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balKfold.xvspec generate a partition function for cross-validation, where the parti-
tions are approximately balanced with respect to the distribution of a
response variable

Description

generate a partition function for cross-validation, where the partitions are approximately balanced
with respect to the distribution of a response variable

Usage

balKfold.xvspec(K)



balKfold.xvspec 3

Arguments

K number of partitions to be computed

Details

This function returns a closure. The symbol K is bound in the environment of the returned function.

Value

A closure consisting of a function that can be used as a partitionFunc for passage in xvalSpec.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

## The function is currently defined as
function (K)
function(data, clab, iternum) {

clabs <- data[[clab]]
narr <- nrow(data)
cnames <- unique(clabs)
ilist <- list()
for (i in 1:length(cnames)) ilist[[cnames[i]]] <- which(clabs ==

cnames[i])
clens <- lapply(ilist, length)
nrep <- lapply(clens, function(x) ceiling(x/K))
grpinds <- list()
for (i in 1:length(nrep)) grpinds[[i]] <- rep(1:K, nrep[[i]])[1:clens[[i]]]
(1:narr)[-which(unlist(grpinds) == iternum)]

}
# try it out
library("MASS")
data(crabs)
p1c = balKfold.xvspec(5)
inds = p1c( crabs, "sp", 3 )
table(crabs$sp[inds] )
inds2 = p1c( crabs, "sp", 4 )
table(crabs$sp[inds2] )
allc = 1:200
# are test sets disjoint?
intersect(setdiff(allc,inds), setdiff(allc,inds2))
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brennan_2013_tabS7exc Clinical characterization of 158 GBM samples from
https://doi.org/10.1016/j.cell.2013.09.034 supp table S7

Description

The clinical characteristics table of https://doi.org/10.1016/j.cell.2013.09.034 in supplemental table
S7 was aligned with the GBM samples in curatedTCGAData (selecting GBM and version 2.0.1
with curatedTCGAData 1.17.0.

Usage

data("brennan_2013_tabS7exc")

Format

A data frame with 158 observations on the following 16 variables.

Case_ID a character vector

Secondary_or_Recurrent a character vector

Age_at_Procedure a numeric vector

Gender a character vector

Path_Dx a character vector

MGMT_Status a character vector

Methylation_Class_2012 a character vector

G_CIMP_methylation a character vector

IDH1_status a character vector

Expression_Subclass a character vector

Therapy_Class a character vector

Vital_Status a character vector

OS_days a numeric vector

Progression_Status a character vector

PFS_days a numeric vector

V16 a logical vector

Details

Simple intersection on Case_ID in Supp Tab 7 with patientID in the GBM from curatedTCGAData.

Source

https://doi.org/10.1016/j.cell.2013.09.034

https://doi.org/10.1016/j.cell.2013.09.034
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References

The Somatic Genomic Landscape of Glioblastoma by Cameron W. Brennan, Roel G.W. Verhaak,
Aaron McKenna, and others, Cell Oct 10 2013.

Examples

data(brennan_2013_tabS7exc)
head(brennan_2013_tabS7exc)

classifierOutput-class

Class "classifierOutput"

Description

This class summarizes the output values from different classifiers.

Objects from the Class

Objects are typically created during the application of a supervised machine learning algorithm to
data and are the value returned. It is very unlikely that any user would create such an object by
hand.

Slots

testOutcomes: Object of class "factor" that lists the actual outcomes in the records on the test
set

testPredictions: Object of class "factor" that lists the predictions of outcomes in the test set

testScores: Object of class "ANY" – this element will include matrices or vectors or arrays that
include information that is typically related to the posterior probability of occupancy of the
predicted class or of all classes. The actual contents of this slot can be determined by inspect-
ing the converter element of the learnerSchema used to select the model.

trainOutcomes: Object of class "factor" that lists the actual outcomes in records on the training
set

trainPredictions: Object of class "factor" that lists the predicted outcomes in the training set

trainScores: Object of class "ANY" see the description of testScores above; the same informa-
tion is returned, but applicable to the training set records.

trainInd: Object of class "numeric" with of indices of data to be used for training.

RObject: Object of class "ANY" – when the trainInd parameter of the MLearn call is numeric,
this slot holds the return value of the underlying R function that carried out the predictive
modeling. For example, if rpartI was used as MLearn method, Robject holds an instance of
the rpart S3 class, and plot and text methods can be applied to this. When the trainInd
parameter of the MLearn call is an instance of xvalSpec, this slot holds a list of results
of cross-validatory iterations. Each element of this list has two elements: test.idx, giving
the numeric indices of the test cases for the associated cross-validation iteration, and mlans,
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which is the classifierOutput for the associated iteration. See the example for an illustra-
tion of ’digging out’ the predicted probabilities associated with each cross-validation iteration
executed through an xvalSpec specification.

embeddedCV: logical value that is TRUE if the procedure in use performs its own cross-validation

fsHistory: list of features selected through cross-validation process

learnerSchema: propagation of the learner schema object used in the call

call: Object of class "call" – records the call used to generate the classifierOutput RObject

Methods

confuMat signature(obj = "classifierOutput"): Compute the confusion matrix for test records.

confuMatTrain signature(obj = "classifierOutput"): Compute the confusion matrix for train-
ing set. Typically yields optimistically biased information on misclassification rate.

RObject signature(obj = "classifierOutput"): The R object returned by the underlying clas-
sifier. This can then be passed on to specific methods for those objects, when they exist.

trainInd signature(obj = "classifierOutput"): Returns the indices of data used for training.

show signature(object = "classifierOutput"): A print method that provides a summary of
the output of the classifier.

predictions signature(object = "classifierOutput"): Print the predicted classes for each
sample/individual. The predictions for the training set are the training outcomes.

predictions signature(object = "classifierOutput", t = "numeric"): Print the predicted classes
for each sample/individual that have a testScore greater or equal than t. The predictions for
the training set are the training outcomes. Non-predicted cases and cases that matche multiple
classes are returned as NAs.

predScore signature(object = "classifierOutput"): Returns the scores for predicted class
for each sample/individual. The scores for the training set are set to 1.

predScores signature(object = "classifierOutput"): Returns the prediction scores for all
classes for each sample/individual. The scores for the training set are set to 1 for the appropri-
ate class, 0 otherwise.

testScores signature(object = "classifierOutput"): ...

testPredictions signature(object = "classifierOutput"): Print the predicted classes for each
sample/individual in the test set.

testPredictions signature(object = "classifierOutput", t = "numeric"): Print the predicted
classes for each sample/individual in the test set that have a testScore greater or equal than
t. Non-predicted cases and cases that matche multiple classes are returned as NAs.

trainScores signature(object = "classifierOutput"): ...

trainPredictions signature(object = "classifierOutput"): Print the predicted classes for each
sample/individual in the train set.

trainPredictions signature(object = "classifierOutput", t = "numeric"): Print the predicted
classes for each sample/individual in the train set that have a testScore greater or equal than
t. Non-predicted cases and cases that matche multiple classes are returned as NAs.

fsHistory signature(object = "classifierOutput"): ...
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Author(s)

V. Carey

Examples

showClass("classifierOutput")
library(golubEsets)
data(Golub_Train) # now cross-validate a neural net
set.seed(1234)
xv5 = xvalSpec("LOG", 5, balKfold.xvspec(5))
m2 = MLearn(ALL.AML~., Golub_Train[1000:1050,], nnetI, xv5,

size=5, decay=.01, maxit=1900 )
testScores(RObject(m2)[[1]]$mlans)
alls = lapply(RObject(m2), function(x) testScores(x$mlans))

clusteringOutput-class

container for clustering outputs in uniform structure

Description

container for clustering outputs in uniform structure

Objects from the Class

Objects can be created by calls of the form new("clusteringOutput", ...).

Slots

partition: Object of class "integer", labels for observations as clustered

silhouette: Object of class "silhouette", structure from Rousseeuw cluster package measuring
cluster membership strength per observation

prcomp: Object of class "prcompObj" a wrapped instance of stats package prcomp output

call: Object of class "call" for auditing

learnerSchema: Object of class "learnerSchema", a formal object indicating the package, func-
tion, and other attributes of the clustering algorithm employed to generate this object

RObject: Object of class "ANY", the unaltered output of the function called according to learner-
Schema

converter: converter propagated from call

distFun: distfun propagated from call
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Methods

RObject signature(x = "clusteringOutput"): extract the unaltered output of the R function or
method called according to learnerSchema

plot signature(x = "clusteringOutput", y = "ANY"): a 4-panel plot showing features of the
clustering, including the scree plot for a principal components transformation and a display
of the partition in PC1xPC2 plane. For a clustering method that does not have a native plot
procedure, such as kmeans, the parameter y should be bound to a data frame or matrix with
feature data for all records; an image plot of robust feature z-scores (z=(x-median(x))/mad(x))
and the cluster indices is produced in the northwest panel.

show signature(object = "clusteringOutput"): concise report

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

showClass("clusteringOutput")

confuMat-methods Compute the confusion matrix for a classifier.

Description

This function will compute the confusion matrix for a classifier’s output

Methods

obj = "classifOutput", ... Typically, an instance of class "classifierOutput" is built on a train-
ing subset of the input data. The model is then used to predict the class of samples in the
test set. When the true class labels for the test set are available the confusion matrix is the
cross-tabulation of the true labels of the test set against the predictions from the classifier. An
optional t score threshold can also be specified.

obj = "classifierOutput", type="character", ... For instances of classifierOutput, it is possible
to specify the type of confusion matrix desired. The default is test, which tabulates classes
from the test set against the associated predictions. If type is train, the training class vector
is tabulated against the predictions on the training set. An optional t score threshold can also
be specified.

obj = "classifierOutput", type="numeric" For instances of classifierOutput, it is possible to spec-
ify the minimum score feature classification threshold. Features with a score less than the
threshold are classified as NA in the confustion train or test confusion matrix.
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Examples

library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[101:150,]
k1 <- MLearn(ALL.AML~., smallG, knnI(k=1), 1:30)
confuMat(k1)
confuMat(k1, "train")

confuTab Compute confusion tables for a confusion matrix.

Description

Given a n by n confusion matrix, the function returns a list of n 2 by 2 tables with false positives,
false negatives, false positives and true negative for each initial variables.

Usage

confuTab(obj, naAs0. = FALSE)

Arguments

obj An instance of class table. Must be square.

naAs0. A logical, defining if NAs are to be replaced by 0s.

Value

A list of length nrow(obj) and names rownames(obj).

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

The tp, tn, fp, fn, methods to extract the respective classification outcomes from a contingency
matrix.

Examples

## the confusion matrix
cm <- table(iris$Species, sample(iris$Species))
## the 3 confusion tables
(ct <- confuTab(cm))
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fs.absT support for feature selection in cross-validation

Description

support for feature selection in cross-validation

Usage

fs.absT(N)
fs.probT(p)
fs.topVariance(p)

Arguments

N number of features to retain; features are ordered by descending value of abs(two-
sample t stat.), and the top N are used.

p cumulative probability (in (0,1)) in the distribution of absolute t statistics above
which we retain features

Details

This function returns a function that will be used as a parameter to xvalSpec in applications of
MLearn.

Value

a function is returned, that will itself return a formula consisting of the selected features for appli-
cation of MLearn.

Note

The functions fs.absT and fs.probT are two examples of approaches to embedded feature selec-
tion that make sense for two-sample prediction problems. For selection based on linear models
or other discrimination measures, you will need to create your own selection helper, following the
code in these functions as examples.

fs.topVariance performs non-specific feature selection based on the variance. Argument p is the
variance percentile beneath which features are discarded.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

See Also

MLearn
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Examples

library("MASS")
data(crabs)
# we will demonstrate this procedure with the crabs data.
# first, create the closure to pick 3 features
demFS = fs.absT(3)
# run it on the entire dataset with features excluding sex
demFS(sp~.-sex, crabs)
# emulate cross-validation by excluding last 50 records
demFS(sp~.-sex, crabs[1:150,])
# emulate cross-validation by excluding first 50 records -- different features retained
demFS(sp~.-sex, crabs[51:200,])

fsHistory extract history of feature selection for a cross-validated machine
learner

Description

extract history of feature selection for a cross-validated machine learner

Usage

fsHistory(x)

Arguments

x instance of classifierOutput

Details

returns a list of names of selected features

Value

a list; the names of variables are made ’syntactic’

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data(iris)
iris2 = iris[ iris$Species %in% levels(iris$Species)[1:2], ]
iris2$Species = factor(iris2$Species) # drop unused levels
x1 = MLearn(Species~., iris2, ldaI, xvalSpec("LOG", 3,

balKfold.xvspec(3), fs.absT(3)))
fsHistory(x1)
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hclustWidget shiny-oriented GUI for cluster or classifier exploration

Description

shiny-oriented GUI for cluster or classifier exploration

Usage

hclustWidget(mat, featureName = "feature", title =
paste0("hclustWidget for ", deparse(substitute(mat))),
minfeats = 2, auxdf = NULL)

mlearnWidget(eset, infmla)

Arguments

mat matrix with feature vectors in rows

featureName name to be used for control that asks for number of features to use

title widget title

minfeats lower bound on number of features to use

auxdf data.frame with number of rows equal to nrow(mat), with metadata to be dis-
played in hovering tooltip

eset instance of ExpressionSet-class

infmla instance of formula, with dependent variable values obtained in pData(eset),
and independent variable specified as "." or as properly munged elements of
featureNames(eset).

Details

Experimental tool to illustrate impacts of choice of distance, agglomeration method, etc.

Value

a shinyApp result that will display in active browser

Note

mlearnWidget will attempt to nicely produce a variable importance plot using randomForestI.
This means that the annotation package for probe identifiers should be loaded or an error will be
thrown.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>
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Examples

# should run with example(hclustWidget, ask=FALSE)
if (interactive()) {
library(shiny)
library(MASS)
data(crabs)
cr = data.matrix(crabs[,-c(1:3)])
au = crabs[,1:3]
show(hclustWidget(cr, auxdf=au))

## must use stop widget button to proceed
library(ALL)
library(hgu95av2.db)
data(ALL)
show(mlearnWidget(ALL[1:500,], mol.biol~.))
}

learnerSchema-class Class "learnerSchema" – convey information on a machine learning
function to the MLearn wrapper

Description

conveys information about machine learning functions in CRAN packages, for example, to MLearn
wrapper

Objects from the Class

Objects can be created by calls of the form new("learnerSchema", ...).

Slots

packageName: Object of class "character" string naming the package in which the function to be
used is defined.

mlFunName: Object of class "character" string naming the function to be used

converter: Object of class "function" function with parameters obj, data, trainInd, that will
produce a classifierOutput instance

Methods

MLearn signature(formula = "formula", data = "ExpressionSet", method = "learnerSchema",
trainInd = "numeric"): execute desired learner passing a formula and ExpressionSet

MLearn signature(formula = "formula", data = "data.frame", method = "learnerSchema",
trainInd = "numeric"): execute desired learner passing a formula

show signature(object = "learnerSchema"): concise display

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
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Examples

showClass("learnerSchema")

MLearn revised MLearn interface for machine learning

Description

revised MLearn interface for machine learning, emphasizing a schematic description of external
learning functions like knn, lda, nnet, etc.

Usage

MLearn( formula, data, .method, trainInd, ... )
makeLearnerSchema(packname, mlfunname, converter, predicter)

Arguments

formula standard model formula

data data.frame or ExpressionSet or SummarizedExperiment instance

.method instance of learnerSchema

trainInd obligatory numeric vector of indices of data to be used for training; all other
data are used for testing, or instance of the xvalSpec class

... additional named arguments passed to external learning function

packname character – name of package harboring a learner function

mlfunname character – name of function to use

converter function – with parameters (obj, data, trainInd) that tells how to convert the
material in obj [produced by [packname::mlfunname] ] into a classifierOutput
instance.

predicter function – with parameters (obj, newdata, ...) that tells how to use the material
in obj to predict newdata.

Details

The purpose of the MLearn methods is to provide a uniform calling sequence to diverse machine
learning algorithms. In R package, machine learning functions can have parameters (x, y, ...)
or (formula, data, ...) or some other sequence, and these functions can return lists or vectors
or other sorts of things. With MLearn, we always have calling sequence MLearn(formula, data,
.method, trainInd, ...), and data can be a data.frame or ExpressionSet. MLearn will al-
ways return an S4 instance of classifierObject or clusteringObject.

At this time (1.13.x), NA values in predictors trigger an error.

To obtain documentation on the older (pre bioc 2.1) version of the MLearn method, please use
help(MLearn-OLD).
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randomForestI randomForest. Note, that to obtain the default performance of randomForestB,
you need to set mtry and sampsize parameters to sqrt(number of features) and table([training
set response factor]) respectively, as these were not taken to be the function’s defaults. Note
you can use xvalSpec("NOTEST") as trainInd, to use all the samples; the RObject() result will
print the misclassification matrix estimate along with OOB error rate estimate.

knnI(k=1,l=0) knn; special support bridge required, defined in MLint

knn.cvI(k=1,l=0) knn.cv; special support bridge required, defined in MLint. This option uses
the embedded leave-one-out cross-validation of knn.cv, and thereby achieves high perfor-
mance. You can have more general cross-validation using knnI with an xvalSpec, but it will
be slower. When using this learner schema, you should use the numerical trainInd setting
with 1:N where N is the number of samples.

dldaI diagDA; special support bridge required, defined in MLint

nnetI nnet

rpartI rpart

ldaI lda

svmI svm

qdaI qda

logisticI(threshold) glm – with binomial family, expecting a dichotomous factor as response vari-
able, not bulletproofed against other responses yet. If response probability estimate exceeds
threshold, predict 1, else 0

adaI ada

BgbmI gbm, forcing the Bernoulli loss function.

blackboostI blackboost – you MUST supply a family parameter relevant for mboost package pro-
cedures

lvqI lvqtest after building codebook with lvqinit and updating with olvq1. You will need to write
your own detailed schema if you want to tweak tuning parameters.

naiveBayesI naiveBayes

baggingI bagging

sldaI slda

ksvmI ksvm

hclustI(distMethod, agglomMethod) hclust – you must explicitly specify distance and agglomer-
ation procedure.

kmeansI(centers, algorithm) kmeans – you must explicitly specify centers and algorithm name.

If the parallel package is attached, cross-validation will be distributed to cores using mclapply.

Value

Instances of classifierOutput or clusteringOutput

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
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See Also

Try example(hclustWidget, ask=FALSE) for an interactive approach to cluster analysis tuning.

Examples

library("MASS")
data(crabs)
set.seed(1234)
kp = sample(1:200, size=120)
rf1 = MLearn(sp~CW+RW, data=crabs, randomForestI, kp, ntree=600 )
rf1
nn1 = MLearn(sp~CW+RW, data=crabs, nnetI, kp, size=3, decay=.01,

trace=FALSE )
nn1
RObject(nn1)
knn1 = MLearn(sp~CW+RW, data=crabs, knnI(k=3,l=2), kp)
knn1
names(RObject(knn1))
dlda1 = MLearn(sp~CW+RW, data=crabs, dldaI, kp )
dlda1
names(RObject(dlda1))
lda1 = MLearn(sp~CW+RW, data=crabs, ldaI, kp )
lda1
names(RObject(lda1))
slda1 = MLearn(sp~CW+RW, data=crabs, sldaI, kp )
slda1
names(RObject(slda1))
svm1 = MLearn(sp~CW+RW, data=crabs, svmI, kp )
svm1
names(RObject(svm1))
ldapp1 = MLearn(sp~CW+RW, data=crabs, ldaI.predParms(method="debiased"), kp )
ldapp1
names(RObject(ldapp1))
qda1 = MLearn(sp~CW+RW, data=crabs, qdaI, kp )
qda1
names(RObject(qda1))
logi = MLearn(sp~CW+RW, data=crabs, glmI.logistic(threshold=0.5), kp, family=binomial ) # need family
logi
names(RObject(logi))
rp2 = MLearn(sp~CW+RW, data=crabs, rpartI, kp)
rp2
## recode data for RAB
#nsp = ifelse(crabs$sp=="O", -1, 1)
#nsp = factor(nsp)
#ncrabs = cbind(nsp,crabs)
#rab1 = MLearn(nsp~CW+RW, data=ncrabs, RABI, kp, maxiter=10)
#rab1
#
# new approach to adaboost
#
ada1 = MLearn(sp ~ CW+RW, data = crabs, .method = adaI,

trainInd = kp, type = "discrete", iter = 200)
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ada1
confuMat(ada1)
#
lvq.1 = MLearn(sp~CW+RW, data=crabs, lvqI, kp )
lvq.1
nb.1 = MLearn(sp~CW+RW, data=crabs, naiveBayesI, kp )
confuMat(nb.1)
bb.1 = MLearn(sp~CW+RW, data=crabs, baggingI, kp )
confuMat(bb.1)
#
# new mboost interface -- you MUST supply family for nonGaussian response
#
require(party) # trafo ... killing cmd check
blb.1 = MLearn(sp~CW+RW+FL, data=crabs, blackboostI, kp, family=mboost::Binomial() )
confuMat(blb.1)
#
# ExpressionSet illustration
#
data(sample.ExpressionSet)
# needed to increase training set size to avoid a new randomForest condition
# on empty class
set.seed(1234)
X = MLearn(type~., sample.ExpressionSet[100:250,], randomForestI, 1:19, importance=TRUE )
library(randomForest)
library(hgu95av2.db)
opar = par(no.readonly=TRUE)
par(las=2)
plot(getVarImp(X), n=10, plat="hgu95av2", toktype="SYMBOL")
par(opar)
#
# demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs[c(1:20,101:120),],

nnetI, xvalSpec("LOO"), size=3, decay=.01, trace=FALSE )
confuMat(nn1cv)
nn2cv = MLearn(sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5)), size=3, decay=.01,
trace=FALSE )

confuMat(nn2cv)
nn3cv = MLearn(sp~CW+RW+CL+BD+FL, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01,
trace=FALSE )

confuMat(nn3cv)
nn4cv = MLearn(sp~.-index-sex, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01,
trace=FALSE )

confuMat(nn4cv)
#
# try with expression data
#
library(golubEsets)
data(Golub_Train)
litg = Golub_Train[ 100:150, ]
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g1 = MLearn(ALL.AML~. , litg, nnetI,
xvalSpec("LOG",5, balKfold.xvspec(5),
fsFun=fs.probT(.75)), size=3, decay=.01, trace=FALSE )

confuMat(g1)
#
# computations related to ALL that were used for rda and may be used elsewhere
#
library(ALL)
data(ALL)
#
# restrict to BCR/ABL or NEG
#
bio <- which( ALL$mol.biol %in% c("BCR/ABL", "NEG"))
#
# restrict to B-cell
#
isb <- grep("^B", as.character(ALL$BT))
kp <- intersect(bio,isb)
all2 <- ALL[,kp]
mads = apply(exprs(all2),1,mad)
kp = which(mads>1) # get around 250 genes
vall2 = all2[kp, ]
vall2$mol.biol = factor(vall2$mol.biol) # drop unused levels

# illustrate clustering support

cl1 = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)))
plot(cl1)

cl1a = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)),
method="complete")

plot(cl1a)

cl2 = MLearn(~CW+RW+CL+FL+BD, data=crabs, kmeansI, centers=5, algorithm="Hartigan-Wong")
plot(cl2, crabs[,-c(1:3)])

c3 = MLearn(~CL+CW+RW, crabs, pamI(dist), k=5)
c3
plot(c3, data=crabs[,c("CL", "CW", "RW")])

# new interfaces to PLS thanks to Laurent Gatto

set.seed(1234)
kp = sample(1:200, size=120)

#plsda.1 = MLearn(sp~CW+RW, data=crabs, plsdaI, kp, probMethod="Bayes")
#plsda.1
#confuMat(plsda.1)
#confuMat(plsda.1,t=.65) ## requires at least 0.65 post error prob to assign species
#
#plsda.2 = MLearn(type~., data=sample.ExpressionSet[100:250,], plsdaI, 1:16)
#plsda.2



MLIntInternals 19

#confuMat(plsda.2)
#confuMat(plsda.2,t=.65) ## requires at least 0.65 post error prob to assign outcome

## examples for predict
#clout <- MLearn(type~., sample.ExpressionSet[100:250,], svmI , 1:16)
#predict(clout, sample.ExpressionSet[100:250,17:26])

MLIntInternals MLInterfaces infrastructure

Description

These functions are internal tools for MLInterfaces. Users will generally not call these functions
directly.

Usage

getGrid(x)

Arguments

x a vector or matrix or ExpressionSet

Details

Forthcoming.

Value

Functions with ‘new’ as prefix are constructor helpers.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>
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performance-analytics Assessing classifier performance

Description

Methods to calculate the number of true positives (tp), true negatives (tn), false negatives (fn),
false positive (fp), accuracy (acc), precision, recall (same as sensitivity), specificity, F1
and macroF1 scores.

Each method also accepts an naAs0 argument definiting if NAs should be replaced by 0 (default is
FALSE).

Methods

Methods tp, tn, fp, fn, F1, acc and specificity:

signature(obj = "table")

Methods recall (sensitivity), precision and macroF1:

signature(obj = "classifierOutput", type = "character")

signature(obj = "classifierOutput", type = "missing")

signature(obj = "classifierOutput", type = "numeric")

signature(obj = "table")

Examples

## the confusion matrix
cm <- table(iris$Species, sample(iris$Species))
tp(cm)
tn(cm)
fp(cm)
fn(cm)
acc(cm)
precision(cm)
recall(cm)
F1(cm)
macroF1(cm)
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planarPlot-methods Methods for Function planarPlot in Package ‘MLInterfaces’

Description

show the classification boundaries on the plane dictated by two genes in an ExpressionSet

Methods

clo = "classifierOutput", eset = "ExpressionSet", classifLab = "character" uses two genes in
the ExpressionSet to exhibit the decision boundaries in the plane

clo = "classifierOutput", eset = "data.frame", classifLab = "character" uses two columns in
the data.frame to exhibit the decision boundaries in the plane

Examples

library(ALL)
library(hgu95av2.db)
data(ALL)
#
# restrict to BCR/ABL or NEG
#
bio <- which( ALL$mol.biol %in% c("BCR/ABL", "NEG"))
#
# restrict to B-cell
#
isb <- grep("^B", as.character(ALL$BT))
kp <- intersect(bio,isb)
all2 <- ALL[,kp]
#
# sample 2 genes at random
#
set.seed(1234)
ng <- nrow(exprs(all2)) # pick 5 in case any NAs come back
pick <- sample(1:ng, size=5, replace=FALSE)
gg <- all2[pick,]
sym <- unlist(mget(featureNames(gg), hgu95av2SYMBOL))
bad = which(is.na(sym))
if (length(bad)>0) {

gg = gg[-bad,]
sym = sym[-bad]
}

gg = gg[1:2,]
sym = sym[1:2]
featureNames(gg) <- sym
gg$class = factor(ifelse(all2$mol.biol=="NEG", "NEG", "POS"))

cl1 <- which( gg$class == "NEG" )
cl2 <- which( gg$class != "NEG" )
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#
# create balanced training sample
#
trainInds <- c( sample(cl1, size=floor(length(cl1)/2) ),

sample(cl2, size=floor(length(cl2)/2)) )
#
# run rpart
#
tgg <- MLearn(class~., gg, rpartI, trainInds, minsplit=4 )
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
planarPlot( tgg, gg, "class" )
title("rpart")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
#
# run nnet
#
ngg <- MLearn( class~., gg, nnetI, trainInds, size=8 )
planarPlot( ngg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("nnet")
#
# run knn
#
kgg <- MLearn( class~., gg, knnI(k=3,l=1), trainInds)
planarPlot( kgg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("3-nn")
#
# run svm
#
sgg <- MLearn( class~., gg, svmI, trainInds )
planarPlot( sgg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("svm")
par(opar)

plspinHcube shiny app for interactive 3D visualization of mlbench hypercube

Description

shiny app for interactive 3D visualization of mlbench hypercube

Usage

plspinHcube(insbwidth=4)

Arguments

insbwidth numeric, sidebar width
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Value

Runs shinyApp on ui and server that render gaussian data at hypercube vertices.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

See Also

mlbench.hypercube

Examples

if (interactive()) plspinHcube()

predict.classifierOutput

Predict method for classifierOutput objects

Description

This function predicts values based on models trained with MLInterfaces’ MLearn interface to many
machine learning algorithms.

Usage

## S3 method for class 'classifierOutput'
predict(object, newdata, ...)

Arguments

object An instance of class classifierOutput.
newdata An object containing the new input data: either a matrix, a data.frame or an

ExpressionSet.
... Other arguments to be passed to the algorithm-specific predict methods.

Details

This S3 method will extract the ML model from the classifierOutput instance and call either
a generic predict method or, if available, a specficly written wrapper to do classes prediction and
class probabilities.

Value

Currently, a list with

testPredictions

A factor with class predictions.
testScores A numeric or matrix with class probabilities.
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Note

The function output will most likely be updated in a near future to a classifierOutput (or similar)
object.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

MLearn and classifierOutput.

Examples

## Not run:
set.seed(1234)
data(sample.ExpressionSet)
trainInd <- 1:16

clout.svm <- MLearn(type~., sample.ExpressionSet[100:250,], svmI, trainInd)
predict(clout.svm, sample.ExpressionSet[100:250,-trainInd])

clout.ksvm <- MLearn(type~., sample.ExpressionSet[100:250,], ksvmI, trainInd)
predict(clout.ksvm, sample.ExpressionSet[100:250,-trainInd])

clout.nnet <- MLearn(type~., sample.ExpressionSet[100:250,], nnetI, trainInd, size=3, decay=.01 )
predict(clout.nnet, sample.ExpressionSet[100:250,-trainInd])

clout.knn <- MLearn(type~., sample.ExpressionSet[100:250,], knnI(k=3), trainInd)
predict(clout.knn, sample.ExpressionSet[100:250,-trainInd],k=1)
predict(clout.knn, sample.ExpressionSet[100:250,-trainInd],k=3)

#clout.plsda <- MLearn(type~., sample.ExpressionSet[100:250,], plsdaI, trainInd)
#predict(clout.plsda, sample.ExpressionSet[100:250,-trainInd])

clout.nb <- MLearn(type~., sample.ExpressionSet[100:250,], naiveBayesI, trainInd)
predict(clout.nb, sample.ExpressionSet[100:250,-trainInd])

# this can fail if training set does not yield sufficient diversity in response vector;
# setting seed seems to help with this example, but other applications may have problems
#
clout.rf <- MLearn(type~., sample.ExpressionSet[100:250,], randomForestI, trainInd)
predict(clout.rf, sample.ExpressionSet[100:250,-trainInd])

## End(Not run) # end of dontrun
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projectedLearner-class

Class "projectedLearner"

Description

helps depict prediction hyperregions from high-dimensional models

Objects from the Class

Objects can be created by calls of the form new("projectedLearner", ...).

Slots

fittedLearner: Object of class "classifierOutput"

trainingSetPCA: Object of class "prcomp"

trainingLabels: Object of class "ANY" given labels for features used in training

testLabels: Object of class "ANY" given labels for features used in testing

gridFeatsProjectedToTrainingPCs: Object of class "matrix" rotated coordinates of training
features

gridPredictions: Object of class "ANY" predicted labels for all grid points

trainFeatsProjectedToTrainingPCs: Object of class "matrix" rotated coordinates of training
features

testFeatsProjectedToTrainingPCs: Object of class "matrix" rotated coordinates of test fea-
tures

trainPredictions: Object of class "ANY" predicted labels for training features

testPredictions: Object of class "ANY" predicted labels for test features

theCall: Object of class "call" call used to generate this wonderful thing

Methods

learnerIn3D signature(x = "projectedLearner"): uses rgl to give a dynamic 3d-like projec-
tion of labels in colored regions. See projectLearnerToGrid for an example.

plot signature(x = "projectedLearner", y = "ANY"): pairs plot of the tesselated PCA of the
training features

plotOne signature(x = "projectedLearner"): a 2d plot of tesselation projection for selected
axes of the PCA

show signature(object = "projectedLearner"): object housing numerical resources for the
renderings
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Note

plot may need to be modified when there are many features/PCs in use

plotOne has additional arguments ind1, ind2, and type. ind1 and ind2 specify the PCs to display.
type is one of "showTestPredictions" (default), "showTrainPredictions", "showTestLabels",
"showTrainLabels". These indicate what will be used to locate glyphs with labels in the projected
scatterplots.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

None.

Examples

showClass("projectedLearner")

projectLearnerToGrid create learned tesselation of feature space after PC transformation

Description

create learned tesselation of feature space after PC transformation

Usage

projectLearnerToGrid(formula, data, learnerSchema,
trainInds, ...,
dropIntercept = TRUE,
ngpts = 20,
predExtras = list(),
predWrapper = force)

Arguments

formula standard formula, typically of the form "y~." where y denotes the class label
variable to be predicted by all remaining features in the input data frame

data a data.frame instance

learnerSchema an instance of learnerSchema-class

trainInds integer vector of rows of data to use for training

... additional parameters for use with learnerSchema

dropIntercept logical indicating whether to include column of 1s among feature column-vectors
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ngpts number of equispaced points along the range of each input feature to use in
forming a grid in feature space

predExtras a list with named elements giving binding to extra parameters needed to predict
labels for the learner in use. For example, with ldaI, set predExtras=list(type="class")

predWrapper Sometimes a function call is needed to extract the predicted labels from the
RObject applied to the fittedLearner slot of the output object; this parameter
defines that call.

Value

instance of projectedLearner-class

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

none.

Examples

library(mlbench)
# demostrate with 3 dimensional hypercube problem
kk = mlbench.hypercube()
colnames(kk$x) = c("f1", "f2", "f3")
hcu = data.frame(cl=kk$classes, kk$x)
set.seed(1234)
sam = sample(1:nrow(kk$x), size=nrow(kk$x)/2)
ldap = projectLearnerToGrid(cl~., data=hcu, ldaI,

sam, predWrapper=function(x)x$class)
plot(ldap)
confuMat(ldap@fittedLearner)
nnetp = projectLearnerToGrid(cl~., data=hcu, nnetI, sam, size=2,

decay=.01, predExtras=list(type="class"))
plot(nnetp)
confuMat(nnetp@fittedLearner)
#if (requireNamespace("rgl") && interactive()) {
# learnerIn3D(nnetp)
# ## customising the rgl plot
# learnerIn3D(nnetp, size = 10, alpha = 0.1)
#}
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RAB real adaboost (Friedman et al)

Description

read adaboost ... a demonstration version

Usage

RAB(formula, data, maxiter=200, maxdepth=1)

Arguments

formula formula – the response variable must be coded -1, 1

data data

maxiter maxiter

maxdepth maxdepth – passed to rpart

Value

an instance of raboostCont

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Friedman et al Ann Stat 28/2 337

Examples

library(MASS)
library(rpart)
data(Pima.tr)
data(Pima.te)
Pima.all = rbind(Pima.tr, Pima.te)
tonp = ifelse(Pima.all$type == "Yes", 1, -1)
tonp = factor(tonp)
Pima.all = data.frame(Pima.all[,1:7], mtype=tonp)
fit1 = RAB(mtype~ped+glu+npreg+bmi+age, data=Pima.all[1:200,], maxiter=10, maxdepth=5)
pfit1 = Predict(fit1, newdata=Pima.tr)
table(Pima.tr$type, pfit1)
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raboostCont-class Class "raboostCont" ~~~

Description

~~ A concise (1-5 lines) description of what the class is. ~~

Objects from the Class

Objects can be created by calls of the form new("raboostCont", ...). ~~ describe objects here
~~

Slots

.Data: Object of class "list" ~~

formula: Object of class "formula" ~~

call: Object of class "call" ~~

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

Predict is an S4 method that can apply to instances of this class.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

showClass("raboostCont")

varImpStruct-class Class "varImpStruct" – collect data on variable importance from var-
ious machine learning methods

Description

collects data on variable importance

Objects from the Class

Objects can be created by calls of the form new("varImpStruct", ...). These are matrices of
importance measures with separate slots identifying algorithm generating the measures and variable
names.
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Slots

.Data: Object of class "matrix" actual importance measures

method: Object of class "character" tag

varnames: Object of class "character" conformant vector of names of variables

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array", by class
"matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector", by class
"matrix", with explicit coerce.

Methods

plot signature(x = "varImpStruct"): make a bar plot, you can supply arguments plat and
toktype which will use lookUp(...,plat,toktype) from the annotate package to trans-
late probe names to, e.g., gene symbols.

show signature(object = "varImpStruct"): simple abbreviated display

getVarImp signature(object = "classifOutput", fixNames="logical"): extractor of vari-
able importance structure; fixNames parameter is to remove leading X used to make variable
names syntactic by randomForest (ca 1/2008). You can set fixNames to false if using hu6800
platform, because all featureNames are syntactic as given.

report signature(object = "classifOutput", fixNames="logical"): extractor of variable im-
portance data, with annotation; fixNames parameter is to remove leading X used to make vari-
able names syntactic by randomForest (ca 1/2008). You can set fixNames to false if using
hu6800 platform, because all featureNames are syntactic as given.

Examples

library(golubEsets)
data(Golub_Merge)
library(hu6800.db)
smallG <- Golub_Merge[1001:1060,]
set.seed(1234)
opar=par(no.readonly=TRUE)
par(las=2, mar=c(10,11,5,5))
rf2 <- MLearn(ALL.AML~., smallG, randomForestI, 1:40, importance=TRUE,
sampsize=table(smallG$ALL.AML[1:40]), mtry=sqrt(ncol(exprs(smallG))))
plot( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")
par(opar)
report( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")
requireNamespace("airway")
requireNamespace("SummarizedExperiment")
data(airway, package="airway")
set.seed(1234)
xx = MLearn(dex~., data=airway[1:2000,], randomForestI, 1:8, importance=TRUE)
RObject(xx)
vi = getVarImp(xx)
tm = SummarizedExperiment::rowData(airway)$gene_name
names(tm) = rownames(airway)
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par(mar=c(4,8,3,3))
plot(vi, tmap=tm, las=2)

xvalLoop Cross-validation in clustered computing environments

Description

Use cross-validation in a clustered computing environment

Usage

xvalLoop( cluster, ... )

Arguments

cluster Any S4-class object, used to indicate how to perform clustered computations.

... Additional arguments used to inform the clustered computation.

Details

Cross-validiation usually involves repeated calls to the same function, but with different arguments.
This provides an obvious place for using clustered computers to enhance execution. The method
xval is structured to exploit this; xvalLoop provides an easy mechanism to change how xval per-
forms cross-validation.

The idea is to write an xvalLoop method that returns a function. The function is then used to
execute the cross-validation. For instance, the default method returns the function lapply, so the
cross-validation is performed by using lapply. A different method might return a function that
executed lapply-like functions, but sent different parts of the function to different computer nodes.

An accompanying vignette illustrates the technique in greater detail. An effective division of labor
is for experienced cluster programmers to write lapply-like methods for their favored clustering
environment. The user then only has to add the cluster object to the list of arguments to xval to get
clustered calculations.

Value

A function taking arguments like those for lapply

Examples

## Not run:
library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[200:250,]

# Evaluation on one node

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0))
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table(lk1,smallG$ALL.AML)

# Evaluation on several nodes -- a cluster programmer might write the following...

library(snow)
setOldClass("spawnedMPIcluster")

setMethod("xvalLoop", signature( cluster = "spawnedMPIcluster"),
## use the function returned below to evalutae
## the central cross-validation loop in xval
function( cluster, ... ) {

clusterExportEnv <- function (cl, env = .GlobalEnv)
{

unpackEnv <- function(env) {
for ( name in ls(env) ) assign(name, get(name, env), .GlobalEnv )
NULL

}
clusterCall(cl, unpackEnv, env)

}
function(X, FUN, ...) { # this gets returned to xval

## send all visible variables from the parent (i.e., xval) frame
clusterExportEnv( cluster, parent.frame(1) )
parLapply( cluster, X, FUN, ... )

}
})

# ... and use the cluster like this...

cl <- makeCluster(2, "MPI")
clusterEvalQ(cl, library(MLInterfaces))

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0), cluster = cl)
table(lk1,smallG$ALL.AML)

## End(Not run)

xvalSpec container for information specifying a cross-validated machine learn-
ing exercise

Description

container for information specifying a cross-validated machine learning exercise

Usage

xvalSpec(type, niter=0,
partitionFunc = function(data, classLab,iternum) { (seq_len(nrow(data)))[-iternum] },

fsFun = function(formula, data) formula )
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Arguments

type a string, "LOO" indicating leave-one-out cross-validation, or "LOG" indicating
leave-out-group, or "NOTEST", indicating the entire dataset is used in a single
training run.

niter numeric specification of the number of cross-validation iterations to use. Ig-
nored if type is "LOO".

partitionFunc function, with parameters data (bound to data.frame), clab (bound to character
string), iternum (bound to numeric index into sequence of 1:niter). This func-
tion’s job is to provide the indices of training cases for each cross-validation
step. An example is balKfold.xvspec, which computes a series of indices that
are approximately balanced with respect to frequency of outcome types.

fsFun function, with parameters formula, data. The function must return a formula
suitable for defining a model on the basis of the main input data. A candidate
fsFun is given in example for fsHistory function.

Details

If type == "LOO", no other parameters are inspected. If type == "LOG" a value for partitionFunc
must be supplied. We recommend using balKfold.xvspec(K). The values of niter and K in this
usage must be the same. This redundancy will be removed in a future upgrade.

If the parallel package is attached and symbol mc_fork is loaded, cross-validation will be dis-
tributed to cores using mclapply.

Value

An instance of classifierOutput, with a special structure. The RObject return slot is populated
with a list of niter cross-validation results. Each element of this list is itself a list with two ele-
ments: test.idx (the indices of the test set for the associated cross-validation iteration, and mlans,
the classifierOutput generated at each iteration. Thus there are classifierOutput instances
nested within the main classifierOutput returned when a xvalSpec is used.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

library("MASS")
data(crabs)
set.seed(1234)
#
# demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs, nnetI, xvalSpec("LOG",

5, balKfold.xvspec(5)), size=3, decay=.01 )
nn1cv
confuMat(nn1cv)
names(RObject(nn1cv)[[1]])
RObject(RObject(nn1cv)[[1]]$mlans)
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