Package ‘MsBackendMassbank’

January 24, 2026

Title Mass Spectrometry Data Backend for MassBank record Files
Version 1.19.2

Description Mass spectrometry (MS) data backend supporting import and
export of MS/MS library spectra from MassBank record files.
Different backends are available that allow handling of data in
plain MassBank text file format or allow also to interact directly
with MassBank SQL databases. Objects from this package are supposed
to be used with the Spectra Bioconductor package. This package thus
adds MassBank support to the Spectra package.

Depends R (>=4.0), Spectra (>=1.15.10)

Imports BiocParallel, S4Vectors, IRanges, methods, ProtGenerics (>=
1.35.3), MsCoreUtils, DBI, utils, data.table

Suggests testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19),
RSQLite, rmarkdown

License Artistic-2.0
LazyData yes
Encoding UTF-8
VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MsBackendMassbank/issues

URL https://github.com/RforMassSpectrometry/MsBackendMassbank
biocViews Infrastructure, MassSpectrometry, Metabolomics, Datalmport
Roxygen list(markdown=TRUE)

RoxygenNote 7.3.3

Collate 'hidden_aliases.R' 'MsBackendMassbank.R'
'MsBackendMassbankSql-functions.R' 'MsBackendMassbankSql.R'
'functions-massbank.R'

git_url https://git.bioconductor.org/packages/MsBackendMassbank
git_branch devel

git_last_commit 0744fd2

git_last_commit_date 2026-01-23

https://github.com/RforMassSpectrometry/MsBackendMassbank/issues
https://github.com/RforMassSpectrometry/MsBackendMassbank

2 metaDataBlocks

Repository Bioconductor 3.23
Date/Publication 2026-01-23

Author RforMassSpectrometry Package Maintainer [cre],
Michael Witting [aut] (ORCID: <https://orcid.org/0000-0002-1462-4426>),
Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),
Michael Stravs [ctb]

Maintainer
RforMassSpectrometry Package Maintainer <maintainer@rformassspectrometry.org>

Contents
hidden_aliases 2
metaDataBlocks e 2
MsBackendMassbank Lo 3
MsBackendMassbankSql 6

Index 12

hidden_aliases Internal page for hidden aliases
Description

For S4 methods that require a documentation entry but only clutter the index.

metaDataBlocks Metadata blocks to be read

Description

metaDataBlocks() allows to define the metadata blocks to imported from the MassBank record
files.

Usage
metaDataBlocks(
ac = FALSE,
ch = FALSE,
sp = FALSE,
ms = FALSE,
record = FALSE,
pk = FALSE,

comment = FALSE

https://orcid.org/0000-0002-1462-4426
https://orcid.org/0000-0002-6977-7147

MsBackendMassbank 3

Arguments
ac logical(1): read and parse the "AC$" entries. These include information on
the mass spectrometry instrument, ionization applied, fragmentation mode etc.
ch logical(1): read and parse the "CH$" entries with compound related informa-
tion/annotation, such as IDs to external databases.
sp logical(1): read and parse the "SP$" entries with sample related information.
ms logical(1): read and parse the "MS$” entries with mass spectrometry related
information and data processing applied.
record logical(1): read and parse record related information such as the authors, the
date, license etc.
pk logical(1): read the number of peaks.
comment logical(1): read optional comments.
Value

A data. frame with information which metadata blocks should be mported.

Author(s)
Michael Witting

Examples

metaDataBlocks()

MsBackendMassbank MS data backend for mgf files

Description

The MsBackendMassbank class supports import of MS/MS spectra data from files in Massbank
format. After import, the full MS data is kept in memory. MsBackendMassbank extends the
Spectra: :MsBackendDataFrame () backend directly and supports thus the Spectra: :applyProcessing()
function to make data manipulations persistent.

New objects are created with the MsBackendMassbank() function. The backendInitialize()
method has to be subsequently called to initialize the object and import MS/MS data from (one or
more) MassBank files. Parameter metaBlocks allows to configure the sets of spectrum metadata
that should be imported. Optional parameter nonStop allows to specify whether the import returns
with an error if one of the text files lacks required data, such as mz and intensity values (default
nonStop = FALSE), or whether only affected file(s) is(are) skipped and a warning is shown (nonStop
= TRUE). Note that any other error will abort import regardless of parameter nonStop.

MassBank supports multiple values for some metadata fields. For a spectrum it is for example pos-
sible to define more than one compound name. The respective spectra variables for these metadata
fields are therefore returned as a 1ist (see examples for more information). The fields supporting
multiple values, i.e., spectra variables stored as a 1ist are:

https://github.com/MassBank/MassBank-data

4 MsBackendMassbank

* "name”
e "chrom_solvent”, returned for metaBlocks = metaDataBlocks(ac = TRUE)

e "comment”, returned for metaBlocks = metaDataBlocks(comment = TRUE)
e "data_processing_comment”, returned for metaBlocks = metaDataBlocks(ms = TRUE)*

e "data_processing_reanalyze”, returned for metaBlocks = metaDataBlocks(ms = TRUE)
e "data_processing_whole", returned for metaBlocks = metaDataBlocks(ms = TRUE)

e "sample”, returned for metaBlocks = metaDataBlocks(sp = TRUE)

Usage

S4 method for signature 'MsBackendMassbank'
backendInitialize(

object,

files,

metaBlocks = metaDataBlocks(),

nonStop = FALSE,

BPPARAM = bpparam()
)

MsBackendMassbank ()

S4 method for signature 'MsBackendMassbank'
spectraVariableMapping(object, format = c("Massbank"))

S4 method for signature 'MsBackendMassbank'
export(
object,
X,
file = tempfile(),
mapping = spectraVariableMapping(MsBackendMassbank()),

)
Arguments

object Instance of MsBackendMassbank class.

files character with the (full) file name(s) of the MassBank file(s) from which
MS/MS data should be imported.

metaBlocks data. frame defining the MassBank metadata blocks (i.e., sets of spectra meta-
data) that should be imported from the MassBank record files. See metaDataBlocks ()
for more information.

nonStop logical (1) whether import should be stopped if an xml file does not contain

all required fields. Defaults to nonStop = FALSE.

Currently ignored.

MsBackendMassbank 5

BPPARAM Parameter object defining the parallel processing setup to import data in parallel.
Defaults to BPPARAM = bpparam(). See BiocParallel: :bpparam() for more
information.

format for spectraVariableMapping(): character (1) defining the format to be used.
Currently only format = "Massbank” is supported.

X Spectra: :Spectra() object that should be exported.

file for export: character (1) defining the output file.

mapping for export(): named character vector allowing to specify how fields from the

Massbank file should be renamed. Names are supposed to be the spectra variable
name and values of the vector the field names in the Massbank file. See output of
spectraVariableMapping(MsBackendMassbank()) for the expected format.

Value

backendInitialize() and MsBackendMassbank() return an instance of MsBackendMassbank.

Author(s)
Michael Witting

Examples

Create an MsBackendMassbank backend and import data from files in

MassBank format.

fls <- dir(system.file("extdata"”, package = "MsBackendMassbank"),
full.names = TRUE, pattern = "txt$")

be <- backendInitialize(MsBackendMassbank(), fls)

be

spectra variable ~"name"™ is of type “list” and provides one or multiple

compound names/aliases per spectrum:

be$name

be$msLevel
be$intensity

be$mz

spectra variables imported by default:
spectraVariables(be)

Initializing a backend reading additional metadata columns/information
mb <- metaDataBlocks(ms = TRUE, ac = TRUE)
mb

be <- backendInitialize(MsBackendMassbank(), fls, metaBlocks = mb)

additional spectra variables are now available
spectraVariables(be)

for example information on the instrument used

6 MsBackendMassbankSql

be$instrument

or the software/workflow used to process the data
be$data_processing_whole

MsBackendMassbankSql MS backend accessing the MassBank MySQL database

Description

The MsBackendMassbankSql provides access to mass spectrometry data from MassBank by directly
accessing its MySQL/MariaDb database. In addition it supports adding new spectra variables or
locally changing spectra variables provided by MassBank (without changing the original values in
the database).

Note that MsBackendMassbankSql requires a local installation of the MassBank database since
direct database access is not supported for the main MassBank instance.

Also, some of the fields in the MassBank database are not directly compatible with Spectra, such
as the collision energy which is not available as a numeric value. The collision energy as available in
MassBank is reported as spectra variable "collision_energy_text"”. Also, precursor m/z values
reported for some spectra can not be converted to a numeric and hence NA is reported with the
spectra variable precursorMz for these spectra. The variable "precursor_mz_text" can be used
to get the original precursor m/z reported in MassBank.

Finally, MsBackendMassbankSql does not support parallel processing because the database con-
nection stored within the object can not be shared acrcoss parallel processes. All functions on
Spectra objects with a MsBackendMassbankSql will (silently) disable parallel processing even if
the user provides a dedicated parallel processing setup with the BPPARAM parameter.

Usage
MsBackendMassbankSql ()

S4 method for signature 'MsBackendMassbankSql'
backendInitialize(object, dbcon, ...)

S4 method for signature 'MsBackendMassbankSql'
peaksData(object, columns = peaksVariables(object))

S4 method for signature 'MsBackendMassbankSql'
dataStorage(object)

S4 replacement method for signature 'MsBackendMassbankSql'
intensity(object) <- value

S4 replacement method for signature 'MsBackendMassbankSql'
mz(object) <- value

https://massbank.eu/MassBank/

MsBackendMassbankSql 7
S4 method for signature 'MsBackendMassbankSql'
reset(object)

S4 method for signature 'MsBackendMassbankSql'
spectraData(object, columns = spectraVariables(object))
S4 method for signature 'MsBackendMassbankSql'
spectraNames(object)

S4 replacement method for signature 'MsBackendMassbankSql'
spectraNames(object) <- value

S4 method for signature 'MsBackendMassbankSql'
tic(object, initial = TRUE)

S4 method for signature 'MsBackendMassbankSql'

x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendMassbankSqgl,ANY'
extractByIndex(object, i)

S4 method for signature 'Spectra’

compounds(object, ...)

S4 method for signature 'MsBackendMassbankSql'
compounds (object, ...)

S4 replacement method for signature 'MsBackendMassbankSql'
x$name <- value

S4 method for signature 'MsBackendMassbankSql'
precScanNum(object)

S4 method for signature 'MsBackendMassbankSql'
backendBpparam(object, BPPARAM = bpparam())

Arguments
object Object extending MsBackendMassbankSql.
dbcon For backendInitialize,MsBackendMassbankSql: SQL database connection

to the MassBank (MariaDb) database.
Additional arguments.
columns For spectraData() accessor: optional character with column names (spec-

tra variables) that should be included in the returned DataFrame. By default,
all columns are returned. For peaksData accessor: optional character with re-

quested columns in the individual matrix of the returned 1ist. Use peaksVariables(object)

for supported columns.

8 MsBackendMassbankSql

value replacement value for <- methods. See individual method description or ex-
pected data type.
initial For tic: logical(1) whether the initially reported total ion current should be

reported, or whether the total ion current should be (re)calculated on the actual
data (initial = FALSE).

X Object extending MsBackendMassbankSql.

i For [: integer, logical or character to subset the object.

J For [: not supported.

drop For [: not considered.

name name of the variable to replace for <- methods. See individual method descrip-
tion or expected data type.

BPPARAM for backendBpparam(): BiocParallel parallel processing setup. See BiocParallel: :bpparam()
for more information.

spectraVariables

For selectSpectraVariables(): character with the names of the spectra
variables to which the backend should be subsetted.

Value

See documentation of respective function.

Supported Backend functions

The following functions are supported by the MsBackendMassbankSql.

* [: subset the backend. Only subsetting by element (row/1) is allowed
e $, $<-: access or set/add a single spectrum variable (column) in the backend.

* acquisitionNum(): returns the acquisition number of each spectrum. Returns an integer of
length equal to the number of spectra (with NA_integer_ if not available).

* peaksData() returns a 1ist with the spectras’ peak data. The length of the list is equal to
the number of spectra in object. Each element of the list is a matrix with columns "mz" and
"intensity"”. For an empty spectrum, a matrix with O rows and two columns (named mz and
intensity) is returned. Parameter columns allows to select which peaks variables to return,
but supports currently only "mz" and "intensity".

* backendBpparam(): whether the backend supports parallel processing. Takes a MsBackendMassbankSql
and a parallel processing setup (see BiocParallel: :bpparam() for details) as input and al-
ways returns a BiocParallel: :SerialParam(). This function can be used to test whether
a provided parallel processing setup is supported by the backend and returns the supported
setup.

* backendInitialize(): initialises the backend by retrieving the IDs of all spectra in the
database. Parameter dbcon with the connection to the MassBank MySQL database is required.

* dataOrigin(): gets a character of length equal to the number of spectra in object with the
data origin of each spectrum. This could e.g. be the mzML file from which the data was read.

» dataStorage(): returns "<MassBank>" for all spectra.

MsBackendMassbankSql 9

* centroided(), centroided<-: gets or sets the centroiding information of the spectra. centroided()
returns a logical vector of length equal to the number of spectra with TRUE if a spectrum is
centroided, FALSE if it is in profile mode and NA if it is undefined. See also isCentroided()
for estimating from the spectrum data whether the spectrum is centroided. value for centroided<-
is either a single logical or a logical of length equal to the number of spectra in object.

* collisionEnergy(), collisionEnergy<-: gets or sets the collision energy for all spectra
in object. collisionEnergy returns a numeric with length equal to the number of spectra
(NA_real_ if not present/defined), collisionEnergy<- takes a numeric of length equal to
the number of spectra in object. Note that the collision energy description from MassBank
are provided as spectra variable "collisionEnergyText".

* intensity(): gets the intensity values from the spectra. Returns a IRanges: :NumericList()
of numeric vectors (intensity values for each spectrum). The length of the 1ist is equal to
the number of spectrain object.

e ionCount(): returns a numeric with the sum of intensities for each spectrum. If the spectrum
is empty (see isEmpty()), NA_real_ is returned.

* isCentroided(): a heuristic approach assessing if the spectra in object are in profile or
centroided mode. The function takes the qt1 th quantile top peaks, then calculates the differ-
ence between adjacent m/z value and returns TRUE if the first quartile is greater than k. (See
Spectra:::.isCentroided for the code.)

* isEmpty(): checks whether a spectrum in object is empty (i.e. does not contain any peaks).
Returns a logical vector of length equal number of spectra.

* isolationWindowLowerMz(), isolationWindowLowerMz<-: gets or sets the lower m/z bound-
ary of the isolation window.

* isolationWindowTargetMz(), isolationWindowTargetMz<-: gets or sets the target m/z of
the isolation window.

e isolationWindowUpperMz(), isolationWindowUpperMz<-: gets or sets the upper m/z bound-
ary of the isolation window.

* isReadOnly(): returns a logical (1) whether the backend is read only or does allow also to
write/update data.

e length(): returns the number of spectra in the object.

* lengths(): gets the number of peaks (m/z-intensity values) per spectrum. Returns an integer
vector (length equal to the number of spectra). For empty spectra, @ is returned.

* msLevel(): gets the spectra’s MS level. Returns an integer vector (of length equal to the
number of spectra) with the MS level for each spectrum (or NA_integer_ if not available).

* mz(): gets the mass-to-charge ratios (m/z) from the spectra. Returns a IRanges: :NumericList ()
or length equal to the number of spectra, each element a numeric vector with the m/z values
of one spectrum.

* polarity(), polarity<-: gets or sets the polarity for each spectrum. polarity returns an
integer vector (length equal to the number of spectra), with @ and 1 representing negative
and positive polarities, respectively. polarity<- expects an integer vector of length 1 or equal
to the number of spectra.

* precursorCharge90, precursorIntensity(), precursorMz(), precScanNum(), precAcquisitionNum():
get the charge (integer), intensity (numeric), m/z (numeric), scan index (integer) and ac-
quisition number (interger) of the precursor for MS level 2 and above spectra from the

10 MsBackendMassbankSql

object. Returns a vector of length equal to the number of spectra in object. NA are reported
for MS1 spectra of if no precursor information is available.

* reset(): restores the backend to its original state, i.e. deletes all locally modified data and
reinitializes the backend to the full data available in the database.

* rtime(), rtime<-: gets or sets the retention times for each spectrum (in seconds). rtime
returns a numeric vector (length equal to the number of spectra) with the retention time for
each spectrum. rtime<- expects a numeric vector with length equal to the number of spectra.

* scanIndex(): returns an integer vector with the scan index for each spectrum. This repre-
sents the relative index of the spectrum within each file. Note that this can be different to the
acquisitionNum of the spectrum which is the index of the spectrum as reported in the mzML
file.

e selectSpectraVariables(): reduces the information within the backend to the selected
spectra variables.

* smoothed(),smoothed<-: gets or sets whether a spectrum is smoothed. smoothed returns a
logical vector of length equal to the number of spectra. smoothed<- takes a logical vector
of length 1 or equal to the number of spectra in object.

* spectraData(): gets general spectrum metadata (annotation, also called header). spectraData
returns a DataFrame. Note that replacing the spectra data with spectraData<- is not sup-
ported.

* spectraNames(): returns a character vector with the names of the spectra in object.

* spectraVariables(): returns a character vector with the available spectra variables (columns,
fields or attributes) available in object. This should return all spectra variables which are
present in object, also "mz” and "intensity” (which are by default not returned by the
spectraVariables, Spectra method).

e tic(): gets the total ion current/count (sum of signal of a spectrum) for all spectra in object.
By default, the value reported in the original raw data file is returned. For an empty spectrum,
NA_real_ is returned.

Not supported Backend functions

The following functions are not supported by the MsBackendMassbankSql since the original data
can not be changed.

backendMerge(), export(), filterDataStorage(), filterPrecursorScan(), peaksData<-,
filterAcquisitionNum(), intensity<-, mz<-, precScanNum(), spectraData<-, spectraNames<-.

Retrieving compound annotations for spectra

While compound annotations are also provided via the spectraVariables() of the backend, it
would also be possible to use the compounds function on a Spectra object (that uses aMsBackendMassbankSql
backend) to retrieve compound annotations for the specific spectra.

Author(s)

Johannes Rainer

MsBackendMassbankSql 11

Examples

Create a connection to a database with MassBank data - in the present

example we connect to a tiny SQLite database bundled in this package

as public access to the MassBank MySQL is not (yet) supported. See the

vignette for more information on how to install MassBank locally and

enable MySQL database connections

library(RSQLite)

con <- dbConnect(SQLite(), system.file(”sql”, "minimassbank.sqlite”,
package = "MsBackendMassbank™))

Given that we have the connection to a MassBank databas we can
initialize the backend:

be <- backendInitialize(MsBackendMassbankSql(), dbcon = con)

be

Access MS level
msLevel (be)
be$msLevel

Access m/z values
be$mz

Access the full spectra data (including m/z and intensity values)
spectraData(be)

Add a new spectra variable
be$new_variable <- "b"
be$new_variable

Subset the backend
be_sub <- be[c(3, 1)]

spectraNames(be)
spectraNames (be_sub)

Index

* internal MsBackendMassbank-class
hidden_aliases, 2 (MsBackendMassbank), 3
[,MsBackendDataFrame-method MsBackendMassbankSql, 6
(hidden_aliases), 2 MsBackendMassbankSql-class
[,MsBackendMassbankSql-method (MsBackendMassbankSql), 6
(MsBackendMassbankSql), 6 mz<-,MsBackendMassbankSqgl-method
$<-,MsBackendMassbankSql-method (MsBackendMassbankSql), 6

(MsBackendMassbankSql), 6
peaksData,MsBackendMassbankSql-method

backendBpparam,MsBackendMassbankSqgl-method (MsBackendMassbankSql), 6
(MsBackendMassbankSql), 6 precScanNum,MsBackendMassbankSql-method
backendInitialize,MsBackendMassbank-method (MsBackendMassbankSql), 6

(MsBackendMassbank), 3
backendInitialize,MsBackendMassbankSql-methodreset,MsBackendMassbankSql-method

(MsBackendMassbanksql), 6 (MsBackendMassbankSql), 6
BiocParallel: :bpparam(), 5, 8

BiocParallel::SerialParam(), 8 Spectra: :applyProcessing(), 3

Spectra: :MsBackendDataFrame(), 3

compounds (MsBackendMassbankSql), 6 Spectra::Spectra(), 5

compounds ,MsBackendMassbankSql-method spectraData,MsBackendMassbankSql-method
(MsBackendMassbankSql), 6 (MsBackendMassbanksql), 6

compounds, Spectra-method spectraNames,MsBackendMassbankSql-method
(MsBackendMassbankSql), 6 (MsBackendMassbankSql), 6

spectraNames<-,MsBackendMassbankSql-method

dataStorage,MsBackendMassbhankSql-method (MsBackendMassbankSql), 6

(MsBackendMassbankSql), 6 spectraVariableMapping,MsBackendMassbank-method

(MsBackendMassbank), 3
export,MsBackendMassbank-method
(MsBackendMassbank), 3 tic,MsBackendMassbankSql-method
extractByIndex,MsBackendMassbankSql,ANY-method (MsBackendMassbankSql), 6
(MsBackendMassbankSql), 6

hidden_aliases, 2

intensity<-,MsBackendMassbankSql-method
(MsBackendMassbankSql), 6
IRanges: :NumericList(), 9

metaDataBlocks, 2
metaDataBlocks(), 4
MsBackendMassbank, 3

12

	hidden_aliases
	metaDataBlocks
	MsBackendMassbank
	MsBackendMassbankSql
	Index

