Package ‘MCbiclust’

January 24, 2026
Type Package

Title Massive correlating biclusters for gene expression data and
associated methods

Version 1.35.0

Date 2024-02-02

Author Robert Bentham

Maintainer Robert Bentham <robert.bentham.11@ucl.ac.uk>

Description Custom made algorithm and associated methods for finding,
visualising and analysing biclusters in large gene expression
data sets. Algorithm is based on with a supplied gene set of
size n, finding the maximum strength correlation matrix
containing m samples from the data set.

Depends R (>=3.4)

Imports BiocParallel, graphics, utils, stats, AnnotationDbi, GO.db,
org.Hs.eg.db, GGally, ggplot2, scales, cluster, WGCNA

Suggests gplots, knitr, rmarkdown, BiocStyle, gProfileR, MASS, dplyr,
pander, devtools, testthat, GSVA

License GPL-2

biocViews ImmunoOncology, Clustering, Microarray, StatisticalMethod,
Software, RNASeq, GeneExpression

RoxygenNote 6.0.1

VignetteBuilder knitr

LazyData true

git_url https://git.bioconductor.org/packages/MCbiclust
git_branch devel

git_last_commit 538a41b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

2 CCLE_samples

Contents
CCLE_samples o o i e e e e e 2
CCLE_small e 3
CorScoreCalc e e 4
CVEval e e e e e 5
CVPIot . . . e e e 6
FindSeed e 7
GOEnrichmentAnalysis o 0 i e e 8
HclustGenesHiCor e 10
MCbiclust e e e e 11
Mitochondrial_genes 11
PClVecFun e 12
PointScoreCalc e e e 13
SampleSort L 14
SilhouetteClustGroups e 16
ThresholdBic e e 17

Index 20

CCLE_samples Clinical information for CCLE data
Description

A dataset containing clinical information for the CCLE samples.

Usage

CCLE_samples

Format

A data frame with 967 rows and 14 variables:

* CCLE.name: Sample name identifier.

¢ Cell.line.primary.name: Cell line name.

* Cell.line.aliases: Any known aliases of cell line.

* Gender: Gender of patient cell line derived from.

* Site.Primary: Primary site cell line derived from.

* Histology: Histology of tumour cell line derived from.
 Hist.Subtypel: Histology subtype of tumour cell line derived from.
* Notes: Additional notes.

* Source: Source of the cell line.

» Expression.arrays: Expression array used.

CCLE_small 3

e SNP.arrays: SNP array used.
* Oncomap: Oncomap mutation array used.
* Hybrid.Capture.Sequencing: Hybrid capture sequencing used.

¢ Name: Sample name identifier

Value

NA

Source

http://www.broadinstitute.org/ccle/data/browseData Filename: CCLE_sample_info_file_2012-
04-06.txt

CCLE_small Subset of expression levels of CCLE data

Description

A dataset containing the gene-centric RMA-normalized mRNA expression data for nearly 1000
genes and 500 samples taken as a random subset of the complete CCLE data. 1000 genes were
selected randomly such that 500 were mitochondrial and 500 non-mitochondrial.

Usage

CCLE_small

Format
A data frame with 1000 rows and 500 variables:

* MKN74_STOMACH: mRNA expression on sample MKN74_STOMACH
* OC316_OVARY: mRNA expressionr on sample OC316_OVARY

@source http://www.broadinstitute.org/ccle/data/browseData Filename: CCLE_Expression_Entrez_2012-
04-06.gct.gz

Value

NA

http://www.broadinstitute.org/ccle/data/browseData
http://www.broadinstitute.org/ccle/data/browseData

4 CorScoreCalc

CorScoreCalc Calculate correlation score

Description

The standard method to calculate the correlation score used to judge biclusters in MCbiclust

Usage

CorScoreCalc(gene.expr.matrix, sample.vec)

Arguments

gene.expr.matrix
Gene expression matrix with genes as rows and samples as columns

sample.vec Vector of samples

Value

The correlation score

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

random.seed <- sample(seq(length = dim(CCLE.mito)[2]),10)
CCLE.seed <- FindSeed(gem = CCLE.mito,

seed.size = 10,

iterations = 100,

messages = 100)

CorScoreCalc(CCLE.mito, random.seed)

CorScoreCalc(CCLE.mito, CCLE.seed)

CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE. seed,

cuts = 8))

CorScoreCalc(CCLE.mito[CCLE.hicor.genes,], CCLE.seed)

CVEval 5

CVEval Method for the calculation of a correlation vector

Description

Upon identifying a bicluster seed with FindSeed, one of the next steps is to identify which genes
not in your chosen gene set are also highly correlated to the bicluster found. This is done by CVEval,
and the output is known as the correlation vector.

Usage

CVEval(gem.part, gem.all, seed, splits)

Arguments
gem.part Part of gene expression matrix only containing gene set of interest with genes as
rows and samples as columns
gem.all All of gene expression matrix
seed Seed of highly correlating samples
splits Number of cuts from hierarchical clustering
Details

CVeval uses hierarchical clustering to select the genes most representative of the bicluster and then
uses the average expression of these genes across the sample seed and calculates the correlation of
every gene measured across the sample seed to this average expression value.

The correlation vector is the output of this calculation.

Value

Correlation vector

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)

CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

6 CVPIot

Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n=10)

CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed,
splits = 10)

CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
pcl = as.numeric(CCLE.pc1))

CCLE.pc1 <- PC1Align(gem = CCLE_small, pcl = CCLE.pcl,
cor.vec = CCLE.cor.vec ,
sort.order = CCLE.samp.sort,
bic =CCLE.bic)

CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]1))

CVPlot Make correlation vector plot

Description

A function to visualise the differences between different found biclusters. Output is a matrix of
plots. Each correlation vector is plotted against each other across the entire measured gene set in
the lower diagonal plots, and a chosen gene set (e.g. mitochondrial) in the upper diagonal plots.
The diagnal plots themselves show the density plots of the entire measured and chosen gene set.
There are addition options to set the transparancy of the data points and names of the correlation
vectors.

Usage

CVPlot(cv.df, geneset.loc, geneset.name, alphal = 0.005, alpha2 = 0.1,
cnames = NULL)

Arguments
cv.df A dataframe containing the correlation vectors of one or more patterns.
geneset.loc A gene set of interest (e.g. mitochondrial) to be plotted separately from rest of

genes.
geneset.name Name of geneset (e.g. mitochondrial genes)

alphai Transparency level of non-gene set genes

FindSeed 7

alpha2 Transparency level of gene set genes
cnames Character vector containing names for the correlation vector
Value

A plot of the correlation vectors

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

CCLE.seed <- list()
CCLE.cor.vec <- list()

for(i in 1:3){
set.seed(i)
CCLE.seed[[i]] <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 100)}

for(i in 1:3){

CCLE.cor.vec[[i]] <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed[[i]],
splits = 10)}

CCLE.cor.df <- (as.data.frame(CCLE.cor.vec))

CVPlot(cv.df = CCLE.cor.df, geneset.loc = mito.loc,
geneset.name = "Mitochondrial”,alphal = 0.5)

FindSeed Find highly correlated seed of samples for gene expression matrix

Description

FindSeed() is the key function in MCbiclust. It takes a gene expression matrix and by a stochastic
method greedily searches for a seed of samples that maximizes the correlation score of the chosen
gene set.

Usage

FindSeed(gem, seed.size, iterations, initial.seed = NULL, messages = 100)

GOEnrichmentAnalysis

Arguments
gem Gene expression matrix with genes as rows and samples as columns
seed.size Size of sample seed
iterations Number of iterations

initial.seed Initial seed used, if NULL randomly chosen

messages frequency of progress messages

Details

Additional options allow for the search to start at a chosen seed, for instance if a improvement to
a known seed is desired. The result of FindSeed() is dependent on the number of iterations, with
above 1000 usually providing a good seed, and above 10000 an optimum seed.

Value

Highly correlated seed

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

random.seed <- sample(seq(length = dim(CCLE.mito)[2]),10)
CCLE.seed <- FindSeed(gem = CCLE.mito,

seed.size = 10,

iterations = 100,

messages = 100)

CorScoreCalc(CCLE.mito, random.seed)

CorScoreCalc(CCLE.mito, CCLE.seed)

CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE.seed,

cuts = 8))

CorScoreCalc(CCLE.mito[CCLE.hicor.genes,], CCLE.seed)

GOEnrichmentAnalysis Calculate gene set enrichment of correlation vector using Mann-
Whitney test

GOEnrichmentAnalysis 9

Description

The Mann-Whitney test is typically used due to the values of the correlation vector, not being nor-
mally distributed. GOEnrichmentAnalysis provides an interface with the GO database annotation
to find the most significant GO terms.

Usage

GOEnrichmentAnalysis(gene.names, gene.values, sig.rate)

Arguments
gene.names Names of the genes in standard gene name format.
gene.values Values associated with the genes, e.g the correlation vector output of CVEval.
sig.rate Level of significance required after multiple hypothesis adjustment.

Value

Data frame of the significant gene sets, with GOID, GO Term, number of genes, number of genes
in GO Term, number of genes in GO Term also in gene set, adjusted p-value, average value of
correlation vector in gene set and phenotype describing whether average value of correlation vector
is above or below the total average.

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(101)

CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 100)

CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed, splits = 10)

Significant GO terms can be calculated as follows:

GEA <- GOEnrichmentAnalysis(gene.names = row.names(CCLE_small),
gene.values = CCLE.cor.vec,

sig.rate = 0.05)

10 HclustGenesHiCor

HclustGenesHiCor Find the most highly correlated genes using hierarchical clustering

Description

Upon finding an initial bicluster with FindSeed() not all the genes in the chosen geneset will
be highly correlated to the bicluster. HclustGenesHiCor() uses the output of FindSeed() and
hierarchical clustering to only select the genes that are most highly correlated to the bicluster. This
is achieved by cutting the dendogram produced from the clustering into a set number of groups and
then only selecting the groups that are most highly correlated to the bicluster

Usage

HclustGenesHiCor(gem, seed, cuts)

Arguments
gem Gene expression matrix with genes as rows and samples as columns
seed Seed of highly correlating samples
cuts Number of groups to cut dendogram into

Value

Numeric vector of most highly correlated genes

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

random.seed <- sample(seq(length = dim(CCLE.mito)[2]),10)
CCLE.seed <- FindSeed(gem = CCLE.mito,

seed.size = 10,

iterations = 100,

messages = 100)

CorScoreCalc(CCLE.mito, random.seed)

CorScoreCalc(CCLE.mito, CCLE.seed)

CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE. seed,

cuts = 8))

CorScoreCalc(CCLE.mito[CCLE.hicor.genes,], CCLE.seed)

MCbiclust 11

MCbiclust MCbiclust: Massively Correlated biclustering

Description

MCbiclust is a R package for running massively correlating biclustering analysis.MCbiclust aims
to find large scale biclusters with selected features being highly correlated with each other over a
subset of samples.

Details

The package was originally designed in order to solve a problem in bioinformatics: to find biclusters
representing different modes of regulation of mitochondria gene expression in disease states such
as breast cancer. The same methods however, can be used on any gene expression data set to find
biclusters of interest.

To learn more about MCbiclust, start with the vignette: browseVignettes(package = "MCbiclust")

Mitochondrial_genes List of known mitochondrial genes

Description

A dataset from MitoCartal.O containing the 1023 mitochondrial genes Availiable from the broad
institute: http://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-
program/publications/mitocarta/mitocarta-in-0

Usage

Mitochondrial_genes

Format

A Character vector of the HGNC approved gene names

Value

NA

Source

https://www.broadinstitute.org/publications/broad807s

https://www.broadinstitute.org/publications/broad807s

12 PC1VecFun

PC1VecFun Calculate PC1 vector of found pattern

Description
The correlations found between the chosen geneset in a subset of samples can be summarised by
looking at the first principal component (PC1) using principal coponent analysis (PCA).

Usage

PC1VecFun(top.gem, seed.sort, n)

Arguments
top.gem Gene expression matrix containing only highly correlating genes
seed.sort Ordering of samples according to strength of correlation
n Number of samples to use in calculation of PC1

Details

PC1VecFun() takes a gene expression matrix and the sample ordering and fits a PC1 value to all the
samples based on a PCA analysis done on the first n samples.

Value

PC1 value for each sample

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)

CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n = 10)

PointScoreCalc 13

CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed,
splits = 10)

CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
pcl = as.numeric(CCLE.pc1))

CCLE.pc1 <- PC1Align(gem = CCLE_small, pcl = CCLE.pc1,
cor.vec = CCLE.cor.vec ,
sort.order = CCLE.samp.sort,
bic =CCLE.bic)

CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]1))

PointScoreCalc Calculate PointScore

Description

Using two gene sets that are represented of a known bicluster (one gene set being up regulated
while other gene set is down regulated), samples are scored based on how well they match the
known regulation of the bicluster.

Usage

PointScoreCalc(gene.expr.matrix, gene.locl, gene.loc2)

Arguments

gene.expr.matrix
Gene expression matrix with genes as rows and samples as columns

gene.loc1 Location of the rows containing the genes in gene set 1 within the gene expres-
sion matrix

gene.loc2 Location of the rows containing the genes in gene set 2 within the gene expres-
sion matrix
Details

The PointScore of a sample can be directly compared to the PC1 value. The PointScore is typically
used to identify samples related to the upper/lower fork of a bicluster without running the complete
main MCbiclust pipeline on a dataset.

Value

Vector of point scores for each sample in the gene expression matrix

14 SampleSort

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)

CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n = 10)

CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE. seed,
cuts = 8))

CCLE.cor.mat <- cor(t(CCLE.mito[CCLE.hicor.genes,CCLE.seed]))

gene.set1 <- labels(as.dendrogram(hclust(dist(CCLE.cor.mat)))[[111)
gene.set2 <- labels(as.dendrogram(hclust(dist(CCLE.cor.mat)))[[2]1])

gene.set1.loc <- which(row.names(CCLE.mito) %in% gene.set1)
gene.set2.loc <- which(row.names(CCLE.mito) %in% gene.set2)

ps.vec <- PointScoreCalc(CCLE.mito,gene.set1.loc,gene.set2.1loc)
cor(ps.vec[CCLE.samp.sort], CCLE.pc1)

plot(ps.vec[CCLE.samp.sort])
plot(CCLE.pc1)

SampleSort Methods for ordering samples

Description

After finding an initial bicluster with FindSeed() the next step is to extend the bicluster by ordering
the remaining samples by how they preserve the correlation found.

SampleSort

Usage

15

SampleSort(gem, seed, num.cores = 1, sort.length = NULL)

MultiSampleSortPrep(gem, av.corvec, top.genes.num, groups, initial.seeds)

Arguments

gem
seed
num.cores
sort.length
av.corvec
top.genes.num
groups

initial.seeds

Details

Gene expression matrix with genes as rows and samples as columns
Sample seed of highly correlating genes

Number of cores used in parallel evaluation

Number of samples to be sorted

List of average correlation vector

Number of the top genes in correlation vector to use for sorting samples
List showing what runs belong to which correlation vector group

List of sample seeds from all runs

SampleSort() is the basic function that achieves this, it takes the gene expression matrix, seed of
samples, and also has options for the number of cores to run the method on and the number of

samples to sort.

MultiSampleSortPrep() is a preparation function for SampleSort() when MCbiclust has been
run multiple times and returns a list of gene expression matrices and seeds for each ‘distinct* bi-

cluster found.

Value

Order of samples by strength to correlation pattern

Examples

data(CCLE_small)

data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)

CCLE.seed <- FindSeed(gem = CCLE.mito,

seed.size = 10,
iterations = 100,
messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

16 SilhouetteClustGroups

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n = 10)

CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed,
splits = 10)

CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
pcl = as.numeric(CCLE.pc1))

CCLE.pc1 <- PC1Align(gem = CCLE_small, pcl = CCLE.pc1,
cor.vec = CCLE.cor.vec ,
sort.order = CCLE.samp.sort,
bic =CCLE.bic)

CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]11))

SilhouetteClustGroups Slihouette validation of correlation vector clusters

Description

MCobiclust is a stochastic method and needs to be run multiple times to identify different biclusters.
SilhouetteClustGroups() examines the correlation vectors calculated from different runs and
uses the technique of examining silhouette widths to identify the number of distinct clusters (and
hence biclusters) found.

Usage
SilhouetteClustGroups(cor.vec.mat, max.clusters, plots = FALSE, seedl = 100,
rand.vec = TRUE)

Arguments

cor.vec.mat Correlation matrix of the correlation vectors (CVs)

max.clusters Maximum number of clusters to divide CVs into

plots True or False for whether to show silhouette plots

seed1 Value used to set random seed

rand.vec True or False for whether to add random correlation vector used for comparison
Value

The distinct clusters of correlation vectors

ThresholdBic 17

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

CCLE.seed <- list()
CCLE.cor.vec <- list()

for(i in 1:5){
set.seed(i)
CCLE.seed[[i]] <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 100)}

for(i in 1:5){

CCLE.cor.vec[[i]] <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed[[i]],
splits = 10)}

CCLE.cor.mat <- as.matrix(as.data.frame(CCLE.cor.vec))

CCLE.clust.groups <- SilhouetteClustGroups(cor.vec.mat = CCLE.cor.mat,
plots = TRUE,
max.clusters = 10)

av.corvec.fun <- function(x) rowMeans(CCLE.cor.mat[,x])
CCLE.average.corvec <- lapply(X = CCLE.clust.groups,
FUN = av.corvec.fun)

multi.sort.prep <- MultiSampleSortPrep(gem = CCLE_small,
av.corvec = CCLE.average.corvec,
top.genes.num = 750,
groups =CCLE.clust.groups,
initial.seeds = CCLE.seed)

multi.sort <- list()
for(i in seq_len(length(CCLE.clust.groups))){
multi.sort[[i]] <- SampleSort(multi.sort.prep[[1]J]1[[i]],
seed = multi.sort.prep[[2]11[[i]],
sort.length = 11)

ThresholdBic Methods for defining a bicluster

18 ThresholdBic

Description

A bicluster is the fundamental result found using MCbiclust. These three functions are essential for
the precise definition of these biclusters.

Usage

ThresholdBic(cor.vec, sort.order, pcl, samp.sig = @)
PC1Align(gem, pcl, cor.vec, sort.order, bic)

ForkClassifier(pcl, samp.num)

Arguments
cor.vec Correlation vector (output of CVEval()).
sort.order Order of samples (output of SampleSort()).
pcl PC1 values for samples (output of PC1VecFun).
samp.sig Value between 0 and 1 determining number of samples in bicluster
gem Gene expression matrix containing genes as rows and samples as columns.
bic bicluster (output of ThresholdBic())
samp.num Number of samples in the bicluster
Details

ThresholdBic() takes as its main inputs the correlation vector (output of CVEval()), sample or-
dering (output of SampleSort()), PC1 vector (output of PC1VecFun) and returns a list of the genes
and samples which belong to the bicluster according to a certain level of significance.

PC1Align() is a function used once the bicluster has been found to ensure that the upper fork
samples (those with higher PC1 values) correspond to those samples that have genes with positive
correlation vector values up-regulated.

ForkClassifier() is a function used to classify which samples are in the upper or lower fork.

Value

Defined bicluster

Examples

data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)
CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,

ThresholdBic

iterations = 100,
messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n = 10)

CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed,
splits = 10)

CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
pcl = as.numeric(CCLE.pc1))

CCLE.pc1 <- PC1Align(gem = CCLE_small, pcl = CCLE.pcl,
cor.vec = CCLE.cor.vec ,
sort.order = CCLE.samp.sort,
bic =CCLE.bic)

CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]1))

Index

+ datasets
CCLE_samples, 2
CCLE_small, 3
Mitochondrial_genes, 11

CCLE_samples, 2
CCLE_small, 3
CorScoreCalc, 4
CVEval, 5
CVPlot, 6

FindSeed, 7
ForkClassifier (ThresholdBic), 17

GOEnrichmentAnalysis, 8
HclustGenesHiCor, 10

MCbiclust, 11

MCbiclust-package (MCbiclust), 11
Mitochondrial_genes, 11
MultiSampleSortPrep (SampleSort), 14

PC1Align (ThresholdBic), 17
PC1VecFun, 12
PointScoreCalc, 13

SampleSort, 14
SilhouetteClustGroups, 16

ThresholdBic, 17

20

	CCLE_samples
	CCLE_small
	CorScoreCalc
	CVEval
	CVPlot
	FindSeed
	GOEnrichmentAnalysis
	HclustGenesHiCor
	MCbiclust
	Mitochondrial_genes
	PC1VecFun
	PointScoreCalc
	SampleSort
	SilhouetteClustGroups
	ThresholdBic
	Index

