Package ‘MatrixQCyvis’

January 24, 2026
Type Package
Title Shiny-based interactive data-quality exploration for omics data
Version 1.19.0
Date 2025-06-26
VignetteBuilder knitr

Description Data quality assessment is an integral part of preparatory data analysis
to ensure sound biological information retrieval.
We present here the MatrixQCvis package, which provides shiny-based
interactive visualization of data quality metrics at the per-sample and
per-feature level. It is broadly applicable to quantitative omics data types
that come in matrix-like format (features x samples). It enables the detection
of low-quality samples, drifts, outliers and batch effects in data sets.
Visualizations include amongst others bar- and violin plots of the (count/intensity)
values, mean vs standard deviation plots, MA plots, empirical cumulative
distribution function (ECDF) plots, visualizations of the distances
between samples, and multiple
types of dimension reduction plots. Furthermore, MatrixQCyvis allows for
differential expression analysis based on the limma (moderated t-tests) and
proDA (Wald tests) packages. MatrixQCvis builds upon the popular
Bioconductor SummarizedExperiment S4 class and enables thus the facile
integration into existing workflows. The package
is especially tailored towards metabolomics and proteomics mass spectrometry
data, but also allows to assess the data quality of other data types that
can be represented in a SummarizedExperiment object.

Depends DT (>= 0.33), SummarizedExperiment (>= 1.20.0), plotly (>=
4.9.3), shiny (>= 1.6.0)

Imports ComplexHeatmap (>= 2.7.9), dplyr (>= 1.0.5), ExperimentHub (>=
2.6.0), ggplot2 (>= 3.3.3), grDevices (>= 4.1.0), Hmisc (>=
4.5-0), htmlwidgets (>= 1.5.3), impute (>= 1.65.0), imputeLCMD
(>=2.0), limma (>= 3.47.12), MASS (>= 7.3-58.1), methods (>=
4.1.0), pcaMethods (>= 1.83.0), proDA (>= 1.5.0), rlang (>=
0.4.10), rmarkdown (>= 2.7), Rtsne (>= 0.15), shinydashboard
(>=0.7.1), shinyhelper (>= 0.3.2), shinyjs (>= 2.0.0), stats
(>=4.1.0), sva (>=3.52.0), tibble (>= 3.1.1), tidyr (>=
1.1.3), umap (>= 0.2.7.0), UpSetR (>= 1.4.0), vsn (>= 3.59.1)

1

Suggests BiocGenerics (>= 0.37.4), BiocStyle (>=2.19.2), hexbin (>=
1.28.2), httr (>= 1.4.7), jpeg (>= 0.1-10), knitr (>= 1.33),
statmod (>= 1.5.0), testthat (>= 3.0.2)

biocViews Visualization, ShinyApps, GUI, QualityControl,
DimensionReduction, Metabolomics, Proteomics, Transcriptomics

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/MatrixQCvis
git_branch devel

git_last_commit 0b99d49

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Thomas Naake [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7917-5580>),
Wolfgang Huber [aut] (ORCID: <https://orcid.org/0000-0002-0474-2218>)

Maintainer Thomas Naake <thomasnaake@googlemail.com>

Contents
barplotSamplesMeasuredMissing oL oL 3
batchCorrectionAssay 4
createBoxplot L. 5
createDfFeature 7
OV o e e e 8
cvFeaturePlot 8
dimensionReduction 9
dimensionReductionPlot e 10
distSample 12
distShiny 13
driftPlot e 14
ECDF . . . e 15
explVar e 16
extractComb e 17
featurePlot e 18
histFeature e 19
histFeatureCategory e 19
hist_ sample L 20
hist_sample_ num 21
hoeffDPlot e 22
hoeffDValues e 23
IMPULBASSAY « . o v v v e e e e e e e e e e e e 24

MAPpIOt . . . e 25

https://orcid.org/0000-0001-7917-5580
https://orcid.org/0000-0002-0474-2218

barplotSamplesMeasuredMissing 3

Index

MAvValUES 26
measuredCategory e e e e e e e e e 27
MOSAC .+ v v v v v vt e e e e e e e e 28
normalizeAssay L. 29
permuteExplVar oL 30
PlotCV . o e 31
plotPCALoadings e 32
plotPCAVar e 33
plotPCAVarPvalue e 34
samplesMeasuredMissing e e 35
shinyQC e e e 36
sumDistSample L 37
tbIPCALoadings e 38
transfOrmASSaY e e 39
upsetCategory e e e e e e e e e 40
volcanoPlot 41

43

barplotSamplesMeasuredMissing

Barplot of number of measured/missing features of samples

Description

barplotSamplesMeasuredMissing plots the number of measured/missing features of samples as
a barplot. The function will take as input the returned tb1l of samplesMeasuredMissing.

Usage

barplotSamplesMeasuredMissing(tbl, measured = TRUE)

Arguments

tbl tb1 object

measured logical, should the number of measured or missing values be plotted
Value

gg object from ggplot?2

4 batchCorrectionAssay

Examples

create se
a <- matrix(seq_len(100@), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)

create the data.frame with information on number of measured/missing
values
tbl <- samplesMeasuredMissing(se)

plot number of measured values
barplotSamplesMeasuredMissing(tbl, measured = TRUE)

plot number of missing values
barplotSamplesMeasuredMissing(tbl, measured = FALSE)

batchCorrectionAssay Remove batch effects from (count/intensity) values of a
SummarizedExperiment

Description

The function batchCorrectionAssay removes the batch effect of (count/intensity) values of a
SummarizedExperiment. It uses either the removeBatchEffect or ComBat functions or no batch
effect correction method (pass-through, none).

Usage
batchCorrectionAssay(
se,
method = c("none”, "removeBatchEffect (limma)"”, "ComBat"),
batch = NULL,

batch2 = NULL,

)
Arguments
se SummarizedExperiment
method character, one of "none” or "removeBatchEffect”

batch character, NULL or one of colnames(colData(se))

createBoxplot 5

batch2 character, NULL or one of colnames(colData(se))

further arguments passed to removeBatchEffect or ComBat

Details

The column batch in colData(se) contains the information on the batch identity. For method =
"removeBatchEffect (1imma)”, batch2 may indicate a second series of batches. Internal use in
shinyQC.

If batch is NULL and method is set to method = "removeBatchEffect (1imma)"” or method =
"ComBat", no batch correction will be performed (equivalent to method = "none").

The method ComBat will only perform batch correction on valid features: (1) more or equal than
two observations (no NA) per level and per feature, (2) variance greater than O per feature, and (3)
more than two valid features as given by (1) and (2). For non-valid features, values are taken from
assay(se).

Value

matrix

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”"sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a),
type = c(rep(”"1", 5), rep("2", 5)), batch = rep(c(1, 2), 5))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

method = "removeBatchEffect (limma)"”
batchCorrectionAssay(se, method = "removeBatchEffect (limma)",
batch = "batch”, batch2 = NULL)

method = "ComBat"”
batchCorrectionAssay(se, method = "ComBat”,
batch = "batch”, batch2 = NULL)

createBoxplot Create a boxplot of (count/intensity) values per sample

Description

The function create_boxplot creates a boxplot per sample for the intensity/count values.

6 createBoxplot

Usage
createBoxplot(
se,
orderCategory = colnames(colData(se)),
title = "",
log = TRUE,
violin = FALSE
)
Arguments
se SummarizedExperiment containing the (count/intensity) values in the assay

slot

orderCategory character, one of colnames(colData(se))

title character or numeric of length(1)

log logical, if TRUE (count/intensity) values are displayed as log values

violin logical, if FALSE a boxplot is created, if TRUE a violin plot is created
Details

Internal usage in shinyQC.

Value

gg object from ggplot?2

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample”, seq_len(10))))
alc(1, 5, 8), seqg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

createBoxplot(se, orderCategory = "name”, title = "", log = TRUE,
violin = FALSE)

createDfFeature 7

createDfFeature Create data frame of (count/intensity) values for a selected feature
along data processing steps

Description

The function createDfFeature takes as input a list of matrices and returns the row Feature of
each matrix as a column of a data. frame. The function createDfFeature provides the input for
the function featurePlot.

Usage

createDfFeature(l, feature)

Arguments
1 list containing matrices at different processing steps
feature character, element of rownames of the matrices in 1
Details

Internal usage in shinyQC

Value

data.frame

Examples

set.seed(1)
x1 <= matrix(rnorm(100), ncol = 10, nrow = 10,
dimnames = list(paste("feature”, seq_len(10)),
paste("sample”, seq_len(10))))
x2 <- x1 + 5
X3 <- x2 + 10

1 <= list(x1 = x1, x2 = x2, x3 = x3)
createDfFeature(l, "feature 1")

8 cvFeaturePlot

cv Calculate coefficient of variation

Description

The function cv calculates the coefficient of variation from columns of a matrix. The coefficients of
variation are calculated according to the formula sd(y) / mean(y) * 100 with y the column values,
thus, the function returns the coefficient of variation in percentage.

Usage

cv(x, name = "raw")
Arguments

X matrix

name character, the name of the returned list
Details

The function returned a named list (the name is specified by the name argument) containing the
coefficient of variation of the columns of x.

Value

list

Examples

x <- matrix(seq_len(10), ncol = 2)
cv(x)

cvFeaturePlot Plot of feature-wise coefficient of variation values

Description
The function cvFeaturePlot returns a plotly plot of coefficient of variation values. It will create
a violin plot and superseded points of coefficient of variation values per list entry of 1.

Usage

cvFeaturePlot(l, lines = FALSE)

dimensionReduction 9

Arguments
1 list containing matrices
lines logical

Details

lines = TRUE will connect the points belonging to the same feature with a line. If there are less
than two features, the violin plot will not be plotted. The violin plots will be ordered according to
the order in 1

Value

plotly

Examples

x1 <- matrix(seq_len(100), ncol = 10, nrow = 10,
dimnames = list(paste(”"feature”, seq_len(10)),
paste("sample”, seq_len(10))))
x2 <- x1 + 5
X3 <- x2 + 10
1 <= list(x1 = x1, x2 = x2, x3 = x3)
cvFeaturePlot(l, lines = FALSE)

dimensionReduction Dimensionality reduction with dimensionReduction methods PCA,
PCoA, NMDS, UMAP and tSNE

Description

The function dimensionReduction creates a data. frame with the coordinates of the projected data
(first entry of returned output). The function allows for the following projections: Principal Com-
ponent Analysis (PCA), Principal Coordinates Analysis/Multidimensional Scaling (PCoA), Non-
metric Multidimensional scaling (NMDS), t-distributed stochastic neighbor embedding (tSNE), and
Uniform Manifold Approximation and Projection (UMAP).

The second list entry will contains the object returned from prcomp (PCA), cmdscale (PCoA),
isoMDS (NMDS), Rtsne (tSNE), or umap (UMAP).

Usage

dimensionReduction(
X’
type = c("PCA", "PCoA"”, "NMDS", "tSNE", "UMAP"),
params = list()

)

10 dimensionReductionPlot

Arguments
X matrix, containing no missing values, samples are in columns and features are
in rows
type character, specifying the type/method to use for dimensionality reduction.
One of PCA, PCoA, NMDS, tSNE, or UMAP.
params list, arguments/parameters given to the functions stats: :prcomp, stats: :dist,
Rtsne: :Rtsne, umap: :umap
Details

The function dimensionReduction is a wrapper around the following functions stats: :prcomp

(PCA), stats::cmdscale (PCoA), MASS: : isoMDS (NMDS), Rtsne: :Rtsne (tSNE), and umap: : umap

(UMAP). For the function umap: : umap the method is set to naive.

Value

list, first entry contains a tbl, second entry contains the object returned from prcomp (PCA),
cmdscale (PCoA), isoMDS (NMDS), Rtsne (tSNE), or umap (UMAP)

Author(s)
Thomas Naake

Examples

x <= matrix(rnorm(seq_len(10000)), ncol = 100)

rownames(x) <- paste("feature”, seqg_len(nrow(x)))

colnames(x) <- paste("sample”, seq_len(ncol(x)))

params <- list(method = "euclidean”, ## dist
initial_dims = 10, max_iter = 100, dims = 3, perplexity = 3, ## tSNE
min_dist = 0.1, n_neighbors = 15, spread = 1) ## UMAP

dimensionReduction(x, type = "PCA", params = params)
dimensionReduction(x, type = "PCoA"”, params = params)
dimensionReduction(x, type = "NMDS"”, params = params)
dimensionReduction(x, type = "tSNE"”, params = params)
dimensionReduction(x, type = "UMAP", params = params)

dimensionReductionPlot
Plot the coordinates from dimensionReduction values

Description

The function dimensionReductionPlot creates a dimension reduction plot. The function takes
as input the tb1 object obtained from the dimensionReduction function. The tbl contains trans-
formed values by one of the dimension reduction methods.

dimensionReductionPlot 11

Usage

dimensionReductionPlot(

tbl,
se,

color = c("none”, colnames(se@colData)),
size = c("none"”, colnames(se@colData)),

explainedvar

x_coord,
y_coord,

height = 600,
interactive

Arguments

tbl
se
color
size

explainedVar

x_coord
y_coord
height

interactive

Details

= NULL,

TRUE

tb1 as obtained by the function dimensionReduction
SummarizedExperiment

character, one of "none"” or colnames(se@colData)
character, one of "none"” or colnames(se@colData)

NULL or named numeric, if numeric explainedVar contains the explained
variance per principal component (names of explainedVar corresponds to the
principal components)

character, column name of tbl that stores x coordinates
character, column name of tbl that stores y coordinates
numeric, specifying the height of the plot (in pixels)

logical(1), if TRUE dimensionReductionPlot will return a plotly object, if
FALSE dimensionReductionPlot will return a gg object

The function dimensionReductionPlot is a wrapper for a ggplot/ggplotly expression.

Value

plotly or gg

Author(s)

Thomas Naake

Examples

library(SummarizedExperiment)

create se

a <- matrix(seq_len(100), nrow = 10, ncol = 10, byrow = TRUE,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

12 distSample

set.seed(1)

a <- a + rnorm(100)

cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)),
median_vals = apply(a, 2, median))

rD <- data.frame(spectra = rownames(a))

se <- SummarizedExperiment(assay = a, rowData = rD, colData = cD)

pca <- dimensionReduction(x = assay(se), type = "PCA", params = list())[[1]]

dimensionReductionPlot(tbl = pca, se = se, color = "type"”, size = "median_vals”,
x_coord = "PC1", y_coord = "PC2")

distSample Create a heatmap using distance information between samples

Description

The function distSample creates a heatmap from a distance matrix created by the function distShiny.
The heatmap is annotated by the column specified by the 1abel column in colData(se).

Usage

distSample(d, se, label = "name", title = "raw”, ...)
Arguments

d matrix containing distances, obtained from distShiny

se SummarizedExperiment

label character, refers to a column in colData(se)

title character

further arguments passed to ComplexHeatmap: :Heatmap

Details

Internal use in shinyQC

Value

Heatmap object from ComplexHeatmap

distShiny

Examples

create se
a <- matrix(seq_len(100@), nrow = 10, ncol = 10,

dimnames = list(seq_len(10), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA

set.seed(1)

a <- a + rnorm(100)

a_i <- imputeAssay(a, method = "MinDet")

cD <- data.frame(name = colnames(a_i),
type = c(rep(”"1”, 5), rep("2", 5)))

rD <- data.frame(spectra = rownames(a_i))

se <- SummarizedExperiment::SummarizedExperiment(assay = a_i, rowData

colData = cD)

dist <- distShiny(a_i)
distSample(dist, se, label = "type", title = "imputed”,
show_row_names = TRUE)

rD,

13

distShiny Create distance matrix from numerical matrix

Description

The function distShiny takes as an input a numerical matrix or data.frame and returns the

distances between the rows and columns based on the defined method (e.g. euclidean distance).

Usage

distShiny(x, method = "euclidean")

Arguments
X matrix or data. frame with samples in columns and features in rows
method character, method for distance calculation

Details

Internal use in shinyQC.

Value

matrix

Examples

x <- matrix(seq_len(100), nrow = 10, ncol = 10,

dimnames = list(seq_len(10), paste("sample”, seq_len(10))))

distShiny(x = x)

14

driftPlot

driftPlot

Plot the trend line for aggregated values

Description

The function driftPlot aggregates the (count/intensity) values from the assay () slot of a SummarizedExperiment
by the median or sum of the (count/intensity) values. driftPlot then visualizes these aggregated

values and adds a trend line (using either LOESS or a linear model) from (a subset of) the aggregated

values. The subset is specified by the arguments category and level.

Usage

driftPlot(
se,
aggregation

c("median”, "sum"),

category = colnames(colData(se)),
orderCategory = colnames(colData(se)),
level = c("all”, unique(colData(se)[, categoryl)),

method = c("loess”, "1m")
)
Arguments
se SummarizedExperiment
aggregation character, type of aggregation of (count/intensity) values
category character, column of colData(se)
orderCategory character, column of colData(se)
level character, from which samples should the LOESS curve be calculated, either
"all” or one of the levels of the selected columns of colData(se) ("category”)
method character, either "loess” or "1m"
Details

The x-values are sorted according to the orderCategory argument: The levels of the corresponding
column in colData(se) are pasted with the sample names (in the column name) and factorized.
Internal usage in shinyQC.

Value

gg object from ggplot2

ECDF 15

Examples

#' ## create se

set.seed(1)

a <- matrix(rnorm(1000), nrow = 10, ncol = 100,
dimnames = list(seq_len(10), paste(”sample”, seq_len(100))))

alc(1, 5, 8), seg_len(5)] <- NA

cD <- data.frame(name = colnames(a), type = c(rep("1", 50), rep("2", 50)))

rD <- data.frame(spectra = rownames(a))

se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

driftPlot(se, aggregation = "sum”, category = "type",
orderCategory = "type"”, level = "1", method = "loess")

ECDF Create ECDF plot of a sample against a reference

Description

The function ECDF creates a plot of the empirical cumulative distribution function of a specified
sample and an outgroup (reference). The reference is specified by the group argument. The row-
wise (feature) mean values of the reference are calculated after excluding the specified sample.

Usage

ECDF (se, sample = colnames(se), group = c("all”, colnames(colData(se))))

Arguments
se SummarizedExperiment object
sample character, name of the sample to compare against the group
group character, either "all” or one of colnames(colData(se))
Details

Internal use in shinyQC.

The function ECDF uses the ks. test function from stats to perform a two-sample Kolmogorov-
Smirnov test. The Kolmogorov-Smirnov test is run with the alternative "two.sided"” (null hypoth-
esis is that the true distribution function of the sample is equal to the hypothesized distribution
function of the group).

The exact argument in ks. test is set to NULL, meaning that an exact p-value is computed if the
product of the sample sizes is less than 10000 of sample and group. Otherwise, asymptotic distri-
butions are used whose approximations might be inaccurate in low sample sizes.

Value

gg object from ggplot?2

16 explVar

Examples

create se
set.seed(1)
a <- matrix(rnorm(1000), nrow = 100, ncol = 10,
dimnames = list(seq_len(100), paste("sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment(assay = a, rowData = rD, colData = cD)

ECDF (se, sample = "sample 1", group = "all")

explvar Retrieve the explained variance for each principal component (PCA)
or axis (PCoA)

Description
The function explVar calculates the proportion of explained variance for each principal component
(PC, type = "PCA") and axis (type = "PCoA").

Usage

explVar(d, type = c("PCA", "PCoA"))

Arguments
d prcomp or list from cmdscale
type character, one of "PCA" or "PCoA"
Details

explVar uses the function prcomp from the stats package to retrieve the explained standard de-
viation per PC (type = "PCA") and the function cmdscale from the stats package to retrieve the
explained variation based on eigenvalues per Axis (type = "PCoA").

Value

numeric vector with the proportion of explained variance for each PC or Axis

Author(s)

Thomas Naake

extractComb 17

Examples

x <- matrix(seq_len(100), nrow = 10, ncol = 10,

dimnames = list(seq_len(10), paste("sample”, seq_len(10))))
set.seed(1)
X <= X + rnorm(100)

run for PCA
pca <- dimensionReduction(x = x,

params = list(center = TRUE, scale = TRUE), type = "PCA")[[2]1]
explVar(d = pca, type = "PCA")

run for PCoA
pcoa <- dimensionReduction(x = x,

params = list(method = "euclidean"”), type = "PCoA")[[2]1]
explVar(d = pcoa, type = "PCoA")

extractComb Obtain the features that are present in a specified set

Description

The function extractComb extracts the features that match a combination depending if the features
was measured or missing. The function will return the sets that match the combination, thus, the
function might be useful when answering questions about which features are measured/missing
under certain combinations (e.g. sample types or experimental conditions).

Usage

extractComb(se, combination, measured = TRUE, category = "type")
Arguments

se SummarizedExperiment

combination character, refers to factors in category

measured logical

category character, corresponding to a column name in colData(se)
Details

The function extractComb uses the make_comb_mat function from ComplexHeatmap package.
Presence is defined by a feature being measured in at least one sample of a set.

Absence is defined by a feature with only missing values (i.e. no measured values) of a set.

Value

character

18 featurePlot

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a, rowData = rD, colData = cD)

extractComb(se, combination = "2", measured = TRUE, category = "type")
featurePlot Create a plot of (count/intensity) values over the samples
Description

The function featurePlot creates a plot of (count/intensity) values for different data processing
steps (referring to columns in the data. frame) over the different samples (referring to rows in the
data.frame).

Usage
featurePlot (df)

Arguments

df data.frame

Details

Internal usage in shinyQC.

Value

gg object from ggplot?2

Examples

set.seed(1)
x1 <= matrix(rnorm(100), ncol = 10, nrow = 10,
dimnames = list(paste("feature”, seq_len(10)),

paste("sample”, seq_len(10))))

x2 <- x1 + 5

x3 <- x2 + 10

1 <= list(x1 = x1, x2 = x2, x3 = x3)

df <- createDfFeature(l, "feature 1")

histFeature 19

featurePlot (df)

histFeature Histogram for measured value per feature

Description

The function histFeature creates a histogram with the number of measured/missing values per

feature.
Usage
histFeature(x, measured = TRUE, ...)
Arguments
X matrix containing intensities. Missing values are encoded as NA.
measured logical, should the measured values (measured = TRUE) or missing values (measured
= FALSE) be taken
additional parameters passed to geom_histogram, e.g. binwidth.
Value

plotly object from ggplotly

Examples

x <- matrix(c(c(1, 1, 1), c(1, NA, 1), c(1, NA, 1),

c(1, 1, 1), c(NA, 1, 1), c(NA, 1, 1)), byrow = FALSE, nrow = 3)
colnames(x) <- c("A_1", "A_2", "A_3", "B_1", "B_2", "B_3")
histFeature(x, binwidth = 1)

histFeatureCategory Histogram of features per sample type

Description

The function histFeatureCategory creates histogram plots for each sample type in se.

Usage

histFeatureCategory(se, measured = TRUE, category = "type"”, ...)

20

Arguments

se

measured

category

Value

hist_sample

SummarizedExperiment, the assay slot contains the intensity values per sample.
Missing values are encoded as NA.

logical, should the measured values (measured = TRUE) or missing values (measured
= FALSE) be taken

character, corresponding to a column in colData(se)

additional parameters passed to geom_histogram, e.g. binwidth.

plotly object from ggplotly

Examples

create se

a <- matrix(seq_len(100), nrow = 10, ncol = 10,

dimnames = list(seq_len(10), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

histFeatureCategory(se, measured = TRUE, category = "type")

hist_sample Plot a histogram of the number of a category

Description

hist_sample plots the number of a category (e.g. sample types) as a histogram. It use the returned
tbl from hist_sample_num.

Usage

hist_sample(tbl, category = "type")

Arguments
tbl tbl as returned by hist_sample_num
category character, x-axis label of the plot
Value

gg object from ggplot?2

hist_sample_num 21

Examples

create se
a <- matrix(seq_len(100@), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 4), rep("2", 6)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)

tbl <- hist_sample_num(se, category = "type")
hist_sample(tbl)

hist_sample_num Return the number of a category

Description

hist_sample_num returns the number of a category (e.g. sample types) as a tb1l. The function will
retrieve first the column category in colData(se). The function will return a tb1l containing the
numerical values of the quantities.

Usage

hist_sample_num(se, category = "type")

Arguments

se SummarizedExperiment object

category character, corresponding to a column in colData(se)

Value

tbl

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 4), rep("2", 6)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

22 hoeffDPlot

rowData = rD, colData = cD)

hist_sample_num(se, category = "type")
hoeffDPlot Create a plot from a list of Hoeffding’s D values
Description

The function hoeffDPlot creates via ggplot a violin plot per factor, a jitter plot of the data points
and (optionally) connects the points via lines. hoeffDPlot uses the plotly package to make the
figure interactive.

Usage
hoeffDPlot(df, lines = TRUE)

Arguments
df data.frame containing one or multiple columns containing the Hoeffding’s D
statistics
lines logical, should points belonging to the same sample be connected
Details

The function hoeffDPlot will create the violin plot and jitter plot according to the specified order
given by the colnames of df. hoeffDPlot will thus internally refactor the colnames of the supplied
data. frame according to the order of the colnames.

Value

gg object from ggplot?2

Examples

create se
set.seed(1)
a <- matrix(rnorm(10000), nrow = 1000, ncol = 10,
dimnames = list(seq_len(1000), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)

tbl <- MAvalues(se, log = FALSE, group = "all")
hd_r <- hoeffDValues(tbl, "raw"

hoeffDValues 23

normalized values

se_n <- se

assay(se_n) <- normalizeAssay(a, "sum")

tbl_n <- MAvalues(se_n, log = FALSE, group = "all")
hd_n <- hoeffDValues(tbl_n, "normalized")

df <- data.frame(raw = hd_r, normalized = hd_n)

hoeffDPlot(df, lines = TRUE)
hoeffDPlot(df, lines = FALSE)
hoeffDValues Create values of Hoeffding’s D statistics from M and A values

Description

The function creates and returns Hoeffding’s D statistics values from MA values.

In case sample_n is set to a numerical value (e.g. 10000), a random subset containing sample_n is
taken to calculate Hoeffding’s D values to speed up the calculation. In case there are less features
than sample_n, all features are taken.

Usage

hoeffDValues(tbl, name = "raw”, sample_n = NULL)

Arguments
tbl tibble, as obtained from the function MAvalues
name character (1), name of the returned list
sample_n numeric (1), number of features (subset) to be taken for calculation of Hoeffd-
ing’s D values
Details

The function uses the function hoeffd from the Hmisc package to calculate the values.

Value

named list with Hoeffding’s D values per sample

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)

24

cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))

rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData =

rD, colData = cD)

tbl <- MAvalues(se)
hoeffDValues(tbl, "raw")

normalized values

se_n <- se

assay(se_n) <- normalizeAssay(a, "sum")
tbl_n <- MAvalues(se_n, group = "all")
hoeffDValues(tbl_n, "normalized")

transformed values

se_t <- se

assay(se_t) <- transformAssay(a, "log")
tbl_t <- MAvalues(se_t, group = "all")
hoeffDValues(tbl_t, "transformed”)

imputeAssay

imputeAssay

Impute missing values in a matrix

Description

The function impute imputes missing values based on one of the following principles: Bayesian
missing value imputation (BPCA), k-nearest neighbor averaging (kNN), Malimum likelihood-based
imputation method using the EM algorithm (MLE), replacement by the smallest non-missing value
in the data (Min), replacement by the minimal value observed as the g-th quantile (MinDet, default q
=0.01), and replacement by random draws from a Gaussian distribution centred to a minimal value

(MinProb).

Usage

imputeAssay(
a,

method = c("BPCA”, "kNN", "MLE", "Min", "MinDet", "MinProb"”, "none")

)

Arguments

a

method

matrix with samples in columns and features in rows

character, one of "BPCA", "kNN", "MLE"”, "Min", "MinDet”, "MinProb", or

unonen

MAplot 25

Details

BPCA wrapper for pcaMethods: : pca with methods = "bpca”. BPCA is a missing at random (MAR)
imputation method.

kNN wrapper for impute: :impute.knn with k =10, rowmax = 0.5, colmax = 0.5, maxp = 1500.
kNN is a MAR imputation method.

MLE wrapper for imputeLCMD: : impute .MAR with method = "MLE", model.selector = 1/imputelLCMD: : impute.wrapper .Ml
MLE is a MAR imputation method.

Min imputes the missing values by the observed minimal value of x. Min is a missing not at random
(MNAR) imputation method.

MinDet is a wrapper for imputeLCMD: :impute.MinDet with q=0.01. MinDet performs the im-
putation using a deterministic minimal value approach. The missing entries are replaced with a
minimal value, estimated from the g-th quantile from each sample. MinDet is a MNAR imputation
method.

MinProb is a wrapper for imputeLCMD: : impute.MinProb with q = ©.01 and tune.sigma = 1. MinProb
performs the imputation based on random draws from a Gaussion distribution with the mean set to
the minimal value of a sample. MinProb is a MNAR imputation method.

MinProb does not impute values (not available within shiny application).

Value

matrix

Examples

a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA

imputeAssay(a, method = "kNN")
imputeAssay(a, method = "Min")
imputeAssay(a, method = "MinDet")
imputeAssay(a, method = "MinProb")

MAplot Create a MA plot

Description

The function creates a 2D histogram of M and A values.

26 MAvalues

Usage

MAplot(
tbl,
group = c("all”, colnames(tbl)),
plot = c("all”, unique(tbl[["name"11))

)
Arguments
tbl tibble containing the M and A values, as obtained from the MAvalues function
group character, one of colnames(colData(se)) (se used in MAvalues) or "all”
plot character, one of colData(se)$name (se used in MAvalues) or "all”
Details

MAplot returns a 2D hex histogram instead of a classical scatterplot due to computational reasons
and better visualization of overlaying points. The argument plot specifies the sample (refering
to colData(se)$name) to be plotted. If plot = "all”, MA values for all samples will be plotted
(samples will be plotted in facets). If the number of features (tbl1$Features) is below 1000, points
will be plotted (via geom_points), otherwise hexagons will be plotted (via geom_hex).

Value

gg object from ggplot2

Examples

create se
set.seed(1)
a <- matrix(rnorm(10000), nrow = 1000, ncol = 10,
dimnames = list(seq_len(1000), paste("sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)

tbl <- MAvalues(se, log = FALSE, group = "all")
MAplot(tbl, group = "all”, plot = "all")

MAvalues Create values (M and A) for MA plot

measuredCategory 27

Description

The function MAvalues will create MA values as input for the function MAplot and hoeffDValues.
M and A are specified relative to specified samples which is determined by the group argument.
In case of group == "all”, all samples (expect the specified one) are taken for the reference cal-
culation. In case of group !="all" will use the samples belonging to the same group given in
colnames(colData(se)) expect the specified one.

Usage

MAvalues(se, log2 = TRUE, group = c("all"”, colnames(colData(se))))

Arguments
se SummarizedExperiment
log?2 logical, specifies if values are log2-transformed prior to calculating M and A
values. If the values are already transformed, log2 should be set to FALSE. If
log?2 = TRUE and if there are values in assay (se) that are 0, the 1og?2 values are
calculated by log2(assay(se) +1)
group character, either "all” or one of colnames(colData(se))
Value

tbl with columns Feature, name (sample name), A, M and additional columns of colData(se)

Examples

create se
set.seed(1)
a <- matrix(rnorm(10000), nrow = 1000, ncol = 10,
dimnames = list(seq_len(1000), paste("sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment(assay = a, rowData = rD, colData = cD)

MAvalues(se, log = FALSE, group = "all")

measuredCategory Obtain the number of measured intensities per sample type

Description

The function measuredCategory creates a tb1l with the number of measured values per feature. 0
means that there were only missing values (NA) for the feature and sample type. measuredCategory
will return a tbl where columns are the unique sample types and rows are the features as in
assay(se).

28

mosaic

Usage
measuredCategory(se, measured = TRUE, category = "type")
Arguments
se SummarizedExperiment
measured logical, should the measured values (measured = TRUE) or missing values (measured
= FALSE) be taken
category character, corresponds to a column name in colData(se)
Details

measuredCategory is a helper function.

Value

matrix with number of measured/missing features per category type

Examples

create se
set.seed(1)

a <- matrix(rnorm(10@), nrow = 10, ncol = 10,

dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA

cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))

se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)
measuredCategory(se, measured = TRUE, category = "type")
mosaic Mosaic plot for two factors in colData(se)
Description

The function mosaic creates a mosaic plot of two factors from an SummarizedExperiment object.
The columns f1 and f2 are taken from colData(se).

Usage

mosaic(se, f1, f2)

normalizeAssay 29

Arguments
se SummarizedExperiment object
f1 character, f1 is one of the column names in colData(se)
f2 character, f2 is one of the column names in colData(se)
Details

Code partly taken from https://stackoverflow.com/questions/21588096/pass-string-to-facet-grid-ggplot2

Value

gg object from ggplot2

Examples

create se
set.seed(1)
a <- matrix(rnorm(10@), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))
alc(1, 5, 8), seg_len(5)] <- NA
cD <- data.frame(name = colnames(a),
type = c(rep("1”, 5), rep("2", 5)),
cell_type = c("A", "B"))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

mosaic(se, "cell_type"”, "type")

normalizeAssay Normalize a data sets (reduce technical sample effects)

Description

The function normalizeAssay performs normalization by sum of the (count/intensity) values per
sample (method = "sum"), quantile division per sample (method = "quantile division"), or by
quantile normalization (adjusting the value distributions that they become identical in statistical
properties, method = "quantile”). The value for quantile division (e.g., the 75 specified by the
probs argument. Quantile normalization is performed by using the normalizeQuantiles function
from limma.

For the methods "sum” and "quantile division", normalization will be done depending on the
multiplyByNormalizationValue parameter. If set to TRUE, normalization values (e.g. sum or
quantile) will be calculated per sample. In a next step, adjusted normalization values will be calcu-
lated for each sample in relation to the median normalization values across all samples. Finally, the
values in a are multiplied by these adjusted normalization values. If multiplyByNormalizationValue
is set to FALSE, normalization values (e.g. sum or quantile) will be calculated per sample. The val-
ues in a are sample-wise divided by the normalization values.

30 permuteExplVar

Usage
normalizeAssay(
a,
method = c("none”, "sum”, "quantile division”, "quantile”),
probs = 0.75,
multiplyByNormalizationValue = FALSE
)
Arguments
a matrix with samples in columns and features in rows
method character, one of "none”, "sum”, "quantile division”, "quantile”
probs numeric, ranging between [0, 1). probs is used as the divisor for quantile

division in method = "quantile division”
multiplyByNormalizationValue

logical, if TRUE, normalization values will be calculated and the values in a

will be multiplied by the values The parameter is only relavant for method =

"sum” and method = "quantile division”

Details
Internal usage in shinyQC. If method is set to "none”, the object x is returned as is (pass-through).
If probs is NULL, probs is internally set to 0.75 if method = "quantile division”.

Depending on the values in a, if multiplyByNormalizationValue is set to TRUE the returned
normalized values will be in the same order of magnitude than the original values, while if FALSE,
the returned values will be in a smaller order of magnitude.

Value

matrix

Examples

a <- matrix(seq_len(100@), nrow = 10, ncol = 10,
dimnames = list(seqg_len(10), paste("sample”, seq_len(10))))
normalizeAssay(a, "sum")

permuteExplVar Permute the expression values and retrieve the explained variance

Description

The function permuteExplVar determines the explained variance of the permuted expression ma-
trix (x). It is used to determine the optimal number of PCs for tSNE.

plotCV 31

Usage

permuteExplVar(x, n = 10, center = TRUE, scale = TRUE, sample_n = NULL)

Arguments
X matrix or data.frame, samples in columns and features in rows
n numeric, number of permutation rounds
center logical, passed to the function explVar
scale logical, passed to the function explVar
sample_n numeric (1), number of features (subset) to be taken for calculation of permuted
explained variance, the top sample_n varying values based on their standard
deviation will be taken
Details

For the input of tSNE, typically, we want to reduce the initial number of dimensions linearly with
PCA (used as the initial_dims arguments in the Rtsne funtion). The reduced data set is used for
feeding into tSNE. By plotting the percentage of variance explained by the Princical Components
(PCs) we can estimate how many PCs we keep as input into tSNE. However, if we select too many
PCs, noise will be included as input to tSNE; if we select too few PCs we might loose the important
data structures. To get a better understanding how many PCs to include, randomization will be
employed and the observed variance will be compared to the permuted variance.

Value

matrix with explained variance

Author(s)
Thomas Naake

Examples

x <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste("sample"”, seq_len(10))))
permuteExplVar(x = x, n = 10, center = TRUE, scale = TRUE, sample_n = NULL)

plotCV Plot CV values

Description

The function plotCV displays the coefficient of variation values of set of values supplied in a
data.frame object. The function will create a plot using the ggplot2 package and will print the
values in the different columns in different colors.

32 plotPCALoadings

Usage
plotCV(df)
Arguments
df data.frame containing one or multiple columns containing the coefficients of
variation
Details

Internal usage in shinyQC.

Value

gg object from ggplot?2

Examples

x1 <- matrix(seq_len(10), ncol = 2)
x2 <- matrix(seq(11, 20), ncol 2)
x3 <- matrix(seq(21, 30), ncol = 2)
x4 <- matrix(seq(31, 40), ncol = 2)

calculate cv values
cvl <= cv(x1, "x1")
cv2 <- cv(x2, "x2")
cv3 <- cv(x3, "x3")
cv4d <- cv(x4, "x4")

df <- data.frame(cvl, cv2, cv3, cv4d)
plotCV(df)

plotPCALoadings Plot for PCA loadings of features

Description

The function plotPCALoadings creates a loadings plot of the features.

Usage
plotPCALoadings(tbl, x_coord, y_coord)

Arguments
tbl tbl as obtained by the function dimensionReduction
x_coord character, column name of tb1l that stores x coordinates

y_coord character, column name of tbl that stores y coordinates

plotPCAVar 33

Details

The function takes as input the output of the function tb1PlotPCALoadings. It uses the ggplotly
function from plotly to create an interactive plotly plot.

Value

plotly

Author(s)

Thomas Naake

Examples

x <- matrix(rnorm(seq_len(10000)), ncol = 100)

rownames(x) <- paste(”feature”, seqg_len(nrow(x)))

colnames(x) <- paste("sample”, seqg_len(ncol(x)))

params <- list(method = "euclidean", ## dist
initial_dims = 10, max_iter = 100, dims = 3, perplexity = 3, ## tSNE
min_dist = @.1, n_neighbors = 15, spread = 1) ## UMAP

tbl <- tblPCALoadings(x, params)

plotPCALoadings(tbl, x_coord = "PC1", y_coord = "PC2")

plotPCAVar Plot of explained variance against the principal components

Description
The function plotPCAVar plots the explained variance (in y-axis against the principal components
for the measured and permuted values.

Usage
plotPCAVar(var_x, var_perm = NULL)

Arguments

var_x numeric (named numeric vector)

var_perm matrix with the explained variance obtained by permutation (function permuteExplVar)
Details

The argument var_perm is optional and visualization of permuted values can be omitted by setting
var_perm = NULL.

Value

gg object from ggplot

34 plotPCAVarPvalue

Author(s)

Thomas Naake

Examples

x <- matrix(seq_len(100), ncol = 10)

pca <- dimensionReduction(x = x, params = list(center = TRUE, scale = TRUE),
type = "PCA")[[2]1]

var_x <- explVar(d = pca, type = "PCA")

var_perm <- permuteExplVar(x = x, n = 100, center = TRUE, scale = TRUE)

plotPCAVar(var_x = var_x, var_perm = var_perm)

plotPCAVarPvalue Plot p-values for the significance of principal components

Description

The function plotPCAVarPvalue plots the p-values of significances of principal components. Using
the visual output, the optimal number of principal components can be selected.

Usage

plotPCAVarPvalue(var_x, var_perm)

Arguments

var_x numeric, measured variances

var_perm matrix, variances obtained by permutation
Details

Internal usage in shinyQC.

Value

gg object from ggplot

Author(s)

Thomas Naake

samplesMeasuredMissing 35

Examples

x <- matrix(seq_len(100), ncol = 10)

pca <- dimensionReduction(x = x, params = list(center = TRUE, scale = TRUE),
type = "PCA")[[2]]

var_x <- explVar(d = pca, type = "PCA")

var_perm <- permuteExplVar(x = x, n = 100, center = TRUE, scale = TRUE)

plotPCAVarPvalue(var_x = var_x, var_perm = var_perm)

samplesMeasuredMissing

Create tibble containing number of measured/missing features of sam-
ples

Description

samplesMeasuredMissing returns a tb1l with the number of measured/missing features of samples.
The function will take as input a SummarizedExperiment object and will access its assay () slot

Usage

samplesMeasuredMissing(se)

Arguments

se SummarizedExperiment object

Value

tb1 with number of measured/missing features per sample

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
sample <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
featData <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = featData, colData = sample)

create the data.frame with information on number of measured/missing
values
samplesMeasuredMissing(se)

36 shinyQC

shinyQC Shiny application for initial QC exploration of -omics data sets

Description

The shiny application allows to explore -omics data sets especially with a focus on quality control.
shinyQC gives information on the type of samples included (if this was previously specified within
the SummarizedExperiment object). It gives information on the number of missing and measured
values across features and across sets (e.g. quality control samples, control, and treatment groups,
only displayed for SummarizedExperiment objects that contain missing values).

shinyQC includes functionality to display (count/intensity) values across samples (to detect drifts
in intensity values during the measurement), to display mean-sd plots, MA plots, ECDF plots,
and distance plots between samples. shinyQC includes functionality to perform dimensionality
reduction (currently limited to PCA, PCoA, NMDS, tSNE, and UMAP). Additionally, it includes
functionality to perform differential expression analysis (currently limited to moderated t-tests and
the Wald test).

Usage

shinyQC(se, app_server = FALSE)

Arguments
se SummarizedExperiment object (can be omitted)
app_server logical (set to TRUE if run under a server environment)
Details

rownames (se) should be set to the corresponding name of features, while colnames (se) should be
set to the sample IDs. rownames(se) and colnames(se) are not allowed to be NULL. colnames(se),
colnames(assay(se)) and rownames(colData(se)) all have to be identical.

shinyQC allows to subset the supplied SummarizedExperiment object.

On exit of the shiny application, the (subsetted) SummarizedExperiment object is returned with
information on the processing steps (normalization, transformation, batch correction and imputa-
tion). The object will only returned if app_server = FALSE and if the function call is assigned to
an object, e.g. tmp <- shinyQC(se).

If the se argument is omitted the app will load an interface that allows for data upload.

Value

shiny application, SummarizedExperiment upon exiting the shiny application

Author(s)
Thomas Naake

sumDistSample 37

Examples

library(dplyr)
library(SummarizedExperiment)

create se

set.seed(1)

a <- matrix(rnorm(100, mean = 10, sd = 2), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA

cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))

rD <- data.frame(spectra = rownames(a))

se <- SummarizedExperiment(assay = a, rowData = rD, colData = cD)

shinyQC(se)

sumDistSample Plot the sum of distances to other samples

Description

The function sumDistSample creates a plot showing the sum of distance of a sample to other sam-
ples.

Usage

sumDistSample(d, title = "raw")

Arguments
d matrix containing distances, obtained from distShiny
title character specifying the title to be added to the plot
Value
gg object from ggplot?2
Examples

a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))
dist <- distShiny(a)

sumDistSample(dist, title = "raw")

38 tbIPCALoadings

tblPCALoadings Return tibble with PCA loadings for features

Description
The function tb1PCALoadings returns a tibble with loadings values for the features (row entries)
in Xx.

Usage

tb1PCALoadings(x, params)

Arguments

X matrix, containing no missing values

params list, arguments/parameters given to the function stats: :prcomp
Details

The function tb1PCALoadings acccesses the list entry rotation of the prcomp object.

Value

tbl

Author(s)

Thomas Naake

Examples

set.seed(1)

x <- matrix(rnorm(seq_len(10000)), ncol = 100)

rownames (x) <- paste("feature”, seq_len(nrow(x)))

colnames(x) <- paste("sample”, seq_len(ncol(x)))

params <- list(method = "euclidean", ## dist
initial_dims = 10, max_iter = 100, dims = 3, perplexity = 3, ## tSNE
min_dist = @.1, n_neighbors = 15, spread = 1) ## UMAP

tb1PCALoadings(x, params)

transformAssay 39

transformAssay Transform the (count/intensity) values of a data.frame, tbl or
matrix

Description

The function transformAssay transforms the (count/intensity) values of a matrix. It uses either
log, log2, log1@, variance stabilizing normalisation (vsn) or no transformation method (pass-
through, none). The object x has the samples in the columns and the features in the rows.

Usage
transformAssay (
a,
method = c("none”, "log", "log2", "logl@", "vsn"),
.offset =1
)
Arguments
a matrix with samples in columns and features in rows
method character, one of "none”, "log", "log2", "log1@", or "vsn"
.offset numeric(1), offset to add when method set to "log"”, "log2", or "1log10" and
a contains values of 0, default to 1
Details

Internal use in shinyQC.

Value

matrix

Examples

a <- matrix(seq_len(1000), nrow = 100, ncol = 10,
dimnames = list(seq_len(100), paste(”sample”, seq_len(10))))
transformAssay(a, "none”)
transformAssay(a, "log")
transformAssay(a, "log2")
transformAssay(a, "vsn")

40 upsetCategory

upsetCategory UpSet plot to display measures values across sample types

Description

The function upsetCategory displays the frequency of measured values per feature with respect
to class/sample type to assess difference in occurrences. Internally, the measured values per sample
are obtained via the measuredCategory function: this function will access the number of mea-
sured/missing values per category and feature. From this, a binary tb1 will be created specifying if
the feature is present/missing, which will be given to the upset function from the UpSetR package.

Usage

upsetCategory(se, category = colnames(colData(se)), measured = TRUE)

Arguments
se SummarizedExperiment, containing the intensity values in assay (se), missing
values are encoded by NA
category character, corresponding to a column in colData(se)
measured logical, should the measured values (measured = TRUE) or missing values (measured
= FALSE) be taken
Details

Presence is defined by a feature being measured in at least one sample of a set.

Absence is defined by a feature with only missing values (i.e. no measured values) of a set.

Value

upset plot

Examples

create se
a <- matrix(seq_len(100), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA
set.seed(1)
a <- a + rnorm(100)
cD <- data.frame(name = colnames(a), type = c(rep("1", 5), rep("2", 5)))
rD <- data.frame(spectra = rownames(a))
se <- SummarizedExperiment::SummarizedExperiment(assay = a,

rowData = rD, colData = cD)

upsetCategory(se, category = "type")

volcanoPlot 41

volcanoPlot Volcano plot of fold changes/differences against p-values

Description

The function ComplexHeatmap creates a volcano plot. On the y-axis the -log10(p-values) are dis-
played, while on the x-axis the fold changes/differences are displayed. The output of the function
differs depending on the type parameter. For type == "ttest", the fold changes are plotted; for
type == "proDA", the differences are plotted.

Usage
volcanoPlot(df, type = c("ttest”, "proDA"))

Arguments
df data.frame as received from topTable (ttest) or test_diff (proDA)
type character

Details

Internal use in shinyQC.

Value

plotly

Examples

create se
a <- matrix(seq_len(100@), nrow = 10, ncol = 10,
dimnames = list(seq_len(10), paste(”sample”, seq_len(10))))

alc(1, 5, 8), seg_len(5)] <- NA

set.seed(1)

a <- a + rnorm(100)

a_i <- imputeAssay(a, method = "MinDet")

cD <- data.frame(sample = colnames(a),

type = c(rep("1", 5), rep("2", 5)))

rD <- data.frame(spectra = rownames(a))

se <- SummarizedExperiment::SummarizedExperiment(assay = a,
rowData = rD, colData = cD)

se_i <- SummarizedExperiment::SummarizedExperiment(assay = a_i,
rowData = rD, colData = cD)

create model and contrast matrix

modelMatrix_expr <- stats::formula(”"~ @ + type”)

contrast_expr <- "typel-type2"

modelMatrix <- model.matrix(modelMatrix_expr, data = colData(se))
contrastMatrix <- limma::makeContrasts(contrasts = contrast_expr,

42

volcanoPlot

levels = modelMatrix)

ttest

fit <- limma::1mFit(a_i, design = modelMatrix)

fit <- limma::contrasts.fit(fit, contrastMatrix)

fit <- limma::eBayes(fit, trend = TRUE)

df_ttest <- limma::topTable(fit, n = Inf, adjust = "fdr", p = 0.05)
df_ttest <- cbind(name = rownames(df_ttest), df_ttest)

plot
volcanoPlot(df_ttest, type = "ttest")

proDA
fit <- proDA::proDA(a, design = modelMatrix)
df_proDA <- proDA::test_diff(fit = fit, contrast = contrast_expr,

sort_by = "adj_pval”)

plot
volcanoPlot(df_proDA, type = "proDA")

Index

barplotSamplesMeasuredMissing, 3
batchCorrectionAssay, 4

createBoxplot, 5
createDfFeature, 7
cv, 8
cvFeaturePlot, 8

dimensionReduction, 9
dimensionReductionPlot, 10
distSample, 12
distShiny, 13

driftPlot, 14

ECDF, 15
explvar, 16
extractComb, 17

featurePlot, 18

hist_sample, 20
hist_sample_num, 21
histFeature, 19
histFeatureCategory, 19
hoeffDPlot, 22
hoeffDValues, 23

imputeAssay, 24

MAplot, 25
MAvalues, 26
measuredCategory, 27
mosaic, 28

normalizeAssay, 29

permuteExplVar, 30
plotcCv, 31
plotPCALoadings, 32
plotPCAVar, 33
plotPCAVarPvalue, 34

43

samplesMeasuredMissing, 35
shinyQC, 36
sumDistSample, 37

tb1PCALoadings, 38
transformAssay, 39

upsetCategory, 40

volcanoPlot, 41

	barplotSamplesMeasuredMissing
	batchCorrectionAssay
	createBoxplot
	createDfFeature
	cv
	cvFeaturePlot
	dimensionReduction
	dimensionReductionPlot
	distSample
	distShiny
	driftPlot
	ECDF
	explVar
	extractComb
	featurePlot
	histFeature
	histFeatureCategory
	hist_sample
	hist_sample_num
	hoeffDPlot
	hoeffDValues
	imputeAssay
	MAplot
	MAvalues
	measuredCategory
	mosaic
	normalizeAssay
	permuteExplVar
	plotCV
	plotPCALoadings
	plotPCAVar
	plotPCAVarPvalue
	samplesMeasuredMissing
	shinyQC
	sumDistSample
	tblPCALoadings
	transformAssay
	upsetCategory
	volcanoPlot
	Index

