Package ‘PhyloProfile’

January 24, 2026

Version 2.3.2
Date 2025-11-18
Title PhyloProfile

Description
PhyloProfile is a tool for exploring complex phylogenetic profiles. Phylogenetic profiles, pres-
ence/absence patterns of genes over a set of species, are commonly used to trace the func-
tional and evolutionary history of genes across species and time. With PhyloProfile we can en-
rich regular phylogenetic profiles with further data like sequence/structure similar-
ity, to make phylogenetic profiling more meaningful. Besides the interactive visualisation pow-
ered by R-Shiny, the package offers a set of further analysis features to gain in-
sights like the gene age estimation or core gene identification.

URL https://github.com/BIONF/PhyloProfile/

BugReports https://github.com/BIONF/PhyloProfile/issues
License MIT + file LICENSE

Depends R (>=4.5.0)

Encoding UTF-8

biocViews Software, Visualization, DataRepresentation,
MultipleComparison, FunctionalPrediction, DimensionReduction

Imports ape, bioDist, BiocStyle, Biostrings, bsplus, colourpicker,
data.table, dplyr, DT, energy, fastcluster, ggplot2, gridExtra,
htmlwidgets, pbapply, plotly, RColorBrewer, RCurl, Rfast,
scattermore, shiny, shinycssloaders, shinyFiles, shinyjs,
stringr, tsne, svglite, umap, xml2, zoo, yaml

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat, OmaDB
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/PhyloProfile
git_branch devel

git_last commit 139f3al

git_last_commit_date 2025-11-18

https://github.com/BIONF/PhyloProfile/
https://github.com/BIONF/PhyloProfile/issues

Repository Bioconductor 3.23
Date/Publication 2026-01-23

Author Vinh Tran [aut, cre] (ORCID: <https://orcid.org/0000-0001-6772-7595>),
Bastian Greshake Tzovaras [aut],
Ingo Ebersberger [aut],
Carla Molbert [ctb]

Maintainer Vinh Tran <tran@bio.uni-frankfurt.de>

Contents

addDimRedTaxaColors e
addFeatureColors e
addRankDivisionPlot
calcPresSpec
checkColorPaletteo
checklnputValidity
checkNewick e
checkOmalD e
checkOverlapDomains
clusterDataDend
compareMedianTaxonGroupso o
compareTaxonGroupso e
createArchiPlot
createDimRedPlotData
createGeneAgePlot L L
createLongMatrix
createPercentageDistributionData
createProfileFromOma
createUnrootedTree
createVarDistPlot
createVariableDistributionData
createVariableDistributionDataSubset
dataCustomizedPlot
dataFeatureTaxGroup L
dataMainPlot
dataVarDistTaxGroup
dimReduction
distributionTest e
estimateGeneAZe e
fallbackUmap
fastaParser
featureDistTaxPlot
filteredProfile
filterProfileData
finalProcessedProfile
fromInputToProfile
fullProcessedProfile

Contents

https://orcid.org/0000-0001-6772-7595

Contents

3
geneAgePlotDf 41
generateSinglePlot oL 42
getAllDomainsOma e 43
getAllFastaOma e 43
getCommMONANCESIOT v v v vt e e e e e e e e e e e e e 44
getCoreGene e 45
getDataClustering e 46
getDataForOneOma e e 47
getDendrogram 48
getDistanceMatrixX e 49
getDomainFolder 50
getFastaFromFasInput L 50
getFastaFromFile L 51
getFastaFromFolder L 52
getIDsRank e 53
getlnputTaxalD 54
getlnputTaxaName L 54
getNameList. e 55
getOmaDataForOneOrtholog 56
getOmaDomainFromURL o o 56
getOmaMembers e e 57
getQualColForVector e 58
getSelectedFastaOma L 58
getSelectedTaxonNames 59
getTaxHierarchy e 60
getTaxonomylInfo L 61
getTaxonomyMatrix e 61
getTaxonomyRanks 62
gridArrangeSharedLegend L 63
groupLabelDimRedData L 64
heatmapPlotting 65
heatmapPlottingFast 66
highlightProfilePlot 68
id2name L e 69
LISt . . . 70
joinPlotMergeLegends 71
linearize Architecture L e e 72
mainLongRaw 73
mainTaxonomyRank 74
modifyFeatureName 74
pairDomainPlottingo 75
parseDomainInput. e 77
parselnfoProfile L 78
performPCA 79
performUmap 79
plotDimRed e 80
plotDimRed3D 81

ppTaxonomyMatrixo e 82

Index

addDimRedTaxaColors

ppTree e e e e 82
prepareDimRedDatao 83
processNcbiTaxonomyo L 84
processOrthoID L 85
profileWithTaxonomy 85
qualitativeColours e e e e e 86
rankIndexing L. e 87
rankListo e 87
reduceProfile 88
resolveOverlapFeatures 89
runPhyloProfile 90
singleDomainPlotting e 90
sortDomains e 92
sortDomainsByList 93
sortlnputTaxa L 94
sortTaxaFromTree e 95
taxadist oL e 96
taxonNamesReduced L o 96
taxonomyMatrix 97
taxonomyTableCreator L 97
varDistTaxPlot 98
wideToLong e 99
xmlParser e 100
101

addDimRedTaxaColors Add colors for taxa in dimension reduction plot

Description

Add colors for taxa in dimension reduction plot

Usage

addDimRedTaxaColors(plotDf = NULL, colorPalette = "Set2",

highlightTaxa = NULL)

Arguments

plotDf data for dimension reduction plot

colorPalette color palette. Default: "Set2"
highlightTaxa list of taxa to be highlighted

Value

A dataframe for dimension reduction plot with an additional column for the assigned color to each
taxon

addFeatureColors 5

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData, dimReduction, createDimRedPlotData

Examples

rawInput <- system.file(
"extdata"”, "test.main.long"”, package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createLongMatrix(rawInput)
data4dimRed <- prepareDimRedData(longDf, "phylum")
dimRedCoord <- dimReduction(data4dimRed)
plotDf <- createDimRedPlotData(dimRedCoord, data4dimRed)
PhyloProfile:::addDimRedTaxaColors(plotDf, colorPalette = "Set2")

addFeatureColors Add colors for each feature/domain

Description

Add colors to features/domains of 2 domain dataframes. Users can choose to color only the shared
features, unique features, all features (default) or based on feature types. Default color pallete is
"Paired", but it can be changed.

Usage

addFeatureColors(
seedDf = NULL,
orthoDf = NULL,
colorType = "all",

colorPalette = "Paired”,
ignorelnstanceNo = FALSE
)
Arguments
seedDf Domain dataframe of seed protein (protein 1)
orthoDf Domain dataframe of orthologs protein (protein 2)
colorType Choose to color "all", "shared", "unique" features or color by "Feature type".

Default: "all"

colorPalette Choose between "Paired", "Setl", "Set2", "Set3", "Accent", "Dark2" for the
color pallete

ignorelnstanceNo

Ignore number of feature instances while identifying shared or unique features.
Default: FALSE

6 addRankDivisionPlot

Value

2 dataframes (seedDf and orthoDf) with an additional column for the assigned color to each feature
instance

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

get domain data

seedID <- "101621at6656"

domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

domainDf <- parseDomainInput(seedID, domainFile, "file")

get seedDf and orthoDf

subDf <- domainDf[

domainDf$seedID ==
"101621at6656#101621at6656: AGRPL@224129@0:224129_0:001955:1",]
orthoDf <- subDf[subDf$orthoID == "101621at6656:DROME@Q7227@1:Q9VG04",]

seedDf <- subDf[subDf$orthoID != "101621at6656:DROME@Q7227@1:Q9VG04",]
add colors to features
PhyloProfile:::addFeatureColors(seedDf, orthoDf)

addRankDivisionPlot Add taxonomy rank division lines to the heatmap plot

Description

Add taxonomy rank division lines to the heatmap plot

Usage

addRankDivisionPlot(profilePlot = NULL, plotDf = NULL,
taxDB = NULL, workingRank = NULL, superRank = NULL, xAxis = "taxa",
font = "Arial"”, grouplLabelSize = 14, groupLabelDist = 2,
groupLabelAngle = 90, reflLine = TRUE)

Arguments

profilePlot initial (highlighted) profile plot

plotDf dataframe for plotting the heatmap phylogentic profile
taxDB path to taxonomy database (taxonomyMatrix.txt file required!)
workingRank working taxonomy rank (e.g. species)

superRank taxonomy rank for division lines (e.g. superkingdom)

addRankDivisionPlot

XAX1is

font
groupLabelSize
groupLabelDist

groupLabelAngle

refLine

Value

type of x-axis (either "genes" or "taxa")
font of text. Default = Arial"
size of rank labels

size of the plot area for rank labels

angle of rank labels

add vertical line to separate reference taxon

A profile heatmap plot with highlighted gene and/or taxon of interest as ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

heatmapPlotting, highlightProfilePlot, getTaxonomyMatrix

Examples

data(”"finalProcessedProfile”, package="PhyloProfile")
plotDf <- dataMainPlot(finalProcessedProfile)

plotParameter <- list(
"xAxis" = "taxa",
"geneldType"” = "genelD",
"var1ID" = "FAS_FW",
"var2ID" = "FAS_BW",
"midvVar1” = 0.5,

"midColorvar1” = "#FFFFFF",
"lowColorVar1” = "#FF8C00",
"highColorVarl” = "#4682B4",

"midvVar2" =1,

"midColorVar2" = "#FFFFFF",
"lowColorVar2" = "#CB4C4E",
"highColorvar2" = "#3E436F",

"paraColor” = "#07D000",
"xSize" = 8,

"ySize" = 8,
"legendSize" = 8,
"mainLegend” = "top”,
"dotZoom" = 0,

"xAngle" = 60,
"guideline” = 0,
"colorByGroup” = FALSE,
"colorByOrthoID"” = FALSE

)

profilePlot <- heatmapPlotting(plotDf, plotParameter)

workingRank <- "class"”

8 calcPresSpec

superRank <- "superkingdom”
addRankDivisionPlot(

profilePlot, plotDf, NULL, workingRank, superRank, "taxa"”, font = "sans"
)

calcPresSpec Calculate percentage of present species in each super taxon

Description

Calculate percentage of present species in each super taxon

Usage

calcPresSpec(profileWithTax, taxaCount)

Arguments

profileWithTax data frame of main PhyloProfile input together with their taxonomy info (see
?profileWithTaxonomy)

taxaCount number of species occur in each supertaxon (e.g. phylum or kingdom)

Value

A data frame with

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

profileWithTaxonomy for a demo input data

Examples

NOTE: for internal testing only

library(dplyr)

data("profileWithTaxonomy”, package="PhyloProfile")

taxaCount <- profileWithTaxonomy %>% dplyr::count(supertaxon)
taxaCount$n <- 1

calcPresSpec(profileWithTaxonomy, taxaCount)

checkColorPalette 9

checkColorPalette Check if a color pallete has enough colors for a list of items

Description

Check if a color pallete has enough colors for a list of items

Usage

checkColorPalette(items, pallete = "Paired"”)

Arguments
items vector contains list of items
pallete name of color palette
Value

TRUE if color pallete has enough colors, otherwise FALSE

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

nan

myltems <- rep(”a"”,3)
checkColorPalette(myItems, "Set1")

checkInputValidity Check the validity of the input phylogenetic profile file

Description
Check if input file has one of the following format: orthoXML, multiple FASTA, tab-delimited
matrix (wide or long), or list of OMA 1IDs.

Usage

checkInputValidity(filein)

Arguments

filein input file

10 checkNewick

Value

The format of the input file format, or type of error

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

checkOmalID

Examples

filein <- system.file(
"extdata”, "test.main.wide"”, package = "PhyloProfile”, mustWork = TRUE

)
checkInputValidity(filein)

checkNewick Check the validity of input newick tree

Description

Check the validity of input newick tree

Usage

checkNewick(tree, inputTaxonID = NULL)

Arguments

tree input newick tree

inputTaxonID list of all input taxon IDs for the phylogenetic profiles

Value

Possible formatting error of input tree. 0 = suitable tree for using with PhyloProfile, 1 = missing
parenthesis; 2 = missing comma; 3 = tree has singleton; or a list of taxa that do not exist in the input
phylogenetic profile.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getInputTaxalD for getting input taxon IDs, ppTree for an example of input tree

checkOmalD

Examples

data("ppTree”, package="PhyloProfile")
checkNewick (ppTree, c("ncbi3702", "ncbi3711", "ncbi7029"))

11

checkOmaID Check the validity of input OMA IDs

Description

Check if input IDs are valid OMA IDs for OMA Browser

Usage
checkOmaID(ids)

Arguments

ids list of ids needs to be checked

Value

List of invalid IDs (not readable for OMA)

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

Uncomment the following line to run the function
checkOmaID("HUMAN29398")

checkOverlapDomains Identify feature type(s) containing overlapped domains/features

Description

Identify feature type(s) containing overlapped domains/features

Usage

checkOverlapDomains(domainDf)

Arguments

domainDf input domain dataframe

12 clusterDataDend

Value

List of feature types that have overlapped domains

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

get domain data

seedID <- "101621at6656"

domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

domainDf <- parseDomainInput(seedID, domainFile, "file")

get seedDf and orthoDf

subDf <- domainDf[

domainDf$seedID ==
"101621at6656#101621at6656 : AGRPL@224129@0:224129_0:001955:1",]
orthoDf <- subDf[subDf$orthoID == "101621at6656:DROME@Q7227@1:Q9VG04",]

check overlap features
PhyloProfile: : :checkOverlapDomains(orthoDf)

clusterDataDend Create a hclust object from the distance matrix

Description

Create a hclust object from the distance matrix

Usage

clusterDataDend(distanceMatrix = NULL, clusterMethod = "complete")

Arguments

distanceMatrix calculated distance matrix as dist object

clusterMethod clustering method ("single", "complete", "average" for UPGMA, "mcquitty" for
WPGMA, "median" for WPGMC, or "centroid" for UPGMC). Default = "com-
plete".

Value

An object class hclust generated based on input distance matrix and a selected clustering method.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

compareMedianTaxonGroups 13

See Also

getDataClustering, getDistanceMatrix, hclust

Examples

data(”"finalProcessedProfile"”, package="PhyloProfile")
data <- finalProcessedProfile
profileType <- "binary"
profiles <- getDataClustering(

data, profileType, varlAggregateBy, var2AggregateBy)
distMethod <- "mutuallnformation”
distanceMatrix <- getDistanceMatrix(profiles, distMethod)
clusterMethod <- "complete”
clusterDataDend(as.dist(distanceMatrix), clusterMethod)

compareMedianTaxonGroups
Compare the median values of a variable between 2 taxon groups

Description

Given the phylogenetic profiles that contains up to 2 additional variables besides the presence/absence
information of the orthologous proteins. This function will compare the median scores of those vari-
ables between 2 different taxon groups (e.g. parasitic species vs non-parasitic species), which are
defined as in-group and out-group. In-group is identified by the user. Out-group contains all taxa in
the input phylogenetic profiles that are not part of the in-group.

Usage
compareMedianTaxonGroups(data, inGroup, useCommonAncestor, variable,
taxDB)
Arguments
data input phylogenetic profile in long format (see ?mainLongRaw and ?createLong-
Matrix)
inGroup ID list of in-group taxa (e.g. "ncbil234")
useCommonAncestor
TRUE/FALSE if using all taxa that share the same common ancestor with the
pre-selected in-group as the in-group taxa. Default = TRUE.
variable name of the variable that need to be compared
taxDB Path to the taxonomy DB files

Value

List of genes that have a difference in the variable’s median scores between the in-group and out-
group taxa and their corresponding delta-median.

14 compareTaxonGroups

Author(s)

Vinh Tran (tran @bio.uni-frankfurt.de)

Examples

data("mainLongRaw”, package="PhyloProfile")

data <- mainLongRaw

inGroup <- c¢("ncbi9606"”, "ncbi10116")

variable <- colnames(data)[4]
compareMedianTaxonGroups(data, inGroup, TRUE, variable)

compareTaxonGroups Compare the score distributions between 2 taxon groups

Description

Given the phylogenetic profiles that contains up to 2 additional variables besides the presence/absence
information of the orthologous proteins. This function will compare the distribution of those vari-
ables between 2 different taxon groups (e.g. parasitic species vs non-parasitic species), which are
defined as in-group and out-group. In-group is identified by the user. Out-group contains all taxa in
the input phylogenetic profiles that are not part of the in-group.

Usage

compareTaxonGroups(data, inGroup, useCommonAncestor, variable,
significancelLevel, taxDB)

Arguments
data input phylogenetic profile in long format (see ?mainLongRaw and ?createLong-
Matrix)
inGroup ID list of in-group taxa (e.g. "ncbil234")
useCommonAncestor
TRUE/FALSE if using all taxa that share the same common ancestor with the
pre-selected in-group as the in-group taxa. Default = TRUE.
variable name of the variable that need to be compared
significancelLevel
significant cutoff for the statistic test (between 0 and 1). Default = 0.05.
taxDB Path to the taxonomy DB files
Value

list of genes that have a significant difference in the variable distributions between the in-group and
out-group taxa and their corresponding p-values.

createArchiPlot

Author(s)

15

Vinh Tran (tran @bio.uni-frankfurt.de)

Examples

data("mainLongRaw", package="PhyloProfile")

data <- mainLongRaw

inGroup <- c¢("ncbi9606"”, "ncbi10116")

variable <- colnames(data)[4]

compareTaxonGroups(data, inGroup, TRUE, variable, 0.05)

createArchiPlot

Create protein’s domain architecure plot

Description

Create architecture plot for both seed and orthologous protein. If domains of ortholog are missing,
only architecture of seed protein will be plotted. NOTE: seed protein ID is the one being shown in
the profile plot, which normally is also the orthologous group ID.

Usage

createArchiPlot(info, domainDf, labelArchiSize, titleArchiSize,
legendArchiSize, showScore, showWeight, namePosition, firstDist,
nameType, nameSize, segmentSize, nameColor, labelPos, colorType,
ignorelnstanceNo, currentNCBIinfo, featureClassSort, featureClassOrder,
colorPalette, resolveOverlap, font)

Arguments
info

domainDf

A list contains seed and ortholog’s IDs

Dataframe contains domain info for the seed and ortholog. This including the
seed ID, orthologs IDs, sequence lengths, feature names, start and end positions,
feature weights (optional) and the status to determine if that feature is important
for comparison the architecture between 2 proteins* (e.g. seed protein vs or-
tholog) (optional).

labelArchiSize Lable size (in px). Default = 12.
titleArchiSize Title size (in px). Default = 12.

legendArchiSize

showScore
showWeight

namePosition

firstDist

Title size (in px). Default = 12.
Show/hide E-values and Bit-scores. Default = NULL (hide)
Show/hide feature weights. Default = NULL (hide)

list of positions for domain names, choose from "plot", "legend" or "axis". De-
fault: "plot”

Distance of the first domain to plot title. Default = 0.5

16

createArchiPlot

nameType Type of domain names, either "Texts" or "Labels" (default)

nameSize Size of domain names. Default = 3

segmentSize Height of domain segment. Default = 5

nameColor Color of domain names (for Texts only). Default = "black"

labelPos Position of domain names (for Labels only). Choose from

colorType Choose to color "all", "shared", "unique" features or color by "Feature type".
Default = "all"

ignoreInstanceNo
Ignore number of feature instances while identifying shared or unique features.
Default = FALSE

currentNCBIinfo
Dataframe of the pre-processed NCBI taxonomy data. Default = NULL (will be
automatically retrieved from PhyloProfile app)

featureClassSort
Choose to sort features. Default = "Yes"

featureClassOrder
vector of ordered feature classes

colorPalette Choose between "Paired", "Setl", "Set2", "Set3", "Accent", "Dark2" for the
color pallete

resolveOverlap Choose to merge non-overlapped features of a feature type into one line. Default
= HYeSII

font font of text. Default = Arial"

Value

A domain plot as arrangeGrob object. Use grid::grid.draw(plot) to render.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

singleDomainPlotting,pairDomainPlotting, sortDomains, parseDomainInput

Examples

seedID <- "101621at6656"
orthoID <- "101621at6656|AGRPL@224129@0|224129_0:001955(|1"
info <- c(seedID, ortholID)
domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

domainDf <- parseDomainInput(seedID, domainFile, "file")
domainDf$feature_id_mod <- domainDf$feature_id
domainDf$feature_id_mod <- gsub("SINGLE", "LCR", domainDf$feature_id_mod)

createDimRedPlotData 17

domainDf$feature_id_mod[domainDf$feature_type == "coils"] <- "Coils”
domainDf$feature_id_mod[domainDf$feature_type == "seg"] <- "LCR"
domainDf$feature_id_mod[domainDf$feature_type == "tmhmm"] <- "TM"
plot <- createArchiPlot(info, domainDf, font = "sans")

grid::grid.draw(plot)

createDimRedPlotData Generate data for dimension reduction plot

Description

Generate data for dimension reduction plot

Usage

createDimRedPlotData(dimRedCoord = NULL, data4dimRed = NULL,
freqCutoff = c(0,200), excludeTaxa = "None”, currentNCBIinfo = NULL)

Arguments
dimRedCoord data contains DIM reduction coordinates (from dimReduction)
data4dimRed data for dimension reduction (from prepareDimRedData())
freqCutoff gene/taxon frequency cutoff range. Any labels that are outside of this range will
be assigned as [Other]
excludeTaxa hide taxa from plot. Default: "None"
currentNCBIinfo
table/dataframe of the pre-processed NCBI taxonomy data (/PhyloProfile/data/preProcessedTaxonomy.txt
Value

A plot as ggplot object

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData, dimReduction

Examples

rawInput <- system.file(

"extdata”, "test.main.long", package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createLongMatrix(rawInput)
datad4dimRed <- prepareDimRedData(longDf, "phylum")
dimRedCoord <- dimReduction(data4dimRed)
createDimRedPlotData(dimRedCoord, data4dimRed)

18 createGeneAgePlot

createGeneAgePlot Create gene age plot

Description

Create gene age plot

Usage

createGeneAgePlot (geneAgePlotDf, textFactor = 1, font = "Arial")

Arguments

geneAgePlotDf data frame required for plotting gene age (see ?geneAgePlotDf)

textFactor increase factor of text size
font font of text. Default = Arial"
Value

A gene age distribution plot as a ggplot2 object

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

estimateGeneAge and geneAgePlotDf

Examples

geneAgePlotDf <- data.frame(
name = c("Streptophyta (Phylum)”, "Bikonta", "Eukaryota (Superkingdom)"),
count = c(7, 1, 30),
percentage = c(18, 3, 79)

)

createGeneAgePlot (geneAgePlotDf, 1, "sans")

createLongMatrix 19

createlLongMatrix Create a long matrix format for all kinds of input phylogenetic profiles

Description

Create a long matrix format for all kinds of input phylogenetic profiles

Usage

createlLongMatrix(inputFile = NULL)

Arguments
inputFile input profile file in orthoXML, multiple FASTA, tab-delimited matrix format
(wide or long).
Value

A data frame of input data in long-format containing seed gene IDs (or orthologous group IDs),
their orthologous proteins together with the corresponding taxonomy IDs and values of (up to) two
additional variables.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

xmlParser, fastaParser, wideToLong

Examples

inputFile <- system.file(
"extdata", "test.main.wide"”, package = "PhyloProfile”, mustWork = TRUE
)

createlLongMatrix(inputFile)

20 createPercentageDistributionData

createPercentageDistributionData
Create data for percentage present taxa distribution

Description

Create data for percentage present taxa distribution

Usage

createPercentageDistributionData(inputData = NULL, rankName = NULL,
taxDB = NULL)

Arguments
inputData dataframe contains raw input data in long format (see ?mainLongRaw)
rankName name of the working taxonomy rank (e.g. "species", "family")
taxDB Path to the taxonomy DB files

Value

A dataframe for analysing the distribution of the percentage of species in the selected supertaxa,
containing the seed protein IDs, percentage of their orthologs in each supertaxon and the corre-
sponding supertaxon names.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

mainLongRaw

Examples

data("mainLongRaw", package="PhyloProfile")
createPercentageDistributionData(mainLongRaw, "class")

createProfileFromOma 21

createProfileFromOma Create a phylogenetic profile from a raw OMA dataframe

Description

Create a phylogenetic profile from a raw OMA dataframe

Usage

createProfileFromOma(finalOmaDf = NULL)

Arguments

finalOmaDf raw OMA data for a list of proteins (see ?getDataForOneOma)

Value
Dataframe of the phylogenetic profiles in long format, which contains the seed protein IDs, their
orthologous proteins and the corresponding taxononmy IDs of the orthologs.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getDataForOneOma

Examples

Uncomment the following lines to run the function
omaData <- getDataForOneOma("HUMAN29397", "0G")
createProfileFromOma(omaData)

createUnrootedTree Create unrooted tree from a taxonomy matrix

Description

Create unrooted tree from a taxonomy matrix

Usage

createUnrootedTree(df)

22 create VarDistPlot

Arguments

df data frame contains taxonomy matrix used for generating tree

Value

A unrooted taxonomy tree as an object of class "phylo".

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

taxa2dist for distance matrix generation from a taxonomy matrix, getTaxonomyMatrix for get-
ting taxonomy matrix, ppTaxonomyMatrix for a demo taxonomy matrix data

Examples

data("ppTaxonomyMatrix", package = "PhyloProfile")
createUnrootedTree(ppTaxonomyMatrix)

createVarDistPlot Create distribution plot

Description

Create distribution plot for one of the additional variable or the percentage of the species present in
the supertaxa.

Usage
createVarDistPlot(data, varName = "var", varType = "varl",
percent = c(0, 1), textSize = 12)
Arguments
data dataframe contains data for plotting (see ?createVariableDistributionData, ?cre-
ateVariableDistributionDataSubset or ?createPercentageDistributionData)
varName name of the variable that need to be analyzed (either name of variable 1 or
variable 2 or "percentage of present taxa"). Default = "var".
varType type of variable (either "varl", "var2" or "presSpec"). Default = "varl".
percent range of percentage cutoff (between 0 and 1). Default = c(0,1)
textSize text size of the distribution plot (in px). Default = 12.
Value

A distribution plot for the selected variable as a ggplot object

create VariableDistributionData 23

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

mainLongRaw, createVariableDistributionData, createVariableDistributionDataSubset,
createPercentageDistributionData

Examples

data("mainLongRaw”, package="PhyloProfile")
data <- createVariableDistributionData(
mainLongRaw, c(@, 1), c(@0.5, 1)
)
varName <- "Variable abc”
varType <- "varl”
percent <- c(0,1)
textSize <- 12
createVarDistPlot(
data,
varName,
varType,
percent,
textSize

createVariableDistributionData
Create data for additional variable distribution

Description

Create data for additional variable distribution

Usage

createVariableDistributionData(inputData, variCutoff = c(@ ,1),
var2Cutoff = c(@, 1))

Arguments
inputData dataframe contains raw input data in long format (see ?mainLongRaw)
vari1Cutoff min and max cutoff for varl. Default = c(0, 1).
var2Cutoff min and max cutoff for var2. Default = c(0, 1).

Value

A dataframe for analysing the distribution of the additional variable(s) containing the protein (or-
tholog) IDs and the values of their variables (varl and var2).

24 create VariableDistributionDataSubset

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

mainLongRaw

Examples

data("mainLongRaw”, package="PhyloProfile")

createVariableDistributionData(
mainLongRaw, c(@, 1), c(@0.5, 1)

)

createVariableDistributionDataSubset
Create data for additional variable distribution (for a subset data)

Description

Create data for additional variable distribution (for a subset data)

Usage

createVariableDistributionDataSubset(fullProfileData,
distributionData, selectedGenes, selectedTaxa)

Arguments

fullProfileData
dataframe contains the full processed profiles (see ?fullProcessedProfile, filter-
ProfileData or ?fromInputToProfile)

distributionData

dataframe contains the full distribution data (see ?createVariableDistribution-
Data)

selectedGenes list of genes of interest. Default = "all".

selectedTaxa list of taxa of interest Default = "all".

Value
A dataframe for analysing the distribution of the additional variable(s) for a subset of genes and/or
taxa containing the protein (ortholog) IDs and the values of their variables (varl and var2).
Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

dataCustomizedPlot 25

See Also

parseInfoProfile, createVariableDistributionData, fullProcessedProfile, mainLongRaw

Examples

data("fullProcessedProfile”, package="PhyloProfile")

data("mainLongRaw”, package="PhyloProfile")

distributionData <- createVariableDistributionData(
mainLongRaw, c(@, 1), c(0.5, 1)

)
selectedGenes <- "100136at6656"
selectedTaxa <- c(”"Mammalia”, "Saccharomycetes”, "Insecta”)
createVariableDistributionDataSubset(
fullProcessedProfile,
distributionData,
selectedGenes,
selectedTaxa
)
dataCustomizedPlot Create data for customized profile plot
Description

Create data for customized profile plot based on a selected list of genes and/or taxa, containing seed
protein IDs (genelD), ortholog IDs (ortholD) together with their ncbi taxonomy IDs (ncbilD and
abbrName), full names (fullName), indexed supertaxa (supertaxon), values for additional variables
(varl, var2) and the aggregated values of those additional variables for each supertaxon (mVarl,
mVar2), number of original and filtered co-orthologs in each supertaxon (paralog and paralogNew),
number of species in each supertaxon (numberSpec) and the each supertaxon (presSpec).

Usage

dataCustomizedPlot(dataHeat = NULL, selectedTaxa = "all"”,
selectedSeq = "all")

Arguments
dataHeat a data frame contains processed profiles (see ?fullProcessedProfile, ?filterPro-
fileData)
selectedTaxa selected subset of taxa. Default = "all".
selectedSeq selected subset of genes. Default = "all".
Value

A dataframe contains data for plotting the customized profile.

26 dataFeatureTaxGroup

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

filterProfileData

Examples

data("finalProcessedProfile”, package="PhyloProfile")

selectedTaxa <- c(”"Mammalia”, "Saccharomycetes”, "Insecta”)
selectedSeq <- "all”

dataCustomizedPlot(finalProcessedProfile, selectedTaxa, selectedSeq)

dataFeatureTaxGroup Create data for feature distribution comparison plot

Description
Create data for plotting the distribution of the protein domain features between 2 group of taxa for
a selected gene (average number of feature occurrency per protein/ortholog).

Usage

dataFeatureTaxGroup(mainDf, domainDf, inGroup, gene)

Arguments
mainDf input phylogenetic profile in long format (see ?mainLongRaw and ?createL.ong-
Matrix)
domainDf dataframe contains domain info for the seed and ortholog. This including the
seed ID, orthologs IDs, sequence lengths, feature names, start and end posi-
tions, feature weights (optional) and the status to determine if that feature is
important for comparison the architecture between 2 proteins* (e.g. seed pro-
tein vs ortholog) (optional). (see ?parseDomainlnput)
inGroup ID list of in-group taxa (e.g. "ncbil234")
gene ID of gene that need to be plotted the feature distribution comparison between
in- and out-group taxa.
Value

Dataframe containing all feature names, their frequencies (absolute count and the average instances
per protein - IPP) in each taxon group and the corresponding taxa group type (in- or out-group).

Author(s)

Vinh Tran (tran @bio.uni-frankfurt.de)

dataMainPlot 27

See Also

createlongMatrix, parseDomainInput

Examples

data("mainLongRaw", package="PhyloProfile")
mainDf <- mainLongRaw
gene <- "101621at6656"
inputFile <- system.file(
"extdata", "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE
)
type <- "file"
domainDf <- parseDomainInput(gene, inputFile, type)
inGroup <- c¢("ncbi9606"”, "ncbi10@116")
dataFeatureTaxGroup(mainDf, domainDf, inGroup, gene)

dataMainPlot Create data for main profile plot

Description

Create data for main profile plot

Usage
dataMainPlot(dataHeat = NULL)

Arguments
dataHeat a data frame contains processed profiles (see ?fullProcessedProfile, ?filterPro-
fileData)
Value

A dataframe for plotting the phylogenetic profile, containing seed protein IDs (genelD), ortholog
IDs (orthoID) together with their ncbi taxonomy IDs (ncbilD and abbrName), full names (full-
Name), indexed supertaxa (supertaxon), values for additional variables (varl, var2) and the aggre-
gated values of those additional variables for each supertaxon (mVarl, mVar2), number of original
and filtered co-orthologs in each supertaxon (paralog and paralogNew), number of species in each
supertaxon (numberSpec) and the species that have orthologs in each supertaxon (presSpec).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

filterProfileData

28 dataVarDistTaxGroup

Examples

data(”"finalProcessedProfile"”, package="PhyloProfile")
dataMainPlot(finalProcessedProfile)

dataVarDistTaxGroup Create data for variable distribution comparison plot

Description

Create data for plotting the distribution comparison between 2 groups of taxa for a selected gene.

Usage

dataVarDistTaxGroup(data, inGroup, gene, variable)

Arguments
data input phylogenetic profile in long format (see ?mainLongRaw and ?createLong-
Matrix)
inGroup ID list of in-group taxa (e.g. "ncbil234")
gene ID of gene that need to be plotted the distribution comparison between in- and
out-group taxa.
variable varl or c(varl, var2)
Value

Dataframe containing list of values for all available variables for the selected genes in in-group and
out-group taxa (max. 3 columns).

Author(s)

Vinh Tran (tran @bio.uni-frankfurt.de)

See Also

createlLongMatrix

Examples

data("mainLongRaw", package="PhyloProfile")

data <- mainLongRaw

inGroup <- c("ncbi9606"”, "ncbil0@116")

variable <- colnames(data)[c(4, 5)]
dataVarDistTaxGroup(data, inGroup, "101621at6656", variable)

dimReduction

29

dimReduction Perform dimension reduction 2D

Description

Perform dimension reduction 2D

Usage

dimReduction(datad4dimRed = NULL, by = "taxa", type = "binary”,
randomSeed = 123, reductionTechnique = "umap"”, dimension = "2d",
tsnelter = 1000)

Arguments
data4dimRed data for dimension reduction (from prepareDimRedData)
by cluster data by "taxa" (default) or "genes"
type type of data, either "binary" (default) or "non-binary"
randomSeed random seed. Default: 123
reductionTechnique
dimensionality reduction technique, either "umap" (default) or "tsne"
dimension either "2d" (default) or "3d"
tsnelter number of iterations for t-SNE. Default: 1000
Value

A table contains coordinates of the 2D dimension reduction

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData

Examples

rawInput <- system.file(

"extdata”, "test.main.long", package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createLongMatrix(rawInput)
datad4dimRed <- prepareDimRedData(longDf, "phylum")
dimReduction(data4dimRed)

30 estimateGeneAge

distributionTest Compare the distribution of 2 numeric vectors

Description

This function tests the difference between the distributions of two input numeric samples using
the statistical tess. First the Kolmogorov-Smirnov is used to check if 2 samples have the same
distribution. If yes, Wilcoxon-Mann-Whitney will be used to compare the distribution difference.

Usage

distributionTest(varIn, varOut, significancelevel)

Arguments
varln first numeric vector
varoOut second numeric vector
significancelLevel
significant cutoff of the Kolmogorov-Smirnov test. Default = 0.05.
Value

p-value of the comparison test.

Author(s)

Carla Molbert (carla.moelbert@gmx.de)

estimateGeneAge Calculate the phylogenetic gene age from the phylogenetic profiles

Description

Calculate the phylogenetic gene age from the phylogenetic profiles

Usage

estimateGeneAge(processedProfileData, taxaCount, rankName, refTaxon,
var1CO, var2CO, percentCO, taxDB = NULL)

estimateGeneAge 31

Arguments
processedProfileData
dataframe contains the full processed phylogenetic profiles (see ?fullProcessed-
Profile or ?parselnfoProfile)
taxaCount dataframe counting present taxa in each supertaxon
rankName working taxonomy rank (e.g. "species", "genus", "family")
refTaxon reference taxon name (e.g. "Homo sapiens”, "Homo" or "Hominidae")
var1CO cutoff for varl. Default: c(0, 1)
var2C0 cutoff for var2. Default: c(0, 1)
percentCO cutoff for percentage of species present in each supertaxon. Default: c(0, 1)
taxDB Path to the taxonomy DB files
Value

A dataframe contains estimated gene ages for the seed proteins.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

parseInfoProfile for creating a full processed profile dataframe; getNameList and getTaxonomyMatrix
for getting taxonomy info, fullProcessedProfile for a demo input dataframe

Examples

library(dplyr)
data("fullProcessedProfile”, package="PhyloProfile")
rankName <- "class”
refTaxon <- "Mammalia”
processedProfileData <- fullProcessedProfile
taxonIDs <- levels(as.factor(processedProfileData$ncbhilID))
sortedInputTaxa <- sortInputTaxa(
taxonIDs, rankName, refTaxon, NULL, NULL
)
taxaCount <- sortedInputTaxa %>% dplyr::count(supertaxon)
variCutoff <- c(0, 1)
var2Cutoff <- c(@, 1)
percentCutoff <- c(@, 1)
estimateGeneAge(
processedProfileData,
taxaCount,
rankName,
refTaxon,
vari1Cutoff, var2Cutoff, percentCutoff

32 fastaParser

fallbackUmap Fallback for UMAP in case of insufficient samples

Description

Fallback for UMAP in case of insufficient samples

Usage

fallbackUmap(umapDt, randomSeed, dim)

Arguments

umapDt data matrix for UMAP

randomSeed random seed. Default: 123

dim dimension, either 2 for 2D (default) or 3 for 3D
Value

A table contains coordinates UMAP reduction

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

fastaParser Parse multi-fasta input file

Description

Parse multi-fasta input file

Usage

fastaParser(inputFile = NULL)

Arguments
inputFile input multiple fasta file. Check extdata/test.main.fasta or https://github.com/BIONF/PhyloProfile/wiki/Ing
Data#multi-fasta-format for the supported FASTA header.
Value

A data frame of input data in long-format containing seed gene IDs (or orthologous group IDs),
their orthologous proteins together with the corresponding taxonomy IDs and values of (up to) two
additional variables.

featureDistTaxPlot 33

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputFile <- system.file(
"extdata”, "test.main.fasta”, package = "PhyloProfile”, mustWork = TRUE
)

fastaParser(inputFile)

featureDistTaxPlot Create feature distribution comparison plot

Description

Create protein feature distribution plots between 2 groups of taxa for a selected gene.

Usage

featureDistTaxPlot(data, plotParameters)

Arguments

data dataframe for plotting (see ?dataFeatureTaxGroup)

plotParameters plot parameters, including size of x-axis, y-axis, legend and title; position of
legend ("right", "bottom" or "none"); names of in-group and out-group; flip the
plot coordinate ("Yes" or "No"). NOTE: Leave blank or NULL to use default
values.

Value

Distribution plots as a ggplot2 object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

dataFeatureTaxGroup

34 filteredProfile

Examples

data("mainLongRaw”, package="PhyloProfile")
data <- mainLongRaw
gene <- "101621at6656"
inputFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE
)
type <- "file"
domainDf <- parseDomainInput(gene, inputFile, type)
inGroup <- c¢("ncbi9606"”, "ncbi10116")
plotDf <- dataFeatureTaxGroup(data, domainDf, inGroup, gene)
plotParameters <- list(
"xSize" = 12,
"ySize" = 12,
"angle"” = 15,
"legendSize" = 12,
"inGroupName" = "In-group”,
"outGroupName" = "Out-group”,
"flipPlot" = "No”
)
featureDistTaxPlot(plotDf, plotParameters)

filteredProfile An example of a filtered phylogenetic profile

Description

An example of a filtered phylogenetic profile

Usage

data(filteredProfile)

Format

Dataframe

Value
A data frame with 168 rows and 20 variables:
 genelD Seed or ortholog group ID, e.g. "100136at6656"
* supertaxon Supertaxon name together with its ordered index, e.g. "1001_Mammalia"
* ncbilD Taxon ID, e.g. "ncbil0116"
* orthoID Ortholog ID, e.g. "100136at6656lHUMAN @9606 @ 11Q9UNQ2I1"

 varl First additional variable

filterProfileData 35

var2 Second additional variable

paralog Number of co-orthologs in the current taxon

abbrName NCBI ID of the ortholog, e.g. "ncbi9606"

taxonID Taxon ID of the ortholog, in this case: "0"

fullName Full taxon name of the ortholog, e.g. "Homo sapiens”

supertaxonID Supertaxon ID (only different than ncbilD in case working with higher taxon-
omy rank than input’s). e.g. "40674"

rank Rank of the supertaxon, e.g. "class"

category "cat

numberSpec Total number of species in each supertaxon

taxonMod Name of supersupertaxon w/o its index, e.g. "Mammalia"
presSpec Percentage of taxa having orthologs in each supertaxon
presentTaxa Number of taxa that have ortho in each supertaxon
totalTaxa Total number of taxa in each supertaxon

mVar]l Value of the 1. variable after grouping into supertaxon

mVar2 Value of the 2. variable after grouping into supertaxon

filterProfileData Filter phylogentic profiles

Description

Create a filtered data needed for plotting or clustering phylogenetic profiles. NOTE: this function
require some intermediate steps using the results from other functions. If you would like to get a
full processed data from the raw input, please use the function fromInputToProfile() instead!

Usage

filterProfileData(DF, taxaCount, refTaxon = NULL,

percentCO = c(@, 1), coorthoCOMax = 9999,

var1CO = c(@, 1), var2CO = c(@, 1), variRel = "protein”,
var2Rel = "protein", groupByCat = FALSE, catDt = NULL,
varlAggregateBy = "max", var2AggregateBy = "max")

Arguments
DF a reduced dataframe contains info for all phylogenetic profiles in the selected
taxonomy rank.
taxaCount dataframe counting present taxa in each supertaxon
refTaxon selected reference taxon. NOTE: This taxon will not be affected by the filtering.

If you want to filter all, set refTaxon <- NULL. Default = NULL.

36

filterProfileData

percentCO min and max cutoffs for percentage of species present in a supertaxon. Default
=c(0, 1).

coorthoCOMax maximum number of co-orthologs allowed. Default = 9999.

var1C0 min and max cutoffs for varl. Default = ¢(0, 1).

var2C0 min anc max cutoffs for var2. Default = c¢(0, 1).

variRel relation of varl ("protein" for protein-protein or "species" for protein-species).
Default = "protein".

var2Rel relation of var2 ("protein" for protein-protein or "species" for protein-species).
Default = "protein”.

groupByCat group genes by their categories (TRUE or FALSE). Default = FALSE.

catDt dataframe contains gene categories (optional, NULL if groupByCat = FALSE
or no info provided). Default = NULL.

var1AggregateBy

aggregate method for VAR (max, min, mean or median), applied for calculating
varl of supertaxa. Default = "max".

var2AggregateBy
aggregate method for VAR2 (max, min, mean or median), applied for calculating
var2 of supertaxa. Default = "max".

Value

A filtered dataframe for generating profile plot including seed gene IDs (or orthologous group IDs),
their ortholog IDs and the corresponding (super)taxa, (super)taxon IDs, number of co-orthologs in
each (super)taxon, values for two additional variables varl, var2, supertaxon, and the categories of
seed genes (or ortholog groups).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

parseInfoProfile and reduceProfile for generating input dataframe, fullProcessedProfile
for a demo full processed profile dataframe, fromInputToProfile for generating fully processed
data from raw input.

Examples

NOTE: this function require some intermediate steps using the results from
other functions. If you would like to get a full processed data from the

raw input, please use the function fromInputToProfile() instead!
library(dplyr)

data("fullProcessedProfile”, package="PhyloProfile")

rankName <- "class"”

refTaxon <- "Mammalia”

percentCutoff <- c(0.0, 1.0)

coorthologCutoffMax <- 10

variCutoff <- c(0.75, 1.0)

finalProcessedProfile

var2Cutoff <- c(0.5, 1.0)
variRelation <- "protein”
var2Relation <- "species”
groupByCat <- FALSE
catDt <- NULL
varlAggregateBy <- "max”
var2AggregateBy <- "max"
taxonIDs <- levels(as.factor(fullProcessedProfile$ncbilD))
sortedInputTaxa <- sortInputTaxa(
taxonIDs, rankName, refTaxon, NULL, NULL
)
taxaCount <- sortedInputTaxa %>% dplyr::group_by(supertaxon) %>%
summarise(n = n(), .groups = "drop")
filterProfileData(
fullProcessedProfile,
taxaCount,
refTaxon,
percentCutoff,
coorthologCutoffMax,
variCutoff,
var2Cutoff,
var1Relation,
var2Relation,
groupByCat,
catDt,
varlAggregateBy,
var2AggregateBy

37

finalProcessedProfile An example of a final processed & filtered phylogenetic profile

Description

An example of a final processed & filtered phylogenetic profile

Usage

data(finalProcessedProfile)

Format

Dataframe

Value
A data frame with 88 rows and 11 variables:

» genelD Seed or ortholog group ID, e.g. "100136at6656"

* supertaxon Supertaxon name together with its ordered index, e.g. "1001_Mammalia"

38 fromInputToProfile
supertaxonID Supertaxon ID (only different than ncbilD in case working with higher taxon-
omy rank than input’s). e.g. "40674"
varl First additional variable
presSpec The percentage of species presenting in each supertaxon
category "cat"
orthoID Ortholog ID, e.g. "100136at6656|RAT@10116@ 1IG3V7RSI1"
var2 Second additional variable
paralog Number of co-orthologs in the current taxon
presentTaxa Number of taxa that have ortho in each supertaxon
totalTaxa Total number of taxa in each supertaxon
fromInputToProfile Complete processing of raw input phylogenetic profiles
Description
Create a processed and filtered data for plotting or analysing phylogenetic profiles from raw input
file (from raw input to final filtered dataframe)
Usage
fromInputToProfile(rawInput, rankName, refTaxon = NULL,
taxaTree = NULL, sortedTaxonList = NULL, varlAggregateBy = "max",
var2AggregateBy = "max”, percentCutoff = c(0, 1),
coorthologCutoffMax = 9999, varlCutoff = c(@, 1), var2Cutoff = c(0, 1),
vari1Relation = "protein”, var2Relation = "protein”, groupByCat = FALSE,
catDt = NULL, taxDB = NULL)
Arguments
rawInput input file (in long, wide, multi-fasta or orthoxml format)
rankName taxonomy rank (e.g. "species”,"phylum",...)
refTaxon selected reference taxon name (used for sorting and will be protected from fil-
tering). Default = NULL.
taxaTree input taxonomy tree for taxa in input profiles (optional). Default = NULL.
sortedTaxonList

list of sorted taxa (optional). Default = NULL.

var1AggregateBy

aggregate method for varl (min, max, mean or median). Default = "max".

var2AggregateBy

aggregate method for VAR2 (min, max, mean or median). Default = "max".

percentCutoff min and max cutoffs for percentage of species present in a supertaxon. Default

=¢c(0,).

fromInputToProfile

39

coorthologCutoffMax

var1Cutoff
var2Cutoff

var1Relation

var2Relation

groupByCat
catDt
taxDB

Value

maximum number of co-orthologs allowed. Default = 9999.
min and max cutoffs for varl. Default = c(0, 1).
min and max cutoffs for var2. Default = c(0, 1).

relation of varl ("protein" for protein-protein or "species” for protein-species).
Default = "protein".

relation of var2 ("protein" for protein-protein or "species" for protein-species).
Default = "protein".

group genes by their categories (TRUE or FALSE). Default = FALSE.
dataframe contains gene categories. Default = NULL

Path to the taxonomy DB files

Dataframe required for generating phylogenetic profile plot or clustering analysis. It contains seed
gene IDs (or orthologous group IDs), their ortholog IDs and the corresponding (super)taxa, (su-
per)taxon IDs, number of co-orthologs in each (super)taxon, values for two additional variables
varl, var2, categories of seed genes (or ortholog groups).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

createlongMatrix, getInputTaxalD, getInputTaxaName, sortInputTaxa, parseInfoProfile,
reduceProfile, filterProfileData

Examples

rawInput <- system.file(
"extdata”, "test.main.long", package = "PhyloProfile”, mustWork = TRUE

)

rankName <- "class"”
refTaxon <- "Mammalia”

taxaTree <- NULL

sortedTaxonList <- NULL
varlAggregateBy <- "max”
var2AggregateBy <- "mean”
percentCutoff <- c(0.0, 1.0)
coorthologCutoffMax <- 10
variCutoff <- c(0.75, 1.0)
var2Cutoff <- c(0.5, 1.0)
variRelation <- "protein”
var2Relation <- "species”
groupByCat <- FALSE

catDt <- NULL

fromInputToProfile(

rawlnput,

40

rankName,
refTaxon,
taxaTree,
sortedTaxonList,
varlAggregateBy,
var2AggregateBy,
percentCutoff,
coorthologCutoffMax,
variCutoff,
var2Cutoff,
variRelation,
var2Relation,
groupByCat,
catDt

fullProcessedProfile

fullP

rocessedProfile Am example of a fully processed phylogenetic profile

Description

An example of a fully processed phylogenetic profile

Usage

data(fullProcessedProfile)

Format

Dataframe

Value

A data frame with 168 rows and 14 variables:

supertaxon Supertaxon name together with its ordered index, e.g. "1001_Mammalia"

ncbilD Taxon ID, e.g. "ncbil0116"
genelD Seed or ortholog group ID, e.g. "100136at6656"

orthoID Ortholog ID, e.g. "100136at6656lHUMAN @9606 @ 11Q9UNQ2I1"

var] First additional variable

var2 Second additional variable

paralog Number of co-orthologs in the current taxon
abbrName NCBI ID of the ortholog, e.g. "ncbi9606"
taxonID Taxon ID of the ortholog, in this case: "0"

fullName Full taxon name of the ortholog, e.g. "Homo sapiens"

geneAgePlotDf 41

* supertaxonID Supertaxon ID (only different than ncbilD in case working with higher taxon-
omy rank than input’s). e.g. "40674"

 rank Rank of the supertaxon, e.g. "class"
* category "cat

* numberSpec Total number of species in each supertaxon

geneAgePlotDf Create data for plotting gene ages

Description

Create data for plotting gene ages

Usage

geneAgePlotDf (geneAgeDf)

Arguments

geneAgeDf data frame containing estimated gene ages for seed proteins

Value

A dataframe for plotting gene age plot containing the absolute number and percentage of genes for
each calculated evolutionary ages and the corresponding position for writting those number on the
plot.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

estimateGeneAge

Examples

geneAgeDf <- data.frame(

geneID = c("100136at6656", "100265at6656", "101621at6656", "103479at6656"),
cath = c("0000001", "0000011", "0000001", "0000011"),

age = c("Q7_LUCA", "@6_Eukaryota”, "@7_LUCA", "@6_Eukaryota")

)

geneAgePlotDf (geneAgeDf)

42 generateSinglePlot

generateSinglePlot Create a single violin distribution plot

Description

Create a single violin distribution plot

Usage

generateSinglePlot(plotDf, parameters, variable)

Arguments
plotDf dataframe for plotting containing values for each variable in in-group and out-
group.
parameters plot parameters, including size of x-axis, y-axis, legend and title; position of
legend ("right", "bottom" or "none"); mean/median point; names of in-group and
out-group; and plot title. NOTE: Leave blank or NULL to use default values.
variable name of variable that need to be plotted (one of the column names of input
dataframe plotDf).
Value

A violin plot as a ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

data("mainLongRaw”, package="PhyloProfile")
data <- mainLongRaw
inGroup <- c("ncbhi9606", "ncbil@116")
varNames <- colnames(data)[c(4, 5)]
plotDf <- dataVarDistTaxGroup(data, inGroup, "101621at6656", varNames)
plotParameters <- list(
"xSize" = 12,
"ySize" = 12,
"titleSize" = 15,
"legendSize" = 12,
"legendPosition” = "right",
"mValue” = "mean”,
"inGroupName" = "In-group”,
"outGroupName” = "Qut-group”,
"title" = "101621at6656"
)
generateSinglePlot(plotDf, plotParameters, colnames(plotDf)[1])

getAllDomainsOma 43

getAllDomainsOma Create domain annotation dataframe from a raw OMA dataframe

Description

Create domain annotation dataframe from a raw OMA dataframe

Usage

getAllDomainsOma(finalOmaDf = NULL)

Arguments

finalOmaDf raw OMA data for a list of proteins (see ?getDataForOneOma)

Value
Dataframe of the domain annotation used for PhyloProfile, which contains seed IDs, ortholog IDs,
ortholog lengths, annotated features, start and end positions of those features.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getDataForOneOma

Examples

Uncomment the following line to run the function
omaData <- getDataForOneOma("HUMAN29397", "0G")
getAllDomainsOma(omaData)

getAllFastaOma Get all fasta sequences from a raw OMA dataframe

Description

Get all fasta sequences from a raw OMA dataframe

Usage

getAllFastaOma(finalOmaDf = NULL)

44 getCommonAncestor

Arguments

finalOmaDf raw OMA data for a list of proteins (see ?getDataForOneOma)

Value

A list contains all protein sequences in fasta format.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getDataForOneOma

Examples

Uncomment the following line to run the function
omaData <- getDataForOneOma("HUMAN29397", "0G")
getAllFastaOma(omaData)

getCommonAncestor Get all taxa that share a common ancestor

Description

Identify the common ancestor for a selected taxa and return a list of all taxa that have that common
ancestor from an large input taxa set.

Usage
getCommonAncestor(inputTaxa = NULL, inGroup = NULL, taxDB = NULL)

Arguments
inputTaxa ID list of all input taxa (e.g. "ncbil2345")
inGroup ID list of selected taxa used for identify the common ancestor (e.g.: "ncbi55555")
taxDB Path to the taxonomy DB files

Value

A list containing the taxonomy rank and name of the common ancestor, together with a dataframe
storing the full taxonomy info of all taxa that share that corresponding common ancestor.

Author(s)

Vinh Tran (tran @bio.uni-frankfurt.de)

getCoreGene 45

Examples

inputTaxa <- c("nchi34740", "ncbi9606", "ncbi374847", "ncbi123851",
"ncbi5664", "ncbi189518", "ncbi418459", "ncbil@116", "ncbi284812",
"ncbi35128", "nchi7070")

inGroup <- c¢("nchi9606"”, "nchil@116")

getCommonAncestor (inputTaxa, inGroup)

getCoreGene Identify core genes for a list of selected taxa

Description

Identify core genes for a list of selected (super)taxa. The identified core genes must be present in at
least a certain proportion of species in each selected (super)taxon (identified via percentCutoff) and
that criteria must be fullfilled for a certain percentage of selected taxa or all of them (determined
via coreCoverage).

Usage

getCoreGene(rankName, taxaCore, profileDt, taxaCount,
varl1Cutoff = c(@, 1), var2Cutoff = c(@, 1), percentCutoff = c(0, 1),
coreCoverage = 100, taxDB = NULL)

Arguments

rankName working taxonomy rank (e.g. "species”, "genus", "family")

taxaCore list of selected taxon names

profileDt dataframe contains the full processed phylogenetic profiles (see ?fullProcessed-
Profile or ?parselnfoProfile)

taxaCount dataframe counting present taxa in each supertaxon

vari1Cutoff cutoff for varl. Default = c(0, 1).

var2Cutoff cutoff for var2. Default = c(0, 1).

percentCutoff cutoff for percentage of species present in each supertaxon. Default = c(0, 1).
coreCoverage the least percentage of selected taxa should be considered. Default = 1.

taxDB Path to the taxonomy DB files

Value

A list of identified core genes.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

46

See Also

parseInfoProfile for creating a full processed profile dataframe

Examples

library(dplyr)
data("fullProcessedProfile”, package="PhyloProfile")
rankName <- "class"”
refTaxon <- "Mammalia”
taxaCore <- c("Mammalia”, "Saccharomycetes”, "Insecta")
profileDt <- fullProcessedProfile
taxonIDs <- levels(as.factor(fullProcessedProfile$ncbilID))
sortedInputTaxa <- sortInputTaxa(
taxonIDs, rankName, refTaxon, NULL, NULL
)
taxaCount <- sortedInputTaxa %>% dplyr::count(supertaxon)
variCutoff <- c(0.75, 1.0)
var2Cutoff <- c(0.75, 1.0)
percentCutoff <- c(0.0, 1.0)
coreCoverage <- 100
getCoreGene(
rankName,
taxaCore,
profileDt,
taxaCount,
variCutoff, var2Cutoff,
percentCutoff, coreCoverage

getDataClustering

getDataClustering

Get data for calculating distance matrix from phylogenetic profiles

Description

Get data for calculating distance matrix from phylogenetic profiles

Usage

getDataClustering(data, profileType = "binary”, varlAggBy = "max",

var2AggBy = "max")

Arguments

data a data frame contains processed and filtered profiles (see ?fullProcessedProfile

and ?filterProfileData, ?fromInputToProfile)

profileType type of data used for calculating the distance matrix. Either "binary" (consider
only the presence/absence status of orthlogs), "orthoID" (consider ortholog IDs
as values for clustering), "varl"/"var2" for taking values of the additional vari-

ables into account. Default = "binary".

getDataForOneOma 47

var1AggBy aggregate method for VAR1 (min, max, mean or median). Default = "max".
var2AggBy aggregate method for VAR2 (min, max, mean or median). Default = "max".
Value

A wide dataframe contains values for calculating distance matrix.

Author(s)

Carla Molbert (carla.moelbert@gmx.de), Vinh Tran (tran @bio.uni-frankfurt.de)

See Also

fromInputToProfile

Examples

data("finalProcessedProfile”, package="PhyloProfile")

data <- finalProcessedProfile

profileType <- "binary"

varlAggregateBy <- "max"

var2AggregateBy <- "mean”

getDataClustering(data, profileType, varlAggregateBy, var2AggregateBy)

getDataForOneOma Get OMA info for a query protein and its orthologs

Description
Get taxonomy IDs, sequences, length and annotations for an OMA orthologous group (or OMA
HOG).

Usage

getDataForOneOma(seedID = NULL, orthoType = "0G")

Arguments

seedID OMA protein ID

orthoType type of OMA orthologs ("OG" or "HOG"). Default = "OG".
Value

Data frame contains info for all sequences of the input OMA group (or HOG). That info contains
the protein IDs, taxonomy IDs, sequences, lengths, domain annotations (tab delimited) and the
corresponding seed ID.

48

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

Uncomment the following line to run the function
getDataForOneOma("”"HUMAN29397", "0G")

getDendrogram

getDendrogram Plot dendrogram tree

Description

Plot dendrogram tree

Usage
getDendrogram(dd = NULL)

Arguments

dd dendrogram object (see ?clusterDataDend)

Value

A dendrogram plot for the genes in the input phylogenetic profiles.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

clusterDataDend

Examples

data(”"finalProcessedProfile”, package="PhyloProfile")
data <- finalProcessedProfile
profileType <- "binary"
profiles <- getDataClustering(

data, profileType, varlAggregateBy, var2AggregateBy)
distMethod <- "mutualInformation”
distanceMatrix <- getDistanceMatrix(profiles, distMethod)
clusterMethod <- "complete”
dd <- clusterDataDend(as.dist(distanceMatrix), clusterMethod)
getDendrogram(dd)

getDistanceMatrix

49

getDistanceMatrix

Calculate the distance matrix

Description

Calculate the distance matrix

Usage
getDistanceMatrix(profiles = NULL, method = "mutualInformation")
Arguments
profiles dataframe contains profile data for distance calculating (see ?getDataClustering)
method distance calculation method ("euclidean", "maximum", "manhattan"”, "canberra",
"binary", "distanceCorrelation", "mutuallnformation" or "pearson" for binary
data; "distanceCorrelation" or "mutuallnformation" for non-binary data). De-
fault = "mutuallnformation".
Value

A calculated distance matrix for input phylogenetic profiles.

Author(s)

Carla Molbert (carla.moelbert@gmx.de), Vinh Tran (tran @bio.uni-frankfurt.de)

See Also

getDataClustering

Examples

data("finalProcessedProfile”, package="PhyloProfile")
data <- finalProcessedProfile
profileType <- "binary"”
profiles <- getDataClustering(

data, profileType, varlAggregateBy, var2AggregateBy)
method <- "mutualInformation”
getDistanceMatrix(profiles, method)

50 getFastaFromFasInput

getDomainFolder Get domain file from a folder for a seed protein

Description

Get domain file from a folder for a seed protein

Usage

getDomainFolder (seed, domainPath)

Arguments
seed seed protein ID
domainPath path to domain folder
Value

Domain file and its complete directory path for the selected protein.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

domainPath <- pasted(
path.package("PhyloProfile”, quiet = FALSE), "/extdata/domainFiles”

)
PhyloProfile:::getDomainFolder(”101621at6656", domainPath)

getFastaFromFasInput Get fasta sequences from main input file in multi-fasta format

Description

Get fasta sequences from main input file in multi-fasta format

Usage
getFastaFromFasInput(seqIDs = NULL, file = NULL)

Arguments

seqIDs list of sequences IDs. Set seqIDs = "all" if you want to get all fasta sequences
from the input file.

file raw phylogenetic profile input file in multi-fasta format.

getFastaFromFile 51

Value

A dataframe with one column contains sequences in fasta format.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

file <- system.file(
"extdata”, "test.main.fasta”,
package = "PhyloProfile”, mustWork = TRUE

)
getFastaFromFasInput(”all”, file)

getFastaFromFile Get fasta sequences from main input file in multi-fasta format

Description

Get fasta sequences from main input file in multi-fasta format

Usage

getFastaFromFile(seqIDs = NULL, concatFasta = NULL)

Arguments
seqIDs list of sequences IDs. Set seqIDs = "all" if you want to get all fasta sequences
from the concatenated input fasta file.
concatFasta input concatenated fasta file.
Value

A dataframe with one column contains sequences in fasta format.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

concatFasta <- system.file(
"extdata”, "fastaFiles/concatenatedFile.fa",
package = "PhyloProfile”, mustWork = TRUE

)

getFastaFromFasInput(”all”, concatFasta)

52 getFastaFromFolder

getFastaFromFolder Get fasta sequences

Description

Get fasta sequences for the input phylogenetic profiles.

Usage

getFastaFromFolder(seqIDs = NULL, path = NULL, dirFormat = NULL,
fileExt = NULL, idFormat = NULL)

Arguments
seqIDs list of sequences IDs.
path path to fasta folder.
dirFormat directory format (either 1 for "path/speciesID.fa*" or 2 for "path/speciesID/speciesID.fa*")
fileExt fasta file extension ("fa", "fasta", "fas" or "txt")
idFormat fasta header format (1 for ">speciesID:seqID", 2 for ">speciesID @seqID", 3 for
">speciesIDIseqID" or 4 for "seqID")
Value

A dataframe with one column contains sequences in fasta format.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

mainLongRaw

Examples

seqIDs <- "RAT@10116@1|D3ZUE4"
path <- system.file(
"extdata", "fastaFiles”, package = "PhyloProfile”, mustWork = TRUE
)
dirFormat <- 1
fileExt <- "fa"
idFormat <- 3
getFastaFromFolder (seqIDs, path, dirFormat, fileExt, idFormat)

getIDsRank 53

getIDsRank Get taxonomy info for a list of taxa

Description

Get NCBI taxonomy IDs, ranks and names for an input taxon list.

Usage

getIDsRank(inputTaxa = NULL, currentNCBIinfo = NULL)

Arguments
inputTaxa NCBI ID list of input taxa.
currentNCBIinfo
table/dataframe of the pre-processed NCBI taxonomy data (/PhyloProfile/data/preProcessedTaxonomy.txt
Value

A list of 3 dataframes: idList, rankList and reducedInfoList. The "rankList" contains taxon names
and all taxonomy ranks of the input taxa including also the noranks from the input rank to the
taxonomy root. The "idList" contains input taxon IDs, taxon names, all the ranks from current rank
to the taxonomy root together with their IDs (with the format "id#rank"). The reducedInfoList is a
subset of preProcessedTaxonomy.txt file, containing the NCBI IDs, taxon fullnames, their current
rank and their direct parent ID.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputTaxa <- c("272557", "176299")
ncbiFilein <- system.file(
"extdata", "data/preProcessedTaxonomy.txt",
package = "PhyloProfile”, mustWork = TRUE
)
currentNCBIinfo <- as.data.frame(data.table::fread(ncbiFilein))
getIDsRank(inputTaxa, currentNCBIinfo)

54

getlnputTaxaName

getInputTaxalD Get ID list of input taxa from the main input

Description

Get ID list of input taxa from the main input

Usage

getInputTaxalD(rawProfile = NULL)

Arguments

rawProfile A dataframe of input phylogenetic profile in long format

Value

List of all input taxon IDs (e.g. ncbil234). Default = NULL.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

createlLongMatrix, mainLongRaw

Examples

data("mainLongRaw", package="PhyloProfile")
getInputTaxalD(mainLongRaw)

getInputTaxaName Get NCBI taxon names for a selected list of taxa

Description

Get NCBI taxon names from "PhyloProfile/data/taxonNamesReduced.txt" for a list of input taxa

Usage

getInputTaxaName(rankName, taxonIDs = NULL, taxDB = NULL)

getNamelList 55

Arguments
rankName taxonomy rank (e.g. "species”,"phylum",...)
taxonIDs list of taxon IDs (e.g. ncbil234). Default = NULL
taxDB Path to the taxonomy DB files

Value

Data frame contains a list of full names, taxonomy ranks and parent IDs for the input taxa.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getInputTaxalD for getting input taxon IDs, getNameList for getting the full taxon name list

Examples

taxonIDs <- c("ncbi9606"”, "ncbil@116")
getInputTaxaName("species”, taxonIDs)

getNameList Get list of pre-installed NCBI taxon names

Description

Get all NCBI taxon names from "PhyloProfile/data/taxonNamesReduced.txt"

Usage
getNamelList(taxDB = NULL)

Arguments

taxDB Path to the taxonomy DB files

Value

List of taxon IDs, their full names, taxonomy ranks and parent IDs obtained from "PhyloPro-
file/data/taxonNamesReduced.txt"

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

getNameList ()

56 getOmaDomainFromURL

getOmaDataForOneOrtholog
Get taxonomy ID, sequence and annotation for one OMA protein

Description

Get taxonomy ID, sequence and annotation for one OMA protein

Usage

getOmaDataForOneOrtholog(id = NULL)

Arguments

id oma ID of one protein

Value
Data frame contains the input protein ID with its taxonomy ID, sequence, length and domain anno-
tations (tab delimited) for input OMA protein

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

Uncomment the following line to run the function
getOmaDataForOneOrtholog("”"HUMAN29397")

getOmaDomainFromURL Get domain annotation from OMA Browser

Description

Get domain annotation from OMA Browser based on a URL or a raw data frame contains annotation
info from OMA

Usage
getOmaDomainFromURL (domainURL = NULL)

Arguments

domainURL URL address for domain annotation of ONE OMA id or a raw data frame con-
tains annotation info from OMA

getOmaMembers 57

Value

Data frame contains feature names with their start and end positions

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

Uncomment the following line to run the function
getOmaDomainFromURL ("https://omabrowser.org/api/protein/7916808/domains/")

getOmaMembers Get OMA members

Description

Get OMA ortholog group, OMA HOG or OMA pair’s members for a seed protein from OMA
Browser.

Usage

getOmaMembers(id = NULL, orthoType = "0G")

Arguments
id ID of the seed protein (OMA or UniProt ID)
orthoType type of OMA orthologs: either "HOG", "OG" (orthologous group) or "PAIR"
(orthologous pair - CURRENTLY NOT WORKING). Default = "OG".
Value

List of OMA orthologs for an input seed protein.

Author(s)

Carla Molbert carla.moelbert@gmx.de

Examples

Uncomment the following line to run the function
getOmaMembers("HUMAN29397", "0G")

58 getSelectedFastaOma

getQualColForVector Get color for a list of items

Description

Get color for a list of items

Usage

getQualColForVector(x = NULL)

Arguments

X input list

Value

list of colors for each element (same elements will have the same color)

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also
qualitativeColours
Examples
items <= c("a”, "b", "c")

getQualColForVector(items)

getSelectedFastaOma Get selected fasta sequences from a raw OMA dataframe

Description

Get selected fasta sequences from a raw OMA dataframe

Usage
getSelectedFastaOma(finalOmaDf = NULL, seqID = NULL)

Arguments

finalOmaDf raw OMA data for a list of proteins (see ?getDataForOneOma)
seqlD OMA ID of selected protein

getSelectedTaxonNames 59

Value

Required protein sequence in fasta format.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getDataForOneOma

Examples

Uncomment the following line to run the function
omaData <- getDataForOneOma("HUMAN29397", "0G")
getSelectedFastaOma(omaData, "HUMAN29397")

getSelectedTaxonNames Get a subset of input taxa based on a selected taxonomy rank

Description
Get a subset of taxon ncbi IDs and names from an input list of taxa based on a selected supertaxon
(identified by its taxonomy rank and supertaxon name or supertaxon ID).
Usage
getSelectedTaxonNames(inputTaxonIDs = NULL, rank = NULL,
higherRank = NULL, higherID = NULL, higherName = NULL, taxDB = NULL)
Arguments

inputTaxonIDs list of input taxon IDs (e.g. c("10116", "122586"))

rank taxonomy rank of input taxa (e.g. "species")

higherRank selected taxonomy rank (e.g. "phylum")

higherID supertaxon ID (e.g. 7711). NOTE: either supertaxon ID or name is required, not
neccessary to give both

higherName supertaxon name (e.g. "Chordata"). NOTE: either supertaxon ID or name is
required, not neccessary to give both

taxDB Path to the taxonomy DB files

Value

A data frame contains ncbi IDs and names of taxa from the input taxon list that belong to the
selected supertaxon.

60 getTaxHierarchy

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputTaxonIDs <- c("10116", "122586", "123851", "13616", "188937", "189518",
"208964", "224129", "224324", "237631", "243230")

rank <- "species”

higherRank <- "phylum”

higherID <- 7711

getSelectedTaxonNames(inputTaxonIDs, rank, higherRank, higherID, NULL)
higherName <- "Chordata"

getSelectedTaxonNames(inputTaxonIDs, rank, higherRank, NULL, higherName,NULL)

getTaxHierarchy Get taxonomy hierarchy for a list of taxon IDs

Description

Get NCBI taxonomy hierarchy and URLs for an input taxon list.

Usage
getTaxHierarchy(inputTaxa = NULL, currentNCBIinfo = NULL)

Arguments
inputTaxa NCBI ID list of input taxa.
currentNCBIinfo
table/dataframe of the pre-processed NCBI taxonomy data (/PhyloProfile/data/preProcessed Taxonomy.txt
Value

A list of dataframs containing taxonomy hierarchy and its URL to NCBI database for input taxon
IDs

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputTaxa <- c("272557", "176299")
ncbiFilein <- system.file(
"extdata", "data/preProcessedTaxonomy.txt",
package = "PhyloProfile”, mustWork = TRUE
)
currentNCBIinfo <- as.data.frame(data.table::fread(ncbiFilein))
PhyloProfile:::getTaxHierarchy(inputTaxa, currentNCBIinfo)

getTaxonomylnfo 61

getTaxonomyInfo Get taxonomy info for a list of input taxa

Description

Get taxonomy info for a list of input taxa

Usage

getTaxonomyInfo(inputTaxa = NULL, currentNCBIinfo = NULL)

Arguments
inputTaxa NCBI taxonomy IDs of input taxa.
currentNCBIinfo
table/dataframe of the pre-processed NCBI taxonomy data (/PhyloProfile/data/preProcessedTaxonomy.txt
Value

A list of NCBI taxonomy info for input taxa, including the taxonomy IDs, full scientific names,
taxonomy ranks and the parent IDs.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputTaxa <- c("272557", "176299")
ncbiFilein <- system.file(
"extdata", "data/preProcessedTaxonomy.txt",
package = "PhyloProfile”, mustWork = TRUE
)
currentNCBIinfo <- as.data.frame(data.table::fread(ncbiFilein))
getTaxonomyInfo(inputTaxa, currentNCBIinfo)

getTaxonomyMatrix Get taxonomy matrix

Description
Get the (full or subset) taxonomy matrix from "data/taxonomyMatrix.txt" based on an input taxon
list

Usage

getTaxonomyMatrix(taxDB = NULL, subsetTaxaCheck = FALSE, taxonIDs = NULL)

62 getTaxonomyRanks

Arguments
taxDB Path to the taxonomy DB files
subsetTaxaCheck
TRUE/FALSE subset taxonomy matrix based on input taxon IDs. Default =
FALSE
taxonIDs list of input taxon IDs (e.g. ncbil234). Default = NULL
Value

Data frame contains the (subset of) taxonomy matrix for list of input taxa.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

get full pre-installed taxonomy matrix
getTaxonomyMatrix()

get taxonomy matrix for a list of taxon IDs
taxonIDs <- c("ncbi9606"”, "ncbil@116")
getTaxonomyMatrix(NULL, TRUE, taxonIDs)

getTaxonomyRanks Create a list containing all main taxanomy ranks

Description

Create a list containing all main taxanomy ranks

Usage

getTaxonomyRanks ()

Value

A list of all main ranks (from strain to superkingdom)

Author(s)

Carla Molbert (carla.moelbert@gmx.de)

Examples

getTaxonomyRanks ()

gridArrangeSharedLegend

63

gridArrangeSharedLegend
Plot Multiple Graphs with Shared Legend in a Grid

Description

Plot Multiple Graphs with Shared Legend in a Grid

Usage

gridArrangeSharedLegend(..., ncol = length(list(...)), nrow = 1,

position = c("bottom”, "right"), title = NA, titleSize = 12)
Arguments
Plots to be arranged in grid

ncol Number of columns in grid

nrow Number of rows in grid

position Gird position (bottom or right)

title Title of grid

titleSize Size of grid title
Value

Grid of plots with common legend

Note
adapted from https://rdrr.io/github/PhilBoileau/CLSAR/src/R/ gridArrangeSharedLegend.R

Author(s)

Phil Boileau, <philippe.boileau@rimuhc.ca>

Examples

Not run:
data("mainLongRaw”, package="PhyloProfile")
data <- mainLongRaw
inGroup <- c¢("ncbi9606"”, "ncbi10@116")
varNames <- colnames(data)[c(4, 5)]
plotDf <- dataVarDistTaxGroup(data, inGroup, "101621at6656", varNames)
plotParameters <- list(

"xSize" = 12,

"ySize" = 12,

"titleSize" = 15,

"legendSize"” = 12,

64 groupLabelDimRedData

"legendPosition” = "right”,

"mValue” = "mean”,

"inGroupName" = "In-group”,

"outGroupName" = "Out-group”,

"title” = "101621at6656"
)
plotVarl <- generateSinglePlot(plotDf, plotParameters, colnames(plotDf)[1])
plotVar2 <- generateSinglePlot(plotDf, plotParameters, colnames(plotDf)[2])
g <- gridArrangeSharedLegend(

plotVaril, plotVar2,

position = plotParameters$legendPosition,

title = plotParameters$title,

size = plotParameters$titleSize

)

End(Not run)

groupLabelDimRedData Reduce the number of labels for DIM reduction plot based on the
gene/taxon frequency

Description

Reduce the number of labels for DIM reduction plot based on the gene/taxon frequency

Usage

groupLabelDimRedData(data4dimRed = NULL, freqCutoff = c(@,200))

Arguments
data4dimRed data for dimension reduction (from prepareDimRedData)
freqCutoff gene/taxon frequency cutoff range. Any labels that are outside of this range will
be assigned as [Other]
Value

A dataframe similar to input data4dimRed, but with modified Label column, where less frequent
labels are grouped together as "Other"

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData

heatmapPlotting 65

Examples

rawInput <- system.file(

"extdata”, "test.main.long"”, package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createLongMatrix(rawInput)
datad4dimRed <- prepareDimRedData(longDf, "phylum")
groupLabelDimRedData(data4dimRed, freqCutoff = c(3,5))

heatmapPlotting Create profile heatmap plot

Description

Create profile heatmap plot

Usage

heatmapPlotting(data = NULL, parm = NULL)

Arguments

data dataframe for plotting the heatmap phylogentic profile (either full or subset pro-
files)

parm plot parameters, including (1) type of x-axis "taxa" or "genes" - default = "taxa";
(2) display gene IDs (default) or gene names; (3+4) names of 2 variables var1ID
and var2ID - default = "varl" & "var2"; (5+6) mid value and color for mid
value of varl - default is 0.5 and #FFFFFF; (7) color for lowest varl - default =
"#FF8C00"; (8) color for highest varl - default = "#4682B4"; (9+10) mid value
and color for mid value of var2 - default is 1 and #FFFFFF;(11) color for lowest
var2 - default = "#FFFFFF", (12) color for highest var2 - default = "#FOE68C",
(13) color of co-orthologs - default = "#07D000"; (14+15+16) text sizes for x,
y axis and legend - default = 9 for each; (17) legend position "top", "bottom",
"right", "left" or "none" - default = "top"; (18) zoom ratio of the co-ortholog
dots from -1 to 3 - default = 0; (19) angle of x-axis from 0 to 90 - default =
60; (20) show/hide separate line for reference taxon 1/0 - default = 0; (21) en-
able/disable coloring gene categories TRUE/FALSE - default = FALSE; (22) en-
able/disable coloring duplicated ortholog IDs TRUE/FALSE - default=FALSE).
NOTE: Leave blank or NULL to use default values.

Value

A profile heatmap plot as a ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

66

See Also

dataMainPlot, dataCustomizedPlot

Examples

data("finalProcessedProfile"”, package="PhyloProfile")
plotDf <- dataMainPlot(finalProcessedProfile)
plotParameter <- list(
"xAxis" = "taxa",
"geneldType"” = "genelD",
"var1ID" = "FAS_FW",
"var2ID" = "FAS_BW",
"midvVar1” = 0.5,
"midColorVar1” = "#FFFFFF",
"lowColorVar1"” = "#FF8C00",
"highColorVar1” = "#4682B4",
"midvar2" =1,
"midColorVar2" = "#FFFFFF",
"lowColorVar2" = "#CB4C4E",
"highColorVar2" = "#3E436F",
"paraColor” = "#07D000",
"xSize" = 8,
"ySize" = 8,
"legendSize"
"mainLegend” =
"dotZoom" = @,
"xAngle" = 60,
"guideline” = 0,
"colorByGroup” = FALSE,
"catColors” = NULL,
"colorByOrthoID"” = FALSE

8,

n n

top”,

)

heatmapPlotting(plotDf, plotParameter)

heatmapPlottingFast

heatmapPlottingFast Create profile heatmap plot using scattermore

Description

Create profile heatmap plot using scattermore

Usage

heatmapPlottingFast(data = NULL, parm = NULL)

heatmapPlottingFast

Arguments

data

parm

Value

67

dataframe for plotting the heatmap phylogentic profile (either full or subset pro-
files)

plot parameters, including (1) type of x-axis "taxa" or "genes" - default = "taxa";
(2) display gene IDs (default) or gene names; (3+4) names of 2 variables var1ID
and var2ID - default = "varl" & "var2"; (5+6) mid value and color for mid
value of varl - default is 0.5 and #FFFFFF; (7) color for lowest varl - default =
"#FF8C00"; (8) color for highest varl - default = "#4682B4"; (9+10) mid value
and color for mid value of var2 - default is 1 and #FFFFFF;(11) color for lowest
var2 - default = "#FFFFFF", (12) color for highest var2 - default = "#FOE68C",
(13) color of co-orthologs - default = "#07D000"; (14+15+16) text sizes for x,
y axis and legend - default = 9 for each; (17) legend position "top", "bottom",
"right", "left" or "none" - default = "top"; (18) zoom ratio of the co-ortholog
dots from -1 to 3 - default = 0; (19) color dots based on either "varl" or "var2".
NOTE: Leave blank or NULL to use default values.

A profile heatmap plot as a ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

dataMainPlot, dataCustomizedPlot

Examples

data("finalProcessedProfile”, package="PhyloProfile")

plotDf <- dataMainPlot(finalProcessedProfile)
plotParameter <- list(

"xAxis" = "taxa",
"geneldType"” = "genelD",
"var1ID" = "FAS_FW",
"var2ID" = "FAS_BW",
"midvar1” = 0.5,
"midColorVar1” = "#FFFFFF",
"lowColorVar1l” = "#FF8C00Q",
"highColorVar1” = "#4682B4",
"midvar2" =1,
"midColorVar2" = "#FFFFFF",
"lowColorVar2" = "#CB4C4E",
"highColorVar2" = "#3E436F",
"paraColor” = "#07D000",
"xSize" = 8,

"ySize" = 8,

"legendSize" = 8,
"mainLegend” = "top”,

68 highlightProfilePlot

"dotZoom" = @,
"colorVar"” = "varl”

)

heatmapPlottingFast(plotDf, plotParameter)

highlightProfilePlot Highlight gene and/or taxon of interest on the phylogenetic profile plot

Description

Highlight gene and/or taxon of interest on the phylogenetic profile plot

Usage

highlightProfilePlot(profilePlot = NULL, plotDf = NULL,
taxonHighlight = "none”, workingRank = "none"”, geneHighlight = NULL,
taxDB = NULL, xAxis = "taxa")

Arguments

profilePlot initial (highlighted) profile plot

plotDf dataframe for plotting the heatmap phylogentic profile
taxonHighlight taxon of interst. Default = "none".

workingRank working taxonomy rank (needed only for highlight taxon).

geneHighlight gene of interest. Default = NULL.

taxDB Path to the taxonomy DB files
xAxis type of x-axis (either "genes" or "taxa")
Value

A profile heatmap plot with highlighted gene and/or taxon of interest as ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

dataMainPlot, dataCustomizedPlot, heatmapPlotting

id2name

Examples

data(”"finalProcessedProfile”, package="PhyloProfile")
plotDf <- dataMainPlot(finalProcessedProfile)
plotParameter <- list(
"xAxis" = "taxa",
"geneldType"” = "genelD",
"var1ID" = "FAS_FW",
"var2ID" = "FAS_BW",
"midvar1l” = 0.5,
"midColorVar1"” = "#FFFFFF",
"lowColorVar1” = "#FF8C00",
"highColorVar1"” = "#4682B4",
"midvar2" = 1,
"midColorVar2" = "#FFFFFF",
"lowColorVar2" = "#CB4C4E",
"highColorVar2" = "#3E436F",
"paraColor” = "#07D000",
"xSize" = 8,
"ySize" = 8,
"legendSize" = 8,
"mainLegend” = "top”,
"dotZoom" = @,
"xAngle" = 60,
"guideline” = 0,
"colorByGroup” = FALSE,
"colorByOrthoID" = FALSE
)
profilePlot <- heatmapPlotting(plotDf, plotParameter)
taxonHighlight <- "none”
workingRank <- "class"
geneHighlight <- "100265at6656"
highlightProfilePlot(
profilePlot, plotDf, taxonHighlight, workingRank, geneHighlight,
NULL, plotParameter$xAxis

id2name Get taxon names for a list of taxon IDs

Description

Get taxon names for a list of taxon IDs

Usage

id2name(idList = NULL, currentNCBIinfo = NULL)

70 idList

Arguments
idList list of taxonomy IDs
currentNCBIinfo
table/dataframe of the pre-processed NCBI taxonomy data (/PhyloProfile/data/preProcessedTaxonomy.txt
Value

A dataframe contains input taxon Ids and their full names.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

nchbiFilein <- system.file(
"extdata", "data/preProcessedTaxonomy.txt",
package = "PhyloProfile”, mustWork = TRUE
)
currentNCBIinfo <- as.data.frame(data.table::fread(ncbiFilein))
idList <- c("9606", "5207", "40674", "4751")
id2name(idList, currentNCBIinfo)

idList NCBI ID list for experimental data sets

Description

Data frame, in which each row contains the complete taxonomy ranks from the lowest system-
atic level (strain/species) upto the taxonomy root and the corresponding IDs for one taxon in the
experimental data sets.

Usage

data(idList)

Format

Dataframe

Value

A data frame with up to 41 columns and 95 rows corresponding to 95 taxa in the 2 experimental
data sets

joinPlotMergeLegends

71

joinPlotMergelLegends Join multiple plots and merge legends

Description

Join multiple plots and merge legends

Usage

joinPlotMergelegends(
df1 = NULL,
df2 = NULL,
plot1l = NULL,
plot2 = NULL,
position = c("bottom”, "right"),
font = "Arial”,
legendSize = 12

)
Arguments
df1 Data frame for plot 1
df2 Data frame for plot 2
plotl ggplot object of plot 1
plot2 ggplot object of plot 2
position position of legend (bottom or right)
font font of text
legendSize font size
Value

joined plots with merged legend as a grid object

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

seed <- "101621at6656"
ortho <- "101621at6656 | AGRPL@224129@0|224129_0:001955[1"
ortho <- gsub("\\|", ":", ortho)
grepID <- paste(seed, "#", ortho, sep = "")
domainFile <- system.file(
"extdata", "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

72 linearize Architecture

)

domainDf <- parseDomainInput(seed, domainFile, "file")
domainDf$feature_id_mod <- domainDf$feature_id
subdomainDf <- domainDf[grep(grepID, domainDf$seedID),]
subdomainDf$feature <- as.character(subdomainDf$feature)
orthoDf <- subdomainDf[subdomainDf$orthoID == ortho,]
seedDf <- subdomainDf[subdomainDf$orthoID != ortho,]
minStart <- min(subdomainDf$start)

maxEnd <- max(c(subdomainDf$end, subdomainDf$length))

resolve overlapping domains

seedDf <- PhyloProfile:::resolveOverlapFeatures(seedDf)
orthoDf <- PhyloProfile:::resolveOverlapFeatures(orthoDf)
add feature colors

featureColorDf <- PhyloProfile:::addFeatureColors(seedDf, orthoDf)
seedDf <- featureColorDf[[1]]

orthoDf <- featureColorDf[[2]]

generate plots

plotSeed <- PhyloProfile:::singleDomainPlotting(

seedDf, seed, minStart = minStart, maxEnd = maxEnd, font = "sans”
)
plotOrtho <- PhyloProfile:::singleDomainPlotting(

orthoDf, ortho, minStart = minStart, maxEnd = maxEnd, font = "sans”
)

merge plots

PhyloProfile:::joinPlotMergelLegends(
seedDf, orthoDf, plotSeed, plotOrtho, "bottom”, font = "sans”,
legendSize = 12)

linearizeArchitecture Linearize PFAM/SMART annotations by best e-value/bitscore

Description

Linearize PFAM/SMART annotations by best e-value/bitscore

Usage

linearizeArchitecture(domainDf = NULL, orthoID = NULL, value = "evalue")
Arguments

domainDf input domain dataframe

orthoID ID of protein that needs to be linearized

value type of values that will be used for linearized, either evalue (default) or bitscore
Value

Domain dataframe of the selected protein after linearization

mainLongRaw

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

demoDomainDf <- data.frame(
orthoID = rep("protID”, 4),
start = c(1, 5, 100, 80),
end = c(30, 40, 130, 110),
evalue = c(0.001, 0.0005, 0.2, 0.004),
feature_type = c(rep("pfam”, 2), rep("smart”, 2)),
feature_id = c("pf1", "pf2", "sm1", "sm2")

73

)
linearizeArchitecture(demoDomainDf, "protID"”, "evalue")
mainLongRaw An example of a raw long input file
Description

An example of a raw long input file

Usage

data(mainLongRaw)

Format

Dataframe

Value

A data frame with 168 rows and 5 variables:

 genelD Seed or ortholog group ID, e.g. "100136at6656"

* ncbilD Taxon ID, e.g. "ncbi36329"

* orthoID Ortholog ID, e.g. "100136at6656/PLAF7 @36329 @ 11Q8ILTS8I1"
e FAS_F First additional variable

* FAS_B Second additional variable

74

modifyFeatureName

mainTaxonomyRank Get all NCBI taxonomy rank names

Description

Get all NCBI taxonomy rank names

Usage

mainTaxonomyRank()

Value

A list of all available NCBI taxonomy rank names.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

mainTaxonomyRank ()

modifyFeatureName Modify feature names

Description

Simplify feature names (e.g. TM for transmembrane domain, LCR for low complexity regions,
remove tool names from domain name) and add weight to feature names (if available)

Usage

modifyFeatureName(domainDf = NULL)

Arguments

domainDf domain data as a dataframe object

Value

Dataframe contains simlified domain names in yLabel column

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

pairDomainPlotting

Examples

75

domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

seedID <- "101621at6656"
domainDf <- parseDomainInput(seedID, domainFile, "file")
PhyloProfile:: :modifyFeatureName(domainDf)

pairDomainPlotting

Create architecure plot for a pair of seed and ortholog protein

Description

Create architecure plot for a pair of seed and ortholog protein

Usage

pairDomainPlotting(seed, ortho, seedDf, orthoDf, minStart, maxEnd,
labelSize, titleSize, legendSize, showScore, showWeight, namePosition,
firstDist, nameType, nameSize, segmentSize, nameColor, labelPos,
colorPalette, font)

Arguments

seed
ortho
seedDf

orthoDf
minStart
maxEnd
labelSize
titleSize
legendSize
showScore
showWeight

namePosition

firstDist

nameType

Seed ID
Ortho ID

domain dataframe for seed domains containing the seed ID, ortholog ID, se-
quence length, feature names, start and end positions, feature weights (optional)
and the status to determine if that feature is important for comparison the archi-
tecture between 2 proteins* (e.g. seed protein vs ortholog) (optional)

domain dataframe for ortholog domains (same format as seedDf)
the smallest start position of all domains

the highest stop position of all domains

lable size. Default = 12

title size. Default = 12

legend size. Default = 12

show/hide E-values and Bit-scores. Default = NULL (hide)
Show/hide feature weights. Default = NULL (hide)

list of positions for domain names, choose from "plot", "legend" or "axis". De-
fault: "plot"

distance of the first domain to plot title. Default = 0.5

type of domain names, either "Texts" or "Labels" (default)

76
nameSize Size of domain names. Default = 3
segmentSize Height of domain segment. Default = 5
nameColor color of domain names (for Texts only). Default = "black"
labelPos position of domain names (for Labels only). Choose from "Above" (default),
"Below" or "Inside" the domain bar
colorPalette color pallete. Default = Paired"
font font of text. Default = Arial"
Value

Domain plot of a pair proteins as a arrangeGrob object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

singleDomainPlotting, sortDomains, parseDomainInput

Examples

seed <- "101621at6656"
ortho <- "101621at6656 | AGRPL@224129@0|224129_0:001955[1"
ortho <- gsub("\\|", ":", ortho)
grepID <- paste(seed, "#", ortho, sep = "")
domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains”,
package = "PhyloProfile”, mustWork = TRUE
)
domainDf <- parseDomainInput(seed, domainFile, "file")
domainDf$feature_id_mod <- domainDf$feature_id
subdomainDf <- domainDf[grep(grepID, domainDf$seedID),]
subdomainDf$feature <- as.character(subdomainDf$feature)
orthoDf <- subdomainDf[subdomainDf$orthoID == ortho,]
seedDf <- subdomainDf[subdomainDf$orthoID != ortho,]
minStart <- min(subdomainDf$start)
maxEnd <- max(c(subdomainDf$end, subdomainDf$length))
resolve overlapping domains
seedDf <- PhyloProfile:::resolveOverlapFeatures(seedDf)
orthoDf <- PhyloProfile:::resolveOverlapFeatures(orthoDf)
add feature colors

featureColorDf <- PhyloProfile:::addFeatureColors(seedDf, orthoDf)

seedDf <- featureColorDf[[1]]

orthoDf <- featureColorDf[[2]]

do plot

g <- PhyloProfile:::pairDomainPlotting(

seed,ortho, seedDf,orthoDf ,minStart,maxEnd, font = "sans”

)
grid::grid.draw(g)

pairDomainPlotting

parseDomainInput 77

parseDomainInput Parse domain input file

Description

Get all domain annotations for one seed protein IDs.

Usage

parseDomainInput(seed = NULL, inputFile = NULL, type = "file")

Arguments
seed seed protein ID
inputFile name of input file (file name or path to folder contains individual domain files)
type type of data (file" or "folder"). Default = "file".

Value

A dataframe for protein domains including seed ID, its orthologs IDs, sequence lengths, feature
names, start and end positions, feature weights (optional) and the status to determine if that feature
is important for comparison the architecture between 2 proteins* (e.g. seed protein vs ortholog)
(optional).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getDomainFolder

Examples

seed <- "101621at6656"

inputFile <- system.file(
"extdata", "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

type <- "file"

parseDomainInput(seed, inputFile, type)

78 parselnfoProfile

parseInfoProfile Parsing info for phylogenetic profiles

Description

Creating main dataframe for the input phylogenetic profiles based on selected input taxonomy
level (e.g. strain, species) and reference taxon. The output contains the number of paralogs, the
max/min/mean/median of VARI and VAR2.

Usage

parseInfoProfile(inputDf, sortedInputTaxa, taxaCount, coorthoCOMax)

Arguments
inputDf input profiles in long format
sortedInputTaxa
sorted taxonomy data for the input taxa (check sortInputTaxa())
taxaCount dataframe counting present taxa in each supertaxon

coorthoCOMax maximum number of co-orthologs allowed

Value

A dataframe contains all info for the input phylogenetic profiles. This full processed profile that is
required for several profiling analyses e.g. estimation of gene age (?estimateGeneAge) or identifi-
cation of core gene (?getCoreGene).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

createlongMatrix, sortInputTaxa, calcPresSpec, mainLongRaw

Examples

library(dplyr)
data("mainLongRaw", package="PhyloProfile")
taxonIDs <- getInputTaxaID(mainLongRaw)
sortedInputTaxa <- sortInputTaxa(

taxonIDs, "class”, "Mammalia”, NULL, NULL

)

taxaCount <- sortedInputTaxa %>% dplyr::group_by(supertaxon) %>%
summarise(n = n(), .groups = "drop")

coorthoCOMax <- 999

parselnfoProfile(

mainLongRaw, sortedInputTaxa, taxaCount, coorthoCOMax

)

performPCA

79

performPCA Helper function to perform PCA

Description

Helper function to perform PCA

Usage

performPCA(pcaDt)
Arguments

pcaDt data matrix for PCA
Value

A table contains coordinates of the first 3 PCs

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

performUmap Helper function to handle UMAP logic

Description

Helper function to handle UMAP logic

Usage

performUmap(umapDt, randomSeed = 123, dim = 2)

Arguments

umapDt data matrix for UMAP

randomSeed random seed. Default: 123

dim dimension, either 2 for 2D (default) or 3 for 3D
Value

A table contains coordinates UMAP reduction

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

80 plotDimRed

plotDimRed Create dimension reduction plot

Description

Create dimension reduction plot

Usage

plotDimRed(plotDf = NULL, legendPos = "bottom",
colorPalette = "Set2", transparent = 0, textSize = 12, font = "Arial”,
highlightTaxa = NULL, dotZoom = @)

Arguments
plotDf data for dimension reduction 2D plot
legendPos position of legend. Default: "right"
colorPalette color palette. Default: "Set2"
transparent transparent level (from O to 1). Default: 0
textSize size of axis and legend text. Default: 12
font font of text. Default = Arial”
highlightTaxa list of taxa to be highlighted
dotZoom dot size zooming factor. Default: 0
Value

A plot as ggplot object

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData, dimReduction, createDimRedPlotData

Examples

rawInput <- system.file(
"extdata"”, "test.main.long"”, package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createlLongMatrix(rawInput)
datad4dimRed <- prepareDimRedData(longDf, "phylum")
dimRedCoord <- dimReduction(data4dimRed)
plotDf <- createDimRedPlotData(dimRedCoord, data4dimRed)
plotDimRed(plotDf, font = "sans")

plotDimRed3D

81

plotDimRed3D Create dimension reduction 3D plot

Description

Create dimension reduction 3D plot

Usage

plotDimRed3D(plotDf = NULL, legendPos = "bottom",
colorPalette = "Set2", transparent = 0,highlightTaxa = NULL,

dotZoom = @)
Arguments
plotDf data for dimension reduction 3D plot
legendPos position of legend. Default: "right"

colorPalette color palette. Default: "Set2"
transparent transparent level (from O to 1). Default: 0
highlightTaxa list of taxa to be highlighted

dotZoom dot size zooming factor. Default: 0

Value

A plot as ggplot object

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

prepareDimRedData, dimReduction, createDimRedPlotData

Examples

rawInput <- system.file(
"extdata”, "test.main.long"”, package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createlLongMatrix(rawInput)
datad4dimRed <- prepareDimRedData(longDf, "phylum")
dimRedCoord3d <- dimReduction(data4dimRed, dimension = "3d")
plotDf <- createDimRedPlotData(dimRedCoord3d, data4dimRed)
plotDimRed3D(plotDf)

82

ppTree

ppTaxonomyMatrix An example of a taxonomy matrix

Description

An example of a taxonomy matrix

Usage

data(ppTaxonomyMatrix)

Format

Dataframe

Value
A data frame with 10 rows and 162 variables:
* abbrName e.g. "ncbil0090"
* ncbilD e.g. "10090"

* fullName e.g. "Mus musculus"”

* strain e.g. "10090" ...

ppTree An example of a taxonomy tree in newick format

Description

An example of a taxonomy tree in newick format

Usage
data(ppTree)

Format

Dataframe

Value
A data frame with only one entry

¢ V1 tree in newick format

prepareDimRedData 83

prepareDimRedData Prepare data for dimension reduction

Description

Prepare data for dimension reduction

Usage

prepareDimRedData(longDf = NULL, taxonRank = NULL, type = "taxa",
taxDB = NULL, filterVar = "both”, cutoff = @, grouplLabelsBy = "taxa")

Arguments
longDf input phyloprofile file in long format
taxonRank taxonomy rank for labels (e.g. "phylum")
type type of clustering, either "taxa" (default) or "genes"
taxDB path to taxonomy database
filtervar choose variable (either "varl", "var2" or "both") to filter the data. Default:
"both"
cutoff cutoff to filter data values. Default: 0

groupLabelsBy group labels by the number of "taxa" (default) or "genes"

Value

A dataframe in wide format

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

rawInput <- system.file(
"extdata”, "test.main.long", package = "PhyloProfile”, mustWork = TRUE
)
longDf <- createlLongMatrix(rawInput)
prepareDimRedData(longDf, "phylum")

84 processNcbiTaxonomy

processNcbiTaxonomy Pre-processing NCBI taxonomy data

Description

Download NCBI taxonomy database and parse information that are needed for PhyloProfile, in-
cluding taxon IDs, their scientific names, systematic ranks, and parent (next higher) rank IDs.

Usage

processNcbiTaxonomy ()

Value

A dataframe contains NCBI taxon IDs, taxon names, taxon ranks and the next higher taxon IDs
(parent’s IDs) of all taxa in the NCBI taxonomy database.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

Not run:
?processNcbiTaxonomy
preProcessedTaxonomy <- PhyloProfile:::processNcbiTaxonomy()
save to text (tab-delimited) file
write.table(
preProcessedTaxonomy,
file = "preProcessedTaxonomy.txt"”,
col.names = TRUE,
row.names = FALSE,
quote = FALSE,
sep = "\t"
)
save to rdata file
save(
preProcessedTaxonomy, file = "preProcessedTaxonomy.RData"”, compress='xz'

)

End(Not run)

processOrthoID 85

processOrtholID Process ortholog IDs

Description

Process ortholog IDs to identify duplicated IDs

Usage

processOrthoID(dataHeat = NULL)

Arguments
dataHeat a data frame contains processed profiles (see ?fullProcessedProfile, ?filterPro-
fileData)
Value

the same dataframe as input, but the ortholog IDs are changed into <taxID:orthoID>. New column
"orthoFreq" specifies if the ortholog IDs are single or duplicated

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

?processOrthoID
data(”"finalProcessedProfile”, package="PhyloProfile")
processOrthoID(finalProcessedProfile)

profileWithTaxonomy An example of a raw long input file together with the taxonomy info

Description

An example of a raw long input file together with the taxonomy info

Usage

data(profileWithTaxonomy)

Format

Dataframe

86

Value

qualitativeColours

A data frame with 20 rows and 12 variables:

genelD Seed or ortholog group ID, e.g. "OG_1017"

ncbilD Taxon ID, e.g. "ncbil76299"

orthoID Ortholog ID, e.g. "A.fabrum@176299@1582"

varl First additional variable

var2 Second additional variable

paralog Number of co-orthologs in the current taxon

abbrName e.g. "ncbil76299"

taxonID Taxon ID, e.g. "176299"

fullName Full taxon name, e.g. "Agrobacterium fabrum str. C58"

supertaxonID Supertaxon ID (only different than ncbilD in case working with higher taxon-
omy rank than input’s)

supertaxon Name of the corresponding supertaxon

rank Rank of the supertaxon

qualitativeColours Create qualitative colours

Description

Create qualitative colours

Usage

qualitativeColours(n, light = FALSE)

Arguments

n number of colors

light light colors TRUE or FALSE
Value

list of n different colors

Source

Modified based on https://gist.github.com/peterk87/6011397

Examples

PhyloProfile:::qualitativeColours(5)

rankIndexing 87

rankIndexing Indexing all available ranks (including norank)

Description

Indexing all available ranks (including norank)

Usage

rankIndexing(rankListFile = NULL)

Arguments

rankListFile Input file, where each row is a rank list of a taxon (see rankListFile in example)

Value

A dataframe containing a list of all possible ranks and their indexed values.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

rankListFile <- system.file(
"extdata"”, "data/rankList.txt"”, package = "PhyloProfile"”, mustWork = TRUE

)
PhyloProfile:::rankIndexing(rankListFile)

rankList NCBI rank list for experimental data sets

Description

Data frame, in which each row contains the complete taxonomy ranks from the lowest systematic
level (strain/species) upto the taxonomy root for one taxon in the experimental data sets.

Usage

data(rankList)

Format

Dataframe

88 reduceProfile

Value

A data frame with up to 41 columns and 95 rows corresponding to 95 taxa in the 2 experimental
data sets

reduceProfile Reduce the filtered profile data into supertaxon level

Description

Reduce data of the processed phylogenetic profiles from input taxonomy rank into supertaxon level
(e.g. from species to phylum)

Usage

reduceProfile(filteredProfile)

Arguments
filteredProfile
dataframe contains the filtered profiles (see ?parselnfoProfile, ?filterProfileData
and ?filteredProfile)
Value

A reduced dataframe contains only profile data for the selected supertaxon rank. This dataframe
contains only supertaxa and their value (mVarl & mVar2) for each gene.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

parseInfoProfile for creating a full processed profile dataframe, filterProfileData for filter
processed profile and filteredProfile for a demo filtered profile dataframe

Examples

data("filteredProfile”, package="PhyloProfile")
reduceProfile(filteredProfile)

resolveOverlapFeatures 89

resolveOverlapFeatures
Modify domain dataframe to resolve overlapped domains/features

Description

Modify domain dataframe to resolve overlapped domains/features

Usage

resolveOverlapFeatures(domainDf)

Arguments

domainDf input domain dataframe

Value

Domain dataframe with modified feature names that join multiple domains of the same type that are
not overlapped

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

get domain data

seedID <- "101621at6656"

domainFile <- system.file(
"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

domainDf <- parseDomainInput(seedID, domainFile, "file")

get seedDf and orthoDf

subDf <- domainDf[

domainDf$seedID ==
"101621at6656#101621at6656 : AGRPL@224129@0:224129_0:001955:1",]
orthoDf <- subDf[subDf$orthoID == "101621at6656:DROME@7227@1:Q9VG04",]

resolve overlapped featuers
PhyloProfile:::resolveOverlapFeatures(orthoDf)

90 singleDomainPlotting

runPhyloProfile Run PhyloProfile app

Description

Run PhyloProfile app

Usage

runPhyloProfile(configFile = NULL, host = NULL, port = NULL)

Arguments
configFile Configuration file for specifying path to input files, taxonomy rank and reference
taxon, and some other settings
host IP adress (e.g. host = "127.0.0.1")
port Port (e.g. port = 8888)
Value

A shiny application - GUI version of PhyloProfile

Examples

?runPhyloProfile
runPhyloProfile()

singleDomainPlotting Create architecure plot for a single protein

Description

Create architecure plot for a single protein

Usage

singleDomainPlotting(df, genelD, sep, labelSize, titleSize, minStart,
maxEnd, colorPalette, showScore, showWeight, namePosition, firstDist,
nameType, nameSize, segmentSize, nameColor, labelPos, font)

singleDomainPlotting 91

Arguments

df Domain dataframe for ploting containing the seed ID, ortholog ID, ortholog se-
quence length, feature names, start and end positions, feature weights (optional)
and the status to determine if that feature is important for comparison the archi-
tecture between 2 proteins* (e.g. seed protein vs ortholog) (optional)

genelD ID of seed or orthologous protein

sep Separate indicator for title. Default = "|"

labelsSize Lable size. Default = 12

titleSize Title size. Default = 12

minStart The smallest start position of all domains

maxEnd The highest stop position of all domains

colorPalette Color pallete. Default = Paired"

showScore Show/hide E-values and Bit-scores. Default = NULL (hide)

showWeight Show/hide feature weights. Default = NULL (hide)

namePosition List of positions for domain names, choose from "plot", "legend" or "axis". De-
fault: "plot"

firstDist Distance of the first domain to plot title. Default = 0.5

nameType Type of domain names, either "Texts" or "Labels" (default)

nameSize Size of domain names. Default = 3

segmentSize Height of domain segment. Default = 5

nameColor Color of domain names (for Texts only). Default = "black"

labelPos Position of domain names (for Labels only). Choose from "Above" (default),
"Below" or "Inside" the domain bar

font font of text. Default = Arial"

Value

Domain plot of a single protein as a ggplot object.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

parseDomainInput

Examples

seed <- "101621at6656"

ortho <- "101621at6656 | AGRPL@224129@0|224129_0:001955|1"
ortho <- gsub("\\|", ":", ortho)

grepID <- paste(seed, "#", ortho, sep = "")

domainFile <- system.file(

92

sortDomains

"extdata”, "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE
)
domainDf <- parseDomainInput(seed, domainFile, "file")
domainDf$feature_id_mod <- domainDf$feature_id
subdomainDf <- domainDf[grep(grepID, domainDf$seedID),]
subdomainDf$feature <- as.character(subdomainDf$feature)
orthoDf <- subdomainDf[subdomainDf$orthoID == ortho,]
seedDf <- subdomainDf[subdomainDf$orthoID != ortho,]
minStart <- min(subdomainDf$start)
maxEnd <- max(c(subdomainDf$end, subdomainDf$length))
resolve overlapping domains
seedDf <- PhyloProfile:::resolveOverlapFeatures(seedDf)
orthoDf <- PhyloProfile:::resolveOverlapFeatures(orthoDf)
add feature colors
featureColorDf <- PhyloProfile:::addFeatureColors(seedDf, orthoDf)
seedDf <- featureColorDf[[1]]
orthoDf <- featureColorDf[[2]]

do plot
g <- PhyloProfile:::singleDomainPlotting(

seedDf, seed, minStart = minStart, maxEnd = maxEnd, font = "sans”
)

grid::grid.draw(g)

sortDomains Sort one domain dataframe based on the other domain dataframe

Description

Sort domain dataframe of one protein (either seed or ortholog) based on the dataframe of the its
paired protein, in order to bring the common domain feature in the same order which make it easy
for comparing.

Usage

sortDomains(seedDf, orthoDf)

Arguments
seedDf data of seed protein
orthoDf data of ortholog protein
Value

Dataframe contains sorted domain list.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

sortDomainsByList 93

Examples

get domain data

seedID <- "101621at6656"

domainFile <- system.file(
"extdata", "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

)

domainDf <- parseDomainInput(seedID, domainFile, "file")

get seedDf and orthoDf

subDf <- domainDf[

domainDf$seedID ==

"101621at6656#101621at6656: AGRPL@224129@0:224129_0:001955:1",]
orthoDf <- subDf[subDf$orthoID == "101621at6656:DROME@Q7227@1:Q9VG04",]
seedDf <- subDf[subDf$orthoID != "101621at6656:DROME@7227@1:Q9VG04",]
sort

PhyloProfile:::sortDomains(seedDf, orthoDf)

sortDomainsByList Sort one domain dataframe based on list of ordered feature types

Description

Sort domain dataframe of one protein based on a given list of ordered feature types

Usage

sortDomainsByList(domainDf = NULL, featureClassOrder = NULL)

Arguments
domainDf domain dataframe
featureClassOrder
vector of ordered feature classes
Value

Dataframe contains sorted domain list.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

get domain data

seedID <- "101621at6656"

domainFile <- system.file(
"extdata", "domainFiles/101621at6656.domains",
package = "PhyloProfile”, mustWork = TRUE

94 sortInputTaxa

)

domainDf <- parseDomainInput(seedID, domainFile, "file")
get seedDf and orthoDf
subDf <- domainDf[

domainDf$seedID ==
"101621at6656#101621at6656: AGRPL@224129@0:224129_0:001955:1",]
orthoDf <- subDf[subDf$orthoID == "101621at6656:DROME@7227@1:Q9VG04",]
featureClassOrder <- c("pfam”, "smart”, "tmhmm", "coils"”, "signalp", "seg",
"flps")
sort

PhyloProfile:::sortDomainsByList(orthoDf, featureClassOrder)

sortInputTaxa Sort list of (super)taxa based on a selected reference (super)taxon

Description

Sort list of (super)taxa based on a selected reference (super)taxon

Usage

sortInputTaxa(taxonIDs = NULL, rankName, refTaxon = NULL,
taxaTree = NULL, sortedTaxonList = NULL, taxDB = NULL)

Arguments
taxonIDs list of taxon IDs (e.g.: ncbil234, ncbi9999, ...). Default = NULL
rankName working taxonomy rank (e.g. "species", "phylum",...)
refTaxon selected reference taxon. Default = NULL
taxaTree taxonomy tree for the input taxa (optional). Default = NULL
sortedTaxonlList
list of sorted taxa (optional). Default = NULL
taxDB Path to the taxonomy DB files
Value

A taxonomy matrix for the input taxa ordered by the selected reference taxon. This matrix is sorted
either based on the NCBI taxonomy info, or based on an user-defined taxonomy tree (if provided).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

getNamelList, getTaxonomyMatrix, createUnrootedTree, sortTaxaFromTree, getInputTaxaName,
getInputTaxalD, createLongMatrix

sortTaxaFromTree

Examples

taxonIDs <- c(
"ncbi1@116", "ncbi123851", "ncbi3702", "ncbhil3616", "ncbi9606"

95

)
sortInputTaxa(taxonIDs, "species”, "Homo sapiens”, NULL, NULL)
sortTaxaFromTree Get sorted supertaxon list based on a rooted taxonomy tree
Description

Get sorted supertaxon list based on a rooted taxonomy tree

Usage

sortTaxaFromTree(tree)

Arguments

tree an "phylo" object for a rooted taxonomy tree

Value

A list of sorted taxa obtained the input taxonomy tree.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

ppTaxonomyMatrix for a demo taxonomy matrix data

Examples

data("ppTaxonomyMatrix", package = "PhyloProfile")
create taxonomy tree rooted by ncbi10090
tree <- createUnrootedTree(ppTaxonomyMatrix)

rootedTree <- ape::root(tree, outgroup = "nchi10090", resolve.root = TRUE)

get taxon list sorted from tree
sortTaxaFromTree(rootedTree)

96 taxonNamesReduced

taxa2dist taxaldist

Description

taxa2dist

Usage

taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments
X taxa matrix
varstep var-step
check check
labels labels
Value

a distance matrix

Author(s)

function from taxize library

taxonNamesReduced NCBI Taxonomy reduced data set

Description

A list of NCBI taxonomy info (including taxon IDs, taxon names, their systematic taxonomy rank
and IDs of their next rank - parent IDs) for 95 taxa in two experimental sets included in PhyloPro-
filData package.

Usage

data(taxonNamesReduced)

Format

Dataframe

taxonomyMatrix 97

Value
A data frame with 4 columns:

* ncbilD e.g. "10090"
 fullName e.g. "Mus musculus"
* rank e.g. "species"

* parentID e.g. "862507"

taxonomyMatrix Taxonomy matrix for experimental data sets

Description

Data frame containing the fully aligned taxonomy IDs of 95 taxa in the experimental data sets. By
talking into account both the defined ranks (e.g. strain, This data is used for clustering and then
creating a taxon tree. It is used also for cross-linking between different taxonomy ranks within a
taxon.

Usage

data(taxonomyMatrix)

Format

Dataframe

Value

A data frame with up to 149 columns and 95 rows corresponding to 95 taxa in the 2 experimental
data sets

taxonomyTableCreator Align NCBI taxonomy IDs of list of taxa into a sorted rank list.

Description

Align NCBI taxonomy IDs of list of taxa into a sorted rank list.

Usage
taxonomyTableCreator(idListFile = NULL, rankListFile = NULL)

Arguments

idListFile a text file whose each row is a rank+ID list of a taxon (see idListFile in example)

rankListFile a text file whose each row is a rank list of a taxon (see rankListFile in example)

98 varDistTaxPlot

Value

An aligned taxonomy dataframe which contains all the available taxonomy ranks from the id and
rank list file. This dataframe can be used for creating a well resolved taxonomy tree (see ?create-
UnrootedTree) and sorting taxa based on a selected reference taxon (see ?sortInputTaxa).

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

rankIndexing, createUnrootedTree, sortInputTaxa

Examples

idListFile <- system.file(
"extdata", "data/idList.txt"”, package = "PhyloProfile”, mustWork = TRUE
)
rankListFile <- system.file(
"extdata”, "data/rankList.txt"”, package = "PhyloProfile”, mustWork = TRUE

)
taxonomyTableCreator(idListFile, rankListFile)

varDistTaxPlot Create variable distribution comparison plot

Description

Create variable distribution plots between 2 groups of taxa for a selected gene.

Usage

varDistTaxPlot(data, plotParameters)

Arguments
data dataframe for plotting. Last column indicates what type of taxon group (in- or
out-group). The first (or first 2) column contains values of the variables. See
?dataVarDistTaxGroup

plotParameters plot parameters, including size of x-axis, y-axis, legend and title; position of
legend ("right", "bottom" or "none"); mean/median point; names of in-group and
out-group; and plot title. NOTE: Leave blank or NULL to use default values.

Value

Distribution plots as a grob (gtable) object. Use grid.draw to plot.

wideToLong

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

See Also

dataVarDistTaxGroup

Examples

data("mainLongRaw”, package="PhyloProfile")
data <- mainLongRaw

inGroup <- c¢("ncbi9606"”, "ncbi10116")
variable <- colnames(data)[c(4, 5)]

plotDf <- dataVarDistTaxGroup(data, inGroup, "101621at6656", variable)

plotParameters <- list(
"xSize" = 12,
"ySize" = 12,
"titleSize" = 15,
"legendSize" = 12,
"legendPosition” = "right",
"mValue” = "mean”,
"inGroupName" = "In-group”,
"outGroupName” = "Qut-group”,
"title"” = "101621at6656"

)

g <- varDistTaxPlot(plotDf, plotParameters)

grid::grid.draw(g)

99

wideTolong Transform input file in wide matrix into long matrix format

Description

Transform input file in wide matrix into long matrix format

Usage

wideToLong(inputFile = NULL)

Arguments

inputFile input file in wide matrix format

Value

A data frame of input data in long-format containing seed gene IDs (or orthologous group IDs),
their orthologous proteins together with the corresponding taxonomy IDs and values of (up to) two

additional variables.

100

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputFile <- system.file(

"extdata", "test.main.wide"”, package = "PhyloProfile”, mustWork = TRUE

)
wideTolLong(inputFile)

xmlParser

xmlParser Parse orthoXML input file

Description

Parse orthoXML input file

Usage

xmlParser(inputFile = NULL)

Arguments

inputFile input file in xml format

Value

A data frame of input data in long-format containing seed gene IDs (or orthologous group IDs),
their orthologous proteins together with the corresponding taxonomy IDs and values of (up to) two

additional variables.

Author(s)

Vinh Tran tran @bio.uni-frankfurt.de

Examples

inputFile <- system.file(

"extdata”, "test.main.xml"”, package = "PhyloProfile”, mustWork = TRUE

)

xmlParser(inputFile)

Index

addDimRedTaxaColors, 4
addFeatureColors, 5
addRankDivisionPlot, 6

calcPresSpec, 8, 78
checkColorPalette, 9
checkInputValidity, 9
checkNewick, 10
checkOmalb, /0, 11
checkOverlapDomains, 11
clusterDataDend, 12, 48
compareMedianTaxonGroups, 13
compareTaxonGroups, 14
createArchiPlot, 15
createDimRedPlotData, 5, 17, 80, 81
createGeneAgePlot, 18
createlongMatrix, 19, 27, 28, 39, 54, 78, 94
createPercentageDistributionData, 20,
23
createProfileFromOma, 21
createUnrootedTree, 21, 94, 98
createVarDistPlot, 22
createVariableDistributionData, 23, 23,
25
createVariableDistributionDataSubset
23,24

dataCustomizedPlot, 25, 66-68
dataFeatureTaxGroup, 26, 33
dataMainPlot, 27, 66-68
dataVarDistTaxGroup, 28, 99
dimReduction, 5, 17, 29, 80, 81
distributionTest, 30

estimateGeneAge, 18, 30, 41

fallbackUmap, 32
fastaParser, 19, 32
featureDistTaxPlot, 33
filteredProfile, 34, 88

101

filterProfileData, 26, 27, 35, 39, 88
finalProcessedProfile, 37
fromInputToProfile, 36, 38, 47
fullProcessedProfile, 25, 31, 36, 40

geneAgePlotDf, 18, 41
generateSinglePlot, 42
getAllDomainsOma, 43
getAllFastaOma, 43
getCommonAncestor, 44
getCoreGene, 45
getDataClustering, 13, 46, 49
getDataForOneOma, 21, 43, 44, 47, 59
getDendrogram, 48
getDistanceMatrix, 13,49
getDomainFolder, 50, 77
getFastaFromFasInput, 50
getFastaFromFile, 51
getFastaFromFolder, 52
getIDsRank, 53
getInputTaxalD, 10, 39, 54, 55, 94
getInputTaxaName, 39, 54, 94
getNamelist, 31, 55, 55, 94
getOmaDataForOneOrtholog, 56
getOmaDomainFromURL, 56
getOmaMembers, 57
getQualColForVector, 58
getSelectedFastaOma, 58
getSelectedTaxonNames, 59
getTaxHierarchy, 60
getTaxonomyInfo, 61
getTaxonomyMatrix, 7, 22, 31, 61, 94
getTaxonomyRanks, 62
gridArrangeSharedLegend, 63
grouplLabelDimRedData, 64

hclust, /13
heatmapPlotting, 7, 65, 68
heatmapPlottingFast, 66
highlightProfilePlot, 7, 68

102 INDEX

id2name, 69
idList, 70

joinPlotMergelegends, 71
linearizeArchitecture, 72

mainLongRaw, 20, 23-25, 52, 54,73, 78
mainTaxonomyRank, 74
modifyFeatureName, 74

pairDomainPlotting, 16,75
parseDomainInput, 16, 27, 76,77, 91
parselInfoProfile, 25, 31, 36, 39, 46,78, 88
performPCA, 79

performUmap, 79

plotDimRed, 80

plotDimRed3D, 81
ppTaxonomyMatrix, 22, 82, 95
ppTree, 10, 82
prepareDimRedData, 5, 17, 29, 64, 80, 81, 83
processNcbiTaxonomy, 84
processOrtholID, 85
profileWithTaxonomy, 8, 85

qualitativeColours, 58, 86

rankIndexing, 87, 98
rankList, 87
reduceProfile, 36, 39, 88
resolveOverlapFeatures, 89
runPhyloProfile, 90

singleDomainPlotting, 16, 76, 90
sortDomains, 16, 76, 92
sortDomainsByList, 93
sortInputTaxa, 39, 78, 94, 98
sortTaxaFromTree, 94, 95

taxazdist, 22, 96
taxonNamesReduced, 96
taxonomyMatrix, 97
taxonomyTableCreator, 97

varDistTaxPlot, 98
wideToLong, 19, 99

xmlParser, 19, 100

	addDimRedTaxaColors
	addFeatureColors
	addRankDivisionPlot
	calcPresSpec
	checkColorPalette
	checkInputValidity
	checkNewick
	checkOmaID
	checkOverlapDomains
	clusterDataDend
	compareMedianTaxonGroups
	compareTaxonGroups
	createArchiPlot
	createDimRedPlotData
	createGeneAgePlot
	createLongMatrix
	createPercentageDistributionData
	createProfileFromOma
	createUnrootedTree
	createVarDistPlot
	createVariableDistributionData
	createVariableDistributionDataSubset
	dataCustomizedPlot
	dataFeatureTaxGroup
	dataMainPlot
	dataVarDistTaxGroup
	dimReduction
	distributionTest
	estimateGeneAge
	fallbackUmap
	fastaParser
	featureDistTaxPlot
	filteredProfile
	filterProfileData
	finalProcessedProfile
	fromInputToProfile
	fullProcessedProfile
	geneAgePlotDf
	generateSinglePlot
	getAllDomainsOma
	getAllFastaOma
	getCommonAncestor
	getCoreGene
	getDataClustering
	getDataForOneOma
	getDendrogram
	getDistanceMatrix
	getDomainFolder
	getFastaFromFasInput
	getFastaFromFile
	getFastaFromFolder
	getIDsRank
	getInputTaxaID
	getInputTaxaName
	getNameList
	getOmaDataForOneOrtholog
	getOmaDomainFromURL
	getOmaMembers
	getQualColForVector
	getSelectedFastaOma
	getSelectedTaxonNames
	getTaxHierarchy
	getTaxonomyInfo
	getTaxonomyMatrix
	getTaxonomyRanks
	gridArrangeSharedLegend
	groupLabelDimRedData
	heatmapPlotting
	heatmapPlottingFast
	highlightProfilePlot
	id2name
	idList
	joinPlotMergeLegends
	linearizeArchitecture
	mainLongRaw
	mainTaxonomyRank
	modifyFeatureName
	pairDomainPlotting
	parseDomainInput
	parseInfoProfile
	performPCA
	performUmap
	plotDimRed
	plotDimRed3D
	ppTaxonomyMatrix
	ppTree
	prepareDimRedData
	processNcbiTaxonomy
	processOrthoID
	profileWithTaxonomy
	qualitativeColours
	rankIndexing
	rankList
	reduceProfile
	resolveOverlapFeatures
	runPhyloProfile
	singleDomainPlotting
	sortDomains
	sortDomainsByList
	sortInputTaxa
	sortTaxaFromTree
	taxa2dist
	taxonNamesReduced
	taxonomyMatrix
	taxonomyTableCreator
	varDistTaxPlot
	wideToLong
	xmlParser
	Index

