
Package ‘Mergeomics’
January 24, 2026

Type Package

Title Integrative network analysis of omics data

Version 1.39.0

Date 2016-01-04

Author Ville-Petteri Makinen, Le Shu, Yuqi Zhao, Zeyneb Kurt, Bin Zhang,
Xia Yang

Maintainer Zeyneb Kurt <zeynebkurt@gmail.com>

Description The Mergeomics pipeline serves as a flexible framework for
integrating multidimensional omics-disease associations, functional
genomics, canonical pathways and gene-gene interaction networks to
generate mechanistic hypotheses. It includes two main parts,
1) Marker set enrichment analysis (MSEA);
2) Weighted Key Driver Analysis (wKDA).

biocViews Software

Suggests RUnit, BiocGenerics

License GPL (>= 2)

Depends R (>= 3.0.1)

git_url https://git.bioconductor.org/packages/Mergeomics

git_branch devel

git_last_commit 5d079fe

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents
Mergeomics-package . 3
job.kda . 4
kda.analyze . 5
kda.analyze.exec . 7

1

2 Contents

kda.analyze.simulate . 9
kda.analyze.test . 11
kda.configure . 14
kda.finish . 16
kda.finish.estimate . 17
kda.finish.save . 18
kda.finish.summarize . 20
kda.finish.trim . 21
kda.prepare . 22
kda.prepare.overlap . 24
kda.prepare.screen . 26
kda.start . 28
kda.start.edges . 29
kda.start.identify . 31
kda.start.modules . 32
kda2cytoscape . 33
kda2cytoscape.colorize . 35
kda2cytoscape.colormap . 36
kda2cytoscape.drivers . 37
kda2cytoscape.edges . 39
kda2cytoscape.exec . 40
kda2cytoscape.identify . 42
kda2himmeli . 43
kda2himmeli.colorize . 45
kda2himmeli.colormap . 46
kda2himmeli.drivers . 47
kda2himmeli.edges . 48
kda2himmeli.exec . 50
kda2himmeli.identify . 52
MSEA.KDA.onestep . 53
ssea.analyze . 55
ssea.analyze.observe . 57
ssea.analyze.randgenes . 59
ssea.analyze.randloci . 62
ssea.analyze.simulate . 65
ssea.analyze.statistic . 67
ssea.control . 68
ssea.finish . 70
ssea.finish.details . 72
ssea.finish.fdr . 74
ssea.finish.genes . 76
ssea.meta . 78
ssea.prepare . 80
ssea.prepare.counts . 82
ssea.prepare.structure . 84
ssea.start . 86
ssea.start.configure . 88
ssea.start.identify . 91

Mergeomics-package 3

ssea.start.relabel . 92
ssea2kda . 94
ssea2kda.analyze . 97
ssea2kda.import . 99
tool.aggregate . 101
tool.cluster . 102
tool.cluster.static . 103
tool.coalesce . 104
tool.coalesce.exec . 106
tool.coalesce.find . 107
tool.coalesce.merge . 108
tool.fdr . 109
tool.fdr.bh . 110
tool.fdr.empirical . 111
tool.graph . 112
tool.graph.degree . 113
tool.graph.list . 115
tool.metap . 117
tool.normalize . 118
tool.normalize.quality . 119
tool.overlap . 120
tool.read . 121
tool.save . 122
tool.subgraph . 123
tool.subgraph.find . 124
tool.subgraph.search . 125
tool.subgraph.stats . 126
tool.translate . 128
tool.unify . 129

Index 130

Mergeomics-package Integrative network analysis of omics data

Description

The Mergeomics pipeline serves as a flexible framework for integrating multidimensional omics-
disease associations, functional genomics, canonical pathways and gene-gene interaction networks
to generate mechanistic hypotheses. It includes two main parts, 1) Marker set enrichment analysis
(MSEA); 2) Weighted Key Driver Analysis (wKDA).

4 job.kda

Details

Package: Mergeomics
Type: Package
Version: 1.1.10
Date: 2016-01-04
License: GPL (>= 2)
Depends: R (>= 3.0.1)
URL: http://mergeomics.research.idre.ucla.edu/

Mergeomics amalgamates disease association information derived from multidimensional omics
data (e.g., genome, epigenome, transcriptome, metablome) with functional genomics (e.g., eQTLs,
ENCODE), canonical pathways (e.g., KEGG, Reactome), and molecular networks (e.g., gene regu-
latory networks, protein-protein interaction networks). Two main steps of the pipeline are: Marker
set enrichment analysis (MSEA) and weighted key driver analysis (wKDA). MSEA takes the fol-
lowing data as input: i) disease association data (GWAS, EWAS, TWAS...), ii) functional genomics
(eQTLs and/or ENCODE information), and iii) functionally related genes information extracted
from knowledge-based biological pathways or data-driven network modules (e.g., coexpressed
genes in a given tissue relevant to a disease of interest). These datasets are integrated via MSEA to
return gene sets that are significantly enriched for markers showing low p value associations with a
given disease. Then, the disease related gene sets are examined to detect the key drivers by using the
wKDA step of the pipeline, which requires pre-defined directional networks such as tissue-specific
Bayesian networks, protein-protein interaction networks, etc. wKDA maps the disease related gene
sets to the pre-defined directional networks to identify key driver genes that are more likely regula-
tors of the disease gene sets based on their central positions in the gene networks. The key drivers
and their local network topology can be viewed and downloaded after the completion of the anal-
ysis via Visualization step. Our pipeline provides users to perform MSEA and wKDA together or
separately using either their own input data or selecting preloaded sample datasets. The details of
the functions and parameter settings are described in the Manual of the package.

Author(s)

Ville-Petteri Makinen, Le Shu, Yuqi Zhao, Zeyneb Kurt, Bin Zhang, Xia Yang Maintainer: <zeyneb@ucla.edu>

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

job.kda Key Driver Analyzing results

kda.analyze 5

Description

Key Driver Analysis (KDA) applied data object. "modules.mousecoexpr.liver.human.txt" includ-
ing the coexpression modules and "network.mouseliver.mouse.txt" including the network (graph)
information files (under the extdata folder) were used for the KDA.

Format

The format is: list

Examples

data(job.kda)

kda.analyze Weighted key driver analysis (wKDA) main function

Description

Finds the statistics (enrichment score, p-value, FDR, etc.) of the key driver (hub) genes belonging
to the specified modules based on the graph topology. The enrichment score of a hub node based
on the shared nodes between this hub’s neighbor nodes in the graph and the member nodes of the
hub’s module. The hub node enrichment P-values reflect the degree of observed enrichment of the
hub, when compared to the null distribution of randomly expected enrichment of this hub within
graph’s nodes. Permutation test is used to obtain these statistics.

Usage

kda.analyze(job)

Arguments

job The data list that will be subjected to KDA. It involves the modules, member
genes belonging to each module, graph (network) topology, hubs of the graph,
and sub-graph around each hub (hubnets of the graph).

Details

kda.analyze analyzes each module individually and determines the p-values and FDRs of hub
nodes of each module via permutation test. It returns the hit hub (key driver) gene name and
member list of each module.

Value

job The KDA applied data list. It involves the modules, hub gene and member genes
belonging to each module, and False Discovery Rate (FDR) adjusted p-values
of hub nodes for each module.

6 kda.analyze

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze.exec, kda.analyze.simulate, kda.analyze.test

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

Let's run KDA!

job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)

kda.analyze.exec 7

job.kda <- kda.analyze(job.kda)
job.kda <- kda.finish(job.kda)

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)

kda.analyze.exec Auxiliary function for weight key driver analysis (wKDA)

Description

Obtains the enrichment scores (and p-values of these scores) of the hub nodes by the module mem-
ber genes for a given module. The hub node enrichment P-values reflect the degree of enrichment of
hub’s neighbor nodes within the member genes of the module, to whom this hub belongs to, when
compared to the null distribution of randomly expected enrichment of hub within graph’s nodes.

Usage

kda.analyze.exec(memb, graph, nsim)

Arguments

memb Member nodes of the given module.

graph Entire graph (network) of the dataset.

nsim Number of the simulations for the permutation test to obtain p-values of the
enrichment scores belonging to the hub nodes for a given module.

Details

kda.analyze.exec obtains the p-values of the enrichment scores belonging to the hub nodes for a
given module. Enrichment score of a hub node for a given module is obtained by the overlapped
(shared) nodes between this hub’s neighbor nodes and the member nodes of the given module. If a
hub node does not have at least a particular number of neighbors, its enrichment score is assigned
as 0.0.

Value

pvals P-values of the enrichment scores belonging to the hub nodes for the given mod-
ule.

Author(s)

Ville-Petteri Makinen

8 kda.analyze.exec

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.analyze.simulate, kda.analyze.test

Examples

This auxiliary function is called by kda.analyze(),
see this main function for more details
job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction<-1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

Let's prepare KDA object for KDA:
job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)
set.seed(job.kda$seed)
i = 1 ## index of the module, whose p-val is calculated:
memb <- job.kda$module2nodes[[i]]

kda.analyze.simulate 9

graph <- job.kda$graph ## we need to import a network
nsim <- job.kda$nperm ## number of simulations
calculate p-vals of KDs for the specified module:
p <- kda.analyze.exec(memb, graph, nsim) ## see kda.analyze() for details

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)

kda.analyze.simulate Weighted key driver analysis (wKDA) simulation

Description

Generates simulations for permutation test, which is performed to obtain the p-value for the enrich-
ment score of a given hub for a specified module during the wKDA process.

Usage

kda.analyze.simulate(o, g, nmemb, nnodes, nsim)

Arguments

o Observed enrichment score of a hub node assigned for a given module.

g Sub-graph of a given hub and its neighbors (hubnet).

nmemb Number of the members included in a given module.

nnodes Number of the nodes in the whole graph (network) of the dataset.

nsim Number of the iterations (simulations) performed for the permutation test.

Details

kda.analyze.simulate performs permutation tests to obtain p-values for the enrichment score of a
given hub node for a given module. It takes the observed enrichment score of the given hub, hubnet
(subgraph of the hub and its neighbors), number of the members of the given module, total number
of the nodes in the entire graph of the dataset, and number of the simulations for the permutation
test. In each iteration (simulation), it samples nmemb nodes randomly among the entire nodes of the
graph. Then, it tests the overlapped nodes among the randomly chosen nodes and the given node’s
neigborhood. At the end, it obtains an enrichment score for each simulation and evaluates these
permuted enrichment scores with respect to the observed enrichment score of the hub. Among nsim
random simulations; maximally, enrichment scores of 10 iterations are allowed to be greater than
the observed (actual) enrichment score of the hub. If this limitation is exceeded, simulation will be
finalized at that point and the enrichment score list of the iterations will be returned.

Value

x A list containing enrichment scores of the simulation’s iterations

10 kda.analyze.simulate

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.analyze.exec, kda.analyze.test

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction<-1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

Let's prepare KDA object for KDA:
job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)
set.seed(job.kda$seed)

kda.analyze.test 11

i = 1 ## index of the module, whose p-val is calculated:
memb <- job.kda$module2nodes[[i]]
graph <- job.kda$graph ## we need to import a network
nsim <- job.kda$nperm ## number of simulations
This auxiliary function is called by kda.analyze.exec(), which is called
by kda.analyze() main function, see this main function for more details

hubs <- graph$hubs
hubnets <- graph$hubnets
nhubs <- length(hubs)
nnodes <- length(graph$nodes)
nmemb <- length(memb)

Observed enrichment scores.
obs <- rep(NA, nhubs)
k <- 1 ## actual using: for(k in 1:nhubs){}, for unit test, use the 1st hub
g <- hubnets[[hubs[k]]]
obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes)

Estimate P-values.
pvals <- rep(NA, nhubs)
for(k in which(obs > 0)) {
g <- hubnets[[hubs[k]]]
First pass:
x <- kda.analyze.simulate(obs[k], g, nmemb, nnodes, 200)
Then, use x to estimate preliminary and final P-values.
See kda.analyze() for more detail

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)
} ## finishing for loop

kda.analyze.test Calculate enrichment score for wKDA

Description

Obtains the enrichment score of a given hub (center node) belonging to a specified module. Enrich-
ment score of a center node depends on the shared node number between the neighbor nodes of this
center node (derived from the provided graph topology) and member nodes of this center node’s
module. The more a center node has neighbors in the graph among the member genes belonging to
the module of this center node, the greater enrichment score it has.

Usage

kda.analyze.test(neigh, w, members, nnodes)

12 kda.analyze.test

Arguments

neigh Neighbor nodes of the given hub node (i.e. nodes in the hubnet)

w Weigths of the given hub node based on its in-degree and out-degree edge den-
sity in the hubnet

members Node indices -within the entire graph- of the member genes of given hub’s mod-
ule.

nnodes Number of the nodes in the entire graph of the dataset.

Details

kda.analyze.test takes a hub node’s neigbor list and weight list; additionally, it takes the mem-
ber node list of relevant module. It searches the masses of the shared nodes between hubnet and
the given module (gene set). The shared edge mass is normalized with respect to number of the
expected match ratio between hubnet and the given node list. This normalized ratio is assigned as
the observed enrichment score of the hubnet according to the given member node list.

Value

z Calculated enrichment score

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.analyze.exec, kda.analyze.simulate

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<- "Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.

kda.analyze.test 13

job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction<-1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

Let's prepare KDA object for KDA:
job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)
set.seed(job.kda$seed)
i = 1 ## index of the module, whose p-val is calculated:
memb <- job.kda$module2nodes[[i]]
graph <- job.kda$graph ## we need to import a network
nsim <- job.kda$nperm ## number of simulations
This auxiliary function is called by kda.analyze.exec(), which is called
by kda.analyze() main function, see this main function for more details

hubs <- graph$hubs
hubnets <- graph$hubnets
nhubs <- length(hubs)
nnodes <- length(graph$nodes)
nmemb <- length(memb)

Observed enrichment scores for the hubs of the given module.
obs <- rep(NA, nhubs)
k <- 1 ## actual using: for(k in 1:nhubs){}, for test, use only the 1st hub
g <- hubnets[[hubs[k]]]
obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes)

Then, estimate preliminary and final P-values by kda.analyze.simulate()
See kda.analyze() for more details

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)

14 kda.configure

kda.configure Set parameters for weighted key driver analysis (wKDA)

Description

takes the configuration (plan) parameter for wKDA process as input and assigns default values if
needed. The fields of this parameter are listed in the arguements section in detail.

Usage

kda.configure(plan)

Arguments

plan a parameter including fields about the details of the wKDA process:

label: unique identifier for the analysis
folder: parent folder for results
netfile: path to network file (TAIL HEAD WEIGHT)
modfile: path to module file (MODULE GENE)
inffile: path to module info file
nodfile: path to node selection file
depthsearch: depth for subgraph search
direction: 0 for undirected, negative for downstream and
positive for upstream
maxoverlap: maximum allowed overlap between two key driver
neighborhoods
minsize: minimum module size
mindegreeminimum: node degree to qualify as a hub
maxdegreemaximum: node degree to include
edgefactor: influence of node strengths: 0.0 no influence,
1.0 full influence
seed: seed for random number generator

Details

kda.configure prepares the environment for wKDA process, checks the fields of the input plan
parameter (that includes paths of required input files and output folder, min module size, etc.), and
assigns the default values to these fields if they are not specified.

Value

plan configured and -if needed updated- plan parameter to be used in wKDA process.

Author(s)

Ville-Petteri Makinen

kda.configure 15

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze

Examples

for KDA the essential parameters should be assigned by user is as follows:
plan <- list()
assign job label:
plan$label<-"HDLC"
specify parent folder for results:
plan$folder<-"Results"
Get an input network (columns: TAIL HEAD WEIGHT)
plan$netfile <-"network.mouseliver.mouse.txt"
Get the gene sets derived from ModuleMerge, containing two columns,
MODULE and NODE, delimited by tab
plan$modfile<- "moddata.txt"
If above parameters are not assigned by users, code will stop with error:
if(is.null(plan$folder)) stop("No parent folder.")
if(is.null(plan$label)) stop("No job label.")
if(is.null(plan$netfile)) stop("No network file.")
if(is.null(plan$modfile)) stop("No module file.")

other parameters are optional, if they are not specified by user,
kda.configure assigns their default values:
graph search depth parameter:
if(is.null(plan$depth)) plan$depth <- 1
edge directionality in the network: O means undirected
if(is.null(plan$direction)) plan$direction <- 0
max overlap allowed between two modules
if(is.null(plan$maxoverlap)) plan$maxoverlap <- 0.33
min size of the modules
if(is.null(plan$minsize)) plan$minsize <- 20
min and max hub degree to be included:
if(is.null(plan$mindegree)) plan$mindegree <- "automatic"
if(is.null(plan$maxdegree)) plan$maxdegree <- "automatic"
number of simulations for permutation test:
if(is.null(plan$nperm)) plan$nperm <- 2000
seed for random number generator:
if(is.null(plan$seed)) plan$seed <- 1
these are the main parameters needed to be assigned default values.

16 kda.finish

kda.finish Organize and save results

Description

After wKDA process is accomplished, kda.finish.estimate sums up the results and log them to
the relevant files and folders. Besides, return them within the given job parameter.

Usage

kda.finish(job)

Arguments

job the data list including label and folder fields to specify a unique identifier for the
wKDA process and the output folder for the obtained results, respectively.

Details

kda.finish.estimate estimates additional measures if needed, saves results into relevant files,
trims numbers to provide a simpler file for viewing, and stores a summary file of top hits after the
wKDA prcess is accomplished. It also obtains the overlaps of the modules with hub neighborhoods,
finds co-hubs information, determines the top key driver for each module and saves the updated and
sorted p-values belonging to them.

Value

job updated information including the overlapping hub neighborhoods, co-hubs in-
formation, top driver of each module, and their updated and sorted p-values.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.finish.estimate, kda.finish.save, kda.finish.summarize, kda.finish.trim

kda.finish.estimate 17

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

finish the KDA process
job.kda <- kda.finish(job.kda)

remove the results folder
unlink("Results", recursive = TRUE)

kda.finish.estimate Estimate measures for accomplished wKDA results

Description

Estimates additional measures based on overlapping of module member nodes with hub neighbor
nodes in the graph.

Usage

kda.finish.estimate(job)

Arguments

job The data list that was subjected to wKDA. It involves the modules, member
genes belonging to each module, graph information of the dataset, hubs and
hubnets of the graph.

18 kda.finish.save

Details

kda.finish.save determines the overlaps of modules with hub neighborhoods, obtains graph mea-
sures based on the ratio of the observed overlap amounts to the expected overlap amount, and returns
the values of this measure.

Value

res Returns the overlapping ratio of the modules with hubnets.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.finish, kda.finish.save, kda.finish.summarize, kda.finish.trim

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
finish the KDA process by estimating additional measures for the modules
such as module sizes, overlaps with hub neighborhoods, etc.
job.kda <- kda.finish(job.kda)
if (nrow(job.kda$results)==0){
cat("No Key Driver Found!!!!")
} else{
Estimate additional measures - see kda.analyze and kda.finish for details
res <- kda.finish.estimate(job.kda)
}

kda.finish.save Save full wKDA results

Description

kda.finish.save sorts (according to KD p-values) and saves the wKDA results into specified files
and folders.

Usage

kda.finish.save(res, job)

kda.finish.save 19

Arguments

res the results obtained from kda.finish.estimate. They will be stored into spec-
ified folder.

job information including the entire graph, nodes, modules, co-hubs, top key driver
of each module, and their updated and sorted p-values. All the information
included job will be stored into relevant files.

Value

res the results obtained from kda.finish.estimate are merged with the module
and graph nodes information gained from job data frame. At the end, merged
information is both written to file and returned to the user.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.finish, kda.finish.estimate, kda.finish.summarize, kda.finish.trim

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
finish the KDA process by estimating additional measures for the modules
such as module sizes, overlaps with hub neighborhoods, etc.
job.kda <- kda.finish(job.kda)
if (nrow(job.kda$results)==0){
cat("No Key Driver Found!!!!")
} else{
Estimate additional measures - see kda.analyze and kda.finish for details
res <- kda.finish.estimate(job.kda)
Save full results about modules such as co-hub, nodes, P-values info etc.
res <- kda.finish.save(res, job.kda)
}

20 kda.finish.summarize

kda.finish.summarize Summarize the wKDA results

Description

Create a summary file of top key drivers. The file includes the key driver of each block of the dataset
and their p-values.

Usage

kda.finish.summarize(res, job)

Arguments

res the data frame including the p-values, false discovery rates, and fold scores of
the nodes obtained from kda.finish.trim

job the data frame including the path of output file which will briefly contain top
key drivers of the blocks and ranked p-values of those top key drivers

Details

kda.finish.summarize determines the ranking scores of blocks, finds the top node for each block,
selects and saves top key drivers, and stores P-values into file. top drovers of the blocks are also
returned to the user.

Value

res data frame including top node for each block

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.finish, kda.finish.estimate, kda.finish.save, kda.finish.trim

kda.finish.trim 21

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
finish the KDA process by estimating additional measures for the modules
such as module sizes, overlaps with hub neighborhoods, etc.
job.kda <- kda.finish(job.kda)
if (nrow(job.kda$results)==0){
cat("No Key Driver Found!!!!")
} else{
Estimate additional measures - see kda.analyze and kda.finish for details
res <- kda.finish.estimate(job.kda)
Save full results about modules such as co-hub, nodes, P-values info etc.
res <- kda.finish.save(res, job.kda)
Create a simpler file for viewing by trimming floating numbers
res <- kda.finish.trim(res, job.kda)
Create a summary file of top hit KDs.
res <- kda.finish.summarize(res, job.kda)
}
See kda.analyze() and kda.finish() for details

kda.finish.trim Trim numbers before save

Description

kda.finish.trim trims p-values, false discovery rates, and fold scores to make them nicer to look
at before saving the file. It also returns trimmed results to the user.

Usage

kda.finish.trim(res, job)

Arguments

res includes p-values, false discovery rates, and fold scores of the nodes

job data frame including output folder path to store trimmed results

Value

res Trimmed and formatted p-values, false discovery rates, and fold scores of the
nodes

Author(s)

Ville-Petteri Makinen

22 kda.prepare

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.finish, kda.finish.estimate, kda.finish.save, kda.finish.summarize

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
finish the KDA process by estimating additional measures for the modules
such as module sizes, overlaps with hub neighborhoods, etc.
job.kda <- kda.finish(job.kda)
if (nrow(job.kda$results)==0){
cat("No Key Driver Found!!!!")
} else{
Estimate additional measures - see kda.analyze and kda.finish for details
res <- kda.finish.estimate(job.kda)
Save full results about modules such as co-hub, nodes, P-values info etc.
res <- kda.finish.save(res, job.kda)
Create a simpler file for viewing by trimming floating numbers
res <- kda.finish.trim(res, job.kda)
}
See kda.analyze() and kda.finish() for details

kda.prepare Prepare graph topology for weighted key driver analysis

Description

kda.prepare gets graph topology required by wKDA process, then provides the information in-
cluding hub list, hubnets, and overlapping co-hubs.

Usage

kda.prepare(job)

Arguments

job a parameter including restirictions while determining the graph topology infor-
mation (such as hubs, hubnets, co-hubs, etc.), which is required by the wKDA
process:

kda.prepare 23

graph: graph of the dataset
depth: search depth for subgraph search
direction: use 0 for undirected, negative for downstream
and positive for upstream
maxoverlap: maximum allowed overlap between two key driver
neighborhoods
mindegree: minimum hub degree to include
edgefactor: influence of node strengths; 0.0 no influence,
1.0 full influence

Details

kda.prepare determines minimum hub degree if it is not specified by the user, finds hubs and their
neighborhoods (hubnets), extracts overlapping co-hubs, returns this information to user, and prints
it to the screen.

Value

job Updated data frame including information about the graph topology in terms of
hubs, hubnets, and overlapping co-hubs:

hubs: hub nodes list
hubnets: neighborhoods of hubs (hubnets)
cohubsets: overlapping hubs (co-hubs)

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.prepare.overlap, kda.prepare.screen

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<- "Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab

24 kda.prepare.overlap

job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

Configure the parameters for KDA:
job.kda <- kda.configure(job.kda)
Create the object properly
job.kda <- kda.start(job.kda)
Find the hubs, co-hubs, and hub neighborhoods (hubnets), etc.:
job.kda <- kda.prepare(job.kda)
After that, we need to call kda.analyze() and kda.finish()

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)

kda.prepare.overlap Extract overlapping co-hubs

Description

kda.prepare.overlap finds overlapping co-hubs of the given graph.

Usage

kda.prepare.overlap(graph, direction, rmax)

Arguments

graph entire graph, whose overlapping co-hubs will be found

kda.prepare.overlap 25

direction the direction of the interactions among graph components. 0 for undirected,
negative for downstream, and positive for upstream

rmax maximum allowed overlap between two key driver neighborhoods

Value

graph Updated graph including overlapping co-hubs:

cohubsetsco-hubs of the given graph

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.prepare

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<- "Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-"network.mouseliver.mouse.txt"
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- "mergedModules.txt"
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Configure the parameters for KDA:
job.kda <- kda.configure(job.kda)
Create the object properly
job.kda <- kda.start(job.kda)

Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare()
and its auxiliary functions kda.prepare.screen and kda.prepare.overlap
First, determine the minimum and maximum hub degrees:
nnodes <- length(job.kda$graph$nodes)
if (job.kda$mindegree == "automatic") {

26 kda.prepare.screen

dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75))
job.kda$mindegree <- dmin
}
if (job.kda$maxdegree == "automatic") {
dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1))
job.kda$maxdegree <- dmax
}
Collect neighbors.
job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth,
job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree)

Then, extract overlapping co-hubs by kda.prepare.overlap():
Collect overlapping co-hubs.
job.kda$graph <- kda.prepare.overlap(job.kda$graph, job.kda$direction,
job.kda$maxoverlap)

kda.prepare.screen Prepare hubs and hubnets

Description

kda.prepare.screen finds hubs and their neighborhoods (hubnets) from the given graph.

Usage

kda.prepare.screen(graph, depth, direction, efactor, dmin, dmax)

Arguments

graph entire graph, whose hubs and hubnets will be obtained

depth search depth for subgraph search

direction the direction of the interactions among graph components. 0 for undirected,
negative for downstream, and positive for upstream

efactor influence of node strengths (weights): 0.0 no influence, 1.0 full influence

dmin minimum hub degree to include

dmax maximum hub degree to include

Value

graph Updated graph including obtained hubs and hubnets:

hubs: hub nodes list
hubnets: neighborhoods of hubs (hubnets)

Author(s)

Ville-Petteri Makinen

kda.prepare.screen 27

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.prepare

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<- "Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-"network.mouseliver.mouse.txt"
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- "mergedModules.txt"
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Configure the parameters for KDA:
job.kda <- kda.configure(job.kda)
Create the object properly
job.kda <- kda.start(job.kda)

Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare()
and its auxiliary functions kda.prepare.screen and kda.prepare.overlap
First, determine the minimum and maximum hub degrees:
nnodes <- length(job.kda$graph$nodes)
if (job.kda$mindegree == "automatic") {
dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75))
job.kda$mindegree <- dmin
}
if (job.kda$maxdegree == "automatic") {
dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1))
job.kda$maxdegree <- dmax
}
Collect neighbors.
job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth,
job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree)

Then, extract overlapping co-hubs by kda.prepare.overlap()

28 kda.start

kda.start Import data for weighted key driver analysis

Description

kda.start converts identities (such as module descriptions, module identifiers, and module nodes)
to indices. It prepares graph topology and module information for wKDA process.

Usage

kda.start(job)

Arguments

job a data frame including fields for edges and nodes information of the graph
(TAIL, HEAD, WEIGHT). It also involves path of input files including mod-
ule descriptions and module-gene lists.

Details

kda.start imports graph and relevant module descriptor input files, creates an indexed graph struc-
ture, and converts identities to indices from module descriptions and module-gene lists. Hence, it
concludes with a graph structure and a module set involving member gene IDs for each module.

Value

job Updated data frame including indexed graph topology, modules, and nodes in-
formation:

graph: indexed topology
modules: module identities
modinfo: module descriptions (indexed)
moddata: module data (indexed)
module2nodes: lists of node indices for each module
modulesizes: module sizes

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish, kda.prepare, kda.start.edges, kda.start.identify, kda.start.modules

kda.start.edges 29

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

job.kda <- kda.configure(job.kda)
Import data for weighted key driver analysis:
job.kda <- kda.start(job.kda)

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
remove the results folder
unlink("Results", recursive = TRUE)

kda.start.edges Import nodes and edges of graph topology

Description

kda.start.edges imports network file, gets edge data (in TAIL, HEAD, WEIGHT format), elim-
inates the nodes -whose degree is smaller than the maximum allowed node degree-, and returns the
edges of remaining nodes.

30 kda.start.edges

Usage

kda.start.edges(job)

Arguments

job a data frame including information such as network file name, maximum al-
lowed node degree, edge direction (job$netfile, job$maxdegree, job$direction,
and so on.)

Value

edgdata filtered edge list, i.e. edges of the nodes, whose degree is smaller than the max-
imum allowed node degree

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish, kda.prepare, kda.start

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests
job.kda <- kda.configure(job.kda)

kda.start.identify 31

Import topology of the graph for KDA
This is already had been done in the kda.start() main function, due to
the time constraint while running examples, we did not run it again.
edgdata <- kda.start.edges(job.kda)

remove the results folder
unlink("Results", recursive = TRUE)

kda.start.identify Convert identities to indices for wKDA

Description

kda.start.identify searches the members of dat among the members of labels with respect to
the varname attribute, returns the matching rows of the dat.

Usage

kda.start.identify(dat, varname, labels)

Arguments

dat data list of the identities that will be searched

varname search will be performed with respect to which attribute (MODULE or NODE)

labels the place, where data list (i.e. dat) will be searched

Value

res matched rows of dat among the members of labels list according to the varname
attribute

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish, kda.prepare, kda.start

32 kda.start.modules

Examples

Converts identities (either module names or gene names) to the indices
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
aa
bb <- kda.start.identify(aa, "MODULE", c("Mod1"))
bb
cc <- kda.start.identify(aa, "MODULE", c("Mod1", "Mod3"))
cc
dd <- kda.start.identify(aa, "NODE", c("GeneA"))
dd

kda.start.modules Import module descriptions

Description

kda.start.modules searches the whole nodes of the modules within the nodes of edgdata edge-
list, filters out the nodes that does not exist in the nodes of edgdata, and deletes the modules, which
does not have enough nodes.

Usage

kda.start.modules(job, edgdata)

Arguments

job a data frame including information such as module data file name, edge direc-
tion, minimum acceptable module size (job$modfile, job$direction, job$minsize,
and so on.)

edgdata edge list data obtained from kda.start.edges

Value

moddata module descriptions and their member node lists

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish, kda.prepare, kda.start

kda2cytoscape 33

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests
job.kda <- kda.configure(job.kda)

Import topology of the graph for KDA, then find the module statistics
This is already had been done in the kda.start() main function, due to
the time constraint while running examples, we did not run it again.
edgdata <- kda.start.edges(job.kda)
Find module memberships of the graph nodes and obtain module statistics:
moddata <- kda.start.modules(job.kda, edgdata)

remove the results folder
unlink("Results", recursive = TRUE)

kda2cytoscape Generate input files for Cytoscape

Description

kda2cytoscape generates input files for Cytoscape to visualize the graph and hubnets after the
wKDA process finished. The network visualization is a streamlined depiction of the module enrich-
ment in hub neighborhoods.

Usage

kda2cytoscape(job, node.list = NULL, modules = NULL, ndrivers = 5,
depth = 1)

34 kda2cytoscape

Arguments

job wKDA result data list as returned by kda.finish

node.list array of node/gene names to be visualized with their neighbor node. if this is
not specified top ndrivers of each module and their neighborhoods will be
illustrated.

modules array of module names to be visualized

ndrivers maximum number of drivers per module

depth depth for neighborhood search in the graph

Details

kda2cytoscape first, selects top scoring key drivers for each module; then, assigns a colormap
to modules, processes each module separately, finds key nodes’ neighborhoods within a particular
search depth, and saves the edge and node lists of the modules to the specified output folder. Be-
sides, it returns this configuration data to the user. Created file list for Cytoscape are given below:

kda2cytoscape.top.kds.txt: top key drivers of the modules are
listed in this file. Number of the key drivers can be set by
user with ndrivers parameter.
kda2cytoscape.edges.txt: edge lists of the integrated graph
that includes the subnetworks of all modules.
kda2cytoscape.nodes.txt: node lists of the integrated graph
that includes the subnetworks of all modules.
module.color.mapping.txt: color mapping for the modules,
i.e. one color is assigned to each module.

Value

job updated data list including the node and edge information of the modules con-
verted to Cytoscape format

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish

kda2cytoscape.colorize 35

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

finish the KDA process
job.kda <- kda.finish(job.kda)

prepare the cytoscape-ready files:
job.kda <- kda2cytoscape(job.kda)

remove the results folder
unlink("Results", recursive = TRUE)

kda2cytoscape.colorize

Trace module memberships of genes

Description

kda2cytoscape.colorize assigns color to each node of the given module. If a node belongs to
more than one module, different colors will be assigned to that node, as each color representing one
module (shared nodes are illustrated as pie charts in the graph).

Usage

kda2cytoscape.colorize(noddata, moddata, modpool, palette)

36 kda2cytoscape.colormap

Arguments

noddata node information of the entire graph

moddata module data including node (member gene) list

modpool unique module list including significant key drivers

palette assigned unique color map for all modules

Value

res data frame including the assigned color labels for the nodes of the given module.
If a node is concurrently member of many modules, multiple colors will be
assigned to that node (one color for each of these modules)

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

Trace module memberships for each KD and its neighbors
If a KD (and its neigbor nodes) is member of multiple modules, assign
multiple colors to these multi-member nodes.
We need to know data of all possible modules and all possible module ids
to assign multiple colors to a shared node (between modules) when needed
if(exists("valdata"))
cat("Marker pvalues will be used to determine node sizes
in the network illustration")
noddata <- kda2cytoscape.colorize(neighs, job.kda$moddata, modpool, palette)

kda2cytoscape.colormap

Assign one color to each unique module

Description

kda2cytoscape.colormap takes number of the modules and assigns a particular color to each
module. Returns the color list (palette).

kda2cytoscape.drivers 37

Usage

kda2cytoscape.colormap(ncolors)

Arguments

ncolors number of the unique modules

Value

palette color list: one color is assigned to each module

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

color.number = 5 ## let us assume we have 5 modules, assign 1 color to each:
palette <- kda2cytoscape.colormap(color.number)

kda2cytoscape.drivers Select top key drivers for each module

Description

kda2cytoscape.drivers finds maximally top ndriv key drivers for each module with respect to
the significance level of the drivers.

Usage

kda2cytoscape.drivers(data, modules, ndriv)

Arguments

data data frame including information of the modules (key driver list, p-values, node
list, false discovery rates (fdr), and so on.)

modules top scoring modules among KDA results

ndriv maximum number of drivers that can be chosen for per module

38 kda2cytoscape.drivers

Value

data top key drivers (maximally ndriv drivers for each module) for top modules

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)
Select top key drivers from each module.
First, take module names from kda results
modules <- unique(job.kda$results$MODULE)
Take top 2 KDs:
drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2)

remove the results folder
unlink("Results", recursive = TRUE)

kda2cytoscape.edges 39

kda2cytoscape.edges Find edges of a given node with a specified depth

Description

kda2cytoscape.edges finds the sub-graph (node and edge lists) of a central node and its neigh-
borhood at a particular search depth. The central node is a member of a module, which is defined
at kda2cytoscape.exec.

Usage

kda2cytoscape.edges(graph, center, depth, direction)

Arguments

graph entire graph

center the node, whose interactions with neighbors will be searched within graph.

depth search depth for graph neighborhood

direction edge direction. 0 for undirected, negative for downstream and positive for up-
stream

Value

g the sub-graph including TAIL, HEAD, WEIGHT information of the central
node, which belongs to the specified module.

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"

40 kda2cytoscape.exec

Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)
Select a center node to seek its neighbors in the graph:
edges.of.center.node <- kda2cytoscape.edges(job.kda$graph, 1,
job.kda$depth, job.kda$direction)

remove the results folder
unlink("Results", recursive = TRUE)

kda2cytoscape.exec Evaluate each module separately for visualization

Description

kda2cytoscape.exec deals with the modules individually; takes a particular amount of top key
drivers of the given module in company with the top key driver lists and colormap of all modules;
traces module memberships and produces colormap, it finds the edge and node lists for the top key
drivers and their neighborhood for a given module.

Usage

kda2cytoscape.exec(job, drivers, modpool, palette, graph.depth = 1)

Arguments

job data list including entire graph, nodes, modules information

drivers top key drivers of the specified module

modpool unique key driver list for all modules

palette assigned unique color map for all modules

graph.depth search depth for graph neighborhood

kda2cytoscape.exec 41

Value

res uniquely identified node and edge lists of the members belonging to the given
module

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)
Select top key drivers from each module.
First, take module names from kda results
modules <- unique(job.kda$results$MODULE)
Take top 2 KDs:
drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2)
drivers <- as.data.frame(drivers)
colnames(drivers) <- c("MODULE" , "NODE")

42 kda2cytoscape.identify

mods <- unique(drivers$MODULE)
modnames <- job.kda$modules[mods]
modnames[which(mods == 0)] <- "NON.MODULE"
palette <- kda2cytoscape.colormap(length(mods))
palette[,which(mods == 0)] <- c(90,90,90)
drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)]
drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE]
for(i in 1:nrow(drivers))
drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)],
palette[2, match(drivers$MODULE[i], mods)],
palette[3, match(drivers$MODULE[i], mods)], sep=" ")
Process each module separately. Just perform for the 1st module:
i <- 1
rows <- which(drivers$MODULE == mods[i])
if(length(rows) > 0)
tmp <- kda2cytoscape.exec(job.kda, drivers[rows,], mods, palette,
job.kda$depth)

remove the results folder
unlink("Results", recursive = TRUE)

kda2cytoscape.identify

Match identities with respect to given variable name

Description

kda2cytoscape.identify searches the given data list dat within the labels according to the
specified attribute (variable name). It returns the matched rows. Hence, it finds identifier numbers
for the searched data list dat.

Usage

kda2cytoscape.identify(dat, varname, labels)

Arguments

dat node ID list whose symbols or names will be collected from network node name
(or symbol) list.

varname specifies that dat will be searched among labels according to which variable
(attribute). Here, gene symbols whose IDs are given, will be searched in the
causal network node list according to the NODE attribute.

labels the data list possibly including names or symbols corresponding to the given IDs
in the dat data list.

Value

res the matching rows of labels with the identifiers of given data list dat

kda2himmeli 43

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2cytoscape

Examples

Converts identities (either module names or gene names) to the indices
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
aa
bb <- kda2cytoscape.identify(aa, "MODULE", c("Mod1"))
bb
cc <- kda2cytoscape.identify(aa, "MODULE", c("Mod1", "Mod3"))
cc
dd <- kda2cytoscape.identify(aa, "NODE", c("GeneA"))
dd

kda2himmeli Generate input files for Himmeli

Description

kda2himmeli generates input files for Himmeli to visualize the graph and hubnets after the wKDA
process finished. The network visualization is a streamlined depiction of the module enrichment in
hub neighborhoods.

Usage

kda2himmeli(job, modules = NULL, ndrivers = 5)

Arguments

job KDA result data list as returned by kda.finish

modules array of module names to be visualized

ndrivers maximum number of drivers per module

44 kda2himmeli

Details

kda2himmeli first, selects top scoring key drivers for each module; then, assigns a colormap to
modules, processes each module separately, finds key nodes’ neighborhoods, and saves the edge
and node lists of the modules to the specified output folder. Besides, it returns this configuration
data to the user.

Value

job updated data list including the node and edge information of the modules con-
verted to Himmeli format

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda.analyze, kda.finish

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt",
package="Mergeomics")

Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

kda2himmeli.colorize 45

finish the KDA process
job.kda <- kda.finish(job.kda)

prepare the cytoscape-ready files:
job.kda <- kda2himmeli(job.kda)

remove the results folder
unlink("Results", recursive = TRUE)

kda2himmeli.colorize Trace module memberships of genes

Description

kda2himmeli.colorize assigns color to each node of the given module. If a node belongs to more
than one module, different colors will be assigned to that node, as each color representing one
module (shared nodes are illustrated as pie charts in the graph).

Usage

kda2himmeli.colorize(noddata, moddata, modpool, palette)

Arguments

noddata node information of the entire graph

moddata module data including node (member gene) list

modpool unique module list including significant key drivers

palette assigned unique color map for all modules

Value

res data frame including the assigned color labels for the nodes of the given mod-
ule. If a node is concurrently member of many modules, many colors will be
assigned to that node (one color for each of these modules)

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

46 kda2himmeli.colormap

See Also

kda2himmeli

Examples

Trace module memberships for each KD
If a KD is member of multiple modules, assign multiple colors to it
Also consider the locus pval of the top locus of each KD (by valdata)
We need to know data of all possible modules and all possible module ids
to assign multiple colors(sectors) to a KD when needed
if(exists("valdata"))
cat("Marker pvalues will be used to determine node sizes
in the network illustration")
noddata <- kda2himmeli.colorize(valdata, job.kda$moddata, modpool, palette)

kda2himmeli.colormap Assign one color to each unique module

Description

kda2himmeli.colormap takes number of the modules and assigns a particular color to each mod-
ule. Returns the color list (palette).

Usage

kda2himmeli.colormap(ncolors)

Arguments

ncolors number of the unique modules

Value

palette color list: one color is assigned to each module

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2himmeli

kda2himmeli.drivers 47

Examples

color.number = 5 ## let us assume we have 5 modules, assign 1 color to each:
palette <- kda2himmeli.colormap(color.number)

kda2himmeli.drivers Select top key drivers for each module

Description

kda2himmeli.drivers finds maximally top ndriv key drivers for each module with respect to the
significance level of the drivers.

Usage

kda2himmeli.drivers(data, modules, ndriv)

Arguments

data data frame including information of the modules (key driver list, p-values, node
list, false discovery rates (fdr), and so on.)

modules top scoring modules among KDA results

ndriv maximum number of drivers that can be chosen for per module

Value

data top key drivers (maximally ndriv drivers for each module) for top modules (if
module significance levels are given)

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2himmeli

48 kda2himmeli.edges

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)
Select top key drivers from each module.
First, take module names from kda results
modules <- unique(job.kda$results$MODULE)
Take top 2 KDs:
drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2)

remove the results folder
unlink("Results", recursive = TRUE)

kda2himmeli.edges Find edges of a given node with a specified depth

Description

kda2himmeli.edges finds the sub-graph (node and edge lists) of a central node and its neighbor-
hood at a particular search depth. The central node is a member of a module, which is defined at
kda2himmeli.exec.

Usage

kda2himmeli.edges(graph, center, depth, direction)

kda2himmeli.edges 49

Arguments

graph entire graph

center the node, whose interactions with neighbors will be searched within graph.

depth search depth for graph neighborhood

direction edge direction. 0 for undirected, negative for downstream and positive for up-
stream

Value

g the sub-graph including TAIL, HEAD, WEIGHT information of the central
node, which belongs to the specified module.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2himmeli

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.

50 kda2himmeli.exec

job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)
Select a center node to seek its neighbors in the graph:
edges.of.center.node <- kda2himmeli.edges(job.kda$graph, 1,
job.kda$depth, job.kda$direction)

remove the results folder
unlink("Results", recursive = TRUE)

kda2himmeli.exec Evaluate each module separately for visualization

Description

kda2himmeli.exec deals with the modules individually; takes a particular amount of top key
drivers of the given module in company with the top key driver lists and colormap of all mod-
ules; traces module memberships and produces colormap, it finds the edge and node lists for the top
key drivers and their neighborhood for a given module.

Usage

kda2himmeli.exec(job, valdata, drivers, modpool, palette)

Arguments

job data list including entire graph, nodes, modules information
valdata GWAS pvalues of top loci of the nodes - if this information is available, sizes of

the nodes in the figure will be correlated with the p-value of the top loci of the
nodes -

drivers top key drivers of the specified module
modpool unique key driver list for all modules
palette assigned unique color map for all modules

Value

res uniquely identified node and edge lists of the members belonging to the given
module

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

kda2himmeli.exec 51

See Also

kda2himmeli

Examples

get the prepared and KDA applied dataset:(see kda.analyze for details)
data(job_kda_analyze)
set the relevant parameters:
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
Gene sets derived from ModuleMerge, containing two columns, MODULE,
NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1

Finish the KDA process
job.kda <- kda.finish(job.kda)

Get valdata including marker pvals
valdata <- tool.read(job.kda$nodfile)
z <- as.double(valdata$VALUE)
z <- (z/quantile(z, 0.95) + rank(z)/length(z))
valdata$SIZE <- pmin(4.0, z)
Select subset of genes.
valdata <- kda2himmeli.identify(valdata, "NODE", job.kda$graph$nodes)

Select top key drivers from each module.
First, take module names from kda results
modules <- unique(job.kda$results$MODULE)
Take top 2 KDs:
drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2)
drivers <- as.data.frame(drivers)
colnames(drivers) <- c("MODULE" , "NODE")

mods <- unique(drivers$MODULE)
modnames <- job.kda$modules[mods]
modnames[which(mods == 0)] <- "NON.MODULE"
palette <- kda2himmeli.colormap(length(mods))

52 kda2himmeli.identify

palette[,which(mods == 0)] <- c(90,90,90)
drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)]
drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE]
for(i in 1:nrow(drivers))
drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)],
palette[2, match(drivers$MODULE[i], mods)],
palette[3, match(drivers$MODULE[i], mods)], collapse=" ")
Process each module separately. Just perform for the 1st module:
i <- 1
rows <- which(drivers$MODULE == mods[i])
if(length(rows) > 0)
tmp <- kda2himmeli.exec(job.kda, valdata, drivers[rows,], mods, palette)

remove the results folder
unlink("Results", recursive = TRUE)

kda2himmeli.identify Match identities with respect to given variable name

Description

kda2himmeli.identify searches the given data list dat within the labels according to the spec-
ified attribute (variable name). It returns the matched rows. Hence, it finds identifier numbers for
the searched data list dat.

Usage

kda2himmeli.identify(dat, varname, labels)

Arguments

dat node ID list whose symbols or names will be collected from network node name
(or symbol) list.

varname specifies that dat will be searched among labels according to which variable
(attribute). Here, gene symbols whose IDs are given, will be searched in the
causal network node list according to the NODE attribute.

labels the data list possibly including names or symbols corresponding to the given IDs
in the dat data list.

Value

res the matching labels or names of labels with the IDs of dat list

Author(s)

Ville-Petteri Makinen

MSEA.KDA.onestep 53

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

kda2himmeli

Examples

Converts identities (either module names or gene names) to the indices
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
aa
bb <- kda2himmeli.identify(aa, "MODULE", c("Mod1"))
bb
cc <- kda2himmeli.identify(aa, "MODULE", c("Mod1", "Mod3"))
cc
dd <- kda2himmeli.identify(aa, "NODE", c("GeneA"))
dd

MSEA.KDA.onestep Run MSEA and/or KDA in one step

Description

MSEA.KDA.onestep performs Marker Set Enrichment Analysis (MSEA) and/or Key Driver Anlay-
sis (KDA) processes in one step.

Usage

MSEA.KDA.onestep(plan, apply.MSEA=TRUE, apply.KDA=FALSE,
maxoverlap.genesets=0.33, symbol.transfer.needed=FALSE,
sym.from=c("HUMAN", "MOUSE"), sym.to=c("HUMAN", "MOUSE"))

Arguments

plan a data list including file and parameter settings for MSEA and/or KDA pro-
cesses:

label: unique identifier for the analysis
folder: output folder for results
modfile: path to module file (cols: MODULE GENE)
genfile: path to gene file (cols: GENE LOCUS) (MSEA-specific)
marfile: path to marker file (cols: MARKER VALUE) (MSEA-specific)
inffile: path to module info file (cols: MODULE DESCR)
seed: seed for random number generator

54 MSEA.KDA.onestep

permtype: gene for gene-level, locus for marker-level
nperm: max number of random permutations
mingenes: min number of genes per module (after merging)
maxgenes: max number of genes per module
quantiles: cutoffs for test statistic
maxoverlap: max overlap allowed between genes
netfile: path to network file (TAIL HEAD WEIGHT) (KDA-specific)

apply.MSEA determines whether MSEA will be performed to the given set. Default value is
TRUE.

apply.KDA determines whether KDA will be performed to the given set. Default value is
FALSE.

maxoverlap.genesets

maximum overlapping ratio for the genesets. This is applicable if KDA is per-
formed following the MSEA process in one-step running. Default value is 0.33.

symbol.transfer.needed

determines whether gene symbols in the gene sets are needed to be transformed
between different species. Default value is FALSE.

sym.from defines the species, whose gene symbols will be converted to the gene symbols
of sym.to species. It can be either HUMAN or MOUSE. It is applicable if
symbol.transfer.needed is TRUE.

sym.to defines the species, whose gene symbols will be converted from the gene sym-
bols of sym.from species. It can be either HUMAN or MOUSE. It is applicable
if symbol.transfer.needed is TRUE.

Details

MSEA.KDA.onestep performs MSEA and/or KDA operations in one built-in function. Users can
run both MSEA and KDA sequentially, or they can run either MSEA or KDA in one step with the
same function. If MSEA and KDA will be applied sequentially, significantly enriched gene sets
(having FDR < 0.25), coming from MSEA results, will be merged if their overlapping ratios are
larger than a given threshold, i.e. maxoverlap.genesets, to proceed the next step with relatively
indepent gene sets. Then, KDA is applied to this relatively independent gene sets.

Value

plan the updated data frame after performing MSEA and/or KDA. If MSEA is per-
formed, results will include standard MSEA results (see ssea.analyze for de-
tails); if KDA is applied, results will include standard KDA results (see kda.analyze
for details).

Author(s)

Zeyneb Kurt

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

ssea.analyze 55

See Also

ssea.analyze, kda.analyze

Examples

plan <- list()
plan$label <- "hdlc"
plan$folder <- "Results"
plan$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
plan$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
plan$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
plan$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
plan$nperm <- 100 ## default value is 20000
plan <- MSEA.KDA.onestep(plan, apply.MSEA=TRUE)

ssea.analyze Marker set enrichment analysis (MSEA)

Description

ssea.analyze finds the enrichment of the pathways or co-expression modules by a marker set (e.g.
associated risk variants -loci- of a relevant disease). Association study by mapping markers (e.g.
SNPs) to genes (e.g. via expression QTLs). Enrichment P-values obtained by the MSEA denote
the degree of enrichment of significantly disease-associated (high ranking) markers (e.g. eSNPs)
within these pathways when compared to the null distribution of expected uniform distribution of
all ranks of the markers. MSEA is performed with either gene-level or marker-level permutations
based on Gaussian distribution.

Usage

ssea.analyze(job, trim_start, trim_end)

Arguments

job the data list including fields: seed for random number generator (job$seed)
(to obtain the same results from permutation when the same input set is given),
random permutation level (job$permtype) (either gene- or marker-level), max-
imum number of permutations (job$nperm) for the permutation test, and the
database that uses indexed identities for modules, genes, and markers (e.g. loci)
(job$database).

trim_start percentile taken from the beginning for trimming away a defined proportion of
genes with significant trait association to avoid signal inflation of null back-
ground in gene permutation. Default value is 0.002.

56 ssea.analyze

trim_end percentile taken from the ending point for trimming away a defined proportion
of genes with significant trait association to avoid signal inflation of null back-
ground in gene permutation. Default value is 0.998.

Details

ssea.analyze associates the gene sets (pathways or co-expression modules) with relevant disease
(e.g. Coronary Artery Disease) association data by mapping markers (e.g. SNPs) to genes (e.g.
via expression QTLs). It performs the MSEA by using observed and estimated enrichment scores.
First, the observed enrichment scores of the pathways by markers (e.g. loci) are calculated. Then, a
Gaussian distribution based simulation is performed, by using the statistics of the observed scores
(mean, std.dev., etc.), to obtain the estimated enrichment scores, enrichment frequencies, and other
statistics e.g. p-values for the pathways. ssea.analyze trims away a defined proportion of genes
with significant trait association to avoid signal inflation of null background in gene permutation by
using trim_start and trim_end.

Value

job the updated data frame including results: indexed module identity, enrichment
P-values, raw frequencies (raw frequency of a gene set defines the number of
the estimated enrichment scores that are larger than this gene set’s enrichment
score under the null distribution based on Gaussian function)

.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.control, ssea.finish, ssea.prepare, ssea.start, ssea2kda

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",

ssea.analyze.observe 57

"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.analyze.observe Collect enrichment score statistics for MSEA

Description

ssea.analyze.observe obtains the observed enrichment scores of the pathways or modules by a
given marker set (e.g. GWAS loci data of a disease) depending on the observation frequencies of
this markers in the pathways.

Usage

ssea.analyze.observe(db)

58 ssea.analyze.observe

Arguments

db database including the indexed identities for modules, genes and marker:

modulesizes: gene counts for modules.
modulelengths: distinct marker counts for modules.
moduledensities: ratio between distinct and non-distinct
markers.
genesizes: marker count for each gene.
module2genes: gene lists for each module.
gene2loci: marker lists for each gene.
locus2row: row indices in the marker data frame for each
marker.
observed: matrix of observed counts of values that exceed
each quantile point for each marker.
expected: 1.0 - quantile points.

Value

scores enrichment scores

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in

ssea.analyze.randgenes 59

the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"

run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

Observed enrichment scores.
db <- job.msea$database
scores <- ssea.analyze.observe(db)
nmods <- length(scores)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.analyze.randgenes

Estimate enrichment from randomized genes

Description

ssea.analyze.randgenes simulates enrichment scores by randomizing the genes from all mod-
ules (from database - db)

Usage

ssea.analyze.randgenes(db, targets, gene_sel)

60 ssea.analyze.randgenes

Arguments

db database including the indexed identities for modules, genes and markers:

modulesizes: gene counts for modules.
modulelengths: distinct marker counts for modules.
moduledensities: ratio between distinct and non-distinct
markers.
genesizes: marker count for each gene.
module2genes: gene lists for each module.
gene2loci: marker lists for each gene .
locus2row: row indices in the marker data frame for each
marker.
observed: matrix of observed counts of values that exceed
each quantile point for each marker.
expected: 1.0 - quantile points.

targets all modules

gene_sel selected genes to be trimmed away to avoid signal inflation of null background
in gene permutation.

Value

scores randomly simulated enrichment scores

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")

ssea.analyze.randgenes 61

job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

Observed enrichment scores.
db <- job.msea$database
gene2loci <- db$gene2loci
locus2row <- db$locus2row
observed <- db$observed
#Calcuate individual gene enrichment score
trim_scores <- rep(NA, length(gene2loci))
for(k in 1:length(trim_scores)) {

genes <- k
Collect markers.
loci <- integer()
for(i in genes)
loci <- c(loci, gene2loci[[i]])

Determine data rows.
loci <- unique(loci)
rows <- locus2row[loci]
nloci <- length(rows)

Calculate total counts.
e <- (nloci/length(locus2row))*colSums(observed)
o <- observed[rows,]
if(nloci > 1) o <- colSums(o)

62 ssea.analyze.randloci

Estimate enrichment.
trim_scores[k] <- ssea.analyze.statistic(o, e)

}
trim_start=0.002 # default
trim_end=1-trim_start
cutoff=as.numeric(quantile(trim_scores,probs=c(trim_start,trim_end)))
gene_sel=which(trim_scores>cutoff[1]&trim_scores<cutoff[2])

scores <- ssea.analyze.observe(db)
nmods <- length(scores)

Simulated scores.
nperm <- job.msea$nperm
observ <- scores
Include only non-empty modules for simulation.
nmods <- length(db$modulesizes)
targets <- which(db$modulesizes > 0)
hits <- rep(NA, nmods)
hits[targets] <- 0

Prepare data structures to hold null samples.
keys <- rep(0, nperm)
scores <- rep(NA, nperm)
scoresets <- list()
for(i in 1:nmods) scoresets[[i]] <- double()
Simulate random scores.
within a for loop: check capacity, find new statistics, update snull
distribution (simulated null distr.) by permuting genes
snull <- ssea.analyze.randgenes(db, targets, gene_sel)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.analyze.randloci Estimate enrichment from randomized marker

Description

ssea.analyze.randloci simulates enrichment scores by randomizing the marker that mapped to
genes from all modules (from database, db)

Usage

ssea.analyze.randloci(db, targets)

ssea.analyze.randloci 63

Arguments

db database including the indexed identities for modules, genes and markers:

modulesizes: gene counts for modules.
modulelengths: distinct marker counts for modules.
moduledensities: ratio between distinct and non-distinct
markers.
genesizes: marker count for each gene.
module2genes: gene lists for each module.
gene2loci: marker lists for each gene .
locus2row: row indices in the marker data frame for each
marker.
observed: matrix of observed counts of values that exceed
each quantile point for each marker.
expected: 1.0 - quantile points.

targets all modules

Value

scores randomly simulated enrichment scores

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

64 ssea.analyze.randloci

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

Observed enrichment scores.
db <- job.msea$database
scores <- ssea.analyze.observe(db)
nmods <- length(scores)

Simulated scores.
nperm <- job.msea$nperm
observ <- scores
Include only non-empty modules for simulation.
nmods <- length(db$modulesizes)
targets <- which(db$modulesizes > 0)
hits <- rep(NA, nmods)
hits[targets] <- 0

Prepare data structures to hold null samples.
keys <- rep(0, nperm)
scores <- rep(NA, nperm)
scoresets <- list()
for(i in 1:nmods) scoresets[[i]] <- double()
Simulate random scores.
within a for loop: check capacity, find new statistics, update snull
distribution (simulated null distr.) by permuting loci
snull <- ssea.analyze.randloci(db, targets)

Remove the temporary files used for the test:

ssea.analyze.simulate 65

file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.analyze.simulate Simulate scores for MSEA

Description

ssea.analyze.simulate simulates enrichment scores by randomly permuting database with re-
spect to the specified permutation type (either gene-level or marker-level).

Usage

ssea.analyze.simulate(db, observ, nperm, permtype, trim_start, trim_end)

Arguments

db database including the indexed identities for modules, genes and markers (e.g.
loci):

modulesizes: gene counts for modules.
modulelengths: distinct marker counts for modules.
moduledensities: ratio between distinct and
non-distinct markers.
genesizes: marker count for each gene.
module2genes: gene lists for each module.
gene2loci: marker lists for each gene.
locus2row: row indices in the marker data frame for
each marker.
observed: matrix of observed counts of values that
exceed each quantile point for each marker.
expected: 1.0 - quantile points.

observ observed enrichment scores

nperm maximum nubmer of permutations (for simulation)

permtype permutation type (either gene or locus)

trim_start percentile taken from the beginning for trimming away a defined proportion of
genes with significant trait association to avoid signal inflation of null back-
ground in gene permutation. Default value is 0.002.

trim_end percentile taken from the ending point for trimming away a defined proportion
of genes with significant trait association to avoid signal inflation of null back-
ground in gene permutation. Default value is 0.998.

Value

scoresets simulated score lists for the statistically significant modules

66 ssea.analyze.simulate

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)

ssea.analyze.statistic 67

job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

Observed enrichment scores.
db <- job.msea$database
scores <- ssea.analyze.observe(db)
nmods <- length(scores)

Simulated scores.
nperm <- job.msea$nperm
trim_start=0.002 # default
trim_end=1-trim_start
nullsets <- ssea.analyze.simulate(db, scores, nperm, job.msea$permtype,
trim_start, trim_end)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.analyze.statistic

MSEA statistics for enrichment score

Description

ssea.analyze.statistic estimates the enrichment score based on observed and expected ones.

Usage

ssea.analyze.statistic(o, e)

Arguments

o observed enrichment score

e expected enrichment score

Value

score estimated enrichment score based on observed and expected scores

Author(s)

Ville-Petteri Makinen

68 ssea.control

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze

Examples

O and E the observed and expected counts of positive findings
(enrichment scores) at a given cutoff:
set.seed(1)
o <- rnorm(1)
e <- rnorm(1)
find the final enrichment score from the observed and estimated scores:
z <- ssea.analyze.statistic(o, e)

ssea.control Add internal positive control modules for MSEA

Description

ssea.control adds positive control modules that includes the top-scored genes based on the marker
scores of these genes. The database structure, including identities of the variables, is updated prop-
erly.

Usage

ssea.control(job)

Arguments

job data list including module and gene identities as characters; also including database
that has indexed identities for MSEA:

modules: module identities as characters.
genes: gene identities as characters.
moddata: preprocessed module data (indexed identities).
database: database including indexed identities for
modules, genes, and markers.

Value

job data list including augmented internal control modules:

modules: augmented module names
moddata: augmented module data
database: augmented database

ssea.control 69

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

Check the slots for control module;
if it cannot find any control module, function throws an error,
if can find control slots, updates the database identities (modules,
genes, markers) properly:
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)

70 ssea.finish

job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.finish Organize and save MSEA results

Description

ssea.finish organizes and stores the MSEA results into relevant output files.

Usage

ssea.finish(job)

Arguments

job data list including the results of MSEA process. job will be saved after getting
organized:

label: unique identifier for the analysis.
folder: output folder for results.
resultsdata: frame including indexed module identities
(MODULE) and enrichment P-values (P).
database: database including indexed identities for
modules, genes, and markers.

Details

ssea.finish obtains module statistics (member genes, size, length, density, enrichment scores,
false discovery rates), finds the top marker within genes, updates the gene scores and gene sizes
(i.e. number of markers for each gene), and saves the organized results regarding the modules and
genes into the relevant files.

Value

job data list including the organized results of MSEA process:

results: updated information of modules:
number of distinct member genes (NGENES),
number of distinct member markers (NLOCI),
ratio of distinct to non-distinct markers (DENSITY),
false discovery rates (FDR).
generesults: updated gene-specific information including:

ssea.finish 71

indexed gene identity (GENE),
gene size (NLOCI),
unadjusted enrichment score (SCORE),
marker with maximum value (LOCUS),
marker value (VALUE).

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze, ssea.control, ssea.prepare, ssea.start, ssea2kda

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:

72 ssea.finish.details

tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.finish.details Organize and save module, gene, top locus, Ps of MSEA results

Description

ssea.finish.details finds significant modules and their gene lists, and top marker (with GWAS
-log10 transformed p-vals) of these genes, merge results of markers, genes and module statistics,
sort results according to first, module enrichment score, then marker P-value, and saves these sorted
results into the relevant files.

Usage

ssea.finish.details(job)

Arguments

job data list including the results of MSEA process:

label: unique identifier for the analysis.
folder: output folder for results.
modinfo: descriptions of the modules.
resultsdata: frame including indexed module identities
(MODULE) and enrichment P-values (P).
database: database including indexed identities for
modules, genes, and markers.

Value

None.

ssea.finish.details 73

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.finish

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)

74 ssea.finish.fdr

job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

Estimate mod FDR values, sort according to significance, save full results:
job.msea <- ssea.finish.fdr(job.msea)
Collect top markers(e.g.loci) within genes, save genes with top marker Pval
job.msea <- ssea.finish.genes(job.msea)
Find signficant modules, collect gene members of top modules,
Merge gene results (with top marker info),
Sort and save details according to enrichment and marker value:
job.msea <- ssea.finish.details(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.finish.fdr Organize and save FDR results of the MSEA

Description

ssea.finish.fdr estimates the FDR values of the enrichment P-values belonging to the modules.
It also gets the other module information such as size (gene number), length (marker number),
density, etc., sorts the modules according to P-values, saves this information into relevant files.

Usage

ssea.finish.fdr(job)

Arguments

job data list including module-realted results of MSEA process:

folder: output folder for results.
modules: module names.
results: data frame including indexed module identities
(MODULE) and enrichment P-values (P).
database: database including indexed identities for
modules, genes, and markers.

Value

job data list including the organized module-related results of MSEA process:

ssea.finish.fdr 75

results: updated information of modules:
number of distinct member genes (NGENES),
number of distinct member markers (NLOCI),
ratio of distinct to non-distinct markers (DENSITY),
false discovery rates (FDR).

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.finish

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:

76 ssea.finish.genes

tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

Estimate mod FDR values, sort according to significance, save full results:
job.msea <- ssea.finish.fdr(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.finish.genes Organize and save gene-realted MSEA results

Description

ssea.finish.genes organizes and stores the gene-related MSEA results into relevant output file.
It finds the top markers within genes, update gene scores and gene sizes, and save the results.

Usage

ssea.finish.genes(job)

Arguments

job data list including the information about the MSEA process:

folder: output folder for results.
database: database including indexed identities for
modules, genes, and markers.

Value

job data list including the organized gene-related results of MSEA process:

generesults: updated gene-specific information;
indexed gene identity (GENE),
gene size (NLOCI),
unadjusted enrichment score (SCORE),
marker with maximum value (LOCUS),
marker value (VALUE).

ssea.finish.genes 77

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.finish

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)

78 ssea.meta

job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

Estimate mod FDR values, sort according to significance, save full results:
job.msea <- ssea.finish.fdr(job.msea)
Collect top markers(e.g.loci) within genes, save genes with top marker Pval
job.msea <- ssea.finish.genes(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.meta Merge multiple MSEA results into meta MSEA

Description

ssea.meta merges MSEA results of modules, genes, and markers, constructs hierarchical repre-
sentation of genes and modules, calculates meta P-values of the modules (based on z-scores), and
save all statistics results.

Usage

ssea.meta(jobs, label, folder)

Arguments

jobs data list including information and statistics about genes, markers, and modules

label label (unique identifier) for meta job

folder parent folder for meta job

Value

meta data list including meta-analyzing results for the modules, which enables ana-
lyzing the multiple MSEA results for the modules.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

ssea.meta 79

Examples

Create an object for multiple MSEAs:
job.multiple.msea <- list()
set.seed(1)
for(i in 1:3){
make 3 trials, each time pick 10 random modules among the first 20 modules
mod.indices <- sample(20, 10)
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 30 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[mod.indices]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")

80 ssea.prepare

file.remove("subsetof.marfile.txt")
job.multiple.msea[[i]] <- job.msea
}

meta.results <- ssea.meta(job.multiple.msea, job.multiple.msea[[1]]$label,
job.multiple.msea[[1]]$folder)

ssea.prepare Prepare an indexed database for MSEA

Description

ssea.prepare prepares a database that includes hierarchical for modules, i.e. it collects gene list
and unique marker list of the modules for MSEA process

Usage

ssea.prepare(job)

Arguments

job a data list with the following components:

modules: module identities as characters.
genesgene: identities as characters.
loci: marker identities as characters.
moddata: preprocessed module data (indexed identities).
gendata: preprocessed mapping data (indexed identities).
locdata: preprocessed marker data (indexed identities).
mingenes: minimum module size allowed.
maxgenes: maximum module size allowed.
maxoverlap: maximum module overlap allowed (1.0 to skip).
quantiles: quantile points for test statistic.

Details

ssea.prepare removes extreme-sized modules, constructs a hierarchical representation of genes
and modules, obtains hit counts for markers, and returns the finalized module, genes, markers,
database information.

Value

job an updated data list with the following components:

modules: finalized module names.
moddata: finalized module data.
gendata: finalized mapping data.
locdata: finalized marker data.
quantiles: verified quantile points.

ssea.prepare 81

database$modulesizes: gene counts for modules.
database$modulelengths: distinct markers counts for
modules.
database$moduledensities: ratio between distinct and
non-distinct markers.
database$genesizeslocus: count for each gene.
database$module2genes: gene lists for each module.
database$gene2locilocus: lists for each gene.
database$locus2row: indices in the marker data frame
for each marker.
database$observed: matrix of observed counts of values
that exceed each quantile point for each marker.
database$expected: 1.0 - quantile points.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze, ssea.control, ssea.finish, ssea.start, ssea2kda

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)

82 ssea.prepare.counts

mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.prepare.counts Calculate hit counts up to a given quantile

Description

Counts unique loci in a module, maps the marker data of a module to the all available markers by
creating a bit matrix for values above the given quantiles. Created bit matrix contains either TRUE
(above quantiles) or FALSE (below or equals to quantiles) values as a resuls of these comparisons.
It returns the results (marker mapping and bit matrix)

Usage

ssea.prepare.counts(locdata, nloci, quantiles)

Arguments

locdata marker data

nloci number of elements in markers list

quantiles quantile points for test statistic

Value

res a data list with the following components:

locus2row: mapped marker information
observed: bit matrix that involves TRUEs and FALSEs

ssea.prepare.counts 83

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.prepare

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)

84 ssea.prepare.structure

job.msea <- ssea.start(job.msea)

Remove extremely big or small modules:
st <- tool.aggregate(job.msea$moddata$MODULE)
mask <- which((st$lengths >= job.msea$mingenes) &
(st$lengths <= job.msea$maxgenes))
pos <- match(job.msea$moddata$MODULE, st$labels[mask])
job.msea$moddata <- job.msea$moddata[which(pos > 0),]

Construct hierarchical representation for modules, genes, and markers:
ngens <- length(job.msea$genes)
nmods <- length(job.msea$modules)
db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata,
nmods, ngens)
Determine test cutoffs:
if(is.null(job.msea$quantiles)) {
lengths <- db$modulelengths
mu <- median(lengths[which(lengths > 0)])
job.msea$quantiles <- seq(0.5, (1.0 - 1.0/mu), length.out=10)
}
Calculate hit counts:
nloci <- length(job.msea$loci)
hits <- ssea.prepare.counts(job.msea$locdata, nloci, job.msea$quantiles)
db <- c(db, hits)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.prepare.structure

Construct hierarchical representation of components

Description

ssea.prepare.structure represents modules, genes, and markers in a hierarchical structure.

Usage

ssea.prepare.structure(moddata, gendata, nmods, ngens)

Arguments

moddata module data (indexed identities)

gendata mapping data (indexed identities)

nmods number of modules

ngens number of all genes

ssea.prepare.structure 85

Details

ssea.prepare.structure finds member genes of modules and marker lists of genes; counts dis-
tinct markers within each module and obtains module’s density from this count; at the end, it returns
hierarchically structured results.

Value

res a data list with the following components:

modulesizes: module size
modulelengths: module length
moduledensities: module densities
genesizes: gene sizes of module
module2genesgene: list of module
gene2loci: markers lists of genes

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.prepare

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)

86 ssea.start

gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)

Remove extremely big or small modules:
st <- tool.aggregate(job.msea$moddata$MODULE)
mask <- which((st$lengths >= job.msea$mingenes) &
(st$lengths <= job.msea$maxgenes))
pos <- match(job.msea$moddata$MODULE, st$labels[mask])
job.msea$moddata <- job.msea$moddata[which(pos > 0),]

Construct hierarchical representation for modules, genes, and markers:
ngens <- length(job.msea$genes)
nmods <- length(job.msea$modules)
db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata,
nmods, ngens)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.start Create a job for MSEA

Description

Creates identities (for modules, member genes, and loci) to start MSEA process.

Usage

ssea.start(plan)

ssea.start 87

Arguments

plan a data list with the following components:

label: unique identifier for the analysis
folder: output folder for results
modfile: path to module file (cols: MODULE GENE)
marfile: path to marker file (cols: MARKER VALUE)
genfile: path to gene file (cols: GENE LOCUS)
inffile: path to module info file (cols: MODULE DESCR)
seed: seed for random number generator
permtype: gene for gene-level, locus for marker-level
nperm: max number of random permutations
mingenes: min number of genes per module (after merging)
maxgenes: max number of genes per module
quantiles: cutoffs for test statistic
maxoverlap: max overlap allowed between genes

Details

ssea.start imports modules, genes-locus mapping, and locus values; removes the genes with no
locus values from the list, find identities for modules, genes, loci components, and excludes missing
data and factorize identities for these components.

Value

job a data list with the following components:

modules: module identities as characters.
genes: gene identities as characters.
loci: marker identities as characters.
moddata: preprocessed module data (indexed identities)
modinfo: description of the modules.
gendata: preprocessed mapping data between genes and
markers (indexed identities).
locdata: preprocessed marker data (indexed identities)
geneclusters: genes with shared markers.

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze, ssea.control, ssea.finish, ssea.prepare, ssea2kda

88 ssea.start.configure

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() for this small set:(due to the huge runtime we did not use
full sets of modules, genes, and markers)
job.msea <- ssea.start(job.msea)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.start.configure Check parameters before MSEA

ssea.start.configure 89

Description

ssea.start.configure checks the input parameter before MSEA process starts and assigns de-
fault values for non-exist fields of the input data object.

Usage

ssea.start.configure(plan)

Arguments

plan a data list with the following components:

label: unique identifier for the analysis
folder: output folder for results
modfile: path to module file (cols: MODULE GENE)
marfile: path to marker file (cols: MARKER VALUE)
genfile: path to gene file (cols: GENE MARKER)
inffile: path to module info file (cols: MODULE DESCR)
seed: seed for random number generator
permtype: gene for gene-level, marker for marker-level
nperm: max number of random permutations
mingenes: min number of genes per module (after merging)
maxgenes: max number of genes per module
quantiles: cutoffs for test statistic
maxoverlap: max overlap allowed between genes

Value

plan a data list including checked and assigned values (to non-existing fields) of the
input parameter:

label: unique identifier for the analysis
folder: output folder for results
modfile: path to module file (cols: MODULE GENE)
marfile: path to marker file (cols: MARKER VALUE)
genfile: path to gene file (cols: GENE MARKER)
inffile: path to module info file (cols: MODULE DESCR)
seed: seed for random number generator
permtype: gene for gene-level, marker for marker-level
nperm: max number of random permutations
mingenes: min number of genes per module (after merging)
maxgenes: max number of genes per module
quantiles: cutoffs for test statistic
maxoverlap: max overlap allowed between genes

Author(s)

Ville-Petteri Makinen

90 ssea.start.configure

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.start

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() for this small set:(due to the huge runtime we did not use
full sets of modules, genes, and markers)
job.msea <- ssea.start.configure(job.msea)

Remove the temporary files used for the test:

ssea.start.identify 91

file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea.start.identify Convert identities to indices for MSEA

Description

ssea.start.identify finds matching identities for the given variable name. It searches the mem-
bers of dat among the members of labels with respect to the varname attribute, returns the match-
ing rows of the dat.

Usage

ssea.start.identify(dat, varname, labels)

Arguments

dat data list (source) of the identities that will be searched. e.g. the information after
merging of overlapped genes (containing shared markers)

varname search and match will be performed with respect to which attribute (MODULE
or NODE or MARKER)

labels the place, where the identities of dat will be searched and matched.

Value

res matched rows of dat among the members of labels list according to the varname
attribute

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.start

92 ssea.start.relabel

Examples

Converts identities (either module names or gene names) to the indices
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
aa
bb <- ssea.start.identify(aa, "MODULE", c("Mod1"))
bb
cc <- ssea.start.identify(aa, "MODULE", c("Mod1", "Mod3"))
cc
dd <- ssea.start.identify(aa, "NODE", c("GeneA"))
dd

ssea.start.relabel Update gene symbols after merging overlapped markers

Description

ssea.start.relabel updates gene symbols within the modules after merging overlapping genes
that contain shared markers

Usage

ssea.start.relabel(dat, grp)

Arguments

dat module data corresponding gene sets

grp gene data that is needed to be relabeled after the merging process of the over-
lapping markers

Value

dat relabeled module data of grp

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.start

ssea.start.relabel 93

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() for this small set:(due to the huge runtime we did not use
full sets of modules, genes, and markers)
job.msea <- ssea.start.configure(job.msea)

Import moddata:
moddata <- tool.read(job.msea$modfile, c("MODULE", "GENE"))
moddata <- unique(na.omit(moddata))

Import marker (e.g. locus) values:
locdata <- tool.read(job.msea$locfile, c("LOCUS", "VALUE"))
locdata$VALUE <- as.double(locdata$VALUE)
rows <- which(0*(locdata$VALUE) == 0)
locdata <- unique(na.omit(locdata[rows,]))
locdata_ex <- locdata
names(locdata_ex) <- c("MARKER","VALUE")

94 ssea2kda

Import mapping data between genes and markers:
gendata <- tool.read(job.msea$genfile, c("GENE", "LOCUS"))
gendata <- unique(na.omit(gendata))
gendata_ex <- gendata
names(gendata_ex) <- c("GENE","MARKER")

Remove genes with no marker values:
pos <- match(gendata$LOCUS, locdata$LOCUS)
gendata <- gendata[which(pos > 0),]

Merge overlapping genes:
gendata <- tool.coalesce(items=gendata$LOCUS, groups=gendata$GENE,
rcutoff=job.msea$maxoverlap)
job.msea$geneclusters <- gendata[,c("CLUSTER","GROUPS")]
job.msea$geneclusters <- unique(job.msea$geneclusters)

Update gene symbols after merging the overlapping ones:
moddata <- ssea.start.relabel(moddata, gendata)
gendata <- unique(gendata[,c("GROUPS", "ITEM")])
names(gendata) <- c("GENE", "LOCUS")

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea2kda Generate inputs for wKDA

Description

ssea2kda forwards MSEA results to weighted key driver analysis (wKDA) from the first MSEA
results, merges the overlapped modules according to a given overlapping ratio to obtain a relatively
independent module set, apply a second MSEA on the merged modules (supersets), updates and
saves the second MSEA results properly for wKDA process.

Usage

ssea2kda(job, symbols = NULL, rmax = NULL, min.module.count=NULL)

Arguments

job data list including the organized results of MSEA process. It has following
components:

results: updated information of modules including:
number of distinct member genes (NGENES),
number of distinct member markers (NLOCI),
ratio of distinct to non-distinct markers (DENSITY),
false discovery rates (FDR).

ssea2kda 95

generesults: updated gene-specific information including:
indexed gene identity (GENE),
gene size (NLOCI),
unadjusted enrichment score (SCORE),
marker with max value (LOCUS),
marker value (VALUE).

symbols dataframe for translating gene symbols

rmax maximum allowed overlap ratio between gene sets
min.module.count

minimum number of the pathways to be taken from the MSEA results to merge.
Default value is NULL. If it is not specified, all the pathways having MSEA-
FDR value less than 0.25 will be considered for merging if they are overlapping
with the given ratio rmax.

Details

ssea2kda gets genes and top markers from input files, selects significant modules with respect to
ordered p-values, gets identities of modules and genes, merges and trims the overlapping mod-
ules (either having FDR less than 0.25 or top min.module.count modules when ranked up to the
P-values), obtains enrichment scores for merged modules, translates the gene symbols (between
species) if needed, and finally saves the module, gene, node, and marker information into relevant
output files.

Value

plan an updated data list with the following components:

label: unique identifier for the analysis.
parent: parent folder for results.
modfile: path of module file (columns: MODULE NODE).
inffile: path of module information file
(columns: MODULE DESCR).
nodfile: path of node selection file (columns: NODE).

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea.analyze, kda.analyze

96 ssea2kda

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

############### Create intermediary datasets for KDA ##################
syms <- tool.read(system.file("extdata", "symbols.txt",
package="Mergeomics"))
syms <- syms[,c("HUMAN", "MOUSE")]
names(syms) <- c("FROM", "TO")
job.ssea2kda <- ssea2kda(job.msea, symbols=syms)

Remove the temporary files used for the test:

ssea2kda.analyze 97

file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea2kda.analyze Apply second MSEA after merging the modules

Description

ssea2kda.analyze performs a second MSEA for the updated modules after merging the highly
overlapped modules (according to a specified overlapping ratio)

Usage

ssea2kda.analyze(job, moddata)

Arguments

job the data list including the information of modules, genes, and markers, and also
involving the database that uses indexed identities for modules, genes, and mark-
ers (job$database).

moddata merged modules including MODULE, GENE, and OVERLAP information

Details

ssea2kda.analyze constructs new gene lists for merged modules and updates module database
including module sizes, lengths, densities (based on marker sizes), and gene list. Then, it runs a
second MSEA and returns the enrichment scores of the updated module database.

Value

res data list including updated information (after merge) such as, enrichment scores
of merged modules

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea2kda

98 ssea2kda.analyze

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

############### Create intermediary datasets for KDA ##################
syms <- tool.read(system.file("extdata", "symbols.txt",
package="Mergeomics"))
syms <- syms[,c("HUMAN", "MOUSE")]
names(syms) <- c("FROM", "TO")
Collect genes and top markers from original files.
noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile)

ssea2kda.import 99

Select candidate modules (significant ones according to FDRs)
res <- job.msea$results
res <- res[order(res$P),]
rows <- which(res$FDR < 0.25)
res <- res[rows,]

Collect member genes.
moddata <- job.msea$moddata
pos <- match(moddata$MODULE, res$MODULE)
moddata <- moddata[which(pos > 0),]

Restore original identities.
modinfo <- job.msea$modinfo
modinfo$MODULE <- job.msea$modules[modinfo$MODULE]
moddata$MODULE <- job.msea$modules[moddata$MODULE]
moddata$GENE <- job.msea$genes[moddata$GENE]

Merge and trim overlapping modules.
moddata$OVERLAP <- moddata$MODULE
rmax <- 0.33
moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE,
rcutoff=rmax)
moddata$MODULE <- moddata$CLUSTER
moddata$GENE <- moddata$ITEM
moddata$OVERLAP <- moddata$GROUPS
moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")]
moddata <- unique(moddata)

Calculate enrichment scores for merged modules.
tmp <- unique(moddata[,c("MODULE","OVERLAP")])
res <- ssea2kda.analyze(job.msea, moddata)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

ssea2kda.import Import genes and top markers from original files

Description

ssea2kda.import gets marker values from marker information file and mapping data (between
genes and markers) from gene file, merges the imported information, and returns the merged data
for top significant markers.

Usage

ssea2kda.import(genfile, locfile)

100 ssea2kda.import

Arguments

genfile gene information file

locfile marker information file

Value

data merged gene and corresponding marker data for top significant markers

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

See Also

ssea2kda

Examples

job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

ssea.start() process takes long time while merging the genes sharing high
amounts of markers (e.g. loci). it is performed with full module list in
the vignettes. Here, we used a very subset of the module list (1st 10 mods
from the original module file) and we collected the corresponding genes
and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,

tool.aggregate 101

unique(gendata$MARKER)))),]

save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

############### Create intermediary datasets for KDA ##################
syms <- tool.read(system.file("extdata", "symbols.txt",
package="Mergeomics"))
syms <- syms[,c("HUMAN", "MOUSE")]
names(syms) <- c("FROM", "TO")
Collect genes and top markers from original files.
noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile)

Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

tool.aggregate Aggregate the entries

Description

tool.aggregate aggregates the entries with respect to the given feature. It first finds raw indices
(either genes or markers), then sorts them, and finds the blocks (segments) of identical entries.

Usage

tool.aggregate(entries, limit = 1)

Arguments

entries an array that will be sorted and aggregated within blocks

limit minimum block size to be included

102 tool.cluster

Value

res a data list with the following components:

labels: shared values within blocks
lengths: numbers of entries in blocks
blocks: integer arrays of entry positions within blocks
ranks: entry positions included in blocks

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

aa <- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
GENE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
aggregate according to the module names:
bb <- tool.aggregate(aa$MODULE)
bb
aggregate according to the gene names:
cc <- tool.aggregate(aa$GENE)
cc

tool.cluster Hierarchical clustering of nodes

Description

tool.cluster performs agglomerative hierarchical clustering for nodes (genes)

Usage

tool.cluster(edges, cutoff = NULL)

Arguments

edges edge (weight) list among two group, whose overlapping information (overlap-
ping ratio based on shared entries of two groups, number of members in both
group) had been assesed previously

cutoff cutting level of dendrogram for hierarchical clustering

tool.cluster.static 103

Details

tool.cluster takes overlapping information between two groups, produces distance matrix based
on 1-strength(overlap) ratio between two groups, and apply agglomerative hierarchical clustering
based on the distance matrix.

Value

res data list including clustering results:

CLUSTER: cluster label
NODE: item (node) name

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

read the coexpr module file as an example:
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))

let us cluster the first 10 modules in the module file:
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
Find clusters.
rmax = 0.33
edges <- tool.overlap(items=moddata$GENE, groups=moddata$MODULE)
clustdat <- tool.cluster(edges, cutoff=rmax)
nclust <- length(unique(clustdat$CLUSTER))
nnodes <- length(unique(clustdat$NODE))

tool.cluster.static Static hierarchical clustering

Description

tool.cluster.static takes dendrogram (clustering tree) and its cutting height; then, obtains clus-
ter labels for the nodes of the tree.

Usage

tool.cluster.static(dendro, hlim)

104 tool.coalesce

Arguments

dendro dendrogram (tree)

hlim cutting height of the dendrogram

Value

clusters cluster labels of the components after static clustering

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

set.seed(1)
assume that we have a dataset including several samples
with distinct features
dataset <- matrix(rnorm(20), ncol=5) ## 4 samples with 5 features
Find the distances between each sample pair to cluster them
d <- dist(dataset, method = "euclidean", upper=TRUE, diag=TRUE)
tree <- hclust(d)
Height cutoff.
hlim <- max(tree$height)
Find clusters.
clusters <- tool.cluster.static(tree, hlim)

tool.coalesce Calculate overlaps between groups (main function)

Description

tool.coalesce is utilized to merge and trim either overlapping modules (containing shared genes)
or overlapping genes (containing shared markers)

Usage

tool.coalesce(items, groups, rcutoff = 0, ncore = NULL)

tool.coalesce 105

Arguments

items array of item identities

groups array of group identities for items

rcutoff maximum overlap not coalesced

ncore minimum number of items required for trimming

Value

a data list with the following components:

CLUSTER cluster identities after merging and triming (a subset of group identities)

ITEM item identities

GROUPS comma separated overlapping group identities

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

read the coexpr module file as an example:
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))

let us find the overlapping ratio between first 10 modules in the file:
to merge overlapping modules first collect member genes:
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]

Merge and trim overlapping modules.(max allowed overlap ratio is 0.33)
rmax <- 0.33
moddata$OVERLAP <- moddata$MODULE
moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE,
rcutoff=rmax)
moddata$MODULE <- moddata$CLUSTER
moddata$GENE <- moddata$ITEM
moddata$OVERLAP <- moddata$GROUPS
moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")]
moddata <- unique(moddata)

106 tool.coalesce.exec

tool.coalesce.exec Find, merge, and trim overlapping clusters

Description

tool.coalesce.exec searchs overlaps, iteratively merges and trims overlapping clusters (by using
tool.coalesce.find and tool.coalesce.merge, respectively) until no more overlap is available,
and assigns representative label for the merged clusters.

Usage

tool.coalesce.exec(items, groups, rcutoff, ncore)

Arguments

items array of item identities

groups array of group identities for items

rcutoff maximum overlap not coalesced

ncore minimum number of items required for trimming

Value

a data list with the following components:

CLUSTER cluster identities after merging and triming (a subset of group identities)

GROUPS comma separated overlapping group identities

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

Generate item and group labels for 100 items:
Assume that unique gene number (items) is 60:
members <- 1:100 ## will be updated
modules <- 1:100 ## will be updated
set.seed(1)
for (i in 1:10){
each time pick 10 items (genes) from 60 unique item labels
members[(i*10-9):(i*10)] <- sample(60,10)
}

tool.coalesce.find 107

Assume that unique group labels is 30:
for (i in 1:10){
each time pick 10 items (genes) from 30 unique group labels
modules[(i*10-9):(i*10)] <- sample(30, 10)
}
rcutoff <- 0.33
ncore <- length(members)
Find and trim clusters after iteratively merging the overlapping ones:
res <- tool.coalesce.exec(members, modules, rcutoff, ncore)

tool.coalesce.find Find overlapping clusters

Description

tool.coalesce.find finds overlapped clusters of the given data according to a given overlapping
ratio by using tool.overlap and tool.cluster, respectively.

Usage

tool.coalesce.find(data, rmax)

Arguments

data a list including ITEM identities and their GROUP identities

rmax maximum overlap not coalesced

Value

data list including clustering results and following components:

CLUSTER cluster label

NODE item (node) name

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

108 tool.coalesce.merge

Examples

Generate item and group labels for 100 items:
Assume that unique gene number (items) is 60:
members <- 1:100 ## will be updated
modules <- 1:100 ## will be updated
set.seed(1)
for (i in 1:10){
each time pick 10 items (genes) from 60 unique item labels
members[(i*10-9):(i*10)] <- sample(60,10)
}
Assume that unique group labels is 30:
for (i in 1:10){
each time pick 10 items (genes) from 30 unique group labels
modules[(i*10-9):(i*10)] <- sample(30, 10)
}
rcutoff <- 0.33
ncore <- length(members)
Default output.
res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members,
stringsAsFactors=FALSE)
Iterative merging and trimming.
res$COUNT <- 0.0
while(TRUE) {
clust <- tool.coalesce.find(res, rcutoff)
if(is.null(clust)) break
res <- tool.coalesce.merge(clust, ncore)
}

tool.coalesce.merge Merge overlapping clusters

Description

tool.coalesce.merge determines combinable groups and trims clusters by removing rarest items.

Usage

tool.coalesce.merge(data, ncore)

Arguments

data data list including following components:

CLUSTER: cluster label
NODE: item (node) name

ncore minimum number of items required for trimming

Value

res data list including GROUPS, ITEMs, and their hit COUNTs

tool.fdr 109

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ri-
patti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration
to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

Generate item and group labels for 100 items:
Assume that unique gene number (items) is 60:
members <- 1:100 ## will be updated
modules <- 1:100 ## will be updated
set.seed(1)
for (i in 1:10){
each time pick 10 items (genes) from 60 unique item labels
members[(i*10-9):(i*10)] <- sample(60,10)
}
Assume that unique group labels is 30:
for (i in 1:10){
each time pick 10 items (genes) from 30 unique group labels
modules[(i*10-9):(i*10)] <- sample(30, 10)
}
rcutoff <- 0.33
ncore <- length(members)
Default output.
res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members,
stringsAsFactors=FALSE)
Iterative merging and trimming.
res$COUNT <- 0.0
while(TRUE) {
clust <- tool.coalesce.find(res, rcutoff)
if(is.null(clust)) break
res <- tool.coalesce.merge(clust, ncore)
}

tool.fdr Estimate False Discovery Rates (FDR)

Description

tool.fdr estimates FDRs for modules as another module statistic.

Usage

tool.fdr(p, f = NULL)

110 tool.fdr.bh

Arguments

p p-values of modules

f pre-defined threshold for FDR

Details

FDRs of modules can be obtained by using either empirical method or Benjamini and Hochberg
method.

Value

res data list including the estimated false discovery rates of modules

Author(s)

Ville-Petteri Makinen

See Also

tool.fdr.empirical, tool.fdr.bh

Examples

let us assume we have a set of pvalues
and would like to find FDR values:
set.seed(1)
p <- abs(rnorm(10))*1e-2
FDRs <- tool.fdr(p) ## default method is Benjamini Hochberg

tool.fdr.bh Benjamini and Hochberg False Discovery Rate

Description

tool.fdr.bh estimates FDRs of modules by using Benjamini and Hochberg method.

Usage

tool.fdr.bh(p)

Arguments

p p-values of modules

Value

res data list including the estimated false discovery rates of modules

tool.fdr.empirical 111

Author(s)

Ville-Petteri Makinen

See Also

tool.fdr, tool.fdr.bh

Examples

let us assume we have a set of pvalues
and would like to find FDR values:
set.seed(1)
p <- abs(rnorm(10))*1e-2
FDRs <- tool.fdr.bh(p) ## the default method is already Benjamini Hochberg

tool.fdr.empirical Estimate Empirical False Discovery Rates

Description

tool.fdr.empirical estimates empirical FDR for modules

Usage

tool.fdr.empirical(p, f0)

Arguments

p p-values of modules

f0 pre-defined threshold for FDR

Value

res data list including the estimated false discovery rates of modules

Author(s)

Ville-Petteri Makinen

See Also

tool.fdr, tool.fdr.bh

112 tool.graph

Examples

let us assume we have a set of pvalues
and would like to find FDR values:
set.seed(1)
p <- abs(rnorm(10))*1e-2
f = 0.05 ## pre-defined threshold for FDR
FDRs <- tool.fdr.empirical(p, f)

tool.graph Convert an edge list to a graph representation

Description

tool.graph translates an edge list including TAIL, HEAD and WEIGHT information into a graph
representation-adapted data list. It also provides in-degree and out-degree statistics for nodes.

Usage

tool.graph(edges)

Arguments

edges a data frame with three columns TAIL, HEAD and WEIGHT

Value

a datalist including following components:

nodes N-element array of node names

tails K-element array of node indices

heads K-element array of node indices

weights K-element array of edge weights

tail2edge N-element list of adjacent edge indices

head2edge N-element list of adjacent edge indices

outstats N-row data frame of out-degree node statistics

instats N-row data frame of in-degree node statistics

stats N-row data frame of node statistics

Author(s)

Ville-Petteri Makinen

See Also

tool.subgraph

tool.graph.degree 113

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
module file:
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

job.kda <- kda.configure(job.kda)
Import data for weighted key driver analysis:
Import topology.
edgdata <- kda.start.edges(job.kda)
Create an indexed graph structure.
job.kda$graph <- tool.graph(edgdata)

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")

tool.graph.degree Find degrees of the nodes

Description

tool.graph.degree finds in-degree and out-degree statistics of the network by using edge lists of
the nodes. It also obtains the strenghts of the degrees by using edge weights.

114 tool.graph.degree

Usage

tool.graph.degree(node2edge, weights)

Arguments

node2edge edge list of each node

weights strengths of the edges

Details

Degree of a node means number of the neighbors belonging to that node. Hence, out-degree statis-
tics are applicable for tail nodes; while in-degree statistics are applicable for the heads.

Value

res a data list including degree and its strength for each node

Author(s)

Ville-Petteri Makinen

See Also

tool.graph

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
module file:
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)

tool.graph.list 115

mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

job.kda <- kda.configure(job.kda)

Import data for weighted key driver analysis:
Import topology.
edges <- kda.start.edges(job.kda)
Create an indexed graph structure.
tails <- as.character(edges$TAIL)
heads <- as.character(edges$HEAD)
wdata <- as.double(edges$WEIGHT)

nedges <- length(tails)
Create factorized representation.
labels <- as.character(c(tails, heads))
labels <- as.factor(labels)
labelsT <- as.integer(labels[1:nedges])
labelsH <- as.integer(labels[(nedges+1):(2*nedges)])
Create edge lists.
nodnames <- levels(labels)
nnodes <- length(nodnames)
elistT <- tool.graph.list(labelsT, nnodes)
elistH <- tool.graph.list(labelsH, nnodes)
Collect edge degree stats:
res <- list()
res$nodes <- as.character(nodnames)
res$outstats <- tool.graph.degree(elistT, wdata) ## out degrees
res$instats <- tool.graph.degree(elistH, wdata) ## in degrees
res$stats <- (res$outstats + res$instats)

Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")

tool.graph.list Return edge list for each node

Description

tool.graph.list finds and returns the edge list of each node for both tail and head node lists.

Usage

tool.graph.list(entries, nnodes)

116 tool.graph.list

Arguments

entries either tail nodes list or head nodes list

nnodes total number of all nodes including both tails and heads

Value

groups a data list including edge list of each node

Author(s)

Ville-Petteri Makinen

See Also

tool.graph

Examples

job.kda <- list()
job.kda$label<-"HDLC"
parent folder for results
job.kda$folder<-"Results"
Input a network
columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
module file:
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
"0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
The searching depth for the KDA
job.kda$depth<-1
0 means we do not consider the directions of the regulatory interactions
while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests

kda.start() process takes long time while seeking hubs in the given net
Here, we used a very small subset of the module list (1st 10 mods
from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"

job.kda <- kda.configure(job.kda)

tool.metap 117

Import data for weighted key driver analysis:
Import topology.
edges <- kda.start.edges(job.kda)
Create an indexed graph structure.
tails <- as.character(edges$TAIL)
heads <- as.character(edges$HEAD)
wdata <- as.double(edges$WEIGHT)

nedges <- length(tails)
Create factorized representation.
labels <- as.character(c(tails, heads))
labels <- as.factor(labels)
labelsT <- as.integer(labels[1:nedges])
labelsH <- as.integer(labels[(nedges+1):(2*nedges)])
Create edge lists.
nodnames <- levels(labels)
nnodes <- length(nodnames)
elistT <- tool.graph.list(labelsT, nnodes)
elistH <- tool.graph.list(labelsH, nnodes)
Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")

tool.metap Estimate meta P-values

Description

tool.metap returns the meta p-values of given datasets with multiple p-values.

Usage

tool.metap(datasets, idcolumn, pcolumn, weights = NULL)

Arguments

datasets data list, whose meta p-values will be obtained

idcolumn column number of the datasets that includes identities

pcolumn column number of the datasets that includes p-values

weights weight list of the data list

Value

res data list including identities and meta p-values of the given datasets

Author(s)

Ville-Petteri Makinen

118 tool.normalize

Examples

set.seed(1)
let us assume we have p-values for the coexpr modules obtained from
distinct analyses by using different gene-marker mapping sets (e.g. eQTLs
from diff tissues) and we would like to make a meta-analysis for
these multiple Pvalues of the modules:
datasets=list()
we have 3 datasets and 3 diff result sets
datasets[[1]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"),
P=c(rnorm(4)))
datasets[[2]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"),
P=c(rnorm(4)))
datasets[[3]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"),
P=c(rnorm(4)))
idcolumn <- "MODULE" ## identifiers of the modules are in the 1st col
pcolumn <- "P" ## p values of the modules are in the 2nd col
tool.metap(datasets, idcolumn, pcolumn)

tool.normalize Estimate statistical scores based on Gauss distribution

Description

To estimate the both pre-liminary and final p-values, tool.normalize normalizes the given data, x,
based on Gaussian distribution defined by prm if it is provided. If prm is not provided tool.normalize
utilizes the mean and std dev of x.

Usage

tool.normalize(x, prm = NULL, inverse = FALSE)

Arguments

x data that is aimed to be normalized and produced by a simulation process

prm normalization will take place according to the specified Gaussian distribution
parameters, i.e. mean and std dev. If it is not specified, Gaussian statistics of x
will be obtained and utilized

inverse specifies whether the normalization takes place in reverse order

Value

prm transformed (normalized) parameters for either enrichment score or p-values

Author(s)

Ville-Petteri Makinen

tool.normalize.quality 119

Examples

set.seed(1)
let us assume we have a set of simulated enrichment scores and
one observed score
x <- rnorm(10) ## obtained from 1st permutation test
obs <- rnorm(1)
Estimate preliminary P-value:
param <- tool.normalize(x)
z <- tool.normalize(obs, param)
p <- pnorm(z, lower.tail=FALSE)

Estimate final P-value.
y <- rnorm(10) ## obtained from 2nd permutation test
param <- tool.normalize(c(x, y))
z <- tool.normalize(obs, param)
p <- pnorm(z, lower.tail=FALSE)
p <- max(p, .Machine$double.xmin)

tool.normalize.quality

Check normalization quality

Description

tool.normalize.quality checks transformation quality by using Kolmogorov-Smirnov Test. It
seeks the best log transform parameter within the previously specified upper and lower limits, and
applies the log transform with the best log parameter.

Usage

tool.normalize.quality(g, z)

Arguments

g normalization quality control will take place according to the normal distribution
parameters defined by g, e.g. it can be normal distribution with 0-mean and std
dev 1.

z transformed data, i.e. either p-value or enrichment score

Value

res statitics of Kolmogorov-Smirnov Test result obtained for z values

Author(s)

Ville-Petteri Makinen

120 tool.overlap

See Also

tool.normalize

Examples

set.seed(1)
let us assume we have a set of normalized scores:
z <- abs(rnorm(10)) ## it should be positive and at least 10 length-vector
z <- z/median(z)
Find the best log transform.
gamma <- optim(par=1.0, fn=tool.normalize.quality, gr=NULL, z,
lower=-9, upper=9, control=list(reltol=1e-3))
After finding the best log transform, apply transform:
z <- log(exp(gamma$par)*z + 1.0)

tool.overlap Calculate overlaps between groups of specified items

Description

tool.overlap checks each pair of blocks, finds number of shared items, and obtains significance
values of the sharings for block pairs.

Usage

tool.overlap(items, groups, nbackground = NULL)

Arguments

items array of item identities
groups array of group identities for items
nbackground total number of items

Value

a data list including following components

A group name
B group name
POSa group name rank
POSb group name rank
Na group A size
Nb group B size
Nab shared items
R overlap ratio
F fold change to null expectation
P overlap P-value (Fisher’s test)

tool.read 121

Author(s)

Ville-Petteri Makinen

Examples

read the coexpr module file as an example:
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))
let us find the overlapping ratio between two modules:
pick the first and last modules:
mod.names <- unique(moddata$MODULE)[c(1,length(unique(moddata$MODULE)))]
if(length(mod.names) > 0){
modA.members <- moddata[which(moddata$MODULE == mod.names[1]),]
modB.members <- moddata[which(moddata$MODULE == mod.names[2]),]
}
mod.pool <- rbind(modA.members, modB.members)
overlap.stats <- tool.overlap(mod.pool[,2], mod.pool[,1])

tool.read Read a data frame from a file

Description

tool.read reads contents of given input file.

Usage

tool.read(file, vars = NULL)

Arguments

file file name to be read

vars if we want to read particular attributes (columns) from the input file, we need
to specify names of these attributes within list vars (attribute names can be e.g.
MODULE, GENE, LOCUS, etc.)

Details

All lines with NAs are excluded.

Value

dat data frame including content of the given file. If vars is specified, only the listed
columns inside the vars list will be returned.

Author(s)

Ville-Petteri Makinen

122 tool.save

Examples

read the network file as an example:
net.info <- tool.read(system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics"))
dim(net.info)
names(net.info)

tool.save Save a data frame in tab-delimited file

Description

tool.save saves a given data frame into a specified file within a given directory.

Usage

tool.save(frame, file, directory = NULL, verbose = TRUE, compression = FALSE)

Arguments

frame data frame to be saved into file

file name of the output file to be written

directory path of the directory for the file

verbose specifies whether the information about file saving process will be displayed to
user

compression specifies whether the file is compressed while saving. Applicable for only UNIX-
family systems with gzip.

Value

fname returns file name with full path

Note

Compression only works on UNIX-family systems with gzip.

Author(s)

Ville-Petteri Makinen

Examples

aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"),
NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA"))
tool.save(aa, "aa.save.txt")
file.remove("aa.save.txt") ## delete the saved file!

tool.subgraph 123

tool.subgraph Determine network neighbors for a set of nodes

Description

tool.subgraph finds the sub-network, i.e. neighborhood, for a given seed node list with a specified
depth. It also provides graph statistics (degrees and strengths) for seed nodes.

Usage

tool.subgraph(graph, seeds, depth = 1, direction = 0)

Arguments

graph a datalist including following components:

nodes: N-element array of node names
tails: K-element array of node indices
heads: K-element array of node indices
weights: K-element array of edge weights
tail2edge: N-element list of adjacent edge indices
head2edge: N-element list of adjacent edge indices
outstats: N-row data frame of out-degree node statistics
instats: N-row data frame of in-degree node statistics
stats: N-row data frame of node statistics

seeds list of seed node names

depth the maximum number of links to connect neighbors

direction sets the directionality: use a negative value for dowstream, positive for upstream
or zero for undirected

Value

a data list including following components:

RANK indices of neighboring nodes (including seeds)

LEVEL number of edges away from seed

STRENG sum of adjacent edge weights within neighborhood

DEGREE number of adjacent edges within neighborhood

Author(s)

Ville-Petteri Makinen

See Also

tool.subgraph.search

124 tool.subgraph.find

Examples

data(job_kda_analyze)
take the first node in the graph as the seed, find its neighborhood:
center.node = job.kda$graph$nodes[1]
subnet = tool.subgraph(job.kda$graph, center.node, depth=1, direction=0)

tool.subgraph.find Find edges to adjacent nodes

Description

tool.subgraph.find finds the edge lists between given seed nodes and their neighbors

Usage

tool.subgraph.find(seeds, edgemap, heads, visited)

Arguments

seeds seed nodes’ indices

edgemap list of adjacent edge information for entire graph. edgemap can belong to either
tails or heads.

heads list of either head (destination) or tail (source) nodes of the entire graph

visited flag holding already visited node indices during neighborhood searching

Value

neighbors neighbor edge lists of seed nodes (for either tails or heads)

Note

Neighbor edge lists of the seed nodes should be obtained separately for tail and head nodes.

Author(s)

Ville-Petteri Makinen

Examples

data(job_kda_analyze)
depth <- 1
direction <- 0
Take one or multiple center nodes (seeds) to search the neighborhoods:
e.g. take the first node in the graph as the seed, find its neighborhood:
center.node = job.kda$graph$nodes[1]
Convert center node (seed) names to indices:
nodes <- job.kda$graph$nodes
ranks <- match(center.node, nodes)

tool.subgraph.search 125

ranks <- ranks[which(ranks > 0)]
we already know that rank is 1, since we took the first node in the graph
as an example:
ranks <- as.integer(ranks)
Find edges to adjacent nodes. (both up- and down-stream searches)
visited <- ranks
foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge,
job.kda$graph$heads, visited)
foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge,
job.kda$graph$tails, visited)

tool.subgraph.search Search neighborhoods for given nodes

Description

tool.subgraph.search looks for both upstream and downstream neighborhoods of given seed
node list for a given depth, gets the directed edge information among seed nodes and their neighbors,
obtains statistics (degrees and strengths) for seed nodes.

Usage

tool.subgraph.search(graph, seeds, depth, direction)

Arguments

graph a datalist including following components:

nodes: N-element array of node names
tails: K-element array of node indices
heads: K-element array of node indices
weights: K-element array of edge weights
tail2edge: N-element list of adjacent edge indices
head2edge: N-element list of adjacent edge indices
outstats: N-row data frame of out-degree node statistics
instats: N-row data frame of in-degree node statistics
stats: N-row data frame of node statistics

seeds seed nodes’ indices
depth the maximum number of links to connect neighbors
direction sets the directionality: use a negative value for dowstream, positive for upstream

or zero for undirected

Value

a data list including seed nodes neighborhood information with following components:

RANK indices of neighboring nodes (including seeds)
LEVEL number of edges away from seed
STRENG sum of adjacent edge weights within neighborhood
DEGREE number of adjacent edges within neighborhood

126 tool.subgraph.stats

Author(s)

Ville-Petteri Makinen

Examples

data(job_kda_analyze)
depth <- 1
direction <- 0
Take one or multiple center nodes (seeds) to search the neighborhoods:
e.g. take the first node in the graph as the seed, find its neighborhood:
center.node = job.kda$graph$nodes[1]
Convert center node (seed) names to indices:
nodes <- job.kda$graph$nodes
ranks <- match(center.node, nodes)
ranks <- ranks[which(ranks > 0)]
we already know that rank is 1, since we took the first node in the graph
as an example:
ranks <- as.integer(ranks)
Find neighbors.
res <- tool.subgraph.search(job.kda$graph, ranks, depth, direction)

tool.subgraph.stats Calculate node degrees and strengths

Description

tool.subgraph.stats graph statistics (degrees and strengths) of the seed nodes obtained from
their neighborhoods.

Usage

tool.subgraph.stats(frame, edgemap, heads, weights)

Arguments

frame a data frame including following components:

RANK: indices of neighboring nodes (including seeds)
LEVEL: number of edges away from seed
STRENG: sum of adjacent edge weights within neighborhood
DEGREE: number of adjacent edges within neighborhood

edgemap list of adjacent edge information for detected neighborhoods of seed nodes.
edgemap can belong to either tails or heads.

heads list of either head (destination) or tail (source) nodes for neighborhoods of the
seed nodes

weights weights of the edges in the entire graph

tool.subgraph.stats 127

Value

a data list including seed nodes neighborhood information with following components:

RANK indices of neighboring nodes (including seeds)

LEVEL number of edges away from seed

STRENG sum of adjacent edge weights within neighborhood

DEGREE number of adjacent edges within neighborhood

Author(s)

Ville-Petteri Makinen

Examples

data(job_kda_analyze)
depth <- 1
direction <- 0
Take one or multiple center nodes (seeds) to search the neighborhoods:
e.g. take the first node in the graph as the seed, find its neighborhood:
center.node = job.kda$graph$nodes[1]
Convert center node (seed) names to indices:
nodes <- job.kda$graph$nodes
ranks <- match(center.node, nodes)
ranks <- ranks[which(ranks > 0)]
we already know that rank is 1, since we took the first node in the graph
as an example:
ranks <- as.integer(ranks)
Find edges to adjacent nodes. (both up- and down-stream searches)
visited <- ranks
levels <- 0*ranks
for(i in 1:depth) {
Find edges to adjacent nodes.
foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge,
job.kda$graph$heads, visited)
foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge,
job.kda$graph$tails, visited)
Expand neighborhood for the further depths of the neighborhood search
ranks <- unique(c(foundT, foundH))
visited <- c(visited, ranks)
levels <- c(levels, (0*ranks + i)) ## level shows the depth
if(length(ranks) < 1) break
}
Calculate node degrees and strengths.
res <- data.frame(RANK=visited, LEVEL=levels, DEGREE=0,
STRENG=0.0, stringsAsFactors=FALSE)
res <- tool.subgraph.stats(res, job.kda$graph$tail2edge,
job.kda$graph$heads, job.kda$graph$weights)
res <- tool.subgraph.stats(res, job.kda$graph$head2edge,
job.kda$graph$tails, job.kda$graph$weights)

128 tool.translate

tool.translate Translate gene symbols

Description

tool.translate converts the symbols given in the list from into the list to. e.g. we can translate
human gene symbols into the mouse orthologs (or vice versa) if the symbol mapping file is provided.

Usage

tool.translate(words, from, to)

Arguments

words translation table including words (i.e. gene symbols) that will be translated

from a list denoting the words will be translated from which symbols

to a list denoting the words will be translated to which symbols

Value

words translated table (words)

Author(s)

Ville-Petteri Makinen

Examples

syms <- tool.read(system.file("extdata", "symbols.txt",
package="Mergeomics"))
syms <- syms[,c("HUMAN", "MOUSE")]
names(syms) <- c("FROM", "TO")
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))
moddata$NODE <- moddata$GENE
moddata$NODE <- tool.translate(words=moddata$NODE, from=syms$FROM,
to=syms$TO)

tool.unify 129

tool.unify Convert a distribution to uniform ranks

Description

tool.unify converts a distribution to uniform ranks with respect to a background distribution (or
self if no background available).

Usage

tool.unify(xtrait, xnull = NULL)

Arguments

xtrait the distribution that will be standardized, i.e. uniformly distributed

xnull background distribution to be used to distribute xtrait uniformly. If xnull is
not specified, xtrait will be used as background distr

Value

y uniformly distributed form of xtrait

Author(s)

Ville-Petteri Makinen

Examples

x <- rnorm(10)
y <- tool.unify(x) ## uniformly distributed form of x when null dist is x
z <- tool.unify(x, y) ## uniformly distributed form of x when null dist is y

Index

∗ Integrative Genomics; Multidimensional
Data Integration; Gene Networks;

Mergeomics-package, 3
∗ Key Drivers

Mergeomics-package, 3
∗ datasets

job.kda, 4
∗

Mergeomics-package, 3

job.kda, 4

kda.analyze, 5, 5, 8, 10, 12, 15, 23, 25, 27,
28, 30–32, 34, 44, 54, 55, 95

kda.analyze.exec, 6, 7, 7, 10, 12
kda.analyze.simulate, 6, 8, 9, 9, 12
kda.analyze.test, 6, 8, 10, 11, 12
kda.configure, 14, 14
kda.finish, 16, 18–20, 22, 28, 30–32, 34, 43,

44
kda.finish.estimate, 16, 17, 19, 20, 22
kda.finish.save, 16, 18, 18, 20, 22
kda.finish.summarize, 16, 18–20, 20, 22
kda.finish.trim, 16, 18–21, 21
kda.prepare, 22, 22, 23, 25, 27, 28, 30–32
kda.prepare.overlap, 23, 24, 24
kda.prepare.screen, 23, 26, 26
kda.start, 28, 28, 30–32
kda.start.edges, 28, 29, 29, 32
kda.start.identify, 28, 31, 31
kda.start.modules, 28, 32, 32
kda2cytoscape, 33, 34, 36–39, 41, 43
kda2cytoscape.colorize, 35
kda2cytoscape.colormap, 36
kda2cytoscape.drivers, 37
kda2cytoscape.edges, 39
kda2cytoscape.exec, 39, 40
kda2cytoscape.identify, 42
kda2himmeli, 43, 44, 46, 47, 49, 51, 53
kda2himmeli.colorize, 45

kda2himmeli.colormap, 46
kda2himmeli.drivers, 47
kda2himmeli.edges, 48
kda2himmeli.exec, 48, 50
kda2himmeli.identify, 52

Mergeomics (Mergeomics-package), 3
Mergeomics-package, 3
MSEA.KDA.onestep, 53, 53, 54

ssea.analyze, 54, 55, 55, 56, 58, 60, 63, 66,
68, 71, 81, 87, 95

ssea.analyze.observe, 57, 57
ssea.analyze.randgenes, 59, 59
ssea.analyze.randloci, 62, 62
ssea.analyze.simulate, 65, 65
ssea.analyze.statistic, 67, 67
ssea.control, 56, 68, 68, 71, 81, 87
ssea.finish, 56, 70, 73, 75, 77, 81, 87
ssea.finish.details, 72
ssea.finish.fdr, 74
ssea.finish.genes, 76
ssea.meta, 78
ssea.prepare, 56, 71, 80, 83, 85, 87
ssea.prepare.counts, 82
ssea.prepare.structure, 84
ssea.start, 56, 71, 81, 86, 90–92
ssea.start.configure, 88
ssea.start.identify, 91, 91
ssea.start.relabel, 92
ssea2kda, 56, 71, 81, 87, 94, 97, 100
ssea2kda.analyze, 97
ssea2kda.import, 99

tool.aggregate, 101
tool.cluster, 102, 107
tool.cluster.static, 103
tool.coalesce, 104
tool.coalesce.exec, 106
tool.coalesce.find, 106, 107

130

INDEX 131

tool.coalesce.merge, 106, 108
tool.fdr, 109, 111
tool.fdr.bh, 110, 110, 111
tool.fdr.empirical, 110, 111
tool.graph, 112, 114, 116
tool.graph.degree, 113
tool.graph.list, 115
tool.metap, 117
tool.normalize, 118, 120
tool.normalize.quality, 119
tool.overlap, 107, 120
tool.read, 121
tool.save, 122
tool.subgraph, 112, 123
tool.subgraph.find, 124
tool.subgraph.search, 123, 125
tool.subgraph.stats, 126
tool.translate, 128
tool.unify, 129

	Mergeomics-package
	job.kda
	kda.analyze
	kda.analyze.exec
	kda.analyze.simulate
	kda.analyze.test
	kda.configure
	kda.finish
	kda.finish.estimate
	kda.finish.save
	kda.finish.summarize
	kda.finish.trim
	kda.prepare
	kda.prepare.overlap
	kda.prepare.screen
	kda.start
	kda.start.edges
	kda.start.identify
	kda.start.modules
	kda2cytoscape
	kda2cytoscape.colorize
	kda2cytoscape.colormap
	kda2cytoscape.drivers
	kda2cytoscape.edges
	kda2cytoscape.exec
	kda2cytoscape.identify
	kda2himmeli
	kda2himmeli.colorize
	kda2himmeli.colormap
	kda2himmeli.drivers
	kda2himmeli.edges
	kda2himmeli.exec
	kda2himmeli.identify
	MSEA.KDA.onestep
	ssea.analyze
	ssea.analyze.observe
	ssea.analyze.randgenes
	ssea.analyze.randloci
	ssea.analyze.simulate
	ssea.analyze.statistic
	ssea.control
	ssea.finish
	ssea.finish.details
	ssea.finish.fdr
	ssea.finish.genes
	ssea.meta
	ssea.prepare
	ssea.prepare.counts
	ssea.prepare.structure
	ssea.start
	ssea.start.configure
	ssea.start.identify
	ssea.start.relabel
	ssea2kda
	ssea2kda.analyze
	ssea2kda.import
	tool.aggregate
	tool.cluster
	tool.cluster.static
	tool.coalesce
	tool.coalesce.exec
	tool.coalesce.find
	tool.coalesce.merge
	tool.fdr
	tool.fdr.bh
	tool.fdr.empirical
	tool.graph
	tool.graph.degree
	tool.graph.list
	tool.metap
	tool.normalize
	tool.normalize.quality
	tool.overlap
	tool.read
	tool.save
	tool.subgraph
	tool.subgraph.find
	tool.subgraph.search
	tool.subgraph.stats
	tool.translate
	tool.unify
	Index

