

Package ‘NoRCE’

January 24, 2026

Type Package

Title NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment

Version 1.23.0

Description While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located closely on the genome are often regulated together. This genomic proximity on the sequence can hint to a functional association. We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.

License MIT + file LICENSE

Depends R (>= 4.4.0)

Imports KEGGREST, png, dplyr, graphics, RSQLite, DBI, tidyR, grDevices, stringr, Seqinfo, S4Vectors, SummarizedExperiment, reactome.db, rWikiPathways, RCurl, dbplyr, utils, ggplot2, igraph, stats, reshape2, readr, GO.db, biomaRt, rtracklayer, IRanges, GenomicRanges, GenomicFeatures, AnnotationDbi, methods

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr,

TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Drerio.UCSC.danRer10.refGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Dmelanogaster.UCSC.dm6.ensGene, testthat, TxDb.Celegans.UCSC.ce11.refGene, rmarkdown, TxDb.Rnorvegicus.UCSC.rn6.refGene, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Mm.eg.db, org.Rn.eg.db, org.Hs.eg.db, org.Dr.eg.db, BiocGenerics, org.Sc.sgd.db, org.Ce.eg.db, org.Dm.eg.db, markdown

VignetteBuilder knitr
biocViews BiologicalQuestion, DifferentialExpression,
 GenomeAnnotation, GeneSetEnrichment, GeneTarget,
 GenomeAssembly, GO
LazyData true
BugReports <https://github.com/guldenolgun/NoRCE/issues>
git_url <https://git.bioconductor.org/packages/NoRCE>
git_branch devel
git_last_commit 1e7412c
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-23
Author Gulden Olgun [aut, cre]
Maintainer Gulden Olgun <gulden@cs.bilkent.edu.tr>

Contents

annGO	3
assembly	4
brain_disorder_ncRNA	4
brain_mirna	5
breastmRNA	6
calculateCorr	6
convertGeneID	7
convertGMT	8
corrbased	9
corrbasedMrna	9
createNetwork	10
drawDotPlot	11
extractBiotype	11
filterBiotype	12
geneGOEnricher	13
genePathwayEnricher	15
geneRegionGOEnricher	17
geneRegionPathwayEnricher	19
getGoDag	21
getKeggDiagram	22
getmiRNACount	23
getNearToExon	23
getNearToIntron	24
getReactomeDiagram	25
getTADOverlap	26
getUCSC	27
goEnrichment	28

KeggEnrichment	29
listTAD	30
mirna	31
mirnaGOEnricher	31
mirnaPathwayEnricher	33
mirnaRegionGOEnricher	35
mirnaRegionPathwayEnricher	37
mrna	39
ncRegion	40
NoRCE-class	40
packageCheck	41
pathwayEnrichment	41
predictmiTargets	42
reactomeEnrichment	43
setParameters	44
tad_dmel	45
tad_hg19	46
tad_hg38	46
tad_mm10	47
topEnrichment	47
WikiEnrichment	48
writeEnrichment	49

Index

50

annGO	<i>Annotate the set of genes with the GO terms for a given species and assembly</i>
-------	---

Description

Annotate the set of genes with the GO terms for a given species and assembly

Usage

```
annGO(
  genes,
  GOtype = c("BP", "CC", "MF"),
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

genes	List of mRNA genes. Supported format for genes is Hugo.
GOtype	Hierarchical category of the GO ontology. Possible values are 'BP', 'CC', 'MF'.
org_assembly	Genome assembly of interest. Possible assemblies are 'mm10' for mouse, 'dre10' for zebrafish, 'rn6' for rat, 'dm6' for fruit fly, 'ce11' for worm, 'hg19' and 'hg38' for human

Value

data frame of the GO term annotation of the genes

assembly

Get the required information for the given assembly

Description

Get the required information for the given assembly

Usage

```
assembly(
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
--------------	--

Value

setting required information

Examples

```
## Not run:
assembly('hg19')

## End(Not run)
```

brain_disorder_ncRNA *Differentially expressed non-coding gene*

Description

Differentially expressed non-coding gene

Usage

brain_disorder_ncRNA

Format

Not Available

Source

<http://resource.psychencode.org/>

Examples

```
data(brain_disorder_ncRNA)
```

brain_mirna

Differentially expressed human brain data

Description

Differentially expressed human brain data

Usage

```
brain_mirna
```

Format

Not Available

Source

<http://resource.psychencode.org/>

Examples

```
data(brain_mirna)
```

breastmRNA

Protein coding genes that are differentially expressed in TCGA breast cancer RNAseq data.

Description

Protein coding genes that are differentially expressed in TCGA breast cancer RNAseq data.

Usage

```
breastmRNA
```

Format

Not Available

Source

<https://portal.gdc.cancer.gov/>

Examples

```
data(breastmRNA)
```

calculateCorr

Calculates the correlation coefficient values between two custom expression data.

Description

Calculates the correlation coefficient values between two custom expression data.

Usage

```
calculateCorr(  
  exp1,  
  exp2,  
  label1 = "",  
  label2 = "",  
  corrMethod = "pearson",  
  varCutoff = 0.0025,  
  corCutoff = 0.3,  
  pcut = 0.05,  
  alternate = "greater",  
  conf = 0.95  
)
```

Arguments

exp1	Custom expression data matrix or SummarizedExperiment data. Columns must be genes and rows must be patients.
exp2	Custom expression data matrix or SummarizedExperiment data. Columns must be genes and rows must be patients.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
corrMethod	Correlation coefficient method that will be used for evaluation. Possible values are "pearson", "kendall", "spearman"
varCutoff	Variance cut off that genes have less variance than this value will be trimmed
corCutoff	Correlation cut off values for the given correlation method
pcut	P-value cut off for the correlation values
alternate	Holds the alternative hypothesis and "two.sided", "greater" or "less" are the possible values.
conf	Confidence level for the returned confidence interval. It is only used for the Pearson correlation coefficient if there are at least 4 complete pairs of observations.

Value

Pairwise relations between gene-gene with corresponding correlation value and pvalue

Examples

```
## Not run:
#Assume that mirnanorce and mrnanorce are custom patient by gene data
a<-calculateCorr(exp1 = mirna, exp2 = mrna )

## End(Not run)
```

convertGeneID

Convert gene ids according to the gene type

Description

Convert gene ids according to the gene type

Usage

```
convertGeneID(
  genotype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI", "All"),
  genelist,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

genetype	Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez gene id "Entrez", for mirbase id "mirna" is used.
genelist	Input gene list
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

GRange object of the given input

Examples

```
## Not run:
convGene <-convertGeneID(genetype = "mirna",
                           genelist = brain_mirna[1:30,],
                           org_assembly = 'hg19')

## End(Not run)
```

convertGMT

Convert gmt formatted pathway file to the Pathway ID, Entrez, symbol formatted data frame

Description

Convert gmt formatted pathway file to the Pathway ID, Entrez, symbol formatted data frame

Usage

```
convertGMT(gmtName, org_assembly, isSymbol = FALSE)
```

Arguments

gmtName	Custom pathway gmt file
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
isSymbol	Boolean variable that hold the gene format of the gmt file. If it is set as TRUE, gene format of the gmt file should be symbol. Otherwise, gene format should be ENTREZ ID. By default, it is FALSE.

Value

return data frame

corrbased	<i>Pearson correlation coefficient value of the miRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.</i>
-----------	--

Description

Pearson correlation coefficient value of the miRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.

Usage

```
corrbased(mirnagene, cancer, minAbsCor, databaseFile)
```

Arguments

mirnagene	Data frame of the miRNA genes in mature format
cancer	Name of the TCGA project code such as 'BRCA' that is analyzed for miRNA:mRNA correlation. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
minAbsCor	Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA
databaseFile	Path of the miRcancer.db file

Value

Data frame of the miRNA-mRNA correlation result

corrbasedMrna	<i>Pearson correlation coefficient value of the mRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.</i>
---------------	---

Description

Pearson correlation coefficient value of the mRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.

Usage

```
corrbasedMrna(mRNAgene, cancer, minAbsCor, databaseFile)
```

Arguments

mRNAGene	Data frame of the mRNA genes
cancer	Name of the TCGA project code such as 'BRCA' that is analyzed for miRNA-mRNA correlation. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
minAbsCor	Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA
databaseFile	Path of miRcancer.db file

Value

Data frame of the miRNA-mRNA correlation result

createNetwork	<i>Create interaction network for top n enriched GO term:coding RNA or GO-term:noncoding RNA interaction. Nodes are GO term and RNA, edges are interactions between them. Each GO-term is annotated and enriched with the mRNAs provided from the input list.</i>
---------------	---

Description

Create interaction network for top n enriched GO term:coding RNA or GO-term:noncoding RNA interaction. Nodes are GO term and RNA, edges are interactions between them. Each GO-term is annotated and enriched with the mRNAs provided from the input list.

Usage

```
createNetwork(
  mrnaObject,
  type = "pvalue",
  n,
  isNonCode = FALSE,
  takeID = FALSE
)
```

Arguments

mrnaObject	Output of enrichment results
type	Sort in terms of p-values or FDR. Possible values "pvalue", "padjust"
n	Number of top enrichments
isNonCode	Boolean value that checks whether node of the network is GO-term for coding or GO-term for noncoding genes. By default, it is FALSE so node of the network is GO-term\& coding gene. Otherwise, nodes are GO-term for noncoding genes.

takeID	Boolean value that checks the name decision of the GO/pathway node, GO-term/pathway-term or GO ID-pathway ID. If it is true, name of the GO/pathway node will be GO ID/pathway ID will be used, otherwise, name of the GO/pathway node is GO-term. By default, it is FALSE. It is suggested to used when the GO-term is two long or the GO-term is missing for the custom enrichment database.
--------	--

Value

Network

drawDotPlot	<i>Draw dot plot of the enrichment object</i>
-------------	---

Description

Draw dot plot of the enrichment object

Usage

drawDotPlot(mrnaObject, type = "pAdjust", n)

Arguments

mrnaObject	Object of the enrichment result
type	Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAdjust")
n	Number of GO terms or pathways, that ordered by type and has least number of top p-value

Value

Dot plot of the top n enrichment results

extractBiotype	<i>Get the biotype of the non-coding genes. It is suitable for the GENCODE gtf files</i>
----------------	--

Description

Get the biotype of the non-coding genes. It is suitable for the GENCODE gtf files

Usage

extractBiotype(gtffile)

Arguments

gtfFile Path of the input gtf file which contains biotype information. The gtf file must be provided from the Ensembl or Gencode site. For space efficiency, gtf files should be in a zip format.

Value

Tabular form of the gtf file with the required features such as gene id and biotypes

Examples

```
## Not run:
fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
gtf <- extractBiotype(gtfFile = fileImport)

## End(Not run)
```

filterBiotype

Extract the genes that have user provided biotypes. This method is useful when input gene list is mixed or when research of the interest is only focused on specific group of genes.

Description

Extract the genes that have user provided biotypes. This method is useful when input gene list is mixed or when research of the interest is only focused on specific group of genes.

Usage

```
filterBiotype(gtfFile, biotypes)
```

Arguments

gtfFile Input gtf file for the genes provided by the extractBiotype function
 biotypes Selected biotypes for the genes

Value

Table format of genes with a given biotypes

Examples

```
## Not run:
biotypes <- c('unprocessed_pseudogene', 'transcribed_unprocessed_pseudogene')
fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
extrResult <- filterBiotype(fileImport, biotypes)

## End(Not run)
```

geneGOEnricher	<i>Given genes that fall in a given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out</i>
----------------	---

Description

Given genes that fall in a given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out

Usage

```
geneGOEnricher(
  gene,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  genotype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI"),
  backG = "",
  backGType = "pc_gene",
  near = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

gene	Input genes other than miRNA
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
genotype	Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez gene id "Entrez" is used.
backG	The set of genes that tested against to the input (background gene)
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis

isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

GO term enrichment object for the given input

Examples

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
near=TRUE, genotype = 'Ensembl_gene')

## End(Not run)
```

genePathwayEnricher	<i>Given genes that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out</i>
---------------------	---

Description

Given genes that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Usage

```
genePathwayEnricher(
  gene,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  genotype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI"),
  near = TRUE,
  isTADSearch = FALSE,
  TAD = tad_hg19,
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

gene	Input noncoding genes other than miRNA
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
genotype	Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez gene id "Entrez", for mirbase id "mirna" is used.
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.

TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
gmtName	Custom pathway gmt file
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM, LGG
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Pathway enrichment object for the given input

Examples

```
## Not run:
#Pathway enrichment based on the gen sets that falls into the TAD regions
ncRNAPathway<-genePathwayEnricher(gene = brain_disorder_ncRNA ,
                                     org_assembly='hg19',
                                     isTADSearch = TRUE,
                                     TAD = tad_hg19,
                                     genotype = 'Ensembl_gene')
## End(Not run)
```

geneRegionGOEnricher	<i>Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out</i>
----------------------	--

Description

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out

Usage

```
geneRegionGOEnricher(
  region,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = TRUE,
  backG = "",
  backGType = "pc_gene",
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

region	Bed format of the input gene regions other than miRNA
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
backG	The set of genes that tested against to the input (background gene)
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.

TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

GO term enrichment object for the given input

Examples

geneRegionPathwayEnricher

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Description

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Usage

```
geneRegionPathwayEnricher(
  region,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = FALSE,
  isTADSearch = FALSE,
  TAD = tad_hg19,
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

region	Bed format of input gene regions other than miRNA. Input must be Granges object.
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.

gmtName	Custom pathway gmt file
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Pathway enrichment object of the given input

Examples

getGoDag	<i>Plot and save the GO term DAG of the top n enrichments in terms of p-values or adjusted p-values with an user provided format</i>
----------	--

Description

Plot and save the GO term DAG of the top n enrichments in terms of p-values or adjusted p-values with an user provided format

Usage

```
getGoDag(
  mrnaObject,
  type,
  n,
  filename,
  imageFormat,
  p_range = seq(0, 0.05, by = 0.001)
)
```

Arguments

mrnaObject	Output of enrichment results
type	Sort in terms of p-values or FDR. possible values "pvalue", "padjust"
n	Number of top enrichments
filename	Name of the DAG file
imageFormat	Image format of the DAG. possible values "png" or "svg"
p_range	Break points for the p-values or FDR. By default [0.05, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0] is used

Value

Saves image file in a given format

Examples

```
## Not run:
ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
                                         org_assembly = 'hg19',near = TRUE)

## End(Not run)
```

getKeggDiagram	<i>Display the enriched KEGG diagram of the KEGG pathway. This function is specific to only one KEGG pathway id and identifies the enriched genes in the diagram.</i>
----------------	---

Description

Display the enriched KEGG diagram of the KEGG pathway. This function is specific to only one KEGG pathway id and identifies the enriched genes in the diagram.

Usage

```
getKeggDiagram(
  mrnaObject,
  pathway,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

mrnaObject	Output of enrichment results
pathway	KEgg pathway term such as 'hsa04010'
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

Shows kegg diagram marked with an enriched genes in a browser

Examples

```
## Not run:
ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
                                         org_assembly = 'hg19',near = TRUE)

getKeggDiagram(mrnaObject = ncRNAPathway, org_assembly ='hg19',
               pathway = ncRNAPathway@ID[1])

## End(Not run)
```

getmiRNACount	<i>Get TCGA miRNAseq expression of miRNA genes for the given cancer</i>
---------------	---

Description

Get TCGA miRNAseq expression of miRNA genes for the given cancer

Usage

```
getmiRNACount(mirnagene, cancer, databaseFile)
```

Arguments

mirnagene	Data frame of the mature format
cancer	Name of the TCGA project code such as 'BRCA'
databaseFile	Path of miRcancer.db file

Value

Data frame of the raw read count of the given miRNA genes for different patients

getNearToExon	<i>Get only those neighbouring genes that fall within exon region</i>
---------------	---

Description

Get only those neighbouring genes that fall within exon region

Usage

```
getNearToExon(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile	Input bed formated file
upstream	Maximum upstream distance from the TSS position
downstream	Maximum downstream distance from the TES position
org_assembly	genomoe assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

genes

Examples

```
## Not run:
regions <- system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

r<-getNearToExon(bedfile = regionNC,
                  upstream = 1000,
                  downstream = 2000,
                  org_assembly = 'hg19')

## End(Not run)
```

getNearToIntron

*Get only those neighbouring genes that fall within intron region***Description**

Get only those neighbouring genes that fall within intron region

Usage

```
getNearToIntron(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile	Bed file
upstream	upstream distance
downstream	downstream distance
org_assembly	genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

genes

Examples

```

## Not run:
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

r<-getNearToExon(bedfile = regionNC,
                  upstream = 1000,
                  downstream = 2000,
                  org_assembly = 'hg19')

## End(Not run)

```

getReactomeDiagram

Display the enriched Reactome diagram of the given Reactome pathway id. This function is specific to only one pathway id and identifies the enriched genes in the diagram.

Description

Display the enriched Reactome diagram of the given Reactome pathway id. This function is specific to only one pathway id and identifies the enriched genes in the diagram.

Usage

```
getReactomeDiagram(mrnaObject, pathway, imageFormat)
```

Arguments

<code>mRNAObject</code>	Output of enrichment results
<code>pathway</code>	Reactome pathway term
<code>imageFormat</code>	Image format of the diagram. Possible image formats are 'png', 'svg'

Value

Shows reactome diagram marked with an enriched genes in a browser

Examples

```

## Not run:
br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19')

getReactomeDiagram(mrnaObject = br_enr, pathway = br_enr@ID[1],
                   imageFormat = 'png')

## End(Not run)

```

getTADOverlap	<i>For given region of interest, overlapped genes in the TAD regions are found. Results can be filtered according to the available cell lines.</i>
---------------	--

Description

For given region of interest, overlapped genes in the TAD regions are found. Results can be filtered according to the available cell lines.

Usage

```
getTADOverlap(
  bedfile,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  tad = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  near = FALSE,
  upstream = 10000,
  downstream = 10000,
  cellline = "all"
)
```

Arguments

bedfile	Region of interest
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
tad	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formed as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
near	Boolean value presents whether <i>cis</i> -neighbourhood should be considered in the analysis
upstream	Holds upstream distance from the transcription start position
downstream	Holds downstream distance from the transcription end position
cellline	Cell lines for TAD regions.

Value

List of protein coding genes that falls into the TAD regions

Examples

```
## Not run:
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

r<-getTADOverlap(bedfile = regionNC,
                  tad = tad_hg19,
                  org_assembly = 'hg19',
                  cellline = 'HUVEC')

## End(Not run)
```

getUCSC

Get nearest genes for the window of the upstream/downstream region.

Description

When downstream = 0 / upstream = 0, function converts bed formated regions to HUGO genes

Usage

```
getUCSC(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile	Bed formated input gene regions
upstream	Maximum upstream distance from the transcription start region of the input gene
downstream	Maximum downstream distance from the transcription end region of the input gene
org_assembly	genomeme assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

genes

Examples

```
## Not run:
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

neighbour <- getUCSC(bedfile = regionNC,
                      upstream = 1000,
                      downstream = 1000,
                      org_assembly = 'hg19')

## End(Not run)
```

goEnrichment

Perform enrichment analysis of the given genes

Description

Perform enrichment analysis of the given genes

Usage

```
goEnrichment(
  genes,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  GOtype = c("BP", "CC", "MF"),
  pCut = 0.05,
  pAdjCut = 0.05,
  pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
  min = 5,
  backG = "",
  backGType = "pc_gene",
  enrichTest = c("hyper", "binom", "fisher", "chi")
)
```

Arguments

genes	Set of input genes. Supported format HUGO.
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
GOtype	Hierarchical category of the GO ontology. Possible values are "BP"(default), "CC", "MF".
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.

pAdjust	Methods of the adjusted p-values. Possible methods are "bonferroni", "holm", "BH"(default)
min	Minimum number of gene that are required for enrichment. By default, it is set to 5
backG	The set of genes that tested against to the input (background gene)
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
enrichTest	Types of enrichment methods to perform enrichment analysis. Possible values are "hyper"(default), "binom", "fisher", "chi".

Value

GO enrichment results

Examples

```
## Not run:
subsetGene <- breastmRNA[1:30,]
breastEnr <- goEnrichment(genes = subsetGene,
                           org_assembly = 'hg19',
                           G0type = 'MF',
                           min = 2)

## End(Not run)
```

KeggEnrichment	<i>KEGG pathway enrichment</i>
----------------	--------------------------------

Description

KEGG pathway enrichment

Usage

```
KeggEnrichment(
  genes,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  pCut = 0.05,
  pAdjCut = 0.05,
  pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
  min = 5,
  gmtFile = "",
  isSymbol = "",
  isGeneEnrich = "")
```

Arguments

genes	Input genes
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
min	Minimum number of genes that are required for enrichment. By default, it is set to 5.
gmtFile	File path of the gmt file
isSymbol	Boolean value that controls the gene formats. If it is TRUE, gene format of the gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

KEGG pathway enrichment results

Examples

```
## Not run:
subsetGene <- breastmRNA[1:30,]

br_enr<-KeggEnrichment(genes = subsetGene,
                        org_assembly='hg19')

## End(Not run)
```

listTAD

List cell line of the given topological domain regions

Description

List cell line of the given topological domain regions

Usage

```
listTAD(TADName)
```

Arguments

TADName	input TAD regions
---------	-------------------

Value

cell line of the input tad data

Examples

```
## Not run:  
listTAD(TADName = tad_hg19)  
  
## End(Not run)
```

mirna

Brain miRNA expression retrieved from the TCGA

Description

Brain miRNA expression retrieved from the TCGA

Usage

mirna

Format

Not Available

Source

<https://www.gencodegenes.org/>

Examples

data(mirna)

mirnaGOEnricher

GO term enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

GO term enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaGOEnricher(
  gene,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = FALSE,
  target = FALSE,
  backGenes = "",
  backGType = "pc_gene",
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile = ""
)
```

Arguments

gene	Input microRNA gene. It supports both pre-miRNA and mature miRNA, however, when target prediction is performed (target= TRUE), miRNA genes should be mature.
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
target	Boolean value shows whether miRNA target prediction should be performed
backGenes	The set of genes that tested against to the input
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.

cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

MiRNA GO term enrichment object for the given input

Examples

```
## Not run:
subsetGene <- brain_mirna[1:30,]

miGO <-mirnaGOEnricher(gene=subsetGene,
                        org_assembly='hg19',
                        near = TRUE,
                        target = FALSE)
## End(Not run)
```

mirnaPathwayEnricher *Pathway enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes*

Description

Pathway enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaPathwayEnricher(
  gene,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = FALSE,
  target = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

gene	Input microRNA gene. It supports both pre-miRNA and mature miRNA, however, when target prediction is performed(target= TRUE), miRNA genes should be mature.
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
target	Boolean value shows whether miRNA target prediction should be performed
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formed as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
gmtName	Custom pathway gmt file
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD,

	COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

MiRNA pathway enrichment object for the given input

Examples

```
## Not run:
miPath <- mirnaPathwayEnricher(gene = brain_mirna,
                                 org_assembly = 'hg19',
                                 near = TRUE)

## End(Not run)
```

mirnaRegionGOEnricher *GO enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes*

Description

GO enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaRegionGOEnricher(
  region,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = FALSE,
  target = FALSE,
  backG = "",
  backGType = "pc-genes",
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

region	MiRNA region in a bed format
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
target	Boolean value shows whether miRNA target prediction should be performed
backG	The set of genes that tested against to the input
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD,

	COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

MiRNA GO enrichment object for the given input

Examples

```
## Not run:
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

a<- mirnaRegionGOEnricher(region = regionNC,
                           org_assembly = 'hg19',
                           near = TRUE)

## End(Not run)
```

mirnaRegionPathwayEnricher

Pathway enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

Pathway enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaRegionPathwayEnricher(
  region,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  near = FALSE,
  target = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dm6, tad_hg38, tad_mm10),
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

region	MiRNA region in a bed format
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
target	Boolean value shows whether miRNA target prediction should be performed
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dm6' for hg19, hg38, mm9 and dm6 assembly, respectively.
gmtName	Custom pathway gmt file
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM

exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

miRNA pathway enrichment object for the given input

Examples

```
## Not run:
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
regionNC <- rtracklayer::import(regions, format = "BED")

a<- mirnaRegionPathwayEnricher(region = regionNC,
                                org_assembly = 'hg19')

## End(Not run)
```

Description

Brain mRNA expression retrieved from the TCGA

Usage

mrna

Format

Not Available

Source

<https://www.gencodegenes.org/>

Examples

```
data(mrna)
```

ncRegion

Differentially expressed non-coding gene regions

Description

Differentially expressed non-coding gene regions

Usage

```
ncRegion
```

Format

Not Available

Source

<http://resource.psychencode.org/>

Examples

```
data(ncRegion)
```

NoRCE-class

An S4 class to represent enrichment

Description

An S4 class to represent enrichment

Slots

- ID factor
- Term factor
- geneList factor
- ncGeneList factor
- pvalue factor
- pAdj factor
- GeneRatio factor
- BckRatio factor

packageCheck	<i>Check the package availability for the given assembly</i>
--------------	--

Description

Check the package availability for the given assembly

Usage

```
packageCheck(pkg)
```

Arguments

pkg	Required packages
-----	-------------------

Value

return install packages

pathwayEnrichment	<i>For a given gmt file of a specific pathway database, pathway enrichment can be performed. Function supports Entrez ID and symbol based gmt file.</i>
-------------------	---

Description

For a given gmt file of a specific pathway database, pathway enrichment can be performed. Function supports Entrez ID and symbol based gmt file.

Usage

```
pathwayEnrichment(  
  genes,  
  gmtFile,  
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),  
  pCut = 0.05,  
  pAdjCut = 0.05,  
  pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),  
  isSymbol,  
  min = 5,  
  isGeneEnrich = FALSE  
)
```

Arguments

genes	Input genes
gmtFile	File path of the gmt file
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
isSymbol	Boolean value that controls the gene formats. If it is TRUE, gene format of the gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.
min	Minimum number of genes that are required for enrichment. By default, it is set to 5.
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Pathway Enrichment

predictmiTargets	<i>Predict the miRNA targets for the miRNA or mRNA genes, which is specified with type parameter</i>
-------------------------	--

Description

Predict the miRNA targets for the miRNA or mRNA genes, which is specified with type parameter

Usage

```
predictmiTargets(gene, type, org_assembly)
```

Arguments

gene	Data frame of miRNA or mRNA gene. Formats should be NCBI gene name, ENSEMBL gene or transcript id, and mirna
type	Format of the gene, it should be "NCBI" for NCBI gene name, "Ensembl_gene" for ENSEMBL gene id, "Ensembl_trans" for Ensembl transcript id and "mirna" for miRNA gene
org_assembly	Analyzed genome assembly. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "hg19" and "hg38" for human

Value

miRNA:mRNA target sets of the given genes

Examples

```
## Not run:
a<- predictmiTargets(gene = brain_mirna[1:100,],
                      org_assembly = 'hg19',
                      type = "mirna")

## End(Not run)
```

reactomeEnrichment *Reactome pathway enrichment*

Description

Reactome pathway enrichment

Usage

```
reactomeEnrichment(
  genes,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  pCut = 0.05,
  pAdjCut = 0.05,
  pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
  min = 5,
  gmtFile = "",
  isSymbol = "",
  isGeneEnrich = "")
```

Arguments

genes	Input genes
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

min	Minimum number of genes that are required for enrichment. By default, it is set to 5.
gmtFile	File path of the gmt file
isSymbol	Boolean value that controls the gene formats. If it is TRUE, gene format of the gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Reactome pathway enrichment results

Examples

```
## Not run:
br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19')
## End(Not run)
```

setParameters

Set the parameters

Description

Parameters: upstream: Upstream distance from the transcription start position downstream: Downstream distance from the transcription end position searchRegion: Search space of the cis-region. Possible values are "all", "exon", "intron" GObjectType: Hierarchical category of the GO ontology. Possible values are "BP", "CC", "MF" pCut: Threshold value for the pvalue. Default value is 0.05 pAdjCut: Cutoff value for the adjusted p-values using one of given method. Default value is 0.05. pAdjust: Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" min: Minimum number of genes that are required for enrichment. By default, this value is set to 5. cellline: Cell lines for TAD regions. corrMethod Correlation coefficient method that will be used for evaluation. Possible values are "pearson", "kendall", "spearman" varCutoff: Variance cutt off that genes have less variance than this value will be trimmed pcut: P-value cut off for the correlation values alternate: Holds the alternative hypothesis and "two.sided", "greater" or "less" are the possible values. conf: Confidence level for the returned confidence interval. It is only used for the Pearson correlation coefficient if there are at least 4 complete pairs of observations. minAbsCor: Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA pathwayType: Pathway database for enrichment. Possible values are 'reactome' for Reactome, 'kegg' for KEGG, 'wiki' for WikiPathways, 'other' for custom database enrichTest: Types of enrichment methods to perform enrichment analysis. Possible values are "hyper"(default), "binom", "fisher", "chi". isSymbol: Boolean variable that hold the gene format of the gmt file. If it is set as TRUE, gene format of the gmt file should be symbol. Otherwise, gene format should be ENTREZ ID. By default, it is FALSE.

Usage

setParameters(type, value)

Arguments

type	List of parameter names
value	New values for the parameters. Value and the parameter names must be in the same order.

Value

changed parameters

Examples

```
## Not run:  
type <- c('downstream', 'upstream')  
  
value <- c(2000, 30000)  
  
setParameters(type, value)  
  
## End(Not run)
```

tad_dmel

TAD regions for the fly

Description

TAD regions for the fly

Usage

tad_dmel

Format

Not Available

Source

http://chorogenome.ie-freiburg.mpg.de/data_sources.html#hi-c_datasets

Examples

data(tad_dmel)

tad_hg19

TAD regions for human hg19 assembly

Description

TAD regions for human hg19 assembly

Usage

tad_hg19

Format

Not Available

Source

<http://promoter.bx.psu.edu/hi-c/publications.html>

Examples

data(tad_hg19)

tad_hg38

TAD regions for human hg38 assembly

Description

TAD regions for human hg38 assembly

Usage

tad_hg38

Format

Not Available

Source

<http://promoter.bx.psu.edu/hi-c/publications.html>

Examples

data(tad_hg38)

tad_mm10	<i>TAD regions for mouse</i>
----------	------------------------------

Description

TAD regions for mouse

Usage

```
tad_mm10
```

Format

Not Available

Source

<http://promoter.bx.psu.edu/hi-c/publications.html>

Examples

```
data(tad_mm10)
```

topEnrichment	<i>Number of top enrichment results of the pathway or GO terms for the given object and the order type - p-value or adjusted p-value.</i>
---------------	---

Description

Number of top enrichment results of the pathway or GO terms for the given object and the order type - p-value or adjusted p-value.

Usage

```
topEnrichment(mrnaObject, type, n)
```

Arguments

mrnaObject	Object of the enrichment result
type	Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAdjust")
n	Number of GO terms or pathways, that ordered by type and has least number of top p-value

Value

Give top n enrichment results

Examples

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
near=TRUE, genotype = 'Ensembl_gene')

result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10)

## End(Not run)
```

WikiEnrichment

WikiPathways Enrichment

Description

WikiPathways Enrichment

Usage

```
WikiEnrichment(
  genes,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  pCut = 0.05,
  pAdjCut = 0.05,
  pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
  min = 5,
  gmtFile = "",
  isSymbol = "",
  isGeneEnrich = "")
```

Arguments

genes	Input genes
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

min	Minimum number of genes that are required for enrichment. By default, it is set to 5.
gmtFile	File path of the gmt file
isSymbol	Boolean value that controls the gene formats. If it is TRUE, gene format of the gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Wiki Pathway Enrichment

writeEnrichment	<i>Write the tabular form of the pathway or GO term enrichment results</i>
-----------------	--

Description

Write the tabular form of the pathway or GO term enrichment results

Usage

```
writeEnrichment(mrnaObject, fileName, sept = "\t", type = "pAdjust", n)
```

Arguments

mrnaObject	Object of the enrichment result
fileName	File name of the txt file
sept	File separator, by default, it is tab('t')
type	Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAdjust"). Default value is "pAdjust".
n	Number of GO terms or pathways, that ordered by type and has least number of top p-value

Value

Text file of the enrichment results in a tabular format

Examples

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
near=TRUE, genotype = 'Ensembl_gene')

writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t')

## End(Not run)
```

Index

* datasets

brain_disorder_ncRNA, 4
brain_mirna, 5
breastmRNA, 6
mirna, 31
mrna, 39
ncRegion, 40
tad_dmel, 45
tad_hg19, 46
tad_hg38, 46
tad_mm10, 47
annGO, 3
assembly, 4
brain_disorder_ncRNA, 4
brain_mirna, 5
breastmRNA, 6
calculateCorr, 6
convertGeneID, 7
convertGMT, 8
corrbased, 9
corrbasedMrna, 9
createNetwork, 10
drawDotPlot, 11
extractBiotype, 11
filterBiotype, 12
geneGOEnricher, 13
genePathwayEnricher, 15
geneRegionGOEnricher, 17
geneRegionPathwayEnricher, 19
getGoDag, 21
getKeggDiagram, 22
getmiRNACount, 23
getNearToExon, 23
getNearToIntron, 24
getReactomeDiagram, 25
getTADOverlap, 26
getUCSC, 27
goEnrichment, 28
KeggEnrichment, 29
listTAD, 30
mirna, 31
mirnaGOEnricher, 31
mirnaPathwayEnricher, 33
mirnaRegionGOEnricher, 35
mirnaRegionPathwayEnricher, 37
mrna, 39
ncRegion, 40
NoRCE-class, 40
packageCheck, 41
pathwayEnrichment, 41
predictmiTargets, 42
reactomeEnrichment, 43
setParameters, 44
tad_dmel, 45
tad_hg19, 46
tad_hg38, 46
tad_mm10, 47
topEnrichment, 47
WikiEnrichment, 48
writeEnrichment, 49