Package ‘MsBackendMsp’

January 24, 2026

Title Mass Spectrometry Data Backend for NIST msp Files
Version 1.15.0

Description Mass spectrometry (MS) data backend supporting import and
handling of MS/MS spectra from NIST MSP Format (msp) files. Import
of data from files with different MSP *flavours* is supported.

Objects from this package add support for MSP files to
Bioconductor's Spectra package. This package is thus not supposed
to be used without the Spectra package that provides a complete
infrastructure for MS data handling.

Depends R (>=4.1.0), Spectra (>=1.5.14)

Imports ProtGenerics (>= 1.35.3), BiocParallel, S4Vectors, IRanges,
MsCoreUtils, methods, stats

Suggests testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19),
rmarkdown

License Artistic-2.0
Encoding UTF-8
VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MsBackendMsp/issues

URL https://github.com/RforMassSpectrometry/MsBackendMsp

biocViews Infrastructure, Proteomics, MassSpectrometry, Metabolomics,
Datalmport

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

Collate 'hidden_aliases.R' 'MsBackendMsp.R' 'functions-msp.R'
git_url https://git.bioconductor.org/packages/MsBackendMsp
git_branch devel

git_last_commit 4b37244

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

https://github.com/RforMassSpectrometry/MsBackendMsp/issues
https://github.com/RforMassSpectrometry/MsBackendMsp

2 MsBackendMsp

Date/Publication 2026-01-23

Author Neumann Steffen [aut] (ORCID: <https://orcid.org/0000-0002-7899-7192>),
Johannes Rainer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6977-7147>),
Michael Witting [ctb] (ORCID: <https://orcid.org/0000-0002-1462-4426>)

Maintainer Johannes Rainer <Johannes.Rainer@eurac.edu>

Contents
hidden_aliases e 2
MsBackendMSsp oL e 2
readMSpP L L e 5
Index 7
hidden_aliases Internal page for hidden aliases
Description

For S4 methods that require a documentation entry but only clutter the index.

MsBackendMsp MS data backend for msp files

Description

The MsBackendMsp class supports import of MS/MS spectra data from files in NIST MSP file for-
mat. MsBackendMsp extends the Spectra: :MsBackendDataFrame () backend directly and supports
thus the Spectra: :applyProcessing() function to make data manipulations persistent.

New objects are created with the MsBackendMsp() function. The backendInitialize() method
has to be subsequently called to initialize the object and import MS/MS data from (one or more)
msp files.

The MsBackendMsp backend provides an export () method that allows to export the data from the
Spectra object (parameter x) to a file in MSP format.

Parameters to this function are:

* x: the Spectra object that should be exported.
e file: character (1) with the desired file name.

* mapping: named character providing the mapping between spectra variables and MSP data
fields. Defaults to mapping = spectraVariableMapping(MsBackendMsp()).

e allvariables: logical(1) whether all spectra variables in x should be exported or only
those defined with mapping.

https://orcid.org/0000-0002-7899-7192
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0002-1462-4426

MsBackendMsp 3

* exportName: logical(1) whether a NAME field should always be exported even if not pro-
vided in x.

See the package vignette for details and examples.

The spectraVariableMapping() function allows to provide the mapping between spectra variable
names (i.e. the names that will be used for the spectra variables in the Spectra: : Spectra() object)
and the data field names of the MSP file. Parameter format allows to select pre-defined mappings.
Currently supported mapping flavors are:

e format = "msp”: default MSP field names. Should work with standard NIST MSP files or
MSP files exported from MS-DIAL.

* format = "mona”: MSP file format from MoNA including LipidBlast.

Usage

S4 method for signature 'MsBackendMsp'
backendInitialize(

object,

file,

mapping = spectraVariableMapping(object),

BPPARAM = SerialParam()
)

MsBackendMsp ()

S4 method for signature 'MsBackendMsp'
spectraVariableMapping(object, format = c("msp”, "mona"))

S4 method for signature 'MsBackendMsp'
export(
object,
X,
file = tempfile(),
mapping = spectraVariableMapping(MsBackendMsp()),
allvariables = TRUE,
exportName = TRUE,

Arguments
object Instance of MsBackendMsp class.
file character with the (full) file name(s) of the msp file(s) from which MS/MS
data should be imported or exported.
mapping named character vector to rename MSP fields to spectra variables. This al-

lows to correctly import also custom fields or data from files with different MSP
flavors.

4 MsBackendMsp

Currently ignored.

BPPARAM Parameter object defining the parallel processing setup to import data in parallel.
Defaults to BPPARAM = SerialParam(). See BiocParallel::bpparam() for
more information. Parallel processing would make most sense for import from a
large set of individual MSP files, but could also improve performance for import
from a (very large) single MSP file.

format For spectraVariableMapping(): character(1) specifying for which MSP
flavour the mapping should be returned. Currently supported are: format =
"msp” (generic MSP format, for example for MS-DIAL MSP files) and format
= "mona" (MSP files in MoNA flavour).

X For export(): a Spectra: :Spectra() object that should be exported to the
specified MSP file.
allvariables logical(1) whether all spectra variables in x should be exported or only those
defined with mapping.
exportName logical (1) whether a NAME field should always be exported even if not pro-
vided in x.
Value

MsBackendMsp() and backendInitialize() return an instance of a MsBackendMsp class. spectraVariableMapping()
a named character vector with the mapping between spectra variables and MSP data fields.

Note

Format requirements/assumptions of MSP files:

* Comment lines are expected to start with a #.

* Multiple spectra within the same MSP file are separated by an empty line.

* The first n lines of a spectrum entry represent metadata.

* Metadata is provided as "name: value" pairs (i.e. name and value separated by a ":").
* One line per mass peak, with values separated by a whitespace or tabulator.

* Each line is expected to contain at least the m/z and intensity values (in that order) of a peak.
Additional values are currently ignored.

Author(s)

Steffen Neumann, Michael Witting, Laurent Gatto and Johannes Rainer

Examples

Import spectra from a MSP file from LipidBlast

f <- system.file("extdata”, "small-export-LipidBlast.msp”,
package = "MsBackendMsp")

be <- backendInitialize(MsBackendMsp(), f)

be

be$msLevel

readMsp 5

be$intensity
be$mz

precursor m/z are however all missing
be$precursorMz

Default spectra variable mapping
spectraVariableMapping(MsBackendMsp())

In fact, to read MSP files in "LipidBlast flavour” (same as MoNA) we
should use a different spectra variable mapping
spectraVariableMapping(MsBackendMsp(), "mona")

Importing the data with this will correctly retrieve data
be <- backendInitialize(MsBackendMsp(), f,

mapping = spectraVariableMapping(MsBackendMsp(), "mona"))
be$precursorMz

Other fields are also correctly mapped, but might need to be converted
to e.g. numeric, such as "exactmass”
be$exactmass

be$exactmass <- as.numeric(be$exactmass)

be$adduct
be$formula

Exporting Spectra objects in MSP format.

sps <- Spectra(be)
export(MsBackendMsp(), sps, file = stdout())

readMsp Reading MSP files

Description
The readMsp () function imports the data from a file in MGF format reading all specified fields and
returning the data as a S4Vectors: :DataFrame().

Format constraints for MSP files:

* Comment lines are expected to start with a #.

* Multiple spectra within the same MSP file are separated by an empty line.

* The first n lines of a spectrum entry represent metadata.

* Metadata is provided as "name: value" pairs (i.e. name and value separated by a ":").
* One line per mass peak, with values separated by a whitespace or tabulator.

» Each line is expected to contain at least the m/z and intensity values (in that order) of a peak.
Additional values are currently ignored.

6 readMsp

Usage
readMsp(
f,
msLevel = 2L,
mapping = spectraVariableMapping(MsBackendMsp()),
BPPARAM = SerialParam(),
)
Arguments
f character (1) with the path to an MSP file.
msLevel numeric(1) with the MS level. Default is 2. This value will be reported as the
spectra’s MS level unless the source MSP file defines the MS level.
mapping named character vector to rename MSP fields to spectra variables (see spectraVariableMapping()
help). This allows to correctly import also custom fields or data from files with
different MSP flavors.
BPPARAM parallel processing setup. See BiocParallel: :bpparam() for more details.
Additional parameters, currently ignored.
Value

A DataFrame with each row containing the data from one spectrum in the MSP file. m/z and
intensity values are available in columns "mz" and "intensity” in a list representation.

Author(s)

Laurent Gatto, Steffen Neumann, Johannes Rainer

Examples

f <- system.file("extdata”, "minimona.msp”, package = "MsBackendMsp")

readMsp(f)

Index

* internal
hidden_aliases, 2
[,MsBackendDataFrame-method
(hidden_aliases), 2

backendInitialize,MsBackendMsp-method
(MsBackendMsp), 2
BiocParallel: :bpparam(), 4, 6

export,MsBackendMsp-method
(MsBackendMsp), 2

hidden_aliases, 2

MsBackendMsp, 2
MsBackendMsp-class (MsBackendMsp), 2

readMsp, 5

S4Vectors: :DataFrame(), 5

Spectra: :applyProcessing(), 2

Spectra: :MsBackendDataFrame(), 2

Spectra: :Spectra(), 3, 4

spectraVariableMapping,MsBackendMsp-method
(MsBackendMsp), 2

	hidden_aliases
	MsBackendMsp
	readMsp
	Index

