
Package ‘ProteoMM’
January 24, 2026

Title Multi-Dataset Model-based Differential Expression Proteomics
Analysis Platform

Version 1.29.0

Description ProteoMM is a statistical method to perform model-based
peptide-level differential expression analysis of single or
multiple datasets. For multiple datasets ProteoMM produces a
single fold change and p-value for each protein across multiple
datasets.
ProteoMM provides functionality for normalization, missing
value imputation and differential expression.
Model-based peptide-level imputation and differential expression
analysis component of package follows the analysis described in
“A statistical framework for protein quantitation in bottom-up
MS based proteomics`` (Karpievitch et al. Bioinformatics 2009).

EigenMS normalisation is implemented as described in
''Normalization of peak intensities in bottom-up MS-based proteomics
using singular value decomposition."
(Karpievitch et al. Bioinformatics 2009).

Author Yuliya V Karpievitch, Tim Stuart and Sufyaan Mohamed

Maintainer Yuliya V Karpievitch <yuliya.k@gmail.com>

License MIT

LazyData TRUE

Depends R (>= 3.5)

Encoding UTF-8

RoxygenNote 6.1.0

Imports gdata, biomaRt, ggplot2, ggrepel, gtools, stats, matrixStats,
graphics

biocViews ImmunoOncology, MassSpectrometry, Proteomics, Normalization,
DifferentialExpression

Suggests BiocStyle, knitr, rmarkdown

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ProteoMM

1

2 convert_log2

git_branch devel

git_last_commit 9f11f1b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents
convert_log2 . 2
eigen_pi . 3
eig_norm1 . 4
eig_norm2 . 5
g.test . 6
get_presAbs_prots . 7
hs_peptides . 9
makeLMFormula . 10
make_intencities . 10
make_meta . 11
MBimpute . 12
mm_peptides . 13
peptideLevel_DE . 14
peptideLevel_PresAbsDE . 15
plot_1prot . 17
plot_3_pep_trends_NOfile . 18
plot_volcano . 19
plot_volcano_wLab . 20
prot_level_multiMat_PresAbs . 21
prot_level_multi_part . 24
subset_proteins . 27
sva.id . 29

Index 30

convert_log2 Convert values in a matrix to log2 transfored values

Description

convert_log2 replaces 0’s with NA’s than does a log2 transformation Replacing 0’s with NA’s is the
correct approach to Proteomics data analysis as 0’s are not values that should be left in the data
where no observation was made, see citation below. Karpievitch et al. 2009 "Normalization of
peak intensities in bottom-up MS-based proteomics using singular value decomposition". PMID:
19602524 Karpievitch et al. 2009 "A statistical framework for protein quantitation in bottom-up
MS-based proteomics". PMID: 19535538

eigen_pi 3

Usage

convert_log2(mm, use_cols)

Arguments

mm a dataframe of raw intensities in format: (# peptides)x(# samples+possibly pep-
tide & protein information (metadata))

use_cols vector of column indecies that make up the intensities usually in sequential order
but do not have to be user is responsible for making sure that specified columns
are indeed numeric and correspond to intensities for each sample

Value

matrix of log2 transforemd intensities where 0’s were replaced with NA’s prior to transformation

Examples

data(mm_peptides)
head(mm_peptides)
intsCols = 8:13
metaCols = 1:7
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts) # 0's replaced with NAs and

log2 transnform applied

eigen_pi Compute PI - proportion of observations missing completely at ran-
dom

Description

Compute PI - proportion of observations missing completely at random

Usage

eigen_pi(m, toplot = TRUE)

Arguments

m matrix of abundances, numsmaples x numpeptides

toplot TRUE/FALSE plot mean vs protportion missing curve and PI

Value

pi estimate of the proportion of observations missing completely at random

Contributed by Shelley Herbrich & Tom Taverner for Karpievitch et al. 2009

4 eig_norm1

Examples

data(mm_peptides)
intsCols = 8:13
metaCols = 1:7
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
my.pi = eigen_pi(m_logInts, toplot=TRUE)

eig_norm1 Identify bias trends

Description

First portion of EigenMS: Identify eigentrends attributable to bias, allow the user to adjust the
number (with causion! if desired) before normalizing with eig_norm2. Ref: "Normalization of peak
intensities in bottom-up MS-based proteomics using singular value decomposition" Karpievitch YV,
Taverner T, et al. 2009, Bioinformatics Ref: "Metabolomics data normalization with EigenMS"
Karpievitch YK, Nikolic SB, Wilson R, Sharman JE, Edwards LM 2014, PLoS ONE

Usage

eig_norm1(m, treatment, prot.info, write_to_file = "")

Arguments

m number of peptides x number of samples matrix of log-transformed expression
data, metadata not included in this matrix

treatment either a single factor indicating the treatment group of each sample i.e. [1 1 1 1 2
2 2 2...] or a data frame of factors, eg: treatment= data.frame(cbind(data.frame(Group),
data.frame(Time))

prot.info 2+ colum data frame, pepID, prID columns IN THAT ORDER. IMPORTANT:
pepIDs must be unique identifiers and will be used as Row Names If normalizing
non-proteomics data, create a column such as: paste(’ID_’,seq_len(num_rows),
sep=”) Same can be dome for ProtIDs, these are not used for normalization but
are kept for future analyses

write_to_file if a string is passed in, ’complete’ peptides (peptides with NO missing observa-
tions) will be written to that file name

Value

A structure with multiple components

m, treatment, prot.info, grp initial parameters passed into the function, returned for future refer-
ence

my.svd matrices produced by SVD

eig_norm2 5

pres matrix of peptides that can be normalized, i.e. have enough observations for ANOVA

n.treatment number of factors passed in

n.u.treatment number of unique treatment facotr combinations, eg: Factor A: a a a a c c c c Factor
B: 1 1 2 2 1 1 2 2 then: n.treatment = 2; n.u.treatment = 4

h.c number of bias trends identified

present names/IDs of peptides in variable ’pres’

complete complete peptides with no missing values, these were used to compute SVD

toplot1 trends automatically identified in raw data, can be plotted at a later time

Tk scores for each bias trend, eigenvalues

ncompl number of complete peptides with no missing observations

Examples

data(mm_peptides)
head(mm_peptides)
different from parameter names as R uses outer name spaces
if variable is undefined
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
3 samples for CG and 3 for mCG
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

ATTENTION: SET RANDOM NUMBER GENERATOR SEED FOR REPRODUCIBILITY !!
set.seed(123) # Bias trends are determined via a permutaion, results may
vary slightly if a different seed is used, such as when set.seed()
function is not used

mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)

eig_norm2 EigenMS normalization

Description

Eliminate the effects of systematic bias identified in eig_norm1() Ref: "Normalization of peak
intensities in bottom-up MS-based proteomics using singular value decomposition" Karpievitch
YV, Taverner T et al. 2009, Bioinformatics Ref: "Metabolomics data normalization with EigenMS"
Karpievitch YK, Nikolic SB, Wilson R, Sharman JE, Edwards LM Submitted to PLoS ONE.

Usage

eig_norm2(rv)

6 g.test

Arguments

rv return value from the eig_norm1 if user wants to change the number of bias
trends that will be eliminated h.c in rv should be updates to the desired number

Value

A structure with multiple components

normalized matrix of normalized abundances with 2 columns of protein and peptdie names

norm_m matrix of normalized abundances, no extra columns

eigentrends trends found in raw data, bias trends up to h.c

norm.svd trends in normalized data, if one wanted to plot at later time

exPeps peptides excluded due to not enough peptides or exception in fitting a linear model

Examples

data(mm_peptides)
head(mm_peptides)
different from parameter names as R uses outer name
spaces if variable is undefined
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(123) # set for repoducubility of eig_norm1
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)

g.test G Test for presence - absence analysis

Description

Log-likelihood test for independence & goodness of fit. g.test() performs Williams’ and Yates’
correction; Monte Carlo simulation of p-values, via gtestsim.c. MC requires recompilation of R.
Written by Peter Hurd (V3.3 Pete Hurd Sept 29 2001, phurd AT ualberta.ca). Yuliya Karpievitch
added comments for ease of understanding and incorporated into ProteoMM. G & q calculation
from Sokal & Rohlf (1995) Biometry 3rd ed., TOI Yates correction taken from Mike Camanns 2x2
G-test function, GOF Yates correction as described in Zar (2000), more stuff taken from ctest’s
chisq.test().

get_presAbs_prots 7

Usage

g.test(x, y = NULL, correct = "none", p = rep(1/length(x),
length(x)))

Arguments

x vector of boolean values corresponding to presence & absence eg: c(TRUE,
TRUE, FALSE, FALSE) for present present absent absent values. Order of
TRUE/FALSE does not matter, can be used interchangeably. Same length as
parameter y

y vector treatments (factor) corresponding to values in x, same length as x eg:
as.factor(c(’grp1;, ’grp1’, ’grp2’, ’grp2’))

correct correction to apply, options: "yates", "williams", "none" default: "none" NOTE:
in ProteoMM we only tested & used correction = "none"

p default: rep(1/length(x), length(x)), used in Yates correction NOTE: in Pro-
teoMM we only tested & used the default parameter value

Value

htest object the following variables

statistic value of the G statistic produced by g test

parameter degrees of freedom of the test

p.value p-value

method method used to produce statistic and p-value

data.name data passed in to the function

observed matrix of observed counts

expected matrix of expected counts

Examples

g.test(c(TRUE, TRUE, FALSE, FALSE),
as.factor(c('grp1', 'grp1', 'grp2', 'grp2')))

get_presAbs_prots Get Presence/Absence Proteins

Description

Function get_presAbs_prots() produces a subset of protein meta data and intencities for multiple
datasets pass in as a list. If a single dataset is passed in (list of length one) it will be processed in
the same way as longer lists.

Usage

get_presAbs_prots(mm_list, prot.info, protnames_norm, prot_col_name)

8 get_presAbs_prots

Arguments

mm_list list of matrices of intensities for each experiment. Dimentions: numpeptides x
numsamples different for each dataset.

prot.info list of protein and peptide metadata/mappings for each matrix in mm_list, data.frames
"parallel" to matrices in mm_list.

protnames_norm list of protein pdentifies to be used to determine peptides that will be placed into
Presence/Absence analysis category due to too many missing peptides. Taken
from the return value from eig_norm2().

prot_col_name column name (string) that will be used to get ProteinIDs in the raw data matrices

Value

list of lists of length 2

intensities list of intecities in the same order and of the same length as the number of datasets that
were passed into the function

protein metadata list of protein metadata in the same order and of the same length as the number
of datasets that as were passed into the function

Examples

Load mouse dataset
data(mm_peptides)
head(mm_peptides)
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)

Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)

Set up for presence/absence analysis
raw_list = list()
norm_imp_prot.info_list = list()

hs_peptides 9

raw_list[[1]] = mm_m_ints_eig1$m
raw_list[[2]] = hs_m_ints_eig1$m
norm_imp_prot.info_list[[1]] = mm_m_ints_eig1$prot.info
norm_imp_prot.info_list[[2]] = hs_m_ints_eig1$prot.info

protnames_norm_list = list()
protnames_norm_list[[1]] = unique(mm_m_ints_norm$normalized$MatchedID)
protnames_norm_list[[2]] = unique(hs_m_ints_norm$normalized$MatchedID)

presAbs_dd = get_presAbs_prots(mm_list=raw_list,
prot.info=norm_imp_prot.info_list,
protnames_norm=protnames_norm_list,
prot_col_name=2)

hs_peptides hs_peptides - peptide-level intensities for human

Description

A dataset containing the protein and petide information and peptide-level intensities for 6 samples:
3 CG and 3 mCG groups. There are 69 proteins. The columns are as follows:

Usage

data(hs_peptides)

Format

A data frame with 695 rows and 13 colummns, compiring 7 columns of metadata and 6 columns of
peptide intensities. 69 proteins.

Details

• Sequence - peptide sequence - randomly chosen from a larger list of sequences
• MatchedID - numeric ID that links proteins in the two datasets, unnecessary if datasets are for

the same species
• ProtID - protein ID, artificial protein ID, eg. Prot1, Prot2, ...
• GeneID - gene ID, artificial gene ID, eg. Gene1, Gene2, ...
• ProtName - artificial Protein Name
• ProtIDLong - long protein ID, full protein name, here artificially simulated
• GeneIDLong - long gene ID, full gene name, here artificially simulated
• CG1 - raw intensity column for sample 1 in CG group
• CG2 - raw intensity column for sample 2 in CG group
• CG3 - raw intensity column for sample 3 in CG group
• mCG1 - raw intensity column for sample 1 in mCG group
• mCG2 - raw intensity column for sample 2 in mCG group
• mCG3 - raw intensity column for sample 3 in mCG group

10 make_intencities

makeLMFormula String linear model formula suitable

Description

Makes a string linear model formula suitable for the right hand side of the equasion passed into lm()

Usage

makeLMFormula(eff, var_name = "")

Arguments

eff treatment group ordering for all samples being anlysed. Single factor with 2+
teatment groups. Used to generate formula and contrasts for lm().

var_name string variable name to use in the formula

Details

eig_norm1 and eig_norm2 Here we incorporate the model matrix from EigenMS normalization to
find the significant trends in the matrix of residuals.

Value

data structure with linea model formula and contrasts

lm.formula Lienar model formula suitable for right hand side of ’ ~’ in lm(), ~ is not included int
eh formula

lm.params contrasts for lm(), here sum-to-zero constraint only

Examples

grps = as.factor(c('CG', 'CG', 'CG', 'mCG', 'mCG', 'mCG'))
makeLMFormula(grps, 'TREATS')

make_intencities Subdivide data into intensities columns only

Description

Subdivide a data frame of protein intensities and metadata into intensities only. No row names will
be provided.

Usage

make_intencities(mm, use_cols)

make_meta 11

Arguments

mm data frame of metadata and intensities as a single data frame

use_cols column numbers to subset and return, no range checking no range checking on
the column indeces is performed

Value

m_ints data frame of intensities only

Examples

data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as R uses outer name

spaces if variable is undefined
m_logInts = make_intencities(mm_peptides, intsCols)

make_meta Subdivide data into metadata columns only

Description

Subdivide a data frame of protein metadata and intensities into a data frame of meta data only

Usage

make_meta(mm, use_cols)

Arguments

mm data frame of metadata and intensities as a signle data frame

use_cols column numbers to subset and return, no range checking on the column indeces
is performed

Value

m_ints data frame of intensities only

Examples

data(mm_peptides)
head(mm_peptides)
metaCols = 1:7 # reusing this variable
m_prot.info = make_meta(mm_peptides, metaCols)

12 MBimpute

MBimpute Model-Based Imputation of missing values

Description

Impute missing values based on information from multiple peptides within a protein Expects the
data to be filtered to contain at least one observation per treatment group. For experiments with
lower overall abundaneces such as multiplexed experiments check if the imputed value is below 0,
if so value is reimputed untill it is above 0.

Usage

MBimpute(mm, treatment, prot.info, pr_ppos = 2, my.pi = 0.05,
compute_pi = FALSE)

Arguments

mm number of peptides x number of samples matrix of intensities

treatment vector indicating the treatment group of each sample eg as.factor(c(’CG’,’CG’,’CG’,
’mCG’,’mCG’,’mCG’)) or c(1,1,1,1,2,2,2,2)

prot.info protein metadata, 2+ columns: peptide IDs, protein IDs, etc

pr_ppos column index for protein ID in prot.info

my.pi PI value, estimate of the proportion of peptides missign completely at random,
as compared to censored at lower abundance levels default values of 0.05 is
usually reasoanble for missing completely at random values in proteomics data

compute_pi TRUE/FALSE (default=FALSE) estimate Pi is set to TRUE, otherwise use the
provided value. We consider Pi=0.05 a reasonable estimate for onservations
missing completely at random in proteomics experiments. Thus values is set to
NOT estimate Pi by default. Note: spline smoothing can sometimes produce
values of Pi outside the range of possible values.

Value

A structure with multiple components

y_imputed number of peptides x m matrix of peptides with no missing data

imp_prot.info imputed protein info, 2+ columns: peptide ID, protein IDs, etc Dimentions should
be the same as passed in

Examples

data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as R uses outer name spaces

if variable is undefined
metaCols = 1:7 # reusing this variable

mm_peptides 13

m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(135)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m = mm_m_ints_norm$normalized[,8:13]

ATTENTION: SET RANDOM NUMBER GENERATOR SEED FOR REPRODUCIBILITY !!
set.seed(125) # if nto set every time results will be different
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info, pr_ppos=2,

my.pi=0.05, compute_pi=FALSE)

mm_peptides mm_peptides - peptide-level intensities for mouse

Description

A dataset containing the protein and petide information and peptide-level intensities for 6 samples:
3 CG and 3 mCG groups. There are 69 proteins. The columns are as follows:

Usage

data(mm_peptides)

Format

A data frame with 1102 rows and 13 colummns, compiring 7 columns of metadata and 6 columns
of peptide intensities. 69 proteins.

Details

• Sequence - peptide sequence - randomly chosen from a larger list of sequences

• MatchedID - numeric ID that links proteins in the two datasets, unnecessary if datasets are for
the same species

• ProtID - protein ID, artificial protein ID, eg. Prot1, Prot2, ...

• GeneID - gene ID, artificial gene ID, eg. Gene1, Gene2, ...

• ProtName - artificial Protein Name

• ProtIDLong - long protein ID, full protein name, here artificially simulated

• GeneIDLong - long gene ID, full gene name, here artificially simulated

• CG1 - raw intensity column for sample 1 in CG group

• CG2 - raw intensity column for sample 2 in CG group

14 peptideLevel_DE

• CG3 - raw intensity column for sample 3 in CG group

• mCG1 - raw intensity column for sample 1 in mCG group

• mCG2 - raw intensity column for sample 2 in mCG group

• mCG3 - raw intensity column for sample 3 in mCG group

peptideLevel_DE Model-Based differential expression analysis

Description

Model-Based differential expression analysis is performed on peptide level as desribed in Karpievitch
et al. 2009 "A statistical framework for protein quantitation in bottom-up MS-based proteomics"
Bioinformatics.

Usage

peptideLevel_DE(mm, treatment, prot.info, pr_ppos = 2)

Arguments

mm m x n matrix of intensities, num peptides x num samples

treatment vector indicating the treatment group of each sample ie [1 1 1 1 2 2 2 2...]

prot.info 2+ colum data frame of peptide ID, protein ID, etc. columns

pr_ppos - column index for protein ID in prot.info. Can restrict to be #2...

Value

A data frame with the following columns:

ProtID protein identification information taken from prot.info, 1 column used to identify proteins

FC fold change

p-value p-value for the comparison between 2 groups (2 groups only here)

BH-adjusted p-value Benjamini-Hochberg adjusted p-values

Examples

data(mm_peptides)
head(mm_peptides)
different from parameter names as R uses outer
name spaces if variable is undefined
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

peptideLevel_PresAbsDE 15

set.seed(135) # results rarely vary due to the random seed for EigenMS
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m = mm_m_ints_norm$normalized[,8:13]

set.seed(131) # important to reproduce the results later
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info,

pr_ppos=2, my.pi=0.05,
compute_pi=FALSE)

DE_res = peptideLevel_DE(imp_mm$y_imputed,
grps, mm_m_ints_norm$normalized[,metaCols],
pr_ppos=2)

peptideLevel_PresAbsDE

Presence/Absence peptide-level analysis

Description

Presence/Absence peptide-level analysis uses all peptides for a protein as IID to produce 1 p-value
across multiple (2+) datasets. Significance is estimated using a g-test which is suitable for two
treatment groups only.

Usage

peptideLevel_PresAbsDE(mm, treatment, prot.info, pr_ppos = 2)

Arguments

mm m x n matrix of intensities, num peptides x num samples

treatment vector indicating the treatment group of each sample ie [1 1 1 1 2 2 2 2...]

prot.info 2+ colum data frame of peptide ID, protein ID, etc columns

pr_ppos - column index for protein ID in prot.info. Can restrict to be #2...

Value

A list of length two items:

ProtIDused protein identification information taken from prot.info, a column used to identify pro-
teins

FC Approximation of the fold change computed as percent missing observations group 1 munis in
percent missing observations group 2

P_val p-value for the comparison between 2 groups (2 groups only here)

BH_P_val Benjamini-Hochberg adjusted p-values

16 peptideLevel_PresAbsDE

statistic statistic returned by the g-test, not very useful as depends on the direction of the test and
can produce all 0’s

num_peptides number of peptides within a protein

metadata all columns of metadata from the passed in matrix

Examples

Load mouse dataset
data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as R uses

outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(135)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)

Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13 # different from parameter names as R

uses outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(137) # different seed for different organism
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)

Set up for presence/absence analysis
raw_list = list()
norm_imp_prot.info_list = list()
raw_list[[1]] = mm_m_ints_eig1$m
raw_list[[2]] = hs_m_ints_eig1$m
norm_imp_prot.info_list[[1]] = mm_m_ints_eig1$prot.info
norm_imp_prot.info_list[[2]] = hs_m_ints_eig1$prot.info

protnames_norm_list = list()
protnames_norm_list[[1]] = unique(mm_m_ints_norm$normalized$MatchedID)
protnames_norm_list[[2]] = unique(hs_m_ints_norm$normalized$MatchedID)

presAbs_dd = get_presAbs_prots(mm_list=raw_list,

plot_1prot 17

prot.info=norm_imp_prot.info_list,
protnames_norm=protnames_norm_list,
prot_col_name=2)

presAbs_de = peptideLevel_PresAbsDE(presAbs_dd[[1]][[1]],
grps, presAbs_dd[[2]][[1]],
pr_ppos=2)

plot_1prot Plot trends for a single protien

Description

Plot peptide trends for a protein

Usage

plot_1prot(mm, prot.info, prot_to_plot, prot_to_plot_col, gene_name,
gene_name_col, colors, mylabs)

Arguments

mm matrix of raw intensities

prot.info metadata for the intensities in mm

prot_to_plot protein ID to plot

prot_to_plot_col

protein ID column index

gene_name gene ID to plot

gene_name_col gene ID to plot column index

colors what colors to plot peptide abundances as, most commonly should be treatment
groups

mylabs sample labels to be plotted on x-axis

Value

Nil

18 plot_3_pep_trends_NOfile

plot_3_pep_trends_NOfile

Plot peptide trends

Description

Plot Raw, Normalized and Normalized & Imputed peptide trends for a protein

Usage

plot_3_pep_trends_NOfile(mm, prot.info, sorted_norm_m, sorted_prot.info,
imp_mm, imp_prot.info, prot_to_plot, prot_to_plot_col, gene_name,
gene_name_col, mylabs)

Arguments

mm matrix of raw intensities

prot.info metadata for the intensities in mm

sorted_norm_m normalized intensities, possibly fewer than in mm due to filtering out peptides
with fewer than one observation per treatment group

sorted_prot.info

metadata for the intensities in sorted_norm_m

imp_mm imputed intensities (post normalization)

imp_prot.info metadata for the imputed intensities in imp_mm

prot_to_plot protein ID to plot
prot_to_plot_col

protein ID column index

gene_name gene ID to plot

gene_name_col gene ID to plot column index

mylabs sample labels to be plotted on x-axis

Value

Nil

Examples

data("hs_peptides") # loads variable hs_peptides
intsCols = 8:13 # column indeces that contain intensities
m_logInts = make_intencities(hs_peptides, intsCols)
replace 0's with NA's as NA's are more appropriate
for anlysis and log2 transform
m_logInts = convert_log2(m_logInts)
column indices that contain metadata such as protein IDs and sequences
metaCols = 1:7

plot_volcano 19

m_prot.info = make_meta(hs_peptides, metaCols)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(135)
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c = 2 # looks like there are 2 bias trends at least
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)
hs_prot.info = hs_m_ints_norm$normalized[,metaCols]
hs_norm_m = hs_m_ints_norm$normalized[,intsCols]

set.seed(125)
imp_hs = MBimpute(hs_norm_m, grps, prot.info=hs_prot.info,

pr_ppos=3, my.pi=0.05, compute_pi=FALSE)
mylabs = c('CG','CG','CG', 'mCG','mCG','mCG')
prot_to_plot = 'Prot32' # 43
gene_to_plot = 'Gene32'
plot_3_pep_trends_NOfile(as.matrix(hs_m_ints_eig1$m),

hs_m_ints_eig1$prot.info,
as.matrix(hs_norm_m),
hs_prot.info,
imp_hs$y_imputed,
imp_hs$imp_prot.info,
prot_to_plot, 3,
gene_to_plot, 4, mylabs)

plot_volcano Volcano plot

Description

Function plots fold changes and p-values as a volcano plot. Two lines are plotted for the p-value
cutoff at p = PV_cutoff (solid line) and p = 0.1 (dashed line).

Usage

plot_volcano(FC, PV, FC_cutoff = 2, PV_cutoff = 0.05, figtitle = "")

Arguments

FC vector of fold changes

PV vctor of p-values, same lenght as FC

FC_cutoff fold change cutoff where to draw vertical cutoff lines, default = 2

PV_cutoff p-value cutoff where to draw a horisontal cutoff line, default ==.05

figtitle title to display at the top of the figure, default = ”

Value

Nil

20 plot_volcano_wLab

Examples

data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as

R uses outer name spaces if variable is undefined
metaCols = 1:7
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)

Normalize data
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(123)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected

Impute missing values
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m = mm_m_ints_norm$normalized[,8:13]

set.seed(125) # needed for reproducibility of imputation
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info,

pr_ppos=2, my.pi=0.05, compute_pi=FALSE)
DE_res = peptideLevel_DE(imp_mm$y_imputed, grps, imp_mm$imp_prot.info,

pr_ppos=2)
plot_volcano(DE_resFC, DE_resBH_P_val, FC_cutoff=1.5,

PV_cutoff=.05, figtitle='Mouse DE')

plot_volcano_wLab Volcano plot with labels for the differentially expressed proteins

Description

Function plots fold changes and p-values as a volcano plot. Two lines are plotted for the p-value
cutoff at p = PV_cutoff (solid line) and p = 0.1 (dashed line).

Usage

plot_volcano_wLab(FC, PV, ProtID, FC_cutoff = 2, PV_cutoff = 0.05,
figtitle = "")

Arguments

FC vector of fold changes

PV vector of p-values, same lenght as FC

prot_level_multiMat_PresAbs 21

ProtID vector of protein IDs, can be gene IDs, same lenght as FC & PV. Namaes in this
vector will be displayed in the volcano plot for differentially expressed proteins
for this reason short names are preferred.

FC_cutoff fold change cutoff where to draw vertical cutoff lines, default = 2

PV_cutoff p-value cutoff where to draw a horisontal cutoff line, default ==.05

figtitle title to display at the top of the figure, default = ”

Value

Nil

Examples

data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as

R uses outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)

Normalize data
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(135)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected

Impute missing values
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m = mm_m_ints_norm$normalized[,8:13]

set.seed(125)
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info,

pr_ppos=2, my.pi=0.05, compute_pi=FALSE)
DE_res = peptideLevel_DE(imp_mm$y_imputed, grps, imp_mm$imp_prot.info,

pr_ppos=2)
plot_volcano_wLab(DE_resFC, DE_resBH_P_val, DE_res$ProtID, FC_cutoff=1.5,

PV_cutoff=.05, figtitle='Mouse DE')

prot_level_multiMat_PresAbs

Multi-Matrix Presence Absence analysis

22 prot_level_multiMat_PresAbs

Description

Multi-Matrix Presence Absence Analysis computes Model-Based statistics for each dataset and
sums them up to produce the final statistic. The significance is determined via a permutation test
which computes the same statistics and sums them after permuting the values across treatment
groups, as is outlined in Karpievitch et al. 2018. Whenever possible proteins should be analysed
using the Model-Based Differential Expression Analysis due to higher statistical power over the
Presence Absence analysis.

Usage

prot_level_multiMat_PresAbs(mm_list, treat, prot.info, prot_col_name,
nperm = 500, dataset_suffix)

Arguments

mm_list list of matrices of intensities for each experiment, dimentions: numpeptides x
numsamples

treat list of data frames with treatment information to compute the statistic, parallel
to mm_list and prot.info

prot.info list of protein metadata for each matrix in mm_list, data.frame parallel to mm_list
and treat

prot_col_name column names present in all datasets that identifies protein IDs across all datasets
nperm number of permutations
dataset_suffix a list of strings that will be appended to the column names for FC, PV, BHPV

and numebers of peptides

Value

a data frame with the following columns:

protIDused protein metadata, peptide sequence if was passed in as one of the columns is the first
peptide equence encountered in the data for that protein

FCs Avegares across all datasets of the approximation of the fold change computed as percent miss-
ing observations group 1 munis in percent missing observations group 2 in peptideLevel_PresAbsDE()
function

P_val p-value for the comparison between 2 groups (2 groups only here) obtained from a permu-
tation test

BH_P_val Benjamini-Hochberg adjusted p-values
statistic statistic returned by the g-test and summed across all datasets, not very useful as depends

on the direction of the test and can produce all 0’s
u_prot_info column containing ptoein identifiers across all datasets
FCs Approximation of the fold change computed as percent missing observations group 1 munis

in percent missing observations group 2 in peptideLevel_PresAbsDE() function
PV p-values produced by g-test for individual datasets
BHPV adjusted p-values produced by g-test for individual datasets
NUMPEP number of peptides observed for each protein in each of the datasets

prot_level_multiMat_PresAbs 23

Examples

Load mouse dataset
data(mm_peptides)
head(mm_peptides)
intsCols = 8:13
metaCols = 1:7
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(135)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)

Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13
metaCols = 1:7
m_logInts = make_intencities(hs_peptides, intsCols)
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))

set.seed(137)
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)

Set up for presence/absence analysis
raw_list = list()
norm_imp_prot.info_list = list()
raw_list[[1]] = mm_m_ints_eig1$m
raw_list[[2]] = hs_m_ints_eig1$m
norm_imp_prot.info_list[[1]] = mm_m_ints_eig1$prot.info
norm_imp_prot.info_list[[2]] = hs_m_ints_eig1$prot.info

protnames_norm_list = list()
protnames_norm_list[[1]] = unique(mm_m_ints_norm$normalized$MatchedID)
protnames_norm_list[[2]] = unique(hs_m_ints_norm$normalized$MatchedID)

presAbs_dd = get_presAbs_prots(mm_list=raw_list,
prot.info=norm_imp_prot.info_list,
protnames_norm=protnames_norm_list,
prot_col_name=2)

ints_presAbs = list()
protmeta_presAbs = list()
ints_presAbs[[1]] = presAbs_dd[[1]][[1]] # Mouse
ints_presAbs[[2]] = presAbs_dd[[1]][[2]] # HS

24 prot_level_multi_part

protmeta_presAbs[[1]] = presAbs_dd[[2]][[1]]
protmeta_presAbs[[2]] = presAbs_dd[[2]][[2]]

treats = list()
treats[[1]] = grps
treats[[2]] = grps

subset_presAbs = subset_proteins(mm_list=ints_presAbs,
prot.info=protmeta_presAbs, 'MatchedID')

nperm = 50 # set to 500+ for publication
set.seed(275937)
presAbs_comb = prot_level_multiMat_PresAbs(

mm_list=subset_presAbs$sub_mm_list,
treat=treats,
prot.info=subset_presAbs$sub_prot.info,
prot_col_name='MatchedID', nperm=nperm,
dataset_suffix=c('MM', 'HS'))

plot_volcano(presAbs_comb$FC, presAbs_comb$BH_P_val,
FC_cutoff=.5, PV_cutoff=.05,
'Combined Pres/Abs CG vs mCG')

prot_level_multi_part Multi-Matrix Differentia Expression Analysis

Description

Multi-Matrix Differential Expression Analysis computes Model-Based statistics for each dataset,
the sum of individual statistics is the final statistic. The significance is determined via a permutation
test which computed the same statistics and sums them after permuting the values across treatment
groups. As is outlined in Karpievitch et al. 2018. Important to set the random number generator
seed for reprodusibility with set.seed() function.

Usage

prot_level_multi_part(mm_list, treat, prot.info, prot_col_name,
nperm = 500, dataset_suffix)

Arguments

mm_list list of matrices for each experiment, length = number of datasets to compare
internal dataset dimentions: numpeptides x numsamples for each dataset

treat list of data frames with treatment information to compute the statistic in same
order as mm_list

prot.info list of protein and peptide mapping for each matrix in mm_list, in same order as
mm_list

prot_level_multi_part 25

prot_col_name column name in prot.info that contains protein identifiers that link all datasets
together. Not that Protein IDs will differ across different organizms and cannot
be used as the linking identifier. Function match_linker_ids() produces numeric
identifyers that link all datasets together

nperm number of permutations, default = 500, this will take a while, test code with
fewer permutations

dataset_suffix vector of character strings that corresponds to the dataset being analysed. Same
length as mm_list. Names will be appended to the columns names that will
be generated for each analysed dataset. For example, if analysing mouse and
human data this vector may be: c(’Mouse’, ’Human’)

Value

data frame with the following columns

protIDused Column containing the protien IDs used to link proteins across datasets

FC Average fold change across all datasets

P_val Permutation-based p-valu for the differences between the groups

BH_P_val Multiple testing adjusted p-values

statistic Statistic computed as a a sum of statistics produced for each dataset

Protein Information all columns passed into the function for the 1st dataset in the list

FCs Fold changes for individual datasets, these values should average to the FC above. As many
columns as there are datasets being analyzed.

PV p-values for individual datasets. As many columns as there are datasets being analyzed.

BHPV Multiple testing adjusted p-values for individual datasets. As many columns as there are
datasets being analyzed.

NUMPEP Number of peptides presents in each protien for each dataset. As many columns as there
are datasets being analyzed.

Examples

Load mouse dataset
data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as R uses

outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
set.seed(135)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,

prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]

26 prot_level_multi_part

mm_norm_m = mm_m_ints_norm$normalized[,8:13]
set.seed(125) # Needed for reprodicibility of results
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info,

pr_ppos=2, my.pi=0.05, compute_pi=FALSE)

Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13 # different from parameter names as R uses

outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
set.seed(1237) # needed for reproducibility
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)
hs_prot.info = hs_m_ints_norm$normalized[,1:7]
hs_norm_m = hs_m_ints_norm$normalized[,8:13]

set.seed(125) # or any value, ex: 12345
imp_hs = MBimpute(hs_norm_m, grps, prot.info=hs_prot.info,

pr_ppos=2, my.pi=0.05,
compute_pi=FALSE)

Multi-Matrix Model-based differential expression analysis
Set up needed variables
mms = list()
treats = list()
protinfos = list()
mms[[1]] = imp_mm$y_imputed
mms[[2]] = imp_hs$y_imputed
treats[[1]] = grps
treats[[2]] = grps
protinfos[[1]] = imp_mm$imp_prot.info
protinfos[[2]] = imp_hs$imp_prot.info
nperm = 50

ATTENTION: SET RANDOM NUMBER GENERATOR SEED FOR REPRODUCIBILITY !!
set.seed(131) # needed for reproducibility

comb_MBDE = prot_level_multi_part(mm_list=mms, treat=treats,
prot.info=protinfos,
prot_col_name='ProtID', nperm=nperm,
dataset_suffix=c('MM', 'HS'))

Analysis for proteins only present in mouse,
there are no proteins suitable for
Model-Based analysis in human dataset
subset_data = subset_proteins(mm_list=mms, prot.info=protinfos, 'MatchedID')
mm_dd_only = subset_data$sub_unique_mm_list[[1]]

subset_proteins 27

hs_dd_only = subset_data$sub_unique_mm_list[[2]]
protinfos_mm_dd = subset_data$sub_unique_prot.info[[1]]
DE_mCG_CG_mm_dd = peptideLevel_DE(mm_dd_only, grps,

prot.info=protinfos_mm_dd, pr_ppos=2)

subset_proteins Subset proteins

Description

Subset proteins into ones common to all datasets passed into the function and unique to each dataset.
Note: for 3+ datasets no intermediate combinations of proteins are returned, only proteins common
to all datasets, the rest are returned as unique to each dataset.

Usage

subset_proteins(mm_list, prot.info, prot_col_name)

Arguments

mm_list list of matrices for each experiment, length = number of datasets to compare
internal dataset dimentions: numpeptides x numsamples for each dataset

prot.info list of protein and peptide mapping for each matrix in mm_list, in same order as
mm_list

prot_col_name column name in prot.info that contains protein identifiers that link all datasets
together. Not that Protein IDs will differ across different organizms and cannot
be used as the linking identifier. Function match_linker_ids() produces numeric
identifyers that link all datasets together

Value

data frame with the following columns

sub_mm_list list of dataframes of intensities for each of the datasets passed in with proteins present
in all datasets

sub_prot.info list of dataframes of metadata for each of the datasets passed in with proteins present
in all datasets. Same order as sub_mm_list

sub_unique_mm_list list of dataframes of intensities not found in all datasets

sub_unique_prot.info ist of dataframes of metadata not found in all datasets

common_list list of protein IDs commnon to all datasets

28 subset_proteins

Examples

Load mouse dataset
data(mm_peptides)
head(mm_peptides)
different from parameter names as R uses
outer name spaces if variable is undefined
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
set.seed(173)
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m = mm_m_ints_norm$normalized[,8:13]
set.seed(131)
imp_mm = MBimpute(mm_norm_m, grps,

prot.info=mm_prot.info, pr_ppos=2, my.pi=0.05,
compute_pi=FALSE)

Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)
hs_prot.info = hs_m_ints_norm$normalized[,1:7]
hs_norm_m = hs_m_ints_norm$normalized[,8:13]
set.seed(131)
imp_hs = MBimpute(hs_norm_m, grps,

prot.info=hs_prot.info, pr_ppos=2,
my.pi=0.05,
compute_pi=FALSE)

Multi-Matrix Model-based differential expression analysis
Set up needed variables
mms = list()
treats = list()
protinfos = list()
mms[[1]] = imp_mm$y_imputed
mms[[2]] = imp_hs$y_imputed
treats[[1]] = grps
treats[[2]] = grps

sva.id 29

protinfos[[1]] = imp_mm$imp_prot.info
protinfos[[2]] = imp_hs$imp_prot.info

subset_data = subset_proteins(mm_list=mms, prot.info=protinfos, 'MatchedID')
mms_mm_dd = subset_data$sub_unique_mm_list[[1]]
protinfos_mm_dd = subset_data$sub_unique_prot.info[[1]]
DIfferential expression analysis for mouse specific protiens
DE_mCG_CG_mm_dd = peptideLevel_DE(mms_mm_dd, grps,

prot.info=protinfos_mm_dd, pr_ppos=2)

sva.id Surrogate Variable Analysis

Description

Surrogate Variable Analysis function used internatlly by eig_norm1 and eig_norm2 Here we incor-
porate the model matrix from EigenMS normalization to find the significant trends in the matrix of
residuals.

Usage

sva.id(dat, n.u.treatment, lm.fm, B = 500, sv.sig = 0.05)

Arguments

dat number of peptides/genes x number of samples matrix of expression data with
no missing values

n.u.treatment number of treatment groups

lm.fm formular for treatment to be use on the right side of the call to stats::lm() as
generated by makeLMFormula()

B The number of null iterations to perform

sv.sig The significance cutoff for the surrogate variables

Value

A data structure with the following values:

n.sv Number of significant surrogate variables

p.sv Significance for the returned surrogate variables

Index

∗ datasets
hs_peptides, 9
mm_peptides, 13

convert_log2, 2

eig_norm1, 4
eig_norm2, 5
eigen_pi, 3

g.test, 6
get_presAbs_prots, 7

hs_peptides, 9

make_intencities, 10
make_meta, 11
makeLMFormula, 10
MBimpute, 12
mm_peptides, 13

peptideLevel_DE, 14
peptideLevel_PresAbsDE, 15
plot_1prot, 17
plot_3_pep_trends_NOfile, 18
plot_volcano, 19
plot_volcano_wLab, 20
prot_level_multi_part, 24
prot_level_multiMat_PresAbs, 21

subset_proteins, 27
sva.id, 29

30

	convert_log2
	eigen_pi
	eig_norm1
	eig_norm2
	g.test
	get_presAbs_prots
	hs_peptides
	makeLMFormula
	make_intencities
	make_meta
	MBimpute
	mm_peptides
	peptideLevel_DE
	peptideLevel_PresAbsDE
	plot_1prot
	plot_3_pep_trends_NOfile
	plot_volcano
	plot_volcano_wLab
	prot_level_multiMat_PresAbs
	prot_level_multi_part
	subset_proteins
	sva.id
	Index

