt2ri(rtTime, observed, standard)

Arguments
rtTime The extracted RT’s to convert
observed The observed FAME RT’s
standard The standard RI for each FAME
Details

Linear interpolation, interpolation outside bounds are done with continued linear interpolation from
the last two FAME’s

Value

The converted RI

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

RIcorrect, FAMEoutliers

Examples

# RI standards

standard <- c(100, 200, 300, 400, 500)

# observed standard retention times
observed <- c(10.4, 19.3, 32.4, 40.2, 50.3)
# a random set of retention times

RT <- runif(100,1,60)

# the corrected RIs

RI <- rt2ri(RT, observed, standard)



68 sampleRI

sampleRI Sample specific RI detection

Description

Return a matrix of the sample specific retention indices (RI) based on the correlating selective
masses.

Usage

sampleRI(samples, Lib, r_thres = 0.95, columns = NULL,
method = "dayNorm"”, minPairObs = 5, showProgressBar = FALSE,
makeReport = FALSE, pdfFile = "medianLibRep.pdf")

Arguments

samples A tsSample object created by ImportSamples function.

Lib A tsLib object created by ImportLibrary function with corrected RI values.
See medianRILib.

r_thres A correlation threshold.

columns Either NULL, a character vector, or an integer vector. In most cases, leave
it as NULL. This parameter is used to configure the column names or positions
of RI text files. See the documentation on the text2bin function for further
details.

method Normalization method. Options are "dayNorm”, a day based median normaliza-
tion, "medianNorm”, normalization using the median of all the intensities of a
given mass, and "none”, no normalization at all.

minPairObs Minimum number of pair observations. Correlations between two variables are
computed using all complete pairs of observations in those variables. If the
number of observations is too small, you may get high correlations values just
by chance, so this parameters is used to avoid that. Cannot be set lower than 5.

showProgressBar
Logical. Should the progress bar be displayed?

makeReport Logical. If TRUE will report the RI deviations for every metabolite in the library.

pdfFile The file name where the report will be saved.

Value

A matrix of correlating selective masses RI. Columns represent samples and rows the median RI of
the selective masses.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig



TargetSearch-defunct 69

See Also

ImportSamples, ImportLibrary, medianRILib, tsLib, tsSample

Examples

require(TargetSearchData)
data(TSExample)

# get RI file path

RI.path <- tsd_data_path()

# update RI file path

RIpath(sampleDescription) <- RI.path

# Import Library

refLibrary <- ImportLibrary(tsd_file_path('library.txt"))

# get the sample RI
corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.95)

# same as above, but changing the correlation threshold and the minimum number
# of observations
corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.9,

minPairObs = 10)

TargetSearch-defunct  Defunct functions in package ‘TargetSearch’

Description

Functions listed here are defunct and no longer available.

Details
These function have been removed from ‘TargetSearch’ and no longer available. Use the replace-

ment if any.

* fixRIcorrection has been replaced by fixRI.

» TargetSearchGUI has been removed. Please use regular ‘TargetSearch’ functions. The old
source code is archived at https://github.com/acinostroza/TargetSearchGUI.


https://github.com/acinostroza/TargetSearchGUI

70 text2bin

TargetSearch-deprecated
Deprecated functions in package ‘TargetSearch’

Description

The functions listed here have been deprecated and may be removed as soon as of the next release.

Details

These functions are deprecated. Use the replacement if available.

* 1libId method has been deprecated, or rather renamed. Use the fully equivalent makeIndex.

text2bin Convert Rl files from text to binary format and vice versa

Description

This function converts a list of RI files (also known as peak list files) in text or binary format to
binary or text format.

Usage
text2bin(in.files, out.files=NULL, columns=NULL)
bin2text(in.files, out.files=NULL)
Arguments
in.files A character vector of file paths to the input RI files.
out.files A character vector of file paths. If NULL, the input file extensions will be changed
accordingly ("txt" to "dat" and vice versa).
columns Either a numeric vector with the positions of the columns for SPECTRUM, RETENTION_TIME_INDEX,

and RETENTION_TIME; or a character vector with the respective names of those
columns. If NULL, then default (hard-coded) values will be used. If an integer
vector, the column position must start at zero. In addition, the column names
can be set by a global option (see details below).



text2bin 71

Details

These functions transform a list of RI files from and to binary to text representation. The format of
the input files is detected dynamically and an error will be issued on invalid files.

Transforming a binary file to text might be useful if you need to inspect what a RI file looks in the
inside (for example, you need to check that the peak detection was correct). On the other hand, a
text file to binary is highly recommended as it is faster to parse than a text file.

For text files, the order of the columns is important (see option columns above). The first entry
is the spectrum list, followed by the retention time index and the retention time. If the column
names are other than SPECTRUM, RETENTION_TIME_INDEX, and RETENTION_TIME, use the respective
column names or the column names positions starting at zero (first column is zero, second is one,
and so on).

Many functions relay on those column names and having to pass them as arguments on each func-
tion is tedious, so the global option TS_RI_columns can be set at the beginning, for example:

# using column names
options(TS_RI_columns=c('spec_column', 'RI_column', 'RT_column'))

# using column indices (zero-based!)
options(TS_RI_columns=c(1, 2, 0))

where "spec_column", "RI_column", and "RT_columns" are the names of the spectrum, retention
index and retention time columns.

This command is useful if your RI files were generated by another software. However, it is highly
recommended to simple convert those custom RI files into TargetSearch’s binary format and do
not worry about column names.

Value

A character vector of the created files paths or invisible.

File Format

The so-called RI files contain lists of m/z peaks detected for every ion trace measured in the samples.
Historically, the file format was a simple tab-delimited text file in the format described below. Note
that the column order could differ and additional columns could be present, but they are ignored.

RETENTION_TIME SPECTRUM RETENTION_TIME_INDEX
212.46 250:26 256:26 316:27 221029.7
212.51 114:46 162:30 251:27 221081.3
212.56 319:25 2211329
212.61 95:38 108:30 262:32 266:27 292:25 221184.5

The retention time is usually represented in seconds, while the retention time in arbitrary units,
which depends on the retention time correction standard method (in the table above it is in millisec-
onds, but other units can be used).



72

Note

Author(s)

See Also

Alvaro Cuadros-Inostroza

ImportSamples, tsSample, RIcorrect

Examples

require(TargetSearchData)

# take three example files from package TargetSearchData
in.files <- tsd_rifiles()[1:3]

# out files to current directory

out.files <- sub(”.txt"”, ".dat", basename(in.files))

# convert to binary format

res <- text2bin(in.files, out.files)

stopifnot(res == out.files)

# convert back to text
res <- bin2text(out.files)
stopifnot(res == basename(in.files))

# Demonstrate how to use the “columns™ option
# make dummy RI file with arbitrary column names and save

tmp <- data.frame(RT=c(101.5,102.5), SPEC=c('12:100 23:100",

# file must be tab-delimited, unquoted strings and no row
RI_test <- tempfile(fileext=".txt")

write.table(tmp, file=RI_test, sep="\t", quote=FALSE, row.

# convert this text file to binary format
## wrong! It fails because of invalid columns
# text2bin(RI_test)

# correct! The columns are correct
text2bin(RI_test, columns=c('SPEC', 'RI', 'RT'"))

# same example but using integers (not recommended)

text2bin

The spectrum column is represented by pairs of m/z and raw intensity (peak height), similarly as the
representation of a metabolite library (see ImportLibrary). Thus each pair correspond to a peak
of the respective ion trace.

The disadvantage of using text files is they are slow to parse, so a binary format was created which
represents the peak data as binary vectors so they are fast to parse. These files contain the extension

Beware that the respective tsSample object may need to be updated by using the method fileFormat.

it
"114:46 162:30"'), RI=c(300, 400) + .75)

names

names=FALSE)

text2bin(RI_test, columns=c(1, 2, @)) # note they start from zero.



TSExample 73

# Alternative, set a global option (so it can be used in a session)
opt <- options(TS_RI_columns=c('SPEC', 'RI', 'RT'))
text2bin(RI_test)

# or using integers (again, not recommended)
options(TS_RI_columns=c(1, 2, 0))
text2bin(RI_test)

# unset options
options(opt)

TSExample Example GC-MS data for TargetSearch Package

Description

A TargetSearch example GC-MS data. This datasets contains TargetSearch object examples gen-
erated from a E.coli salt stress experiment (See package TargetSearchData).

Usage

data(TSExample)

Format

The data contains the following objects:

sampleDescription a tsSample object. The sample description.

refLibrary a tsLib object. The reference library.

rimLimits a tsRim object. The RI markers definition.

RImatrix a matrix object. The retention time of the RI markers.

corRI a matrix object. The sample RI.

peakData a tsMSdata object. The intensities and Rls of all the masses that were searched for.

metabProfile a tsProfile object. The metabolite profile.

Details

This dataset contain only the objects. The actual source files are provided by the package Target-
SearchData.

See Also

ImportLibrary, ImportSamples, ImportFameSettings,



74 tsLib-class

Examples

# this run an example pipeline
require(TargetSearchData)

## The directory with the NetCDF GC-MS files
cdfpath <- tsd_data_path()

cdfpath

list.files(cdfpath)

# get files from TargetSearchData

samp.file <- tsd_file_path("samples.txt")
rim.file <- tsd_file_path("rimLimits.txt")
lib.file <- tsd_file_path("library.txt")

# import files from package

sampleDescription <- ImportSamples(samp.file, CDFpath = cdfpath, RIpath = ".")
refLibrary <- ImportLibrary(lib.file)
rimLimits <- ImportFameSettings(rim.file, mass = 87)

# update NCDF4
sampleDescription <- ncdf4Convert(sampleDescription, path=".")

# perform RI correction

RImatrix <- RIcorrect(sampleDescription, rimLimits, massRange = c(85,320),
IntThreshold = 25, pp.method = "ppc”, Window = 15)

# update median RI

refLibrary <- medianRILib(sampleDescription, reflLibrary)

# get the sample RI

corRI <- sampleRI(sampleDescription, reflLibrary, r_thres = 0.95)

# obtain the peak Intensities of all the masses in the library

peakData <- peakFind(sampleDescription, reflLibrary, corRI)

# make a profile of the metabolite data

metabProfile <- Profile(sampleDescription, reflLibrary, peakData, r_thres = 0.95)

# show the metabolite profile
profileInfo(metabProfile)

# show the matrix intensities
Intensity(metabProfile)

tsLib-class Class for representing a reference library

Description

This is a class representation of a reference GC library.

Details

Objects of this class are normally created by the function ImportLibrary, which is the recom-
mended method, though they can be created manually as shown in the examples.



tsLib-class 75

Use one of the methods described below to set or get the information of various slots. Most of them
are self-evident, but we describe some methods in the following paragraphs.

Some care is needed when using the methods quantMass<-, selMass<-, topMass<-. In order to
be consistent, the first m/z value of the slot topMass and selMass are equal to quantMass, and the
values of selMass are equal to the first couple of values of topMass. In other words, the following
constrain is applied.

quantMass : x[0]
selMass . x[el, x[11, ..., x[kl]
topMass . x[el, x[11, ..., x[kl, x[k+1]1, ..., x[n]

where 1 <=k <=n and x[i] is a m/z value. Thus, using one these methods will change the values
of the other slots. In the future, these methods will be deprecated, so it is better to not rely on them.
See the last example on how this can lead to unexpected results.

The ¢ method requires that the combination of all objects have unique identifiers (names), or in
other words, the objects cannot share identifiers. Duplicated identifiers are not allowed and an
error will be thrown. Since TargetSearch 2. 8.0, different column names of the 1ibData slot (see
method 1ibData) are allowed, as long as the data types are characters, numeric, or logical. More
complex type may or not may work.

Use the 1ibUID method to set or get the library unique identifiers (also referred as 1ibID). This is
a short string used for internal object data checking. It is sometimes useful if these identifiers refer
to identifiers of external databases, for example, KEGG identifiers. These identifiers are normally
supplied via the 1ibID column in the function ImportLibrary.

Note that the method 1ibId is deprecated and may be removed in a future version of TargetSearch.
Use the equivalent makeIndex instead. This method has nothing to do with unique identifiers like
1ibUID.

Slots

Name: "character”, the metabolite or analyte names.

RI: "numeric”, the expected retention time indices (RI) of the metabolites/analytes.
medRI: "numeric”, the median RI calculated from the samples.

RIdev: "matrix”, the RI deviation windows, k = 1,2,3. A three column matrix
selMass: "list", every component is a numeric vector containing the selective masses.
topMass: "list"”, every component is a numeric vector containing the top masses.
quantMass: "numeric”, the mass used for quantification.

libData: "data.frame", additional library information.

spectra: "list"”, the metabolite spectra. Each component is a two column matrix: m/z and inten-
sity.
Methods

[ signature(x ="tsLib"): Selects a subset of metabolites from the library.

$name signature(x = "tsLib"): Access column name of libData slot.



76

tsLib-class

1ibId signature(obj = "tsLib"): Deprecated. Use makeIndex instead.

length signature(x = "tsLib"): returns the length of the library. i.e., number of metabolites.
libData signature(obj = "tsLib"): gets/sets the 1ibData slot.

1ibName signature(obj = "tsLib"): gets the Name slot.

1ibRI signature(obj = "tsLib"): gets the RI slot.

1ibUID signature(obj = "tsLib"): gets the library unique identifiers, also know as 1ibID.
1ibUID<- signature(obj = "tsLib"): sets the library unique identifiers, also know as 1ibID.
medRI signature(obj = "tsLib"): gets the medRI slot.

refLib signature(obj = "tsLib"): Low level method to create a matrix representation of the
library.

RIdev signature(obj ="tsLib"): gets the RI deviations.

RIdev<- signature(obj ="tsLib"): sets the RI deviations.
quantMass signature(obj = "tsLib"): gets the quantification mass.
quantMass<- signature(obj = "tsLib"): sets the quantification mass.
selMass signature(obj = "tsLib"): gets the selective masses.

show signature(object = "tsLib"): show method.

spectra signature(obj = "tsLib"): gets the spectra.

topMass signature(obj = "tsLib"): gets the top masses.

¢ Combine two or more tsLib objects.

Note

Accessing the object slots directly via the @ operator is not supported, in particular, using it to set
slot values, because it could result in invalid objects. Always use the accessor methods to retrieve
the information.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportLibrary

Examples

showClass("tsLib")

# define some metabolite names

libNames <- c("Metabl1”, "Metab2"”, "Metab3")

# the expected retention index

RI <- ¢(100,200,300)

# selective masses to search for. A list of vectors.

selMasses <- list(c(95,204,361), c(87,116,190), c(158,201,219))

# define the retention time windows to look for the given selective masses.



tsLib-class 77

RIdev <- matrix(rep(c(10,5,2), length(libNames)), ncol = 3, byrow = TRUE)
# Set the mass spectra. A list object of two-column matrices, or set to
# NULL if the spectra is not available
spectra <- NULL
# some extra information about the library
libData <- data.frame(Name = libNames, Lib_RI = RI)
# create a reference library object
refLibrary <- new("tsLib"”, Name = libNames, RI = RI, medRI = RI, RIdev = RIdev,
selMass = selMasses, topMass = selMasses, spectra = spectra, libData = libData)

# get the metabolite names

libName(refLibrary)

# set new names

libName(reflLibrary) <- c("Metab01"”, "Metab@2", "Metab@3")

# get the expected retention times

libRI(refLibrary)

# set the retention time index for metabolite 3 to 310 seconds
libRI(refLibrary)[3] <- 310

# change the selection and top masses of metabolite 3
selMass(refLibrary)[[3]] <- c(158,201,219,220,323)
topMass(reflLibrary)[[3]] <- c(158,201,219,220,323)

# change the retention time deviations

RIdev(refLibrary)[3,] <- c(8,4,1)

# get and change the library identifiers
(gcID <- 1libUID(refLibrary))
1ibUID(refLibrary) <- c('GC_1"', 'GC_2', 'GC_3'")

B S S S s s
# objects can be subset and combined with the “[* and “c¢~ operators
1lib1 <- reflLibrary[1:2]

1lib2 <- reflLibrary[3]

lib <- c(lib1, 1lib2) # this restores the object reflLibrary

HEHHHHHHEHEEEH A HEHHREEEE AR AR
# These examples show how changing a quantitative or selective mass
# could lead to unexpected results.

# show quantMasses
quantMass(reflLibrary)

# suppose that we want to change the quant mass of metabolite 1 to 96 due
# to a typo in the library. We could do just
quantMass(reflLibrary)[1] <- 96

# however, we still see the mass 95 in the selective and top masses.
selMass(refLibrary)[[1]]
topMass(refLibrary)[[1]]

# to remove the mass 95, set the topMass and selMass explicitly, noting that
# the first masses coincides with 96 (the quantMass)
selMass(refLibrary)[[1]1] <- c(96, 204, 361)



78 tsMSdata-class

topMass(refLibrary)[[11] <- c(96, 204, 361)

tsMSdata-class Class for representing MS data

Description

This is a class to represent MS data obtained from the sample.

Details

The method as.list converts every slot (RI, RT, and Intensity) of a tsMSdata object into a
matrix. The converted matrices are stored in a list. Each converted matrix has an attribute called
’index’ that relates the metabolite index with the respective rows. The components of the resulting
list are named as the slots. If the slot RT is not defined or empty, then the output list will have only
two components. RT’ and ’Intensity’).

These objects are created by the functions FindPeaks and peakFind and there is really no need to
create them manually, so the examples focus on simple data manipulations.

The assignment methods retIndex<-, retTime<-, and Intensity<- are exposed for convenience,
though they should not be needed in general. These objects are tightly coupled to the reference
library (tsLib) and sample (tsSample) objects, so a modification could cause unexpected errors.
Use under your own risk if you know what you are doing.

Objects from the Class

Objects be created by calling the functions FindPeaks or peakFind. See their respective documen-
tation.

Slots

RI: "list", alist containing an RI matrix, one matrix per metabolite
RT: "list”, alist containing an RT matrix, one matrix per metabolite

Intensity: "list”, alist containing a peak intensity matrix, one matrix per metabolite

Methods

Intensity signature(obj = "tsMSdata"): gets the peak intensity list.
Intensity<- signature(obj = "tsMSdata"): gets the peak intensity list.
retindex signature(obj = "tsMSdata"): gets RT list.

retIndex<- signature(obj = "tsMSdata"): sets the RI list.

retTime signature(obj = "tsMSdata"): gets the RT list.

retTime<- signature(obj = "tsMSdata"): sets the RT list.

show signature(object = "tsMSdata"): show function.

as.list signature(object = "tsMSdata"): coerce a list object. See details



tsProfile-class 79

Note

For reasons explained in the details section, the methods retIndex<-, retTime<-, and Intensity<-
are considered deprecated and could be removed without notice in the feature.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

FindPeaks, peakFind

Examples

showClass("tsMSdata")

# some example manipulations using object peakData
data(TSExample)
peakData

# extract the intensities of the metabolites

int <- Intensity(peakData)

# “int” is a list of matrices where rows are m/z values and columns are samples
head(int)

# extract retention indices (same structure for the intensities)
ri <- retIndex(peakData)
head(ri)

# coerce the whole object into a list of matrices (see details)
data <- as.list(peakData)

# it is possible to use the assignment methods “retIndex<-" and ~Intensity<--
# in these objects, but it is not recommended (only if you know what you are

# doing) for example for small tweaks (not sure what this accomplishes however)
rif[11107,1] <- 234000

retIndex(peakData) <- ri

tsProfile-class Class for representing a MS profile

Description

This is class used to represent a metabolite profile obtained with TargetSearch. This class contains
the data you are most likely to use in downstream data analysis.



80 tsProfile-class

Details

The metabolite profile information (slot info) is a data. frame that contains information regarding
each target metabolite in the reference library (object tsLib). The information can be accessed with
the method profileInfo. The profile include the following columns,

* Name The metabolite/analyte name.
* Lib_RI The reference or expected RI (retention index).
* Mass_count The number of correlating masses.

* Non_consecutive_Mass_count Same as mass count, but discounting consecutive masses that
correspond with isotopic peaks, which often correlate anyway.

* Sample_Count_per_Mass The number of samples in which each correlating mass was found.
The values are separated by colons (;). The values of the actual masses are in following
column.

* Masses The correlating masses separated by colons (;).
* RI The average RI detected in the samples.

* Score_all_masses The similarity score calculated using the average intensity of all the
masses that were searched for, regardless of whether they are correlating masses.

* Score_cor_masses Same as above, but only correlating masses are considered.

Other columns could be present by they are carried over from the metabolite library tsLib object.

If the object is created by the function ProfileCleanUp instead, additional columns will be created
with the prefix Cor_ followed by a string, such as Cor_RI. These columns contain information of
“collapsed” metabolites that correlate to mean that they could conflict. The collapsed values are
often separated by a vertical bar |.

The slots profRT, profRI and profInt contain averaged (median) values for each the matrices in
the slots RT, RI, and Intensity. The values are computed only considering the masses that correlate
(the other masses are ignored). They represent an average of RT, RI and Intensity per metabolite per
sample, given that each selected mass has their own values and often only and average is needed.
These matrices are accessed with the methods profileRT, profileRI and profileRT.

Similar to the tsMSdata assignment methods, the “setters” methods are exposed for convenience,
though they should not be required. The reason is that all the objects are tightly tied and unexpected
modifications could result in unintended errors. Use only if you know what you are doing.

Objects from the Class

Objects of this class are created by the functions Profile or ProfileCleanUp. There is no need to
generate objects using new methods.

Slots

info: "data.frame”, the metabolite profile information. See details.

RI: "list", a list of RI matrices, one matrix per metabolite, in which rows represent select/top
masses and columns correspond to samples.

RT: "list”, a list of RT matrices, one matrix per metabolite, in which rows represent select/top
masses and columns correspond to samples.



tsProfile-class 81

Intensity: "list", a list of peak-intensity matrices, one matrix per metabolite, and within each
matrix, rows represent select/top masses and columns correspond to samples.

profRI: "matrix”, the profile RI matrix.
profRT: "matrix”, the profile RT matrix.

profInt: "matrix”, the profile Intensity matrix.

Extends

This class extends tsMSdata directly. Methods that apply to that class apply to tsProfile.

Methods

profileInfo signature(obj = "tsProfile"): get the profile information.
profileInfo<- signature(obj = "tsProfile”): set the profile information.
profileInt signature(obj = "tsProfile”): get the profile intensity matrix.
profileInt<- signature(obj = "tsProfile"”): set the profile intensity matrix.
profileRI signature(obj = "tsProfile"): get the profile RI matrix.
profileRI<- signature(obj = "tsProfile”): set the profile RI matrix.
profileRT signature(obj = "tsProfile"): get the profile RT matrix.
profileRT<- signhature(obj = "tsProfile”): set the profile RT matrix.

show signature(object = "tsProfile”): the show function.

Note
For reasons explained in the details section, the methods profileRI<-, profileRT<-, profileInt<-,
and profileInfo are considered deprecated and could be removed without notice in the feature.
Author(s)

Alvaro Cuadros-Inostroza

See Also

Profile, ProfileCleanUp, tsMSdata

Examples

showClass("tsProfile”)

# some example manipulations using object peakData
data(TSExample)
metabProfile

# extract the profile information of the metabolite analysis

info <- profileInfo(metabProfile)

# “info™ is a data.frame with the information described in details
head(info)



82 tsRim-class

# extract profiled metabolite intensities
mat <- profileInt(metabProfile)
head(mat)

# It is possible to use the assignment methods such as ~“retIndex<-~,
# “Intensity<-~, “profilelnt™, etc., in these objects, but it isn't
# recommended. Use only if if you know what you are doing.

## Not run:
profileInt(metabProfile) <- updatedMetabMatrix
profileInfo(metabProfile) <- updatedMetabInfo

## End(Not run)

# in the mock examples above, the objects updated* are updated data.frame or
# matrices with metabolite results.

tsRim-class Class for representing retention index markers

Description

This is a class to represent retention index markers.

Objects from the Class

Objects can be created by the function ImportFameSettings or by calls of the form new("”tsRim",
limits = [two column matrix with time limits], standard = [a vector with RI standards],
mass = [m/z marker]).

Slots
limits: "matrix”, two column matrix with lower and upper limits where the standards will be
search. One row per standard.
standard: "numeric”, the marker RI values.

mass: "numeric”, the m/z marker.

Methods

[ signature(x ="tsRim"): Selects a subset of markers.
rimLimits signature(obj = "tsRim"): gets the time limits.
rimLimits<- signature(obj = "tsRim"): sets the time limits.
rimMass signature(obj = "tsRim"): gets the m/z marker.
rimMass<- signature(obj = "tsRim"): sets the m/z marker.

rimStandard signature(obj = "tsRim"): gets the standards.



tsRim-class

rimStandard<- signature(obj = "tsRim"): sets the standards.
length Returns the number of retention index standards.

¢ Function to combine multiple objects.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportFameSettings

Examples

showClass("tsRim")

# create a rimLimit object:

# - set the lower (first column) and upper (second column) time limites to
# search for standards.

Lim <- rbind(c(200, 300), c(400,450), c(600,650))

# - set the retention indices of the standard

Std <- c (250000, 420000, 630000)

# - set the mass marker

mass <- 87

# - create the object

rimLimits <- new("tsRim”, limits = Lim, standard = Std, mass = mass)
# - get the number of standards using ~length”
length(rimLimits)

# sometimes you need to change the limits of a particular standard
rimLimits(rimLimits)[2,] <- c(410, 450)

# to change the mass value
rimMass(rimLimits) <- 85

# to select a subset
rim <- rimLimits[1:2]

# remove a marker (number 3 in this case)
rim <- rimLimits[-3]

# objects can be combined using the ~c¢* method

obj <- new("tsRim”, limits = cbind(100 * 1:6, 100 * 1:6 + 20),
standard = 1000 * 1:6, mass = 100) # a random object

# combine objects

obj <- c(rimLimits, obj)

83



84 tsSample-class

tsSample-class Class for representing samples

Description

This is a class to represent a set of samples.

Objects from the Class

Objects can be created by the function ImportSamples or by calling the object generator function.

new("tsSample"”, Names = [sample names], CDFfiles = [list of CDF file names], RIfiles =
[list of RI file names], CDFpath = [CDF files path], RIpath = [RI files path], days = [measurement
days], data=[additional sample information], ftype = [RI file format])

Slots

Names: "character”, the sample names.

CDFfiles: "character"”, the list of CDF file names.

RIfiles: "character”, the list of RI file names.

CDFpath: "character”, CDF files path. Deprecated. See Notes.
RIpath: "character”, Rl file path. Deprecated. See Notes.
days: "character”, measurement days.

data: "data.frame”, additional sample information.

Methods

[ signature(x = "tsSample"): Selects a subset of samples.

$name signature(x = "tsSample”): Access column name of sampleData slot.
CDFfiles signature(obj = "tsSample”): list of CDF files.

RIfiles signature(obj = "tsSample"): list of RI files.

RIpath signature(obj = "tsSample"): The RI file path.

CDFpath signature(obj = "tsSample"): The CDF file path.

length signature(x = "tsSample”): number of samples.

sampleData signature(obj = "tsSample"”): additional sample information.
sampleDays signature(obj = "tsSample”): measurement days.
sampleNames signature(obj = "tsSample”): sample names. The names must be unique
show signature(object = "tsSample”): the show function.

fileFormat signature(obj = "tsSample”): Sets or gets the RI file format. Options are either
"binary" or "text". See note below.

¢ Function to combine multiple objects.



tsSample-class 85

Notes

The method fileFormat only changes the internal information of the file type and not the files
themselves. To actually change the files, use the functions bin2text and text2bin.

Note that the slot Names (i.e., the sample names/identifiers) must be unique. This allows sample
selection by using sample identifiers as well as indices. Also, if columns are selected, the output
will be either a vector or a data. frame depending on whether one or more columns were selected.
More over, it is required that the rownames of the data slot are equal to the sample names slots. This
is handled internally. If the Names are not provided, then the CDF files are used instead (directories
and extension are removed). In this case the file names must be unique.

The slots CDFpath and RIpath are deprecated and not used. However, the methods to set or get the
paths will still work. The file paths is stored on the CDFfiles and RIfiles slots.

The ¢ method requires that the combination of all objects have unique identifiers (names), or in
other words, the objects cannot share identifiers. Duplicated identifiers are not allowed and an error
will be thrown. This method also requires that the column names of the data slot (see method
sampleData) are the same, because the method calls rbind internally.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

ImportSamples

Examples

showClass("tsSample")

# get a list of CDF files from a directory
require(TargetSearchData)
CDFpath <- tsd_data_path()
cdffiles <- dir(CDFpath, "cdf", full=TRUE)

# define the RI file path
RIpath <- "."

# create a tsSample object with minimal info
sampleDescription <- new("tsSample”, CDFfiles = cdffiles, RIpath = RIpath)

#HO## HE HE OHH
# Alternatively, the CDF path and CDF file names can be given separately
# (this was the old TargetSearch behavior)

cdffiles <- basename(cdffiles)

# create the sample object
sampleDescription <- new("tsSample”, CDFfiles = cdffiles, CDFpath = CDFpath, RIpath = RIpath)

##H#HOHH W



86

tsSample-class

# More parameters could be defined:

# define the RI files and the RI path

RIfiles <- sub("cdf$", "txt", paste("RI_", cdffiles, sep = ""))
RIpath <- "."

# get the measurement days (the four first numbers of the cdf files, in this
# example)
days <- substring(cdffiles, 1, 4)

# sample names (must be unique)
smp_names <- paste(”Sample”, 1:length(sampleDescription), sep = "_")

# add some sample info
smp_data <- data.frame(CDF_FILE =cdffiles, GROUP = gl(5,3))

# create the sample object
sampleDescription <- new("tsSample”, Names = smp_names, CDFfiles = cdffiles, CDFpath = CDFpath,
RIpath = RIpath, days = days, RIfiles = RIfiles, data = smp_data)

# change the file paths (relative to the working path)
CDFpath(sampleDescription) <- "my_cdfs”
RIpath(sampleDescription) <- "my_RIs”

# change sample Names
sampleNames (sampleDescription) <- sprintf("”S$%@3d"”, 1:length(sampleDescription))

## sample subsetting.
# select samples 1, 3 and 5
(sampleset <- sampleDescription[c(1, 3, 5)1)

# or use sample IDs
(sampleset <- sampleDescription[c("”S@01", "S@03", "S005")1]1)

## extract columns

# select column 'GROUP'

(group <- sampleDescription$GROUP)

# or

(group <- sampleDescription[, 'GROUP'])

## change the measurement days (sets the same day for all samples)
sampleDays(sampleDescription) <- "1"

## Note: the length of “measurement days™ variable must be 1 or equal
## to the number of samples, otherwise an error will be thrown

## objects can be combined with the c() function
samp1 <- sampleDescription[1:5]

samp2 <- sampleDescription[6:10]

samp3 <- sampleDescription[11:15]

samp <- c(sampl, samp2, samp3)



tsUpdate,tsSample-method 87

tsUpdate, tsSample-method
Methods for Updating TargetSearch objects tsUpdate

Description
tsUpdate is a generic function which can be used to update and old ‘TargetSearch’ class definition.
Currently, this function is only implemented for tsSample objects.
Methods
signature(obj = "tsSample”) Method to update an old tsSample object. A change was intro-
duced starting from ‘TargetSearch’ version 1.42.0.
Author(s)

Alvaro Cuadros-Inostroza

Examples

## Not run:
newObject <- tsUpdate(oldObject)

## End(Not run)

updateRI Updating Time Index correction

Description

This function can be used to correct or adjust the detected retention time index (RI) markers or their
location to specific retention times. This function adds on fixRI() as it also corrects the RI of the
CDF files

Usage
updateRI(samples, rimLimits, RImatrix = NULL, quiet = TRUE)

Arguments
samples A tsSample object created by ImportSamples.
rimLimits A tsRim object. See ImportFameSettings.
RImatrix An optional matrix. It represents a retention time matrix of the detected retention

time markers that was obtained after running Rlcorrect

quiet Logical. Do not print a list of converted files.



88 updateRI

Details

Sometimes the retention time of the RI markers are not detected correctly, either because there was
a problem with the standard, or the time limits of the tsRim object were not set correctly, or simply
because the markers are not injected with the samples.

In any case, the retention time correction can be fixed by calling this function. This function works
almost exactly like fixRI(), in fact, it is called internally, and allows correction of Rlfiles and
CDFfiles at the same time. Check also the documentation of fixRI () for extra details.

The parameters are the tsSample and the tsRim object, with optionally a RImatrix to force the
location of the markers. The parameter quiet can be unset to show what samples are corrected.

If only a subset of samples require correction, then they can be chosen by subsetting the object
sample.

Neededless to say, this function expect that the CDF files exists and are in the TargetSearch format.
If this is not the case, then use the function fixRI(), as this function deals only with RI files.

Value

The retention index matrix. If RImatrix is not NULL, then the output is the same matrix.

Note

It is required that all the sample names of samples are contained in the colnames of RImatrix, but
the reverse is not necessary. The number of columns of the output matrix will match the number of
samples. Extra columns in RImatrix will be ignored and not returned.

Author(s)

Alvaro Cuadros-Inostroza

See Also
fixRI(), RIcorrect(), ImportSamples(), ImportFameSettings()

Examples

require(TargetSearchData)

# import reflLibrary, rimLimits and sampleDescription.
data(TSExample)

CDFpath(sampleDescription) <- tsd_data_path()

# convert a subset of files to netCDF4
smp <- ncdf4Convert(sampleDescription[1:6], path=".")

# make a copy of the RI markers object
fames <- rimLimits

# mess up the limits of marker 3 (real value is 369 seconds app.)
rimLimits(fames)[3,] <- c(375, 400)

# run RIcorrect (skip CDF-4 conversion)



Write.Results

89

RImat <- RIcorrect(smp, fames, Window = 15, IntThreshold = 200)

# fix the limits of marker 3
rimLimits(fames)[3,] <- c(360, 380)

# update RI files and CDF files
RImat <- updateRI(smp, fames)

# Pass a RI matrix for manual adjustment
RImat[, 3] <- c(252, 311, 369)
RImat <- updateRI(smp, fames, RImat)

# To select specific samples, simply use sample subsetting
# Note, RImat2 has only one column in this case.
( RImat2 <- updateRI(smp[3], fames, RImat) )

Write.Results

Save TargetSearch result objects into files

Description

This is a convenient function to save the TargetSearch result into tab-delimited text files.

Usage

Write.Results(Lib, metabProfile,

Arguments
Lib

metabProfile

quantMatrix

prefix

selmass

quantMatrix=c('quantmass', 'maxint', 'maxobs', 'none'),
prefix = NULL,
selmass = FALSE)

A tsLib object.

A tsProfile object. The final result of the package. This object is generated
by either Profile or ProfileCleanUp.

Should an intensity matrix using quantification masses be created? This pa-
rameter will be passed to quantMatrix and indicates whether the quantification
mass should be either taken as is from the Lib object (as specified by the method
quantMass), or chosen based on intensity or observations. The file will have the
extension ‘.profile.quantmatrix.txt’, unless this is set to none, in which case the
file will not be created.

A character string. This is a file name prefix for the output text files. If it is
set to NULL or NA, then "TargetSearch-YYYY-MM-DD" is used by default, where
Y/M/D represents the year, month and day of today’s date.

Logical. This parameter is passed to the function quantMatrix. See that func-
tion documentation for its meaning.



90 Write.Results

Details

The function generates the following tab-delimited text files, where “prefix” corresponds with the
selected file prefix.

» prefix.peak.intensity.txt. Contains information on peak intensity for each target mass
in the library per sample.

» prefix.peak.RI.txt. Contains information on retention index (RI) for each target mass in
the library per sample.

* prefix.profile.info.txt. Contains the profile information for each metabolite. See Profile
and ProfileCleanUp for details.

* prefix.profile.intensities. txt. Contains information on profile intensities per metabo-
lite. This value is an average of all correlating masses normalized to the mean.

* prefix.profile.ri.txt. Contains information on average retention indices of the correlat-
ing masses. This value is an average of all correlating masses.

e prefix.profile.quantmatrix.txt. The quantification matrix as tab-delimited text file. See
quantMatrix for details. If the argument quantMatrix is equal to “none”, then this file is not
created.

The functions uses write.table as backend to write the files with parameters set="\t" and
quote=FALSE.
Value

This function does not return anything. It just prints a message with the saved files.

Author(s)

Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig

See Also

peakFind, Profile, ProfileCleanUp, tsLib, tsMSdata, tsProfile, quantMatrix

Examples

# load precomputed results from ~TSExample~
data(TSExample)

# we need the objects metabProfile and reflLibrary. This will create files
# with prefix 'TargetSearch-YYYY-MM-DD' corresponding to today's date
Write.Results(refLibrary, metabProfile)

# change the prefix with the parameter “prefix™ to 'my_experiment'
Write.Results(refLibrary, metabProfile, prefix='my_experiment')



writeLibText 91

writelLibText Save a library object in text format

Description

This function creates tab delimited text file with library information. The created file can be re-
imported with the ImportLibrary function.

Usage

writeLibText(lib, file)

Arguments
lib A tsLib object. A metabolite library.
file A string naming the output file.
Author(s)

Alvaro Cuadros-Inostroza

See Also

tsLib, ImportLibrary

Examples

require(TargetSearchData)
# get the reference library file
lib.file <- tsd_file_path("library.txt")

# Import the reference library
refLibrary <- ImportLibrary(lib.file)

# save it to a file
writeLibText(refLibrary, file="libraryCopy.txt")



92 writeMSP

writeMSP Save spectra in MSP format to be visualized in NIST

Description

This function creates MSP format file from peak intensities that can be viewed with NIST.

Usage
writeMSP(metlib, metprof, file, append = FALSE)

Arguments
metlib A tsLib object. A metabolite library.
metprof A tsProfile object. Usually the output of Profile or ProfileCleanUp func-
tions.
file A string naming the output file.
append Logical. If TRUE the results will be appended to file. Otherwise, it will over-
write the contents of file.
Details

The generated file can be used to search in other library spectra using the software NIST Search
Software. This software is available here (only MS Windows is supported) https://chemdata.
nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs

Note: the output file usually has extension .msp, which conflicts with MS Windows Software Patch
files. Care is needed to not accidentally double click the file.
Author(s)

Alvaro Cuadros-Inostroza

See Also

peakFind, Profile, ProfileCleanUp, tsLib, tsMSdata, tsProfile

Examples

# here we use precomputed objects, in particular the reference library
#(refLibrary) and the metabolite profile (metabProfile).
data(TSExample)

# to call the function, simply use the aforementioned objects as inputs
# the file 'output_file.msp' can be open in NIST Search Software
writeMSP(refLibrary, metabProfile, file="output_file.msp")


https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs
https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs

Index

* classes
tsLib-class, 74
tsMSdata-class, 78
tsProfile-class, 79
tsRim-class, 82
tsSample-class, 84
+ datasets
TSExample, 73
* hplot
plotFAME, 42
plotPeak, 43
plotRIdev, 49
plotSpectra, 51
+ methods
ncdf4Convert, tsSample-method, 27
tsUpdate, tsSample-method, 87
* netcdf
ncdf4Convert, tsSample-method, 27
* tsSample
ncdf4Convert, tsSample-method, 27
tsUpdate, tsSample-method, 87
[,tsLib-method (tsLib-class), 74
[,tsRim-method (tsRim-class), 82
[,tsSample-method (tsSample-class), 84
$,tsLib-method (tsLib-class), 74
$, tsSample-method (tsSample-class), 84

as.list,tsMSdata-method
(tsMSdata-class), 78
as.list.tsMSdata (tsMSdata-class), 78
as.list.tsMSdata, tsMSdata-method
(tsMSdata-class), 78
as.list.tsProfile (tsMSdata-class), 78
as.list.tsProfile, tsMSdata-method
(tsMSdata-class), 78

baseline, 3, 6, 8, 28, 38, 40, 59
baseline(), 29-31
baselineCorrection, 3, 4,5, 8
baselineCorrectionQuant, 3, 4,7

93

bin2text, 85
bin2text (text2bin), 70

c,tsLib-method (tsLib-class), 74
c,tsRim-method (tsRim-class), 82
c,tsSample-method (tsSample-class), 84
CDFfiles (tsSample-class), 84
CDFfiles, tsSample-method
(tsSample-class), 84
CDFfiles<- (tsSample-class), 84
CDFfiles<-,tsSample-method
(tsSample-class), 84
CDFpath, 60
CDFpath (tsSample-class), 84
CDFpath, tsSample-method
(tsSample-class), 84
CDFpath<- (tsSample-class), 84
CDFpath<-, tsSample-method
(tsSample-class), 84
checkRimLim, 9
corRI (TSExample), 73

dir, 23, 24

FAMEoutliers, 11, 17,42, 58, 60, 62, 67

fileFormat, 24, 59, 72

fileFormat (tsSample-class), 84

fileFormat,tsSample-method
(tsSample-class), 84

fileFormat<- (tsSample-class), 84

fileFormat<-, tsSample-method
(tsSample-class), 84

FindAllPeaks, 12, 45, 46, 63, 64

FindPeaks, 14, 15, 64,78, 79

fixRI, 16, 37,61, 62, 69

fixRI(), 37,87, 88

fixRIcorrection (TargetSearch-defunct),
69

fixRIcorrection-defunct
(TargetSearch-defunct), 69



94

ImportFameSettings, 9, 10, 16, 17, 18, 37,
60-62,73,82, 83,87
ImportFameSettings(), 88
ImportLibrary, 13,20, 24, 26, 27,41, 43, 44,
46, 48-53, 56, 68, 69, 72-76, 91
ImportSamples, 9, 12, 13, 16, 17, 22, 23, 26,
27,41,44, 46, 53, 58, 60-62, 69, 72,
73,84, 85,87
ImportSamples(), 88
ImportSamplesFromDir (ImportSamples), 23
Intensity (tsMSdata-class), 78
Intensity, tsMSdata-method
(tsMSdata-class), 78
Intensity<- (tsMSdata-class), 78
Intensity<-, tsMSdata-method
(tsMSdata-class), 78
invisible, 35, 65

lapply, 29, 65

length, tsLib-method (tsLib-class), 74

length, tsRim-method (tsRim-class), 82

length, tsSample-method
(tsSample-class), 84

libData (tsLib-class), 74

libData, tsLib-method (tsLib-class), 74

libData<- (tsLib-class), 74

libData<-, tsLib-method (tsLib-class), 74

libId, 25, 26, 70

libId (tsLib-class), 74

1libId, tsLib-method (tsLib-class), 74

libName (tsLib-class), 74

libName, tsLib-method (tsLib-class), 74

libName<- (tsLib-class), 74

libName<-, tsLib-method (tsLib-class), 74

1ibRI (tsLib-class), 74

1ibRI, tsLib-method (tsLib-class), 74

1ibRI<- (tsLib-class), 74

1ibRI<-,tsLib-method (tsLib-class), 74

1ibUID (tsLib-class), 74

1ibUID, tsLib-method (tsLib-class), 74

1ibUID<- (tsLib-class), 74

1ibUID<-,tsLib-method (tsLib-class), 74

makeIndex, 25, 70, 75, 76

matlines, 35

matplot, 9, 10,44, 47
medianRILib, 16, 26,41, 52, 53, 69
medRI (tsLib-class), 74

medRI, tsLib-method (tsLib-class), 74

INDEX

medRI<- (tsLib-class), 74
medRI<-,tsLib-method (tsLib-class), 74
metabProfile (TSExample), 73

ncdf4_convert, 27, 28, 28, 35
ncdf4_convert(), 30, 31, 33
ncdf4_convert_from_path, 30
ncdf4_convert_from_path(), 29, 30
ncdf4_data_extract, 32, 34, 35, 40, 62, 64
ncdf4_plot_peak, 34, 46, 47
ncdf4_update_ri, 36
ncdf4Convert, 35, 60
ncdf4Convert
(ncdf4Convert, tsSample-method),
27
ncdf4Convert(), 29, 30
ncdf4Convert, tsSample-method, 27
NetCDFPeakFinding, 38, 40, 60
new, 80

par, 9, 10, 35, 48, 49, 65
pdf, 50, 51
peakCDFextraction, 3, 5, 7, 38, 39, 39, 43,
44,47
peakCDFextraction(), 32, 33
peakData (TSExample), 73
peakFind, 16, 41, 50-53, 78, 79, 90, 92
plot, 35, 48, 49, 65
plotAllRIdev (plotRIdev), 49
plotAllSpectra (plotSpectra), 51
plotFAME, 42
plotPeak, 35,43, 47
plotPeakRI, 44, 64, 66
plotPeakSimple, 34, 35, 43, 44, 46
plotRefSpectra, 48
plotRIdev, 49
plotSpectra, 51
Profile, 43,52, 54, 55, 80, 81, 90, 92
ProfileCleanUp, 54, 80, 81, 90, 92
profileInfo (tsProfile-class), 79
profileInfo, tsProfile-method
(tsProfile-class), 79
profileInfo<- (tsProfile-class), 79
profileInfo<-,tsProfile-method
(tsProfile-class), 79
profileInt (tsProfile-class), 79
profilelnt,tsProfile-method
(tsProfile-class), 79
profileInt<- (tsProfile-class), 79



INDEX

profileInt<-,tsProfile-method
(tsProfile-class), 79
profileRI (tsProfile-class), 79
profileRI, tsProfile-method
(tsProfile-class), 79
profileRI<- (tsProfile-class), 79
profileRI<-, tsProfile-method
(tsProfile-class), 79
profileRT (tsProfile-class), 79
profileRT, tsProfile-method
(tsProfile-class), 79
profileRT<- (tsProfile-class), 79
profileRT<-, tsProfile-method
(tsProfile-class), 79

guantMass, 89

guantMass (tsLib-class), 74

guantMass, tsLib-method (tsLib-class), 74

guantMass<- (tsLib-class), 74

quantMass<-, tsLib-method (tsLib-class),
74

quantMatrix, 56, 89, 90

read.delim, I8, 19, 23, 24

read. table, 2/

reflLib (tsLib-class), 74

reflLib, tsLib-method (tsLib-class), 74

reflLibrary (TSExample), 73

retIndex (tsMSdata-class), 78

retIndex, tsMSdata-method
(tsMSdata-class), 78

retIndex<- (tsMSdata-class), 78

retIndex<-,tsMSdata-method
(tsMSdata-class), 78

retTime (tsMSdata-class), 78

retTime, tsMSdata-method
(tsMSdata-class), 78

retTime<- (tsMSdata-class), 78

retTime<-, tsMSdata-method
(tsMSdata-class), 78

ri2rt, 57

ri_data_extract, /4, 62, 65, 66

ri_plot_peak, 45, 46, 64

RIcorrect,4,6,8, 12,16, 17, 19, 24, 34, 35,
37,42,44,47, 58, 58, 61, 62,67, 72,
87

RIcorrect(), 36, 88

RIdev (tsLib-class), 74

RIdev,tsLib-method (tsLib-class), 74

95

RIdev<- (tsLib-class), 74

RIdev<-,tsLib-method (tsLib-class), 74

RIfiles (tsSample-class), 84

RIfiles, tsSample-method
(tsSample-class), 84

RIfiles<- (tsSample-class), 84

RIfiles<-,tsSample-method
(tsSample-class), 84

RImatrix (TSExample), 73

riMatrix, 61

rimLimits (tsRim-class), 82

rimLimits, tsRim-method (tsRim-class), 82

rimLimits<- (tsRim-class), 82

rimLimits<-,tsRim-method (tsRim-class),
82

rimMass (tsRim-class), 82

rimMass, tsRim-method (tsRim-class), 82

rimMass<- (tsRim-class), 82

rimMass<-, tsRim-method (tsRim-class), 82

rimStandard (tsRim-class), 82

rimStandard, tsRim-method (tsRim-class),
82

rimStandard<- (tsRim-class), 82

rimStandard<-, tsRim-method
(tsRim-class), 82

RIpath (tsSample-class), 84

RIpath, tsSample-method
(tsSample-class), 84

RIpath<- (tsSample-class), 84

RIpath<-,tsSample-method
(tsSample-class), 84

rt2ri, 58, 67

rt2ri(), 36

sampleData (tsSample-class), 84
sampleData, tsSample-method
(tsSample-class), 84
sampleData<- (tsSample-class), 84
sampleData<-, tsSample-method
(tsSample-class), 84
sampleDays (tsSample-class), 84
sampleDays, tsSample-method
(tsSample-class), 84
sampleDays<- (tsSample-class), 84
sampleDays<-, tsSample-method
(tsSample-class), 84
sampleDescription (TSExample), 73
sampleNames, 10
sampleNames (tsSample-class), 84



96

sampleNames, tsSample-method
(tsSample-class), 84

sampleNames<- (tsSample-class), 84

sampleNames<-, tsSample-method
(tsSample-class), 84

sampleRI, 16,41, 44, 46, 68

selMass (tsLib-class), 74

selMass, tsLib-method (tsLib-class), 74

selMass<- (tsLib-class), 74

selMass<-,tsLib-method (tsLib-class), 74

show, tsLib-method (tsLib-class), 74

show, tsMSdata-method (tsMSdata-class),
78

show, tsProfile-method
(tsProfile-class), 79

show, tsSample-method (tsSample-class),
84

spectra (tsLib-class), 74

spectra, tsLib-method (tsLib-class), 74

spectra<- (tsLib-class), 74

spectra<-,tsLib-method (tsLib-class), 74

TargetSearch, 17, 40,43, 59-61, 63, 66, 71,
75,79

TargetSearch (TargetSearch-package), 3

TargetSearch-defunct, 69

TargetSearch-deprecated, 70

TargetSearch-package, 3

TargetSearchGUI (TargetSearch-defunct),
69

text2bin, 13, 15,17,26,41,43, 61, 63, 64,
68,70, 85

topMass (tsLib-class), 74

topMass, tsLib-method (tsLib-class), 74

topMass<- (tsLib-class), 74

topMass<-, tsLib-method (tsLib-class), 74

TSExample, 12,73

tsLib, 21, 22, 25, 26, 41, 50, 51, 57, 69, 78,
80, 90-92

tsLib-class, 74

tsMSdata, 16, 41, 44,47, 50, 51, 57, 80, 81,
90, 92

tsMSdata-class, 78

tsProfile, 53, 55, 81, 90, 92

tsProfile-class, 79

tsRim, 9, 10, 19, 44,47, 58, 60, 87, 88

tsRim-class, 82

tsSample, 9, 10, 24, 27, 28, 34, 37,41, 42,
58-60, 64, 69, 72,78, 87, 88

INDEX

tsSample-class, 84
tsUpdate (tsUpdate, tsSample-method), 87
tsUpdate, tsSample-method, 87

updateRI, 34, 35, 87

Write.Results, 89
write.table, 90
writeLibText, 91
writeMsSP, 92



	TargetSearch-package
	baseline
	baselineCorrection
	baselineCorrectionQuant
	checkRimLim
	FAMEoutliers
	FindAllPeaks
	FindPeaks
	fixRI
	ImportFameSettings
	ImportLibrary
	ImportSamples
	makeIndex
	medianRILib
	ncdf4Convert,tsSample-method
	ncdf4_convert
	ncdf4_convert_from_path
	ncdf4_data_extract
	ncdf4_plot_peak
	ncdf4_update_ri
	NetCDFPeakFinding
	peakCDFextraction
	peakFind
	plotFAME
	plotPeak
	plotPeakRI
	plotPeakSimple
	plotRefSpectra
	plotRIdev
	plotSpectra
	Profile
	ProfileCleanUp
	quantMatrix
	ri2rt
	RIcorrect
	riMatrix
	ri_data_extract
	ri_plot_peak
	rt2ri
	sampleRI
	TargetSearch-defunct
	TargetSearch-deprecated
	text2bin
	TSExample
	tsLib-class
	tsMSdata-class
	tsProfile-class
	tsRim-class
	tsSample-class
	tsUpdate,tsSample-method
	updateRI
	Write.Results
	writeLibText
	writeMSP
	Index

