Package ‘Modstrings’

January 24, 2026
Type Package
Title Working with modified nucleotide sequences
Version 1.27.2
Date 2022-12-24

Description Representing nucleotide modifications in a nucleotide sequence
is usually done via special characters from a number of sources. This
represents a challenge to work with in R and the Biostrings package.
The Modstrings package implements this functionallity for RNA and DNA
sequences containing modified nucleotides by translating the character
internally in order to work with the infrastructure of the Biostrings
package.
For this the ModRNAString and ModDNAString classes and derivates and
functions to construct and modify these objects despite the encoding issues
are implemenented. In addition the conversion from sequences to list like
location information (and the reverse operation) is implemented as well.

License Artistic-2.0
Encoding UTF-8

biocViews Datalmport, DataRepresentation, Infrastructure, Sequencing,
Software

Depends R (>= 3.6), Biostrings (>=2.79.3)

Imports methods, BiocGenerics, GenomicRanges, S4Vectors, IRanges,
XVector, stringi, stringr, crayon, grDevices

Suggests BiocStyle, knitr, rmarkdown, testthat, usethis

Collate 'Modstrings.R' 'AllGenerics.R'
'Modstrings-external-functions.R'
'Modstrings-external-C-calls.R' 'Modstrings-ModStringCodec.R'
'Modstrings-ModString.R' 'Modstrings-ModStringSet.R’
'Modstrings-ModString Views.R' 'Modstrings-MaskedModString.R'
'Modstrings-ModStringCodec-data.R'
'Modstrings-ModStringSet-io.R' 'Modstrings-ModStringSetList.R'
'Modstrings-QualityScaledModStringSet.R'
'Modstrings-letterFrequency.R' '"Modstrings-modifyNucleotide.R'
'Modstrings-replaceLetterAt.R' 'Modstrings-sanitize.R'

1

2 Contents

'Modstrings-separate.R' 'Modstrings-seqtype.R' 'datasets.R’
"utils.R' 'zzz.R'

VignetteBuilder knitr
RoxygenNote 7.3.3

BugReports https://github.com/FelixErnst/Modstrings/issues
git_url https://git.bioconductor.org/packages/Modstrings

git_branch devel

git_last_commit 830d42

git_last_commit_date 2025-12-24

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Felix G.M. Ernst [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5064-0928>),
Denis L.J. Lafontaine [ctb, fnd]

Maintainer Felix G.M. Ernst <felix.gm.ernst@outlook.com>

Contents
Modstrings-package e e 3
letterFrequency 3
MaskedModString L. e 5
ModDNASTHING o e e e e e e 6
modifyNucleotides 7
ModRNASHring o o e e e 10
ModString 11
Modstrings L e e e e 11
Modstrings-internals L. L e e e 12
ModStringSet 13
ModStringSet-io L. 14
ModStringSetList e e 16
ModStringViews e 17
QualityScaledModStringSet 17
replaceletterAt L 19
sanitizelnput L. L 20
SEPATALE i i e 22
shortName 25

Index 27

https://github.com/FelixErnst/Modstrings/issues
https://orcid.org/0000-0001-5064-0928

Modstrings-package 3

Modstrings-package Modstrings: Working with modified nucleotide sequences

Description

Representing nucleotide modifications in a nucleotide sequence is usually done via special charac-
ters from a number of sources. This represents a challenge to work with in R and the Biostrings
package. The Modstrings package implements this functionallity for RNA and DNA sequences
containing modified nucleotides by translating the character internally in order to work with the
infrastructure of the Biostrings package. For this the ModRNAString and ModDNAString classes
and derivates and functions to construct and modify these objects despite the encoding issues are
implemenented. In addition the conversion from sequences to list like location information (and the
reverse operation) is implemented as well.

Author(s)
Maintainer: Felix G.M. Ernst <felix.gm.ernst@outlook.com> (ORCID)

Other contributors:

e Denis L.J. Lafontaine <denis.lafontaine@ulb.ac.be> [contributor, funder]

See Also
Useful links:

* Report bugs at https://github.com/FelixErnst/Modstrings/issues

letterFrequency Calculate the frequency of letters in nucleotide sequence with modifi-
cations, or the consensus matrix of a set of sequences

Description
These functions follow the same principle as the Biostrings functions. Please be aware, that the
matices can become quite large, since the alphabet of ModString objects contains more letters.
Usage

S4 method for signature 'ModDNAString'
hasOnlyBaselLetters(x)

S4 method for signature 'ModRNAString'
hasOnlyBaselLetters(x)

S4 method for signature 'ModDNAString'
alphabetFrequency(x, as.prob = FALSE, baseOnly = FALSE)

https://orcid.org/0000-0001-5064-0928
https://github.com/FelixErnst/Modstrings/issues

letterFrequency
S4 method for signature 'ModRNAString'
alphabetFrequency(x, as.prob = FALSE, baseOnly = FALSE)
S4 method for signature 'ModDNAStringSet'
alphabetFrequency(x, as.prob = FALSE, collapse = FALSE, baseOnly = FALSE)
S4 method for signature 'ModRNAStringSet'
alphabetFrequency(x, as.prob = FALSE, collapse = FALSE, baseOnly = FALSE)

S4 method for signature 'MaskedModString'
alphabetFrequency(x, as.prob = FALSE, ...)

S4 method for signature 'ModStringViews'

letterFrequency(x, letters, OR =

"|", as.prob = FALSE, ...)
S4 method for signature 'MaskedModString'
", as.prob = FALSE)

letterFrequency(x, letters, OR = "|

S4 method for signature 'ModStringSet'
consensusMatrix(x, as.prob = FALSE, shift = @L, width = NULL, baseOnly = FALSE)

S4 method for signature 'ModDNAStringSet'

consensusString(x, threshold = ©.25, shift = oL, width = NULL)
S4 method for signature 'ModRNAStringSet'
consensusString(x, threshold = 0.25, shift = @L, width = NULL)

S4 method for signature 'ModStringViews'
consensusString(x, threshold, shift = oL, width = NULL)

Arguments

X

as.prob

baseOnly
collapse

letters
OR

shift
width
threshold

aModString, a ModStringSet, a ModStringViews or a MaskedModString ob-
ject.

TRUE or FALSE (default): Should the result be returned as probabilities instead
of counts? (sum per column = 1)

TRUE or FALSE (default): Should the result omit occurances of the letters N. -+?

TRUE or FALSE (default): Should the results summed up all elements for ModStringSet
or ModStringViews objects or reported per element.

See letterFrequency.
See letterFrequency.
See letterFrequency.
See letterFrequency.
See letterFrequency.

Since the amiguityMap is fixed to "?" for ModString objects, only the treshold
can be set (default threshold = 0.25)

MaskedModString 5

Value

a matrix with the results (letter x pos).

Examples

mod <- ModDNAString(paste(alphabet(ModDNAString()), collapse = ""))
mod

hasOnlyBaselLetters(mod)

alphabetFrequency(mod)

MaskedModString MaskedModString objects

Description

The functions are implemented as defined in the Biostrings package. Have a look the MaskedXString
class.

Usage
S4 method for signature 'MaskedModString'
seqtype(x)

Arguments

X aModString object.

Value

a MaskedModString object.

Examples

Mask positions

mask <- Mask(mask.width=5, start=c(2), width=c(3))
mr <- ModRNAString("ACGU7")

mr

masks(mr) <- mask
mr

Invert masks
mr <- gaps(mr)
mr

Drop the mask
masks(mr) <- NULL
mr

6 ModDNAString

ModDNAString ModDNAString class

Description

A ModDNAString object allows DNA sequences with modified nucleotides to be stored and manip-

ulated.
Usage
ModDNAString(x = "", start = 1, nchar = NA)
Arguments
X the input as a character.
start the postion in the character vector to use as start position in the ModDNAString
object (default start = 1).
nchar the width of the character vector to use in the ModDNAString object (default
nchar = NA). The end position is calculated as start + nchar - 1.
Details

The ModDNAString class contains the virtual ModString class, which is itself based on the XString
class. Therefore, functions for working with XString classes are inherited.

The alphabet of the ModDNAString class consist of the non-extended ITUPAC codes "A,G,C,T,N",
the gap letter "-", the hard masking letter "+", the not available letter "." and letters for individual
modifications: alphabet (ModDNAString()).

Since the special characters are encoded differently depending on the OS and encoding settings
of the R session, it is not always possible to enter a DNA sequence containing modified nu-
cleotides via the R console. The most convinient solution for this problem is to use the function
modifyNucleotides and modify and existing DNAString or ModDNAString object.

A ModDNAString object can be converted into a DNAString object using the DNAstring() con-
structor. Modified nucleotides are automaitcally converted intro their base nucleotides.

If a modified DNA nucleotide you want to work with is not part of the alphabet, please let us know.

Value

a ModDNAString object

Examples

Constructing ModDNAString containing an m6A
mdl <- ModDNAString("AGCT ")
md1

the alphabet of the ModDNAString class

modifyNucleotides 7

alphabet(md1)

due to encoding issues the shortNames can also be used
shortName(md1)

due to encoding issues the nomenclature can also be used
nomenclature(md1)

convert to DNAString
d1l <- DNAString(md1)

d1
modifyNucleotides Modifying nucleotides in a nucleotide sequence (or set of sequences)
at specified locations
Description

modifyNucleotides modifies a nucleotide in a sequence (or set of sequences) based on the type of
modification provided. It checks for the identity of the base nucleotide to be

Usage

modifyNucleotides(
X7
at,
mod,
nc.type = "short"”,
stop.on.error = TRUE,
verbose = FALSE

S4 method for signature 'ModString'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

S4 method for signature 'ModStringSet'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

8 modifyNucleotides

)

S4 method for signature 'DNAString'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

)

S4 method for signature 'RNAString'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short"”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

)

S4 method for signature 'DNAStringSet'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

)

S4 method for signature 'RNAStringSet'
modifyNucleotides(

X,

at,

mod,

nc.type = c("short”, "nc"),

stop.on.error = TRUE,

verbose = FALSE

)
Arguments
X aModString or ModStringSet object
at the location where the modification should be made.

The same input as in the original replacelLetterAt are expected:

If x is a ModString object, then at is typically an integer vector with no NAs but

modifyNucleotides

mod

nc. type

stop.on.error

verbose

Value

a logical vector or Rle object is valid too. Locations can be repeated and in this
case the last replacement to occur at a given location prevails.

If x is a rectangular ModStringSet object, then at must be a matrix of logicals
with the same dimensions as x. If the ModStringSet is not rectangular, at must
be a list of logical vectors.

The modification short name or nomenclature

If x is a ModString object, then letter must be a ModString object or a character
vector (with no NA) with a total number of letters (sum(nchar(letter))) equal
to the number of locations specified in at.

If x is a rectangular ModStringSet object, then letter must be a ModStringSet
object, a list of character vectors or a CharacterList of the same length as x. In
addition, the number of letters in each element of letter must match the number
of locations specified in the corresponding row of at (all(width(letter) ==
rowSums(at))).

the type of nomenclature to be used. Either "short" or "nc". "Short" for m3C
would be "m3C", "nc" for m3C would be "3C". (default = "short")

For combineIntoModstrings: TRUE(default) or FALSE: Should an error be raised
upon encounter of incompatible positions?

See replaceletterAt.

the input ModString or ModStringSet object with the changes applied

Examples

modify nucleotides in a ModDNAString
seq <- ModDNAString("AGTC")

seq

mseql <- modifyNucleotides(seq,c(1,2,4),c("1TmA","7mG","3mC"))

mseq1

This fails since m7G requires a G at the selected position in the sequence

Not run:

mseq <- modifyNucleotides(seq,c(3),c("7mG"))

End(Not run)

modify nucleotides in a ModRNAString
seq <- ModRNAString("AGUC")

seq

mseql <- modifyNucleotides(seq,c(1,2,4),c("m1A","m7G","m3C"))

mseql

This fails since m7G requires a G at the selected position in the sequence

Not run:

mseq <- modifyNucleotides(seq,c(3),c("m7G"))

10

ModRNAString

End(Not run)

ModRNAString ModDNAString class

Description

A ModRNAString object allows RNA sequences with modified nucleotides to be stored and manip-
ulated.

Usage
ModRNAString(x = "", start = 1, nchar = NA)
Arguments
X the input as a character.
start the postion in the character vector to use as start position in the ModRNAString
object (default start =1).
nchar the width of the character vector to use in the ModRNAString object (default
nchar = NA). The end position is calculated as start + nchar - 1.
Details

The ModRNAString class contains the virtual ModString class, which is itself based on the XString
class. Therefore, functions for working with XString classes are inherited.

The alphabet of the ModRNAString class consist of the non-extended IUPAC codes "A,G,C,U",
the gap letter "-", the hard masking letter "+", the not available letter "." and letters for individual
modifications: alphabet(ModRNAString()).

Since the special characters are encoded differently depending on the OS and encoding settings
of the R session, it is not always possible to enter a RNA sequence containing modified nu-
cleotides via the R console. The most convinient solution for this problem is to use the function
modifyNucleotides and modify and existing RNAString or ModRNAString object.

A ModRNAString object can be converted into a RNAString object using the RNAstring() con-
structor. Modified nucleotides are automaitcally converted intro their base nucleotides.

If a modified RNA nucleotide you want to work with is not part of the alphabet, please let us know.

Value

a ModRNAString object

ModString 11

Examples

Constructing ModDNAString containing an m6A and a dihydrouridine
mr1 <- ModRNAString("AGCU D")
mr1

the alphabet of the ModRNAString class

alphabet(mr1)

due to encoding issues the shortNames can also be used
shortName(mr1)

due to encoding issues the nomenclature can also be used
nomenclature(mri)

convert to RNAString
r1 <- RNAString(mr1)
ri

ModString ModString objects

Description

The virtual ModString class derives from the XString virtual class. Like its parent and its children,
it is used for storing sequences of characters. However, the XString/BString class requires single
byte characters as the letters of the input sequences. The ModString extends the capability for
multi-byte chracters by encoding these characters into a single byte characters using a dictionary
for internal conversion. It also takes care of different encoding behavior of operating systems.

The ModDNAString and ModRNAString classes derive from the ModString class and use the func-
tionality to store nucleotide sequences containing modified nucleotides. To describe modified RNA
and DNA nucleotides with a single letter, special characters are commonly used, eg. from the greek
alphabet, which are multi-byte characters.

The ModString class is virtual and it cannot be directly used to create an object. Please have a look
at ModDNAString and ModRNAString for the specific alphabets of the individual classes.

Modstrings Modstrings: implementation of Biostrings to work with nucleotide se-
quences containing modified nucleotides.

Description

Representing nucleotide modifications in a nucleotide sequence is usually done via special charac-
ters from a number of sources. This represents a challenge to work with in R and the Biostrings
package. The Modstrings package implements this functionallity for RNA and DNA sequences
containing modified nucleotides by translating the character internally in order to work with the
infrastructure of the Biostrings package. For this the ModRNAString and ModDNAString classes
and derivates and functions to construct and modify these objects despite the encoding issues are

12 Modstrings-internals

implemenented. In addition the conversion from sequences to list like location information (and the
reverse operation) is implemented as well.

A good place to start would be the vignette and the man page for the ModStringSet objects.

The alphabets for the modifications used in this package are based on the compilation of RNA
modifications by http://modomics.genesilico.pl by the Bujnicki lab and DNA modifications
https://dnamod.hoffmanlab.org by the Hoffman lab. Both alphabets were modified to remove
some incompatible characters.

Author(s)

Felix G M Ernst [aut,cre] and Denis L.J. Lafontaine [ctb]

Modstrings-internals Modstrings internals

Description

Analog to Biostrings there are a few functions, which should only be used internally. Otherwise
take care.

Usage

S4 method for signature 'ModDNAString'
seqtype(x)

S4 method for signature 'ModRNAString'
seqtype(x)

S4 replacement method for signature 'ModString'
seqtype(x) <- value

S4 method for signature 'ModString'
XString(seqtype, x, start = NA, end = NA, width = NA)

S4 replacement method for signature 'ModStringSet'’
seqtype(x) <- value

S4 method for signature 'ModStringSet'
XStringSet(seqtype, x, start = NA, end = NA, width = NA, use.names = TRUE)

data(modsRNA)
data(modsDNA)
data(MOD_RNA_DICT_MODOMICS)

data(MOD_RNA_DICT_TRNADB)

http://modomics.genesilico.pl
https://dnamod.hoffmanlab.org

ModStringSet 13

Arguments

seqtype, x, start, end, width, use.names, value
used internally

Format

An object of class DFrame with 162 rows and 9 columns.
An object of class DFrame with 47 rows and 5 columns.
An object of class DFrame with 170 rows and 3 columns.

An object of class DFrame with 60 rows and 3 columns.

Value

a XString* object

ModStringSet ModStringSet objects

Description
The ModStringSet class is a container for storing a set of ModString objects. It follows the same
principles as the other XStringSet objects.
As usual the ModStringSet containers derive directly from the XStringSet virtual class.

The ModStringSet class is in itself a virtual class with two types of derivates:

* ModDNAStringSet
* ModRNAStringSet

Each class can only be converted to its parent DNAStringSet or RNAStringSet. The modified
nucleotides will be converted to their original nucleotides.

Please note, that due to encoding issues not all modifications can be instanciated directly from the
console. The vignette contains a comphrensive explanation and examples for working around the
problem.

Usage

ModDNAStringSet(
x = character(),
start = NA,
end = NA,
width = NA,
use.names = TRUE

)

ModRNAStringSet(

14

x = character(),

start = NA,
end = NA,
width = NA,

use.names = TRUE

Arguments

ModStringSet-io

X Either a character vector (with no NAs), or an ModString, ModStringSet or

ModStringViews object.

start, end, width

Either NA, a single integer, or an integer vector of the same length as x specify-

ing how x should be "narrowed" (see narrow for the details).

use.names TRUE or FALSE. Should names be preserved?

Value

aModStringSet object.

Examples

Constructing ModDNAStringSet containing an m6A
m1 <- ModDNAStringSet(c("AGCT™","AGCT™"))

ml

converting to DNAStringSet

Constructing ModRNAStringSet containing an m6A
m2 <- ModRNAStringSet(c("AGCU™","AGCU™"))

m2

ModStringSet-io

Read/write an ModStringSet object from/to a file

Description

Functions to read/write an ModStringSet object from/to a file.

Usage

readModDNAStringSet(

filepath,

format = "fasta”,
nrec = -1L,

skip = oL,
seek.first.rec =
use.names = TRUE,

ModStringSet-io

with.qualities = FALSE
)

readModRNAStringSet(
filepath,
format = "fasta”,
nrec = -1L,
skip = oL,
seek.first.rec = FALSE,
use.names = TRUE,
with.qualities = FALSE

writeModStringSet(
X,
filepath,
append = FALSE,
compress = FALSE,
compression_level = NA,
format = "fasta”,

Arguments

filepath, format, nrec, skip, seek.first.rec, use.names, with.qualities
append, compress, compression_level, . ..
See XStringSet-io for more details.

X A ModStringSet object.

Value

A ModStringSet of the defined type.

Examples
seqs <- paste@(paste(alphabet(ModDNAString()), collapse = ""),
cC"A","G" " T"Y)
seqs

set <- ModDNAStringSet(seqs)
set

file <- tempfile()
writeModStringSet(set, file)

read <- readModDNAStringSet(file)
read

15

16 ModStringSetList

ModStringSetList ModStringSetList

Description

title

Usage

ModDNAStringSetList(..., use.names = TRUE)

ModRNAStringSetList(..., use.names = TRUE)

Arguments

ModStringSet objects of one type.

use.names TRUE(default) or FALSE: Whether names of the input ModStringSet objects
should be stored and used as the element names in the ModStringSetList.

Value

aModStringSetList object.

Examples

mrseq <- c("ACGU7","ACGU7","ACGU7","ACGU7")
mrseq

Example: contruction of ModStringSetlist from ModString objects
mr <- ModRNAString("ACGU7")
mr

mrs <- ModRNAStringSet(list(mr,mr,mr,mr))
mrs

mrsl <- ModRNAStringSetList(mrs,mrs)
mrsl

Example: construction of ModStringSetlist from mixed sources
mrsl2 <- ModRNAStringSetList(mrs,mrseq)
mrsl2

ModString Views 17

ModStringViews The ModStringViews class extending the XStringViews class

Description

As the XStringViews the ModStringViews is the basic container for storing a set of views on the
same sequence (this time a ModString object).

Usage

S4 method for signature 'ModString'
Views(subject, start = NULL, end = NULL, width = NULL, names = NULL)

Arguments

subject, start, end, width, names
See XStringViews.
Details

For the details have a look at the XStringViews class.

Value

aModStringViews object.

Examples

seq <- ModDNAString("AGC6AGC6")
seq

v <- Views(seq, start = 3:1, end = 6:8)
v

QualityScaledModStringSet
QualityScaledModDNAStringSet and QualityScaledModRNAS-
tringSet objects

Description

title

18

Usage

QualityScaledModDNAStringSet(x, quality)

QualityScaledModRNAStringSet(x, quality)

readQualityScaledModDNAStringSet(

)

filepath,

quality.scoring = c("phred”, "solexa"”, "illumina"),

nrec = -1L,

skip = oL,
seek.first.rec = FALSE,
use.names = TRUE

readQualityScaledModRNAStringSet(

)

filepath,

quality.scoring = c("phred”, "solexa"”, "illumina"),

nrec = -1L,

skip = oL,
seek.first.rec = FALSE,
use.names = TRUE

writeQualityScaledModStringSet(

X,

filepath,

append = FALSE,
compress = FALSE,
compression_level = NA

QualityScaledModStringSet

For the QualityScaled*StringSet constructors: Either a character vector, or

For writeQualityScaledXStringSet: A QualityScaledModDNAStringSet

)
Arguments
X
an ModString, ModStringSet or ModStringViews object.
or QualityScaledModRNAStringSet object.
quality A XStringQuality object.
filepath, nrec, skip, seek.first.rec,

compression_level

See QualityScaledXStringSet-class.

quality.scoring

compress,

Specify the quality scoring used in the FASTQ file. Must be one of "phred"
(the default), "solexa", or "illumina". If set to " phred" (or "solexa" or "illu-
mina"), the qualities will be stored in a PhredQuality (or SolexaQuality or

I1luminaQuality, respectively) object.

replaceLetterAt 19

Value

aQualityScaledModDNAStringSet or QualityScaledModDNAStringSet object

Examples

seq <- ModRNAString("AGCU7")

seq

gseq <- PhredQuality(paste@(rep("!"
gseq

, length(seq)), collapse = ""))

gset <- QualityScaledModRNAStringSet(seq, qseq)

gset
replacelLetterAt Replacing letters in a nucleotide sequence (or set of nucleotide se-
quences) at some specified locations containing nucleotide modifica-
tions
Description

replacelLetterAt replaces a letter in aModString objects with a new letter. In contrast to modifyNucleotides
it does not check the letter to be replaced for its identity, it just replaces it and behaves exactly like
the

Usage

S4 method for signature 'ModString'
replacelLetterAt(x, at, letter, verbose = FALSE)

S4 method for signature 'ModStringSet'
replacelLetterAt(x, at, letter, verbose = FALSE)

Arguments
X aModString or ModStringSet object
at the location where the replacement should be made.

The same input as in replacelLetterAt are expected:

If x is a ModString object, then at is typically an integer vector with no NAs but
a logical vector or Rle object is valid too. Locations can be repeated and in this
case the last replacement to occur at a given location prevails.

If x is a rectangular ModStringSet object, then at must be a matrix of logicals
with the same dimensions as x. If the ModStringSet is not rectangular, at must
be a list of logical vectors.

20

sanitizelnput

letter The new letters.
The same input as in replacelLetterAt are expected:
If x is aModString object, then letter must be a ModString object or a character
vector (with no NAs) with a total number of letters (sum(nchar(letter))) equal to
the number of locations specified in at.
If x is a rectangular ModStringSet object, then letter must be a ModStringSet
object or a character vector of the same length as x. In addition, the number of
letters in each element of letter must match the number of locations specified in
the corresponding row of at (all(width(letter) == rowSums(at))).

verbose See replaceletterAt.

Value

the input ModString or ModStringSet object with the changes applied

Examples

Replacing the last two letters in a ModDNAString
seql <- ModDNAString("AGTC")

seq

seq2 <- replaceletterAt(seql,c(3,4),"CT")

seq2

Now containg and m3C
seq2 <- replacelLetterAt(seql,c(3,4),ModDNAString("/T"))
seq2

Replacing the last two letters in a set of sequences
setl <- ModDNAStringSet(c("AGTC","AGTC"))
setl

set2 <- replacelLetterAt(setl,
matrix(rep(c(FALSE,FALSE, TRUE,TRUE),?2),

nrow = 2,
byrow = TRUE),
c("CT”,"CT"Y)
set2
sanitizeInput Sanitize input strings for use with ModString classes
Description

Since the one letter nomenclature for RNA and DNA modification differs depending on the source,
a translation to a common alphabet is necessary.

sanitizeInput exchanges based on a dictionary. The dictionary is expected to be a DataFrame
with two columns, mods_abbrev and short_name. Based on the short_name the characters from
in the input are converted from values of mods_abbrev into the the ones from alphabet.

sanitizelnput 21

Only different values will be searched for and exchanged.

sanitizeFromModomics and sanitizeFromtRNAdb use a predefined dictionary, which is builtin.

Usage
sanitizeInput(input, dictionary)
sanitizeFromModomics(input)

sanitizeFromtRNAdb (input)

Arguments
input a character vector, which should be converted
dictionary a DataFrame containing at least two columns mods_abbrev and short_name.
From this a dictionary table is contructed for exchaning old to new letters.
Value

the modified character vector compatible for constructing a ModString object.

Examples

Modomics

chr <- "AGCe"

Error since the @ is not in the alphabet
Not run:

seq <- ModRNAString(chr)

End(Not run)
seq <- ModRNAString(sanitizeFromModomics(chr))
seq

tRNAdb

chr <- "AGC+"

No error but the + has a different meaning in the alphabet
Not run:

seq <- ModRNAString(chr)

End(Not run)
seq <- ModRNAString(sanitizeFromtRNAdb(chr))
seq

22 separate

separate Separating and combining a modification information into/from a
XString and a GRanges object

Description

With combineIntoModstrings and separate the construction and deconstruction of ModString
Objects from an interacive session avoiding problematic encoding issues. In addition, modification
information can be transfered from/to tabular data with these functions.

combineIntoModstrings expects seqnames(gr) or names(gr) to match the available names(x).
Only information with strand information * and + are used.

separate when used with a GRanges/GRangesList object will return an object of the same type, but
with modifications seperated. For example an element with mod = "m1Am” will be returned as two el-
ements with mod = c("Am", "m1A"). The reverse operation is available via combineModifications().

removeIncompatibleModifications filters incompatible modification from a GRanges or GRangesList.
incompatibleModifications() returns the logical vector used for this operation.

Usage

separate(x, nc.type = "short")

combineIntoModstrings(
X,
gr,
with.qualities = FALSE,
quality.type = "Phred”,
stop.on.error = TRUE,
verbose = FALSE,

)

combineModifications(gr, ...)
incompatibleModifications(gr, x, ...)
removelncompatibleModifications(gr, x, ...)

S4 method for signature 'ModString'
separate(x, nc.type = c("short”, "nc"))

S4 method for signature 'ModStringSet'
separate(x, nc.type = c("short”, "nc"))

S4 method for signature 'GRanges'
separate(x)

separate

S4 method for signature 'GRangesList'
separate(x)

S4 method for signature 'XString,GRanges'
combineIntoModstrings(

X)

gr,

with.qualities = FALSE,

quality.type = "Phred”,

stop.on.error = TRUE,

verbose = FALSE,

)

S4 method for signature 'XStringSet,GRangesList'
combineIntoModstrings(

X,

gr,

with.qualities = FALSE,

quality.type = "Phred”,

stop.on.error = TRUE,

verbose = FALSE,

)

S4 method for signature 'XStringSet,GRanges'
combineIntoModstrings(

X,

gr,

with.qualities = FALSE,

quality.type = "Phred”,

stop.on.error = TRUE,

verbose = FALSE,

)

S4 method for signature 'GRanges'
combineModifications(gr)

S4 method for signature 'GRangesList'
combineModifications(gr)

S4 method for signature 'GRanges,XString'
incompatibleModifications(gr, x)

S4 method for signature 'GRanges,XStringSet'
incompatibleModifications(gr, x)

23

24 separate

S4 method for signature 'GRangesList,XStringSet
incompatibleModifications(gr, x)

S4 method for signature 'GRanges,XString'
removelncompatibleModifications(gr, x)

S4 method for signature 'GRanges,XStringSet'
removeIncompatibleModifications(gr, x)

S4 method for signature 'GRangesList,XStringSet'
removelncompatibleModifications(gr, x)

Arguments
X For separate: a ModString/ModStringSet or GRanges/GRangesListobject
For combineIntoModstrings: a XString and a XStringSet object.
nc.type the type of nomenclature to be used. Either "short" or "nc". "Short" for m3C
would be "m3C", "nc" for m3C would be "3C". (default = "short")
gr a GRanges object

with.qualities TRUE or FALSE (default): Should the values from a score column of the GRanges
object stored? If set with.qualities = TRUE, combineIntoModstrings will
try to construct a QualityScaledModStringSet object.

quality.type the type of QualityXStringSet used, if with.qualities = TRUE. Must be on
of the following values: "Phred”,"Solexa”,"”"Illumina”.

stop.on.error For combineIntoModstrings: TRUE(default) or FALSE: Should an error be raised
upon encounter of incompatible positions?

verbose For combineIntoModstrings: TRUE or FALSE (default): Should verbose in-
formation reported on the positions filled with modifications? This settings is
passed onto modifyNucleotides.

default.quality: for combineIntoModstrings: the default.quality de-
fault value for non-modified positions. (default: default.quality = QL)

Value

for separate a GRanges object and for combineIntoModstrings aModString# objector aQualityScaledModStringSet,
if with.qualities = TRUE.

Examples

library(GenomicRanges)

ModDNAString

seq <- ModDNAString(paste(alphabet(ModDNAString()), collapse = ""))
seq

gr <- separate(seq)
gr

seq2 <- combineIntoModstrings(as(seq, "DNAString"),gr)

shortName 25

seq2

seq == seq2

ModRNAString

seq <- ModRNAString(paste(alphabet(ModRNAString()), collapse = ""))
seq

gr <- separate(seq)
gr

Separating RNA modifications

gr <- gr[1]
separate(gr)
... and combine them again (both operations work only on a subset of

modifications)
combineModifications(separate(gr))

handling incompatible modifications

seq <- RNAString("AGCU")

gr <- GRanges(c("chr1:1:+","chr1:2:+"),mod="m1A")
incompatibleModifications(gr,seq)

#
removelncompatibleModifications(gr,seq)

shortName Base information for sequence characters of nucleotide strings con-
taining modifications

Description

The alphabet(), shortName() fullName() and nomenclature() functions return the letters,
names and associated abbreviations for the type of ModString. alphabet() returns the normal
letters and modification letters, whereas shortName (), fullName() and nomenclature() return
results for modifications only.

Usage

shortName (x)
fullName (x)
nomenclature(x)

S4 method for signature 'ModString'
alphabet(x, baseOnly = FALSE)

S4 method for signature 'ModStringSet'

26 shortName

alphabet(x, baseOnly = FALSE)

S4 method for signature 'ModString'
shortName (x)

S4 method for signature 'ModStringSet'
shortName (x)

S4 method for signature 'ModString'
fullName(x)

S4 method for signature 'ModStringSet'
fullName(x)

S4 method for signature 'ModString'
nomenclature(x)

S4 method for signature 'ModStringSet'

nomenclature(x)
Arguments

X aModString or ModStringSet object

baseOnly TRUE or FALSE (default): Should the result omit occurances of the letters N. -+?
Value

a character vector.

Examples

alphabet (ModDNAString())
shortName (ModDNAString())
nomenclature(ModDNAString())

Index

* datasets
Modstrings-internals, 12
* internal
Modstrings-package, 3

==,ModString,ModString-method
(ModString), 11

==,ModString,XString-method
(ModString), 11

==,ModStringSet,ModStringSet-method
(ModStringSet), 13

==,ModStringSet,XStringSet-method
(ModStringSet), 13

==,ModStringViews,ModStringViews-method
(ModStringViews), 17

==,ModStringViews, XString-method
(ModStringViews), 17

==,XString,ModString-method
(ModString), 11

==,XStringSet,ModStringSet-method
(ModStringSet), 13

==,XStringViews,ModString-method
(ModStringViews), 17

alphabet, 6

alphabet (shortName), 25

alphabet,ModString-method (shortName),
25

alphabet,ModStringSet-method
(shortName), 25

alphabetFrequency (letterFrequency), 3

alphabetFrequency,MaskedModString-method
(letterFrequency), 3

alphabetFrequency,ModDNAString-method
(letterFrequency), 3

alphabetFrequency,ModDNAStringSet-method
(letterFrequency), 3

alphabetFrequency,ModRNAString-method
(letterFrequency), 3

alphabetFrequency,ModRNAStringSet-method
(letterFrequency), 3

27

as.character,ModString-method
(ModString), 11

as.character,ModStringSet-method
(ModStringSet), 13

as.vector,ModString-method (ModString),
11

Biostrings, 3

CharacterList, 9
combineIntoModstrings (separate), 22

combineIntoModstrings,XString,GRanges-method

(separate), 22

combineIntoModstrings,XStringSet,GRanges-method

(separate), 22

combineIntoModstrings,XStringSet,GRangesList-method

(separate), 22
combineModifications (separate), 22
combineModifications,GRanges-method

(separate), 22
combineModifications,GRangesList-method

(separate), 22
consensusMatrix,ModStringSet-method

(letterFrequency), 3
consensusString (letterFrequency), 3
consensusString,ModDNAStringSet-method

(letterFrequency), 3
consensusString,ModRNAStringSet-method

(letterFrequency), 3
consensusString,ModStringViews-method

(letterFrequency), 3

fullName (shortName), 25

fullName,ModString-method (shortName),
25

fullName,ModStringSet-method
(shortName), 25

hasOnlyBaseletters (letterFrequency), 3
hasOnlyBaselLetters,ModDNAString-method
(letterFrequency), 3

28

hasOnlyBaselLetters,ModDNAStringSet-method

(letterFrequency), 3
hasOnlyBaselLetters,ModRNAString-method
(letterFrequency), 3

hasOnlyBaselLetters,ModRNAStringSet-method

(letterFrequency), 3

incompatibleModifications (separate), 22

INDEX

modifyNucleotides,RNAStringSet-method
(modifyNucleotides), 7

ModRNAString, 10, 11

ModRNAString-class (ModString), 11

ModRNAStringSet (ModStringSet), 13

ModRNAStringSet-class (ModStringSet), 13

ModRNAStringSetList (ModStringSetList),
16

incompatibleModifications,GRanges, XString-metHe@RNAStringSetList-class

(separate), 22

(ModStringSetList), 16

incompatibleModifications,GRanges, XStringSet-He¢sMA (Modstrings-internals), 12

(separate), 22

modsRNA (Modstrings-internals), 12

incompatibleModifications,GRangesList,XString$edShetngd?. 0, 810,11, 13,19, 20

(separate), 22

letterFrequency, 3, 4
letterFrequency,MaskedModString-method
(letterFrequency), 3
letterFrequency,ModStringViews-method
(letterFrequency), 3
letterFrequencyInSlidingView
(letterFrequency), 3

MaskedModString, 4, 5

MaskedXString, 5

MOD_RNA_DICT_MODOMICS
(Modstrings-internals), 12

MOD_RNA_DICT_TRNADB
(Modstrings-internals), 12

ModDNAString, 6, 11

ModDNAString-class (ModString), 11

ModDNAStringSet (ModStringSet), 13

ModDNAStringSet-class (ModStringSet), 13

ModDNAStringSetList (ModStringSetList),
16

ModDNAStringSetList-class
(ModStringSetList), 16

modifyNucleotides, 6, 7,7, 10, 19, 24

modifyNucleotides,DNAString-method
(modifyNucleotides), 7

modifyNucleotides,DNAStringSet-method
(modifyNucleotides), 7

modifyNucleotides,ModString-method
(modifyNucleotides), 7

modifyNucleotides,ModStringSet-method
(modifyNucleotides), 7

modifyNucleotides,RNAString-method
(modifyNucleotides), 7

ModString,AsIs-method (ModString), 11
ModString, character-method (ModString),
11
ModString, factor-method (ModString), 11
ModString,MaskedModString-method
(ModString), 11
ModString,ModString-method (ModString),
11
ModString,XString-method (ModString), 11
Modstrings, 11
Modstrings-internals, 12
Modstrings-package, 3
ModStringSet, 4,8, 9, 12,13, 15, 16, 19, 20
ModStringSet,ANY-method (ModStringSet),
13
ModStringSet,AsIs-method
(ModStringSet), 13
ModStringSet,character-method
(ModStringSet), 13
ModStringSet, factor-method
(ModStringSet), 13
ModStringSet,list-method
(ModStringSet), 13
ModStringSet,missing-method
(ModStringSet), 13
ModStringSet,ModString-method
(ModStringSet), 13
ModStringSet,ModStringSet-method
(ModStringSet), 13
ModStringSet,ModStringViews-method
(ModStringViews), 17
ModStringSet-io, 14
ModStringSetList, 16
ModStringViews, 4, 17

nomenclature (shortName), 25

INDEX

nomenclature,ModString-method
(shortName), 25

nomenclature,ModStringSet-method
(shortName), 25

QualityScaledModDNAStringSet, I8
QualityScaledModDNAStringSet
(QualityScaledModStringSet), 17
QualityScaledModDNAStringSet-class
(QualityScaledModStringSet), 17
QualityScaledModRNAStringSet, I8
QualityScaledModRNAStringSet
(QualityScaledModStringSet), 17
QualityScaledModRNAStringSet-class
(QualityScaledModStringSet), 17
QualityScaledModStringSet, 17, 24

readModDNAStringSet (ModStringSet-io),
14

readModRNAStringSet (ModStringSet-io),
14

readQualityScaledModDNAStringSet
(QualityScaledModStringSet), 17

readQualityScaledModRNAStringSet
(QualityScaledModStringSet), 17

removelncompatibleModifications
(separate), 22

29

seqtype,MaskedModString-method
(MaskedModString), 5
seqtype,ModDNAString-method
(Modstrings-internals), 12
seqtype,ModRNAString-method
(Modstrings-internals), 12
seqtype<-,ModString-method
(Modstrings-internals), 12
seqtype<-,ModStringSet-method
(Modstrings-internals), 12
shortName, 25
shortName,ModString-method (shortName),
25
shortName,ModStringSet-method
(shortName), 25
show,ModStringSet-method
(ModStringSet), 13
show,ModStringViews-method
(ModStringViews), 17
show,QualityScaledModStringSet-method
(QualityScaledModStringSet), 17

Views,ModString-method
(ModStringViews), 17

writeModStringSet (ModStringSet-io), 14
writeQualityScaledModStringSet

removeIncompatibleModifications,GRanges,XString-methodualityScaledModStringSet), 17

(separate), 22

removeIncompatibleModifications,GRanges,XStrié?EEia%P?hé@

(separate), 22

tring,ModString-method

removeIncompatibleModifications,GRangesList,XStringSeQ/l—(?ﬁje:St-lHAc;tpgs_lnternals)’12

(separate), 22
replaceletterAt, 8, 9, 19, 19, 20
replacelLetterAt,ModString-method

(replacelLetterAt), 19
replacelLetterAt,ModStringSet-method

(replacelLetterAt), 19

sanitizeFromModomics (sanitizelInput), 20

sanitizeFromtRNAdb (sanitizelInput), 20

sanitizelInput, 20

separate, 22

separate,GRanges-method (separate), 22

separate,GRangesList-method (separate),
22

separate,ModString-method (separate), 22

separate,ModStringSet-method
(separate), 22

XStringQuality, /8

XStringSet, 13

XStringSet,ModStringSet-method
(Modstrings-internals), 12

XStringViews, 17

	Modstrings-package
	letterFrequency
	MaskedModString
	ModDNAString
	modifyNucleotides
	ModRNAString
	ModString
	Modstrings
	Modstrings-internals
	ModStringSet
	ModStringSet-io
	ModStringSetList
	ModStringViews
	QualityScaledModStringSet
	replaceLetterAt
	sanitizeInput
	separate
	shortName
	Index

