
Package ‘PMScanR’
January 24, 2026

Title Protein motifs analysis and visualisation

Version 1.1.0

Description Provides tools for large-scale protein motif analysis and visualization in R. PMScanR fa-
cilitates the identification of motifs using external tools like PROSITE's ps_scan (handling neces-
sary file downloads and execution) and enables downstream analysis of results. Key features in-
clude parsing scan outputs, converting formats (e.g., to GFF-like structures), generating mo-
tif occurrence matrices, and creating informative visualizations such as heatmaps, sequence lo-
gos (via seqLogo/ggseqlogo). The package also offers an optional Shiny-based graphical user in-
terface for interactive analysis, aiming to streamline the process of exploring motif pat-
terns across multiple protein sequences.

URL https://github.com/prodakt/PMScanR

BugReports https://github.com/prodakt/PMScanR/issues

License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.3.2

VignetteBuilder knitr

biocViews MotifDiscovery, Visualization

Imports dplyr (>= 1.1.0), shiny, bslib, shinyFiles, plotly,
rtracklayer, reshape2, ggseqlogo, ggplot2, seqinr, magrittr,
rlang, utils, stringr, BiocFileCache

Suggests BiocStyle, knitr, seqLogo, rmarkdown, testthat (>= 3.0.0)

SystemRequirements Perl

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/PMScanR

git_branch devel

git_last_commit 1e526c3

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

1

https://github.com/prodakt/PMScanR
https://github.com/prodakt/PMScanR/issues


2 PMScanR-package

Date/Publication 2026-01-23

Author Jan Pawel Jastrzebski [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8699-7742>),

Monika Gawronska [ctb] (ORCID: <https://orcid.org/0009-0001-2677-6371>),
Wiktor Babis [ctb] (ORCID: <https://orcid.org/0009-0006-3648-3413>),
Miriana Quaranta [ctb] (ORCID: <https://orcid.org/0009-0003-0855-485X>),
Damian Czopek [ctb, aut] (ORCID:

<https://orcid.org/0009-0005-3471-4866>)

Maintainer Jan Pawel Jastrzebski <bioinformatyka@gmail.com>

Contents
PMScanR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
extractProteinMotifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
extractSegments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
freqPie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
gff2matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
matrix2hm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
matrixToSquareHeatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
readProsite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
readPsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
runPMScanRShiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
runPsScan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Index 11

PMScanR-package PMScanR: Protein motifs analysis and visualisation

Description

Provides tools for large-scale protein motif analysis and visualization in R. PMScanR facilitates the
identification of motifs using external tools like PROSITE’s ps_scan (handling necessary file down-
loads and execution) and enables downstream analysis of results. Key features include parsing scan
outputs, converting formats (e.g., to GFF-like structures), generating motif occurrence matrices,
and creating informative visualizations such as heatmaps, sequence logos (via seqLogo/ggseqlogo).
The package also offers an optional Shiny-based graphical user interface for interactive analysis,
aiming to streamline the process of exploring motif patterns across multiple protein sequences.

Author(s)

Maintainer: Jan Pawel Jastrzebski <bioinformatyka@gmail.com> (ORCID)

Authors:

• Damian Czopek <dcwmpl@gmail.com> (ORCID) [contributor]

Other contributors:

https://orcid.org/0000-0001-8699-7742
https://orcid.org/0009-0001-2677-6371
https://orcid.org/0009-0006-3648-3413
https://orcid.org/0009-0003-0855-485X
https://orcid.org/0009-0005-3471-4866
https://orcid.org/0000-0001-8699-7742
https://orcid.org/0009-0005-3471-4866


extractProteinMotifs 3

• Monika Gawronska <gawronska572@gmail.com> (ORCID) [contributor]

• Wiktor Babis <wiktorbabis@gmail.com> (ORCID) [contributor]

• Miriana Quaranta <miriana.quaranta@uniroma1.it> (ORCID) [contributor]

See Also

Useful links:

• https://github.com/prodakt/PMScanR

• Report bugs at https://github.com/prodakt/PMScanR/issues

extractProteinMotifs Extract protein motifs form a file in PSA format

Description

This function reads a file in PSA format containing protein sequences and extracts motifs based on
specific patterns.

Usage

extractProteinMotifs(file_path)

Arguments

file_path A PSA file which specifying the path to the input file. The file should contain
protein motifs.

Value

A list with a motif identifier (e.g. PSXXXXX) and the coresponding to it motif sequence which is
associated wuth that identifier.

Examples

file_path <- system.file("extdata/out_Hb_psa.txt", package = "PMScanR")
if (file_path != "") {

protein_motifs <- extractProteinMotifs(file_path)
}

https://orcid.org/0009-0001-2677-6371
https://orcid.org/0009-0006-3648-3413
https://orcid.org/0009-0003-0855-485X
https://github.com/prodakt/PMScanR
https://github.com/prodakt/PMScanR/issues


4 freqPie

extractSegments Extract sequence fragments from a list of sequences

Description

This function iterates over a list of sequences and extracts a sub-sequence from each based on a
specified start and end position.

Usage

extractSegments(sequences, from, to)

Arguments

sequences A list of sequences, where each element is a vector of single characters. This is
typically the output of ‘seqinr::read.fasta‘.

from An integer specifying the starting position for the extraction.

to An integer specifying the ending position for the extraction.

Value

A list representing the extracted sub-sequences. Sequences that were too short to have a fragment
extracted are omitted from the list.

Examples

# Get the path to the example FASTA file
fasta_file <- system.file("extdata", "hemoglobins.fasta", package = "PMScanR")

if (nzchar(fasta_file)) {
sequences <- seqinr::read.fasta(fasta_file, seqtype = "AA")
segments <- extractSegments(sequences, from = 10, to = 20)

}

freqPie Create a pie chart showing protein motif distribution

Description

This function calculates the occurrences and percentages for each protein motif in the ’Name’ col-
umn of a GFF-like data frame. It then creates a pie chart using ‘ggplot2‘ to visualize the distribution.

Usage

freqPie(data)



gff2matrix 5

Arguments

data A data frame in GFF format containing a column named ’Name’ with the names
of each protein motif.

Value

A ggplot object representing the pie chart.

Examples

# Create sample data frame similar to parsed GFF output
sample_data <- data.frame(

seqid = rep(c("Seq1", "Seq2"), each = 5),
source = rep("PROSITE", 10),
type = rep("MOTIF", 10),
start = sample(1:100, 10),
end = sample(101:200, 10),
score = runif(10),
strand = sample(c("+", "-"), 10, replace = TRUE),
phase = sample(0:2, 10, replace = TRUE),
Name = sample(c("Zinc_finger", "EGF_domain", "Kinase_domain"), 10, replace = TRUE)

)

# Generate the pie chart
motif_pie_chart <- freqPie(sample_data)
# print(motif_pie_chart)

gff2matrix Convert GFF to a binary occurrence matrix

Description

This function takes a GFF data frame and converts it into a binary matrix, indicating the presence
(1) or absence (0) of a feature in a sequence.

Usage

gff2matrix(input)

Arguments

input A data frame containing GFF data, typically generated by ‘rtracklayer::import.gff‘
and converted to a data frame. It must have ’type’, ’start’, ’end’, and ’seqnames’
columns.

Value

A matrix, where values are binary: ‘1‘ indicates the presence of a feature, and ‘0‘ indicates its
absence.



6 matrix2hm

Examples

gff_file <- system.file("extdata/out_Hb_gff.txt", package = "PMScanR")
if (nzchar(gff_file)) {

gff_data <- as.data.frame(rtracklayer::import.gff(gff_file))
motif_matrix <- gff2matrix(gff_data)
# print(head(motif_matrix))

}

matrix2hm Generate a heatmap from a matrix

Description

This function generates a heatmap using the ‘plotly‘ package. The heatmap highlights specific rows
and columns provided by the user, while the rest of the matrix is dimmed. The function also adds
grid lines to the heatmap for better readability.

Usage

matrix2hm(input, x = NULL, y = NULL)

Arguments

input A matrix containing the data to be visualized in the heatmap

x A character vector specifying the columns to highlight in the heatmap

y A character vector specifying the rows to highlight in the heatmap

Value

A heatmap with highlighted specified rows and columns

Examples

# Create a sample matrix with row and column names
mat <- matrix(c(1, 0, 1, 0), 2, 2)
colnames(mat) <- c("Col1", "Col2")
rownames(mat) <- c("Row1", "Row2")
heatmap <- matrix2hm(input = mat, x = "Col1", y = "Row1")
heatmap



matrixToSquareHeatmap 7

matrixToSquareHeatmap Generate a square heatmap from a matrix

Description

This function generates a heatmap using ‘plotly‘, ensuring the plot has a square aspect ratio. It
highlights user-specified rows and columns.

Usage

matrixToSquareHeatmap(input, x = NULL, y = NULL)

Arguments

input A matrix containing the data to be visualized.

x A character vector specifying the columns to highlight.

y A character vector specifying the rows to highlight.

Value

A plotly heatmap object with a square layout.

Examples

# Create a sample matrix
mat <- matrix(c(1, 0, 1, 0), 2, 2)
colnames(mat) <- c("Col1", "Col2")
rownames(mat) <- c("Row1", "Row2")
sq_heatmap <- matrixToSquareHeatmap(input = mat, x = "Col1", y = "Row1")
# To display in an interactive session:
# sq_heatmap

readProsite Convert PROSITE format to a GFF-like Data Frame

Description

This function parses a file from a PROSITE scan into a data frame, extracting information about
motif occurrences into a GFF-like structure.

Usage

readProsite(prosite_input)

Arguments

prosite_input Path to the PROSITE scan output file.



8 readPsa

Value

A data frame with columns approximating GFF fields plus additional PROSITE-specific informa-
tion.

Examples

prosite_file <- system.file("extdata", "PROSITEoutput.txt", package = "PMScanR")

# Check that the example file exists before running
if (nzchar(prosite_file)) {

gff_like_data <- readProsite(prosite_file)
# You can view the output with:
# head(gff_like_data)

}

readPsa Parse a PSA (PROSITE Scan ASCII) File

Description

This function reads a file in PSA format and converts it into a standardized, GFF-like data frame
for downstream analysis. It is robust to files that may contain extraneous, non-PSA formatted data
at the end.

Usage

readPsa(psa_file)

Arguments

psa_file A character string specifying the path to the input PSA file.

Value

A data frame with a GFF-like structure, including all original placeholder columns.

Examples

# Get the path to the example PSA file included with the package
psa_file_path <- system.file("extdata", "out_Hb_psa.txt", package = "PMScanR")

# Check that the file exists before running the example
if (nzchar(psa_file_path)) {

gff_like_data <- readPsa(psa_file_path)
# You can view the output with:
# head(gff_like_data)

}



runPMScanRShiny 9

runPMScanRShiny Launch the PMScanR Shiny Application

Description

Calling this function will launch the interactive graphical user interface for the PMScanR package.

Usage

runPMScanRShiny()

Details

This function sets a higher file upload size limit for Shiny and then launches the application, which
is built using an internal UI function (‘buildUi‘) and server function (‘buildServer‘).

Value

This function is called for its side effect of launching the Shiny application and does not return a
value.

Examples

if (interactive()) {
# To run the app, simply call the function
runPMScanRShiny()

}

runPsScan Run PS-Scan with Caching and Improved Execution

Description

This function runs the PROSITE ps_scan tool. It handles the downloading and caching of required
executables and databases using BiocFileCache, detects the operating system, and executes the scan
in a robust manner.

Usage

runPsScan(in_file, out_file, out_format, os = NULL)



10 runPsScan

Arguments

in_file Path to the input file containing protein sequences.

out_file Path for the output file where results will be saved.

out_format The output format for ps_scan (e.g., ’gff’, ’psa’).

os The operating system (’WIN’, ’LINUX’, ’MAC’). If NULL, it is detected auto-
matically.

Value

Invisibly returns the exit status of the ps_scan command. The primary output is the result file created
at ‘out_file‘.

Examples

# This example is resource-intensive and requires an internet connection
# on first run to cache necessary files.
if (interactive()) {

# Create a dummy input file for the example
fasta_content <- c(">sp|P02025|HEMA_MESAU Hemoglobin subunit alpha",

"MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG",
"KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFT",
"PAVHASLDKFLASVSTVLTSKYR")

in_file <- tempfile(fileext = ".fasta")
writeLines(fasta_content, in_file)

out_file <- tempfile(fileext = ".gff")

# The first run will download and cache ~100MB of data.
# Subsequent runs will use the cached files.
runPsScan(in_file = in_file, out_format = 'gff', out_file = out_file)

# Clean up temporary files
unlink(in_file)
unlink(out_file)

}



Index

∗ internal
PMScanR-package, 2

extractProteinMotifs, 3
extractSegments, 4

freqPie, 4

gff2matrix, 5

matrix2hm, 6
matrixToSquareHeatmap, 7

PMScanR (PMScanR-package), 2
PMScanR-package, 2

readProsite, 7
readPsa, 8
runPMScanRShiny, 9
runPsScan, 9

11


	PMScanR-package
	extractProteinMotifs
	extractSegments
	freqPie
	gff2matrix
	matrix2hm
	matrixToSquareHeatmap
	readProsite
	readPsa
	runPMScanRShiny
	runPsScan
	Index

