Package ‘Rcwl’

January 24, 2026
Title An R interface to the Common Workflow Language
Version 1.27.0

Description The Common Workflow Language (CWL) is an open standard for develop-
ment of data analysis workflows that is portable and scalable across different tools and work-
ing environments. Rcwl provides a simple way to wrap com-
mand line tools and build CWL data analysis pipelines programmatically within R. It in-
creases the ease of usage, development, and maintenance of CWL pipelines.

Depends R (>= 3.6), yaml, methods, S4 Vectors

Imports utils, stats, BiocParallel, batchtools, DiagrammeR, shiny,
R.utils, codetools, basilisk

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

Suggests testthat, knitr, rmarkdown, BiocStyle
VignetteBuilder knitr

RoxygenNote 7.3.1

biocViews Software, WorkflowStep, ImmunoOncology
StagedInstall no

git_url https://git.bioconductor.org/packages/Rcwl
git_branch devel

git_last_commit 30294bd

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Qiang Hu [aut, cre],
Qian Liu [aut]

Maintainer Qiang Hu <qiang.hu@roswellpark.org>

1

2 Rcwl-package

Contents
Rewl-package 2
CWI-TEqUITEMENtS o o o e e e e e e e e e e e e 3
cwIProcess L e e 7
cwlProcess-methods 8
cwlShiny L e 10
CWIStED e e 11
cwlWorkflow e e 12
cwlWorkflow-methods 14
env_Rcewl . . L e e 15
InputArrayParam-class e 15
install_cwltool e 19
install_udocker e 19
0] 20
PlotCWL . . o e 22
readCWL e e 23
runCWL e 23
runCWLBatch 25
runCWLBP e 25
steplnputso e 26
StepOUtpULS L e e e e 26
writeCWL e e e e e e 27

Index 28

Rcwl-package Rewl-package
Description

An R package to wrap command line tools and build pipelines with Common Workflow Language
(CWL). _PACKAGE

See Also

cwlProcess

cwlWorkflow

cwlStep

runCWL

cwl-requirements 3

cwl-requirements CWL requirements functions

Description

requireDocker: If a workflow component should be run in a Docker container, this function specifies
how to fetch or build the image.

require]S: Indicates that the workflow platform must support inline Javascript expressions. If this
requirement is not present, the workflow platform must not perform expression interpolatation.

requireSoftware: A list of software packages that should be configured in the environment of the
defined process.

SoftwarePackage from anaconda.

InitialWorkDirRequirement: Define a list of files and subdirectories that must be created by the
workflow platform in the designated output directory prior to executing the command line tool.

: Dirent: Define a file or subdirectory that must be placed in the designated output directory prior
to executing the command line tool. May be the result of executing an expression, such as building
a configuration file from a template.

Create manifest for configure files.
requireShellScript: create shell script to work dir.
CondaTool: create dockerfile for tools.

requireNetwork: Whether a process requires network access.

Usage

requireDocker(
docker = NULL,
Load = NULL,
File = NULL,
Import = NULL,
ImageId = NULL,
OutputDir = NULL

)

requireJS(expressionLib = list())

requireSoftware(packages = list())

condaPackage (package, source = "bioconda"”, version = NULL)
requireInitialWorkDir(listing = list())

Dirent(entryname = character(), entry, writable = FALSE)

requireManifest(inputID, sep = "\\n")

4 cwl-requirements

requireSubworkflow()
requireScatter()
requireMultipleInput()
requireStepInputExpression()
requireEnvVar(envlist)
requireRscript(rscript)

requireResource(
coresMin = NULL,
coresMax = NULL,
ramMin = NULL,
ramMax = NULL,
tmpdirMin = NULL,
tmpdirMax = NULL,
outdirMin = NULL,
outdirMax = NULL

)

requireShellCommand()

requireShellScript(script)

ShellScript(shell = "bash”, script = "script.sh")
CondaTool (tools)

requireNetwork(networkAccess = TRUE)

Arguments

docker Character. Specify a Docker image to retrieve using docker pull.

Load Character. Specify a HTTP URL from which to download a Docker image using
docker load.

File Character. Supply the contents of a Dockerfile which will be built using docker
build.

Import Character. Provide HTTP URL to download and gunzip a Docker images using
‘docker import.

Imageld Character. The image id that will be used for docker run. May be a human-
readable image name or the image identifier hash. May be skipped if dockerPull
is specified, in which case the dockerPull image id must be used.

OutputDir Character. Set the designated output directory to a specific location inside the

Docker container.

cwl-requirements

expressionLib

packages
package
source
version

listing

entryname

entry

writable

inputID
sep
envlist
rscript
coresMin
coresMax
ramMin
ramMax

tmpdirMin

tmpdirMax

outdirMin

outdirMax

script
shell
tools

networkAccess

optional list. Additional code fragments that will also be inserted before execut-
ing the expression code. Allows for function definitions that may be called from
CWL expressions.

The list of software to be configured.

The software name.

The source of software in anaconda. ‘bioconda‘ is used by default.
The version of software.

The list of files or subdirectories that must be placed in the designated output
directory prior to executing the command line tool.

Character or Expression. The name of the file or subdirectory to create in the
output directory. The name of the file or subdirectory to create in the output
directory. If entry is a File or Directory, the entryname field overrides the value
of basename of the File or Directory object. Optional.

Charactor or expression. Required.

Logical. If true, the file or directory must be writable by the tool. Changes to the
file or directory must be isolated and not visible by any other CommandLineTool
process. Default is FALSE (files and directories are read-only). Optional.

The input ID from corresponding ‘InputParam®.

The separator of the input files in the manifest config.

A list of environment variables.

An R script to run.

Minimum reserved number of CPU cores (default is 1).
Maximum reserved number of CPU cores.

Minimum reserved RAM in mebibytes (2**20) (default is 256).
Maximum reserved RAM in mebibytes (2*#%20)

Minimum reserved filesystem based storage for the designated temporary direc-
tory, in mebibytes (2¥*20) (default is 1024).

Maximum reserved filesystem based storage for the designated temporary direc-
tory, in mebibytes (2*%20).

Minimum reserved filesystem based storage for the designated output directory,
in mebibytes (2#*%20) (default is 1024).

Maximum reserved filesystem based storage for the designated output directory,
in mebibytes (2%*20).

script.sh
Default shell.
A character vector for tools to install by conda.

TRUE or FALSE.

6 cwl-requirements

Details

More details about ‘requireDocker*, see: https://www.commonwl.org/v1.0/CommandLineTool.html#DockerRequirement
More details about ‘requireJS°‘, see: https://www.commonwl.org/v1.0/CommandLineTool.html#InlineJavascriptRequirement
More details about ‘requireSoftware‘, see: https://www.commonwl.org/v1.0/CommandLineTool.html#SoftwareRequirement
More details about ‘requireSoftware’, see: https://www.commonwl.org/v1.0/CommandLineTool.html#SoftwarePackage
More details about ‘requirelnitial WorkDir*, See: https://www.commonwl.org/v1.0/CommandLineTool.html#Initial WorkDir]

More details about ‘Dirent‘, See:https://www.commonwl.org/v1.0/CommandLineTool.html#Dirent

Value

requireDocker: A list of docker requirement to fetch or build the image.
requireJS: A list of inline Javascript requirement.

requireSoftware: A list of software requirements.

A list of software package.

requirelnitial WorkDir: A list of initial work directory requirements.
Dirent: A list.

requireSubworkflow: A SubworkflowFeatureRequirement list.
rquireScatter: A ScatterFeatureRequirement list.
requireMultipleInput: A MultipleInputFeatureRequirement list.
requireStepInputExpression: A StepInputExpressionRequirement list.
requireEnvVar: A EnvVarRequirementlist.

A requirement list with Rscript as manifest entry.
ResourceRequirement: A ResourceRequirement list.
ShellCommandRequirement: A ShellCommandRequirement list.
requireShellScript: Initial directory with shell script.

baseCommand for shell script

CondaTool: Dockerfile

requireNetwork: a list of NetworkAccess requirement.

Examples

pl <- InputParam(id = "ifiles”, type = "File[]?", position = -1)
CAT <- cwlProcess(baseCommand = "cat”,
requirements = list(requireDocker("alpine”), requireManifest("ifiles"”), requireJS()),
arguments = list("ifiles"),
inputs = InputParamList(p1))

cwlProcess 7

cwlProcess Parameters for CWL

Description

The main CWL parameter class and constructor for command tools. More details: https://www.commonwl.org/v1.0/Comman

Usage
cwlProcess(
cwlVersion = "v1.0",
cwlClass = "CommandLineTool”,

baseCommand = character(),
requirements = list(),
hints = 1list(),

arguments = list(),

id = character(),

label = character(),

doc = character(),

inputs = InputParamList(),
outputs = OutputParamList(),
stdout = character(),
stdin = character(),
expression = character(),
extensions = list(),
intent = list()

)
Arguments
cwlVersion CWL version
cwlClass "CommandLineTool"
baseCommand Specifies the program or R function to execute

requirements A list of requirements that apply to either the runtime environment or the work-
flow engine that must be met in order to execute this process.

hints Any or a list for the workflow engine.

arguments Command line bindings which are not directly associated with input parameters.

id The unique identifier for this process object.

label A short, human-readable label of this process object.

doc A documentation string for this object, or an array of strings which should be
concatenated.

inputs A object of ‘InputParamList".

outputs A object of ‘OutputParamList’.

8 cwlProcess-methods
stdout Capture the command’s standard output stream to a file written to the designated
output directory.
stdin A path to a file whose contents must be piped into the command’s standard input
stream.
expression Javascripts for ExpressionTool class.
extensions A list of extensions and metadata
intent An identifier for the type of computational operation, of this Process.
Details
https://www.commonwl.org/v1.0/CommandLineTool.html
Value
A ‘cwlProcess* class object.
Examples
inputl <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand = "echo”, inputs = InputParamList(input1))
cwlProcess-methods cwlProcess methods
Description
Some useful methods for ‘cwlProcess objects.
‘$‘: Extract input values for ‘cwlProcess object. (Can auto-complete the input names using tab)
‘$<-*: Set input values for ‘cwlProcess* object by name.
outputs: The outputs of a ‘cwlProcess* object.
stdOut: stdout of ‘cwlProcess* object.
extensions: Extensions and metadata of ‘cwlProcess* object.
short: The function to show a short summary of ‘cwlProcess* or ‘cwlWorkflow* object.
Usage
cwlVersion(cwl)
cwlVersion(cwl) <- value
cwlClass(cwl)

cwlClass(cwl) <- value

baseCommand(cwl)

cwlProcess-methods

baseCommand(cwl) <- value

NULL)

arguments(cwl, step
arguments(cwl, step = NULL) <- value
hints(cwl)

hints(cwl) <- value

requirements(cwl, step = NULL)
requirements(cwl, step = NULL) <- value

inputs(cwl)

S4 method for signature 'cwlProcess'
x$name

S4 replacement method for signature 'cwlProcess'
x$name <- value

outputs(cwl)
stdOut(cwl)
stdOut(cwl) <- value
extensions(cwl)

extensions(cwl) <- value

short(cwl)

Arguments
cwl A ‘cwlProcess® (or ‘cwlWorkflow ‘) object.
value To assign a list of ‘requirements‘ value.
step To specifiy a step ID when ‘cwl‘ is a workflow.
X A ‘cwlProcess* object.
name One of input list.

Value

cwlVersion: cwl document version

cwlClass: CWL class of ‘cwlProcess® or ‘cwlWorkflow* object.

10 cwlShiny

baseCommand: base command for the ‘cwlProcess‘ object.
arguments: CWL arguments.

hints: CWL hints.

requirements: CWL requirments.

inputs: A list of ‘InputParam°.

‘$°: the ‘InputParam* value for ‘cwlProcess‘ object.
outputs: A list of ‘OutputParam®.

stdOut: CWL stdout.

extensions: A list of extensions or metadata.

short: A short summary of an object of ‘cwlProcess‘ or ‘cwlWorkflow*.

Examples

ip <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand = "echo”, inputs = InputParamList(ip))
cwlVersion(echo)
cwlClass(echo)
baseCommand(echo)
hints(echo)
requirements(echo)
inputs(echo)

outputs(echo)

stdOut (echo)
extensions(echo)

s1 <~ cwlWorkflow()
runs(s1)

sl

short(s1)

cwlShiny cwlShiny

Description

Function to generate shiny app automaticlly for a ‘cwlProcess* object.

Usage

cwlShiny(cwl, inputList = list(), upload = FALSE, ...)

11

cwliStep
Arguments
cwl A cwlProcess object.
inputList a list of choices for the inputs of cwl object. The name of the list must match
the inputs of the cwl object.
upload Whether to upload file. If FALSE, the upload field will be text input (file path)
instead of file input.
More options for ‘runCWL".
Value
A shiny webapp.
Examples

inputl <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand =
echoApp <- cwlShiny(echo)

"echo", inputs = InputParamList(inputl))

cwlStep cwlStep function

Description

Constructor function for ‘cwlStep* object.

Usage
cwlStep(
id,
run = cwlProcess(),
In = list(Q),
Out = list(),

scatter = character(),
scatterMethod = character(),
label = character(),

doc = character(),
requirements = list(),

hints = list(),

when = character()

12

Arguments
id
run
In
Out
scatter

scatterMethod

label

doc
requirements
hints

when

Details

cwlWorkflow

A user-defined unique identifier for this workflow step.

A ‘cwlProcess‘ object for command line tool, or path to a CWL file.

A list of input parameters which will be constructed into ‘stepInParamList".
A list of outputs.

character or a list. The inputs to be scattered.

required if scatter is an array of more than one element. It can be one of "dot-

product”, "nested_crossproduct" and "flat_crossproduct".
A short, human-readable label of this object.

A documentation string for this object, or an array of strings which should be
concatenated.

Requirements that apply to either the runtime environment or the workflow en-
gine.

Hints applying to either the runtime environment or the workflow engine.

If defined, only run the step when the expression evaluates to true. If false the
step is skipped.

For more details: https://www.commonwl.org/v1.0/Workflow.html#WorkflowStep

Value

An object of class ‘cwlStep.

See Also

cwlWorkflow

Examples

s1 <- cwlStep(id = "s1")

cwlWorkflow

cwlWorkflow function

Description

The constructor function for ‘cwlWorkflow* object, which connects multiple command line steps

into a workflow.

steps: Function to extract and assign workflow step slots.

cwlWorkflow

Usage

cwlWorkflow(

13

cwlVersion = "v1.0",
cwlClass = "Workflow”,

requirements

= 1ist(),

id = character(),
label = character(),
doc = character(),
intent = list(),

hints

list(),

arguments = list(),

extensions

list(),

inputs = InputParamList(),

outputs

steps

)

S4 method for signature 'cwlWorkflow,cwlStep

el + e2

steps(cwl)

OutputParamList(),
cwlStepList()

steps(cwl) <- value

Arguments

cwlVersion
cwlClass

requirements

id
label
doc
intent

hints

arguments

extensions

inputs
outputs
steps
el

e2

cwl

value

CWL version

"Workflow".

Requirements that apply to either the runtime environment or the workflow en-
gine.

A user-defined unique identifier for this workflow.

A short, human-readable label of this object.

A documentation string for this object.

An identifier for the type of computational operation, of this Process.

Any or a list for the workflow engine.

Command line bindings which are not directly associated with input parameters.
A list of extensions and metadata.

An object of ‘InputParamList’.

An object of ‘OutputParamList‘.

A list of ‘cwlStepList*.

A ‘cwlWorkflow* object.

A ‘cwliStep® object.

A ‘cwlWorkflow* object.

A list of ‘cwlSteps* to assign.

14 cwlWorkflow-methods

Value

cwlWorkflow: An object of class ‘cwlWorkflow*.

steps: A list of ‘cwlStep* objects.

See Also

stepInParamList

Examples

input1 <- InputParam(id = "sth")
echol <- cwlProcess(baseCommand = "echo”,
inputs = InputParamList(input1))
input2 <- InputParam(id = "sthout"”, type = "File")
echo2 <- cwlProcess(baseCommand = "echo”,
inputs = InputParamList(input2),
stdout = "out.txt")
i1 <- InputParam(id = "sth")
ol <- QutputParam(id = "out", type = "File", outputSource = "echo2/output”)
wf <- cwlWorkflow(inputs = InputParamList(il),
outputs = OutputParamList(o1))
s1 <- cwlStep(id = "echol”, run = echol, In = list(sth = "sth"))
s2 <- cwlStep(id = "echo2", run = echo2, In = list(sthout = "echol/output”))
wf <- wf + s1 + s2

cwlWorkflow-methods cwlWorkflow methods

Description

runs: The function to access all runs of a ‘cwlWorkflow‘ object.

Usage

runs(object)

Arguments

object A ‘cwlWorkflow* object.

Value

‘cwlProcess* objects or paths of CWL file.

Examples

s1 <- cwlWorkflow()
runs(s1)

s1

short(s1)

env_Rcwl 15

env_Rcwl Rewl conda environment

Description

Rewl conda envrionment to install ‘cwltool® by basilisk.

Usage

env_Rcwl

Format

An object of class BasiliskEnvironment of length 1.

InputArrayParam-class All classes defined in the package of ‘Rewl’ and the class constructor
functions.

Description

InputArrayParam: Parameters for array inputs. To specify an array parameter, the array definition
is nested under the type field with ’type: array’ and items defining the valid data types that may
appear in the array.

InputParam: parameter for a command line tool.
InputParamList: A list of ‘InputParam* objects.
OutputArrayParam: Parameters for array outputs.
OutputParam: An output parameter for a Command Line Tool.
OutputParamList: A list of ‘InputParam® objects.
stepInParam: The input parameter of a workflow step.
stepInParamList: A list of ‘stepInParam* objects.

cwlStepList: A list of ‘cwlStep* objects.

Usage

InputArrayParam(
label = "",
doc = character(),
name = character(),
type = "array”,
items = character(),
prefix = "",
separate = TRUE,

16

)

itemSeparator = character(),
valueFrom = character()

InputParam(

)

id,

label = "",

type = "string”,

doc = character(),
secondaryFiles = character(),
streamable = logical(),
format = character(),
loadListing = character(),
loadContents = logical(),
position = @L,

prefix = "",

separate = TRUE,
itemSeparator = character(),
valueFrom = character(),
shellQuote = logical(),
default = character(),

value = character()

InputParamList(...)

OutputArrayParam(

)

label = character(),
doc = character(),
name = character(),
type = "array",
items = character()

OutputParam(

id = "output”,

label = character(),

doc = character(),

type = "stdout”,

format = character(),
secondaryFiles = character(),
streamable = logical(),
glob = character(),
loadContents = logical(),
loadListing = character(),
outputEval = character(),
outputSource = character(),
linkMerge = character(),

InputArrayParam-class

InputArrayParam-class 17

pickValue =
)

OutputParamlLis

stepInParam(

id,

source = cha
linkMerge =
pickValue =
loadContents
loadListing
default = ch
valueFrom =

)

stepInParamlLis

cwlStepList(..

Arguments

label

doc

name

type

items

prefix
separate
itemSeparator
valueFrom

id
secondaryFiles
streamable
format

loadlListing

loadContents

character()

t(out = OutputParam(), ...)

racter(),
character(),
character(),

= logical(),
= character(),
aracter(),
character()

t(...)
>

A short, human-readable label of this object.

A documentation string for this object, or an array of strings which should be
concatenated.

The identifier for this type.

Specify valid types of data that may be assigned to this parameter.
Defines the type of the array elements.

Command line prefix to add before the value.

If true (default), then the prefix and value must be added as separate command
line arguments; if false, prefix and value must be concatenated into a single
command line argument.

Join the array elements into a single string with the elements separated by by
itemSeparator.

value from string or expression.
A unique identifier for this workflow input parameter.

Provides a pattern or expression specifying files or directories. Only valid when
type: File or is an array of items: File.

A value of true indicates that the file is read or written sequentially without
seeking. Only valid when type: File or is an array of items: File.

Only valid when type: File or is an array of items: File. This is the file format
that will be assigned to the output File object.

Only valid when type: Directory or is an array of items: Directory. "no_listing",
"shallow_listing" or "deep_listing".

Only valid when type: File or is an array of items: File.

18 InputArrayParam-class

position The position for this parameter.

shellQuote If ShellCommandRequirement is in the requirements for the current command,
this controls whether the value is quoted on the command line (default is true).

default The default value for this parameter to use if either there is no source field, or
the value produced by the source is null.

value Assigned value for this parameter

A list of ‘cwlStep* objects.
glob Pattern to find files relative to the output directory.
outputEval Evaluate an expression to generate the output value.

outputSource Specifies one or more workflow parameters that supply the value of to the output

parameter.
linkMerge The method to use to merge multiple inbound links into a single array.
pickvalue The method to use to choose non-null elements among multiple sources. "first_non_null",

"the_only_non_null", or "all_non_null".
out The default stdout parameter.

source Specifies one or more workflow parameters that will provide input to the under-
lying step parameter.

Details

More details of ‘InputArrayParam®, see: https://www.commonwl.org/v1.0/CommandLineTool.html#CommandInputArraySc
More details for ‘InputParam’, see: https://www.commonwl.org/v1.0/CommandLineTool.html#CommandInputParameter

More details for ‘OutputArrayParam®, see: https://www.commonwl.org/v1.0/CommandLineTool. html#CommandOutputArr:
More details for ‘OutputParam®, see: https://www.commonwl.org/v1.0/CommandLineTool.html#CommandOutputParameter

More details for ‘stepInParam°, see: https://www.commonwl.org/v1.0/Workflow.html#WorkflowStepInput

Value

InputArrayParam: An object of class ‘InputArrayParam®.
An object of class ‘InputParam®.

InputParamList: An object of class ‘InputParamList".

An object of class ‘OutputArrayParam".

OutputParam: An object of class ‘OutputParam®.
OutputParamList: An object of class ‘OutputParamList’.
stepInParam: An object of class ‘stepInParam.

An object of class ‘stepInParamList".

cwlStepList: An object of class ‘cwlStepList*.

install _cwltool

Examples

InputArrayParam(items = "string”, prefix="-B=", separate = FALSE)

inputl <- InputParam(id = "sth")

InputParamList (input1)

OutputParam(id = "b", type = OutputArrayParam(items = "File"), glob = "*.txt")
ol <- OutputParam(id = "file"”, type = "File"”, glob = "x.txt")

ol

ol <- OQutputParam(id = "file", type = "File"”, glob = "*.txt")
OutputParamList(o1)
s1 <- stepInParam(id = "s1")

s1 <- stepInParam(id
stepInParamList(s1)
s1 <- cwlStep(id = "s1")
cwlStepList(s1)

"$1")

install_cwltool install cwltool

Description

To download and install cwltool using basilisk

Usage

install_cwltool()

install_udocker install udocker

Description

To download and install udocker for python3.

Usage

install_udocker(version = "1.3.4")

Arguments

version The version of udocker.

20

meta

meta

addMeta Add or change meta information for a cwl recipe.

Description

addMeta Add or change meta information for a cwl recipe.

Usage

meta(cwl)

meta(cwl) <- value

addMeta(
cwl,

label = character(),

doc = character(),
inputlLabels = character(),
inputDocs = character(),
outputlLabels = character(),
outputDocs = character(),
stepLabels = character(),
stepDocs = character(),
extensions = list()

Arguments

cwl

value

label

doc
inputlLabels
inputDocs
outputLabels
outputDocs

stepLabels

stepDocs

‘cwlProcess* object for data or tool recipe. ‘cwlWorkflow* object for a pipeline
recipe.

A list of meta information to add to ‘cwl®.

Character string specifying a label for the recipe. E.g., "bwa align", "gencode
annotation".

Character string describing the recipe. E.g, "Align reads to reference genome".
Vector of character string, specifying labels for each input parameter.

Vector of character string as descriptions for each input parameter.

Vector of character string, specifying labels for each output parameter.

Vector of character string as descriptions for each output parameter.

Vector of character string, specifying labels for each step. Use only if ‘cwl‘ is a
‘cwlWorkflow* object.

Vector of character string as description for each step. Use only if ‘cwl‘ is a
‘cwlWorkflow* object.

meta 21

extensions A list of character strings. Can be used to add meta information about the recipe.
Generally, add fields of information that does not require execution as part of the
recipe evaluation. for information about "author", "url", "date", "example", use
the exact names as list names as shown in examples, so that they can be correctly
passed into corresponding fields in markdown file when using ‘meta2md‘. Other
information can be added as a list element with arbitrary names.

Value

‘meta()‘: return a list of all available meta information for the ‘cwl* object.

‘addMeta()‘: ‘cwlProcess‘ or ‘cwlWorkflow* object, with added meta information, which can be
returned using ‘meta(cwl)‘. Meta information can be converted into markdown file with ‘meta2md*
function.

Examples

Not run:
library(RcwlPipelines)
cwlSearch(c("bwa”, "align"))
bwaAlign <- RcwlPipelines::cwllLoad("pl_bwaAlign")
bwaAlign <- addMeta(
cwl = bwaAlign,
label = "align",

doc = "align reads to reference genome”,
inputLabels = c("threads”, "readgroup”, "reference”, "readl”, "read2"),
inputDocs = c("number of threads”, "read groups”,

"reference genome”, "read pairl”, "read pair2"),

outputLabels = c("Bam”, "Idx"),

outputDocs = c("outputbam file”, "index file"),

steplLabels = c(bwa = "bwa"),

stepDocs = c(bwa = "bwa alignment”))
cat(meta2md(bwaAlign))

End(Not run)

Not run:
rcp <- ReUseData::recipelLoad(”gencode_annotation”)
meta(rcp)
rcpl <- addMeta(
cwl = rcp,
label = "",
doc = "An empty description line”,
inputLabels = c("input labell1”, "input label2"),
inputDocs = c("input description 1", "input description 2"),

outputLabels = c("output labell"),

outputDocs = c("output description 1"),

extensions = list(
author = "recipe author's name”,
url = "http://ftp.ebi.ac.uk/pub/databases/gencode/",
date = as.character(Sys.Date()),
example = "An example”))

meta(rcpl)

22 plotCWL

cat(meta2md(rcpl))

End(Not run)

plotCwL plotCWL

Description

Function to plot cwlWorkflow object.

Usage
plotCWL(cwl, output = "graph”, layout = "tree", ...)
Arguments
cwl A cwlWorkflow object to plot
output A string specifying the output type. An option inherits from ‘render_graph‘ and
can also be "mermaid".
layout Layout from ‘render_graph".
other parameters from ‘mermaid‘ or ‘render_graph‘ function
Value
A workflow plot.
Examples

input1 <- InputParam(id = "sth")
echol <- cwlProcess(baseCommand = "echo”,
inputs = InputParamList(inputl))
input2 <- InputParam(id = "sthout"”, type = "File")
echo2 <- cwlProcess(baseCommand = "echo”,
inputs = InputParamList(input2),
stdout = "out.txt")
i1 <- InputParam(id = "sth")
ol <- QutputParam(id = "out"”, type = "File", outputSource = "echo2/output”)
wf <- cwlWorkflow(inputs = InputParamList(il),
outputs = OutputParamList(o1))
s1 <- cwlStep(id = "echol”, run = echol, In = list(sth = "sth"))
s2 <- cwlStep(id = "echo2", run = echo2, In = list(sthout = "echol/output”))
wf <- wf + s1 + s2
plotCWL (wf)

readCWL 23

readCWL Read CWL Function to read CWL command or workflow files.

Description

Read CWL Function to read CWL command or workflow files.

Usage

readCWL (cwlfile)
Arguments

cwlfile The cwl file to read.
Value

A object of class ‘cwlProcess‘ or ‘cwlWorkflow*.

Examples

inputl <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand = "echo"”,
inputs = InputParamList(input1))
tf <- writeCWL (echo)
readCWL(tf[1])

runCWL run cwlProcess

Description

Execute a cwlProcess object with assigned inputs.

Usage

runCWL (
cwl,
outdir =
cwlRunner = "cwltool”,
cachedir = NULL,
cwlTemp = NULL,
cwlArgs = character(),
stdout = TRUE,
stderr = TRUE,
showLog = FALSE,

non

24

docker = TRUE,

conda = FALSE,

yml_prefix = deparse(substitute(cwl)),
yml_outdir = tempfile(),

)
Arguments

cwl A ‘cwlProcess‘ or ‘cwlWorkflow* object.

outdir Output directory, default is current working directory.

cwlRunner The path to the ‘cwltool® or ‘cwl-runner*. If not exists, the cwltool package will
be installed by ‘reticulate’.

cachedir Directory to cache intermediate workflow outputs to avoid recomputing steps.

cwlTemp File path to keep intermediate files. If a directory path is given, the intermediate
files will be kept in the directory. Default is NULL to remove all intermediate
files.

cwlArgs The arguments for ‘cwltool® or ‘cwl-runner‘. For example, "—debug" can work
with ‘cwltool* to show debug information.

stdout standard output from ‘system2°.

stderr standard error from ‘system2°‘. By setting it to "", the detailed running logs will
return directly.

showLog Whether to show log details to standard out. i.e. stderr ="".

docker Whether to use docker, or "sigularity" if use Singularity runtime to run container.

conda Whether to install packages using conda if ‘SoftwareRequirement* is defined.

yml_prefix The prefix of ‘.cwl and ‘.yml* files that are to be internally executed.

yml_outdir The output directory for the ‘.cwl‘ and ‘.yml* files.
The other options from ‘writeCWL* and ‘system2‘.

Value

A list of outputs from tools and logs from cwltool.

Examples

inputl <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand = "echo”,
inputs = InputParamList(input1))
echo$sth <- "Hello World!"
res <- runCWL(echo)

runCWLBatch 25

runCWLBatch run CWL with batchtools

Description

run CWL with batchtools

Usage

runCWLBatch(
cwl,
outdir = getwd(),
inputlList,
paramList = list(),
BPPARAM = BatchtoolsParam(workers = lengths(inputList)[1]),

Arguments
cwl A ‘cwlProcess‘ or ‘cwlWorkflow* object.
outdir Directory to output results
inputList An input list to run in parallel. The list names must be in the inputs of cwl. Jobs
will be submitted in parallel for each element in the list. The output directory of
each job will be made using the name of each element under the ‘outdir*.
paramList A parameter list for the cwl. The list names must be in the inputs of cwl.
BPPARAM The options for ‘BiocParalle]Param®.
The options from runCWL.
Value

Results from computing nodes and logs from cwltool.

runCWLBP run CWL with BiocParallel

Description

Submit one CWL object with assigned values with BiocParallel.

Usage

runCWLBP(cwl, outdir, BPPARAM, ...)

26

Arguments
cwl cwl A ‘cwlProcess® or ‘cwlWorkflow* object.
outdir Directory for output results
BPPARAM The options for ‘BiocParalle]Param®.
The other options from runCWL.
Value

Results from computing nodes and logs from cwltool.

stepOutputs

stepInputs stepInputs

Description

prepare inputs for workflow from ‘cwlStep* objects

Usage

stepInputs(steplList)

Arguments

stepList a list of ‘cwlStep* objects.

Value

InputParamlList.

stepOutputs stepOutputs

Description

prepare outputs for workflow from ‘cwlStep* objects

Usage

stepOutputs(steplList)

Arguments

stepList a list of ‘cwlStep‘ objects.

Value

OutputParamList.

writeCWL

27

writeCWL Write CWL

Description

write ‘cwlProcess® to cwl and yml.

Usage
writeCWL(
cwl,
prefix = deparse(substitute(cwl)),
outdir = tempfile(),
docker = TRUE,

libPaths = TRUE,

Arguments
cwl A ‘cwlProcess‘ or ‘cwlWorkflow* object.
prefix The prefix of “.cwl® and ‘.yml" files to be generated.
outdir The output directory for the ‘.cwl‘ and ‘.yml‘ files.
docker Whether to use docker.
libPaths Whether to add local R libaray paths to R script.

Other options from ‘yaml::write_yaml‘.

Value
A CWL file and A YML file.

Examples

inputl <- InputParam(id = "sth")
echo <- cwlProcess(baseCommand = "echo"”,

inputs = InputParamList(input1))
writeCWL (echo)

Index

+ datasets
env_Rcwl, 15

+,cwlWorkflow, cwlStep-method
(cwlWorkflow), 12

$,cwlProcess-method
(cwlProcess-methods), 8

$<-,cwlProcess-method
(cwlProcess-methods), 8

addMeta (meta), 20
arguments (cwlProcess-methods), 8
arguments<- (cwlProcess-methods), 8

baseCommand (cwlProcess-methods), 8
baseCommand<- (cwlProcess-methods), 8

condaPackage (cwl-requirements), 3

CondaTool (cwl-requirements), 3

cwl-requirements, 3

cwlClass (cwlProcess-methods), 8

cwlClass<- (cwlProcess-methods), 8

cwlProcess, 2,7

cwlProcess-class
(InputArrayParam-class), 15

cwlProcess-methods, 8

cwlShiny, 10

cwlStep, 2, 11

cwlStep-class (InputArrayParam-class),
15

cwlSteplList (InputArrayParam-class), 15

cwlStepList-class
(InputArrayParam-class), 15

cwlVersion (cwlProcess-methods), 8

cwlVersion<- (cwlProcess-methods), 8

cwlWorkflow, 2, 12, 12

cwlWorkflow-class
(InputArrayParam-class), 15

cwlWorkflow-methods, 14

Dirent (cwl-requirements), 3

env_Rcwl, 15
extensions (cwlProcess-methods), 8
extensions<- (cwlProcess-methods), 8

hints (cwlProcess-methods), 8
hints<- (cwlProcess-methods), 8

InputArrayParam
(InputArrayParam-class), 15

InputArrayParam-class, 15

InputParam (InputArrayParam-class), 15

InputParam-class
(InputArrayParam-class), 15

InputParamList (InputArrayParam-class),
15

InputParamList-class
(InputArrayParam-class), 15

inputs (cwlProcess-methods), 8

install_cwltool, 19

install_udocker, 19

meta, 20
meta<- (meta), 20

OutputArrayParam
(InputArrayParam-class), 15
OutputArrayParam-class
(InputArrayParam-class), 15
OutputParam (InputArrayParam-class), 15
OutputParam-class
(InputArrayParam-class), 15
OutputParamList
(InputArrayParam-class), 15
OutputParamList-class
(InputArrayParam-class), 15
outputs (cwlProcess-methods), 8

plotCwL, 22

Rcwl (Rcwl-package), 2
Rcwl,Rcwl-package (Rcwl-package), 2

INDEX

Rcwl-package, 2

readCWL, 23

requireDocker (cwl-requirements), 3

requireEnvVar (cwl-requirements), 3

requireInitialWorkDir
(cwl-requirements), 3

requireJS (cwl-requirements), 3

requireManifest (cwl-requirements), 3

requirements (cwlProcess-methods), 8

requirements<- (cwlProcess-methods), 8

requireMultipleInput
(cwl-requirements), 3

requireNetwork (cwl-requirements), 3

requireResource (cwl-requirements), 3

requireRscript (cwl-requirements), 3

requireScatter (cwl-requirements), 3

requireShellCommand (cwl-requirements),
3

requireShellScript (cwl-requirements), 3

requireSoftware (cwl-requirements), 3

requireStepInputExpression
(cwl-requirements), 3

requireSubworkflow (cwl-requirements), 3

runCwL, 2, 23

runCWLBatch, 25

runCWLBP, 25

runs (cwlWorkflow-methods), 14

ShellScript (cwl-requirements), 3
short (cwlProcess-methods), 8
stdOut (cwlProcess-methods), 8
stdOut<- (cwlProcess-methods), 8
stepInParam (InputArrayParam-class), 15
stepInParam-class
(InputArrayParam-class), 15
stepInParamlList, /14
stepInParamList
(InputArrayParam-class), 15
stepInParamList-class
(InputArrayParam-class), 15
stepInputs, 26
stepOutputs, 26
steps (cwlWorkflow), 12
steps<- (cwlWorkflow), 12

writeCWwL, 27

29

	Rcwl-package
	cwl-requirements
	cwlProcess
	cwlProcess-methods
	cwlShiny
	cwlStep
	cwlWorkflow
	cwlWorkflow-methods
	env_Rcwl
	InputArrayParam-class
	install_cwltool
	install_udocker
	meta
	plotCWL
	readCWL
	runCWL
	runCWLBatch
	runCWLBP
	stepInputs
	stepOutputs
	writeCWL
	Index

