Package ‘GenomicPlot’

January 24, 2026
Type Package

Title Plot profiles of next generation sequencing data in genomic
features

Version 1.9.1

Description Visualization of next generation sequencing (NGS) data is essential
for interpreting high-throughput genomics experiment results. 'GenomicPlot'
facilitates plotting of NGS data in various formats (bam, bed, wig and bigwig);
both coverage and enrichment over input can be computed and displayed with
respect to genomic features (such as UTR, CDS, enhancer), and user defined
genomic loci or regions. Statistical tests on signal intensity within user
defined regions of interest can be performed and represented as boxplots or
bar graphs. Parallel processing is used to speed up computation on multicore
platforms. In addition to genomic plots which is suitable for displaying of
coverage of genomic DNA (such as ChIPseq data), metagenomic (without introns)
plots can also be made for RNAseq or CLIPseq data as well.

License GPL-2
Encoding UTF-8
LazyData FALSE

Collate " " DrawingFunctions.R" * * GenomicPlot.R" * * HandleDataMatrix.R"
* “HandleFeatures.R" * “Parallel.R" * " ReadData.R" * " Setup.R"
* “Plot_5parts_metagene.R" * " Plot_start_end.R"
" *Plot_start_end_with_random.R" * " Plot_region.R" " " Plot_locus.R"
““data.R" " " Plot_locus_with_random.R" " " Plot_peak_annotation.R"
* *Plot_bam_correlation.R"

Depends R (>=4.4.0), GenomicRanges (>= 1.46.1)

Imports methods, Rsamtools, parallel, tidyr, rtracklayer (>= 1.54.0),
plyranges (>= 1.14.0), cowplot (>= 1.1.1), VennDiagram,
ggplotify, Seqinfo, IRanges, ComplexHeatmap, RCAS (>= 1.20.0),
scales (>= 1.2.0), GenomicAlignments (>= 1.30.0), edgeR,
circlize, viridis, ggsignif (>= 0.6.3), ggsci (>= 2.9), ggpubr,
grDevices, graphics, stats, utils, GenomicFeatures, genomation
(>=1.36.0), txdbmaker, ggplot2 (>= 3.3.5), BiocGenerics,
dplyr, grid

Suggests knitr, rmarkdown, R.utils, Biobase, BiocStyle, testthat,
AnnotationDbi, GenomelnfoDb

biocViews AlternativeSplicing, ChIPSeq, Coverage, GeneExpression,
RNASeq, Sequencing, Software, Transcription, Visualization,
Annotation

RoxygenNote 7.3.2
VignetteBuilder knitr

BugReports https://github.com/shuye2009/GenomicPlot/issues

URL https://github.com/shuye2009/GenomicPlot

git_url https://git.bioconductor.org/packages/GenomicPlot

git_branch devel

git_last commit a5cde8d

git_last_commit_date 2025-12-08

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Shuye Pu [aut, cre] (ORCID: <https://orcid.org/0000-0002-6664-8438>)
Maintainer Shuye Pu <shuye2009@gmail.com>

Contents

aov_TukeyHSD e
check_constraints e e e e
custom_TxDb_from_GTF
draw_boxplot_by_factor
draw_boxplot_wo_outlier
draw_combo_plot e
draw_locus_profile L
draw_matrix_heatmap
draw_mean_se_barplot
draw_quantile_plot L.
draw_rank_plot L.
draw_region_landmark oL L o o
draw_region_nameo i e e e e e e
draw_region_profile L
draw_stacked_plot L
draw_stacked_profile
effective_Size
extdata
extract_longest_tX L
filter_by_nonoverlaps_stranded L.
filter_by_overlaps_nonstranded L.
filter_by_overlaps_stranded L.
find_mate

Contents

https://github.com/shuye2009/GenomicPlot/issues
https://github.com/shuye2009/GenomicPlot
https://orcid.org/0000-0002-6664-8438

Contents

Index

3

GENE2EX . v vt e e e e e e e e e e e e e e e e e e 29
GenomicPlot 30
get_genomic_feature_coordinateso 31
get_targeted_geneso a e e e e e e e e e e 32
get_txdb_features L 33
gfS_genomic 34
efS_meta 35
ar2df . L e e e 35
handle bam 36
handle bed e 37
handle_bedGraph 38
handle_bw e 39
handle_input 40
handle_wig 41
impute_hm e 43
INSPECt_MALIiX o v v v vttt s e e e e e e e 44
make_subTxDb _from GTF 45
overlap_pair L. e e 46
overlap_quad e e 47
overlap_triple L 48
parallel countOverlaps 49
parallel_scoreMatrixBin 50
plot_Sparts_metagene 52
plot_bam_correlation 54
plot_locus e e e 56
plot_locus_with_random 58
plot_named_list 61
plot_overlap_bed L 63
plot_overlap_genes e e e e e 64
plot_peak_annotation e 65
plot_region 67
plot_start_end L. e e 69
plot_start_end_with_random L 72
prepare_3parts_genomic_features Lo 74
prepare_Sparts_genomic_features oL 76
process_scoreMatrix e e e e e 77
Tank_TOWS e e e e e e 79
ratio_OVer_Input e e 79
rm_outlier e e e 80
setimportParams L 81
set_seqinfo 82
start_parallel L 83
stop_parallel e 84
txdb.sql . .. 84
86

4 aov_TukeyHSD

aov_TukeyHSD Perform one-way ANOVA and post hoc TukeyHSD tests

Description

This is a helper function for performing one-way ANOVA analysis and post hoc Tukey’s Honest
Significant Differences tests

Usage

aov_TukeyHSD(df, xc = "Group”, yc = "Intensity”, op = NULL, verbose = FALSE)

Arguments

df a dataframe

Xc a string denoting column name for grouping

yc a string denoting column name for numeric data to be plotted

op output prefix for statistical analysis results

verbose logical, to indicate whether a file should be produced to save the test results
Value

a list of two elements, the first is the p-value of ANOVA test and the second is a matrix of the output
of TukeyHSD tests

Note

used in plot_locus

Author(s)
Shuye Pu

Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Intensity = c(rnorm(20, mean = 2, sd = 1), rnorm(30, mean = 3, sd = 1))

)

out <- aov_TukeyHSD(stat_df, xc = "Feature"”)
out

check_constraints 5

check_constraints Check constraints of genomic ranges

Description

Make sure the coordinates of GRanges are within the boundaries of chromosomes, and trim any-
thing that goes beyond. Also, remove entries whose seqname is not in the seqname of a query
GRanges.

Usage

check_constraints(gr, genome, queryRle = NULL)

Arguments
gr a GenomicRanges object
genome genomic version name such as "hg19"
queryRle a RleList object used as a query against gr
Value

a GRanges object

Author(s)
Shuye Pu

Examples

subject <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 400, 2e+8)),
Strand - C(”"’”, n+u’ n_n’ n_n)

)

g <- check_constraints(gr = subject, genome = "hgl19")
identical(g, subject)

subject1 <- GRanges("chr19”,
IRanges(rep(c(10@, 15), 2), width = c(1, 20, 400, 28)),
strand = c("+", 4", mnmomy

gl <- check_constraints(gr = subjectl, genome = "hgl19")
identical(gl, subjectl)

6 draw_boxplot_by_factor

custom_TxDb_from_GTF Make custom TxDb object from a GTF/GFF file

Description

This is a helper function for creating custom TxDb object from a GTF/GFF file. Mitochondrial
chromosome is excluded.

Usage

custom_TxDb_from_GTF(gtfFile, genome = "hgl19")

Arguments

gtfFile path to a gene annotation gtf file

genome a string denoting the genome name and version
Value

a TxDb object defined in the GenomicFeatures package.

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)

txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")

draw_boxplot_by_factor
Plot boxplot with two factors

Description

Plot violin plot with boxplot components for data with one or two factors, p-value significance
levels are displayed, "***" = 0.001, "**" = 0.01, "*" = 0.05.

draw_boxplot_by_factor 7

Usage
draw_boxplot_by_factor(
stat_df,
xc = "Feature”,
yc = "Intensity”,
f_‘c = nn ,
comp = list(c(1, 2)),
stats = "wilcox.test”,
Xlab = xc,
Ylab = yc,
nf =1
)
Arguments
stat_df a dataframe with column names c(xc, yc)
Xc a string denoting column name for grouping
yc a string denoting column name for numeric data to be plotted
fc a string denoting column name for sub-grouping based on an additional factor
comp a list of vectors denoting pair-wise comparisons to be performed between groups
stats the name of pair-wise statistical tests, like t.test or wilcox.test
Xlab a string for x-axis label
Ylab a string for y-axis label
nf a integer normalizing factor for correct count of observations when the data table
has two factors, such as those produced by ‘pivot_longer‘, equals to the number
of factors (values can only be 1 or 2)
Value
a ggplot object
Note

used by plot_locus, plot_locus_with_random, plot_region

Author(s)
Shuye Pu

Examples

stat_df <- data.frame(

Feature =

rep(c("A", "B", "A", "B"), c(15, 15, 15, 15)),

Covar = rep(c("treat”, "control”, "dummy"), c(20, 20, 20)),
Intensity = c(rnorm(30, 2, @.5), rnorm(30, 3, 0.6))

)

p <- draw_boxplot_by_factor(stat_df,

8 draw_boxplot_wo_outlier

fc = "Feature”, yc = "Intensity”,

XC = "COVar”, Ylab = "Signal Intensity",
comp = list(c(1, 2), c(3, 4), c(5, 6)),
nf =2

draw_boxplot_wo_outlier
Plot boxplot without outliers

Description

Plot boxplot without outliers, useful when outliers have a wide range and the median is squeezed at
the bottom of the plot. The p-value significance level is the same as those in draw_boxplot_by_factor,
but not displayed.

Usage
draw_boxplot_wo_outlier(
stat_df,
xc = "Feature”,
yc = "Intensity”,
fc = xc,
comp = list(c(1, 2)),
stats = "wilcox.test”,
Xlab = xc,
Ylab = yc,
nf =1
)
Arguments
stat_df a dataframe with column names c(xc, yc)
xc a string denoting column name for grouping
yc a string denoting column name for numeric data to be plotted
fc a string denoting column name for sub-grouping
comp a list of vectors denoting pair-wise comparisons to be performed between groups
stats the name of pair-wise statistical tests, like t.test or wilcox.test
Xlab a string for x-axis label
Ylab a string for y-axis label
nf a integer normalizing factor for correct count of observations when the data table

has two factors, such as those produced by ‘pivot_longer‘, equals to the number
of factors

draw_combo_plot 9

Value

a ggplot object

Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Intensity = c(rnorm(20, 2), rnorm(30, 3))
)

p <- draw_boxplot_wo_outlier(stat_df,
xc = "Feature”, yc = "Intensity”,
Ylab = "Signal Intensity”

draw_combo_plot Make combo plot for statistics plots

Description

Place violin plot, boxplot without outliers, mean+se barplot and quantile plot on the same page

Usage

draw_combo_plot(
stat_df,
xc = "Feature”,
yc = "Intensity”,
comp = list(c(1, 2)),

Xlab = xc,
Ylab = yc,
stats = "wilcox.test”,
fc = xc,
Ylim = NULL,
title = ",
nf =1
)
Arguments
stat_df a dataframe with column names c(xc, yc)
Xc a string denoting column name for grouping
yc a string denoting column name for numeric data to be plotted
comp a list of vectors denoting pair-wise comparisons to be performed between groups

Xlab a string for x-axis label

10 draw_locus_profile

Ylab a string for y-axis label
stats the name of pair-wise statistical tests, like t.test or wilcox.test
fc a string denoting column name for sub-grouping based on an additional factor
Ylim a numeric vector of two elements, defining custom limits of y-axis
title a string for plot title
nf a integer normalizing factor for correct count of observations when the data table
has two factors, such as those produced by pivot_longer, equals to the number
of factors
Value
a ggplot object
Author(s)
Shuye Pu
Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(200, 300)),
Intensity = c(rnorm(200, 2, 5), rnorm(300, 3, 5)),
Height = c(rnorm(200, 5, 5), rnorm(300, 1, 5))
)
stat_df_long <- tidyr::pivot_longer(stat_df,
cols = c(Intensity, Height),
names_to = "type"”, values_to = "value”

)

print(draw_combo_plot(stat_df_long,

xc = "Feature”, yc = "value", fc = "type",

Ylab = "value"”, comp = list(c(1, 2), c(3, 4), c(1, 3), c(2, 4)), nf =2
))

draw_locus_profile Plot signal profile around genomic loci

Description

Plot lines with standard error as the error band

draw_locus_profile

Usage

11

draw_locus_profile(

plot_df,

xc = "Position”,
yc = "Intensity”,
cn = "Query”,

sn = NULL,

Xlab = "Center”,
Ylab = "Signal Intensity”,
shade = FALSE,

hl = c(o, 0)

Arguments

pl
Xc
yc
cn

sn

X1
Y1l
sh

hl

Value

ot_df

ab
ab

ade

a ggplot object

Note

non

a dataframe with column names c(xc, yc, cn, "lower", "upper")

a string denoting column name for values on x-axis

a string denoting column name for numeric data to be plotted

a string denoting column name for sample grouping, like ’Query’ or "Reference’

a string denoting column name for the subject of sample grouping, if ’cn’ is
’Query’, then ’sn’ will be ’Reference’

a string for x-axis label
a string for y-axis label

logical indicating whether to place a shaded rectangle around the loci bounded
by hl

a vector of two integers defining upstream and downstream boundaries of the
rectangle

used by plot_locus, plot_locus_with_random

Author(s)

Shuye Pu

Examples

1i

brary(dplyr)

Reference <- rep(rep(c("Ref1"”, "Ref2"), each = 100), 2)
Query <- rep(c("Queryl1”, "Query2"), each = 200)
Position <- rep(seq(-50, 49), 4)

Intensity <- rlnorm(400)

12

se <- runif(400)
df <- data.frame(Intensity, se, Position, Query, Reference) %>%
mutate(lower = Intensity - se, upper = Intensity + se) %>%

draw_matrix_heatmap

mutate(Group = paste(Query, Reference, sep = ":"))
p <- draw_locus_profile(df, cn = "Group”, shade = TRUE, hl = c(-10, 20))
p
draw_matrix_heatmap Display matrix as a heatmap
Description
Make a complex heatmap with column annotations
Usage
draw_matrix_heatmap(
fullMatrix,
dataName = "geneData",
labels_col = NULL,
levels_col = NULL,
ranking = "Sum”,
ranges = NULL,
verbose = FALSE
)
Arguments
fullMatrix a numeric matrix
dataName the nature of the numeric data
labels_col a named vector for column annotation
levels_col factor levels for names of labels_col, specifying the order of labels_col
ranking method for ranking the rows of the input matrix, options are c("Sum", "Max",
"Hierarchical", "None")
ranges a numeric vector with three elements, defining custom range for color ramp,
default=NULL, i.e. the range is defined automatically based on the c(minimun,
median, maximum) of fullMatrix
verbose logical, whether to output the input matrix for inspection
Value

a grob object

draw_mean_se_barplot 13

Author(s)
Shuye Pu
Examples
fullMatrix <- matrix(rnorm(10000), ncol = 100)
for (i in seq_len(80)) {
fullMatrix[i, 16:75] <- runif(60) + i
3
labels_col <- as.character(seq_len(100))
levels_col <- c("start”, "center”, "end")
names(labels_col) <- rep(levels_col, c(15, 60, 25))
draw_matrix_heatmap(fullMatrix, dataName = "test"”, labels_col, levels_col,
ranges = c(-2, 0, 20))

draw_mean_se_barplot Plot barplot for mean with standard error bars

Description

Plot barplot for mean with standard error bars, no p-value significance levels are displayed, but

ANOVA

Usage

draw_me
stat_
XC =
yc =
fc =
comp
Xlab
Ylab
Ylim
nf =

Arguments
stat_df
XC

yC
fc

comp

p-value is provided as tag and TukeyHSD test are displayed as caption.

an_se_barplot(
df,

"Feature”,
"Intensity”,

Xc,

list(c(1, 2)),
= Xxc,

= yc,

= NULL,

1

a dataframe with column names c(xc, yc)

a string denoting column name for grouping

a string denoting column name for numeric data to be plotted

a string denoting column name for sub-grouping based on an additional factor

a list of vectors denoting pair-wise comparisons to be performed between groups

14 draw_quantile_plot

Xlab a string for x-axis label
Ylab a string for y-axis label
Ylim a numeric vector of two elements, defining custom limits of y-axis
nf a integer normalizing factor for correct count of observations when the data table
has two factors, such as those produced by pivot_longer, equals to the number
of factors
Value
a ggplot object
Note

used by plot_locus, plot_locus_with_random

Author(s)
Shuye Pu

Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Intensity = c(rnorm(20, 2), rnorm(30, 3))
)
p <- draw_mean_se_barplot(stat_df,
xc = "Feature”, yc = "Intensity”,
Ylab = "Intensity”

draw_quantile_plot Plot quantile over value

Description

Plot quantiles as y-axis, and values as x-axis. Same as ‘geom_ecdf*, but allows sub-grouping by a
second factor.

Usage

draw_quantile_plot(
stat_df,
xc = "Feature”,
yc = "Intensity”,
Ylab = yc,
fc = xc

draw_rank_plot 15

Arguments

stat_df a dataframe with column names c(xc, yc)

XC a string denoting column name for grouping

yc a string denoting column name for numeric data to be plotted

Ylab a string for y-axis label

fc a string denoting column name for sub-grouping based on an additional factor
Value

a ggplot object
Note

used by plot_locus, plot_locus_with_random

Author(s)
Shuye Pu

Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Intensity = c(rnorm(20, 2, 5), rnorm(30, 3, 5)),
Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5))

)

stat_df_long <- tidyr::pivot_longer(stat_df,
cols = c(Intensity, Height), names_to = "type”,
values_to = "value”

)

print(draw_quantile_plot(stat_df, xc = "Feature”, yc = "Intensity"))
print(draw_quantile_plot(stat_df, xc = "Feature”, yc = "Height"))
print(draw_quantile_plot(stat_df_long,

xc = "Feature”, yc = "value”,

fc = "type"”, Ylab = "value”
)

draw_rank_plot Plot fraction of cumulative sum over rank

Description

Plot cumulative sum over rank as line plot, both cumulative sum and rank are scaled between 0 and
1. This is the same as the fingerprint plot of the deepTools.

16 draw_region_landmark

Usage

draw_rank_plot(stat_df, xc = "Feature”, yc = "Intensity”, Ylab = yc)

Arguments

stat_df a dataframe with column names c(xc, yc)
Xc a string denoting column name for grouping
yc a string denoting column name for numeric data to be plotted

Ylab a string for y-axis label

Value

a ggplot object

Author(s)
Shuye Pu

Examples

stat_df <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Intensity = c(rlnorm(20, 5, 5), rlnorm(30, 1, 5))
)
stat_df1 <- data.frame(
Feature = rep(c("A", "B"), c(20, 30)),
Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5))
)

print(draw_rank_plot(stat_df,
xc = "Feature”, yc = "Intensity”,
Ylab = "Intensity”

))

print(draw_rank_plot(stat_df1,
xc = "Feature”, yc = "Height",
Ylab = "Height”

))

draw_region_landmark Plot genomic region landmark indicator

Description

Plot a gene centered polygon for demarcating gene and its upstream and downstream regions

Usage

draw_region_landmark(featureNames, vx, xmax)

draw_region_name

Arguments

featureNames
VX

Xmax

Value

a ggplot object

Note

a string vector giving names of sub-regions
a vector on integers denoting the x coordinates of start of each sub-region

an integer denoting the left most boundary

used by plot_5parts_metagene, plot_region

Author(s)
Shuye Pu

Examples

fn <- c("5'UTR", "CDS", "3'UTR")
mark <- c(1, 5, 20)

xmax <- 25

p <- draw_region_landmark(featureNames = fn, vx = mark, xmax = xmax)

17

draw_region_name

Plot genomic region names

Description

Plot sub-region labels under the landmark

Usage

draw_region_name(featureNames, scaled_bins, xmax)

Arguments

featureNames
scaled_bins

Xmax

Value

a ggplot object

a string vector giving names of sub-regions
a vector of integers denoting the lengths of each sub-region

an integer denoting the right most boundary

18 draw_region_profile

Note

used by plot_5parts_metagene, plot_region

Author(s)
Shuye Pu

Examples

fn <= c("5'UTR", "CDS", "3'UTR")
bins <- c(5, 15, 5)
xmax <- 25

p <- draw_region_name(featureNames = fn, scaled_bins = bins, xmax = xmax)

draw_region_profile Plot signal profile in genomic regions

Description

Plot lines with standard error as the error band

Usage
draw_region_profile(
plot_df,
xc = "Position”,
yc = "Intensity”,
cn = "Query”,
sn = NULL,
Ylab = "Signal Intensity”,
VX
)
Arguments
plot_df a dataframe with column names c(xc, yc, cn, "lower", "upper")
XC a string denoting column name for values on x-axis
yc a string denoting column name for numeric data to be plotted
cn column name in plot_df for query samples grouping
sn column name in plot_df for subject name to be shown in the plot title
Ylab a string for Y-axis label

VX a vector on integers denoting the x coordinates of start of each sub-region

draw_stacked_plot

Value

a ggplot object

Note

used by plot_5parts_metagene, plot_region

Author(s)
Shuye Pu

Examples

library(dplyr)

Reference <- rep(rep(c("Ref1”, "Ref2"), each = 100), 2)

Query <- rep(c("Queryl1”, "Query2"), each = 200)

Position <- rep(seq_len(100), 4)

Intensity <- rlnorm(400)

se <- runif(400)

df <- data.frame(Intensity, se, Position, Query, Reference) %>%
mutate(lower = Intensity - se, upper = Intensity + se) %>%
mutate(Group = paste(Query, Reference, sep = ":"))

vx <- c(1, 23, 70)

19

p <- draw_region_profile(df, cn = "Group”, vx = vx)
p
draw_stacked_plot draw stacked plot
Description

Plot profile on top of heatmap, and align feature labels.

Usage

draw_stacked_plot(plot_list, heatmap_list)

Arguments

plot_list a list of profile plots

heatmap_list a list of heatmaps

Value

a null value

20

Note

draw_stacked_profile

used by plot_locus, plot_5parts_metagene, plot_region

Author(s)
Shuye Pu

draw_stacked_profile Plot signal profile around start, center, and end of genomic regions

Description

Plot lines with standard error as the error band, also plots number of regions having non-zero signals

Usage
draw_stacked_profile(
plot_df,
xc = "Position”,
yc = "Intensity”,
cn = "Query”,
ext = c(0, 0, 0, 9),
hl = c(0, 0, 0, 0),
atitle = "title",
insert = 0,
Ylab = "Signal Intensity”,
shade = FALSE,
stack = TRUE
)
Arguments
plot_df a dataframe with column names c(xc, yc, cn, "Interval", "lower", "upper")
XC a string denoting column name for values on x-axis
yc a string denoting column name for numeric data to be plotted
cn a string denoting column name for grouping
ext a vector of 4 integers denoting upstream and downstream extension around start
and end, the range of extensions must be within the range of ‘xc* of the ‘plot_df*
hl a vector of 4 integers defining upstream and downstream boundaries of the rect-
angle for start and end
atitle a string for the title of the plot
insert a integer denoting the width of the center region
Ylab a string for y-axis label
shade logical, indicating whether to place a shaded rectangle around the point of inter-
est
stack logical, indicating whether to plot the number of valid (non-zero) data points in

each bin

draw_stacked_profile

Value

a ggplot object

Note

used by plot_start_end, plot_start_end_with_random

Author(s)

Shuye Pu

Examples

library(dplyr)

Reference <- rep(rep(c("Ref1"”, "Ref2"), each = 100), 2)

Query <- rep(c("Queryl1”, "Query2"), each = 200)

Position <- rep(seq(-50, 49), 4)

Intensity <- rlnorm(400)

se <- runif(400)

start_df <- data.frame(Intensity, se, Position, Query, Reference) %>%
mutate(lower = Intensity - se, upper = Intensity + se) %>%
mutate(Group = paste(Query, Reference, sep = ":")) %>%
mutate(Location = rep(”Start”, 400)) %>%
mutate(Interval = sample.int (1000, 400))

Intensity <- rlnorm(400, meanlog = 1.5)

se <- runif(400)

center_df <- data.frame(Intensity, se, Position, Query, Reference) %>%
mutate(lower = Intensity - se, upper = Intensity + se) %>%
mutate(Group = paste(Query, Reference, sep = ":")) %>%
mutate(Location = rep(”"Center”, 400)) %>%
mutate(Interval = sample.int(600, 400))

Intensity <- rlnorm(400, meanlog = 2)

se <- runif(400)

end_df <- data.frame(Intensity, se, Position, Query, Reference) %>%
mutate(lower = Intensity - se, upper = Intensity + se) %>%
mutate(Group = paste(Query, Reference, sep = ":")) %>%
mutate(Location = rep("End", 400)) %>%
mutate(Interval = sample.int (2000, 400))

df <- rbind(start_df, center_df, end_df)

p <- draw_stacked_profile(df, cn = "Group”, shade = TRUE,
ext = c¢(-50, 50, -50, 50),
hl = c(-20, 20, -25, 25), insert = 100)

21

22 effective_size

effective_size Normalize sample library size to effective size

Description
This is a helper function for handle_input. edgeR::calcNormFactors function is used to estimate
normalizing factors, which is used to multiply library sizes.

Usage

effective_size(outlist, outRle, genome = "hgl19", nc = 2, verbose = FALSE)

Arguments
outlist a list of list objects with four elements, ’query’ is a GRanges object, ’size’ is the
library size, ’type’ is the input file type, *weight’ is the name of the metadata
column
outRle logical, indicating whether the ’query’ element of the output should be an RleList
object or a GRanges object
genome a string denoting the genome name and version
nc integer, number of cores for parallel processing
verbose logical, whether to output additional information
Value

a list of list objects with four elements ("query’, ’size’, ’type’, *weight’), with the ’size’ element
modified.

Author(s)
Shuye Pu

Examples

queryFiles <- system.file("extdata”, "chip_treat_chr19.bam",
package = "GenomicPlot”

)

names(queryFiles) <- "query”

inputFiles <- system.file("extdata”, "chip_input_chri19.bam",
package = "GenomicPlot”

)

names(inputFiles) <- "input”

chipImportParams <- setImportParams(
offset = @, fix_width = 150, fix_point = "start”, norm = TRUE,
useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19"

extdata 23

)

out_list <- handle_input(
inputFiles = c(queryFiles, inputFiles),
importParams = chipImportParams, verbose = TRUE, nc = 2

)

out <- effective_size(out_list, outRle = TRUE)

extdata Toy data for examples and testing of the ‘GenomicPlot* package

Description

The data files in the extdata directory contain data for next generation sequencing read alignments,
MACS2 peaks and gene annotation, which are used to test the package and generate plots in the
package vignettes. To meet the package file size limit, all data are restricted to chr19:58000-507000
of the human genome version hg19. Details for each file are as follows.

Details
» "gencode.v19.annotation_chr19.gtf" is an excerpt of a gene annotation file by limiting to
chr19:58000-507000 of the human genome.

* "gencode.v19.annotation_chr19.gtf.granges.rds" is a GRanges object produced by importing
the above gtf file using RCAS::importGtf.

e "chip_treat_chr19.bam(.bai)" and "chip_input_chr19.bam(.bai)" are paired-end read alignment
data from ChIPseq experiments.

* "treat_chr19.bam(.bai)" and "input_chr19.bam(.bai)" are single-end read alignment data from
iCLIP experiments.

* "test_wig_chrl19_+(-).wig", "test_wig_chr19_+(-).bw" are iCLIP alignment data in WIG and
BIGWIG format, respectively; '+’ and -’ represent forward and reverse strand, respectively.

* "test_clip_peak_chr19.bed" contains strand-specific iCLIP peak in BED format.

* "test_chip_peak_chr19.bed" and "test_chip_peak_chr19.narrowPeak" contain ChIPseq peaks
generated with MACS2, in summit peak and narrow peak format, respectively. "test_chr19.bedGraph"
contains the same data in bedGraph format.

* "test_filel.txt", "test_file2.txt", "test_file3.txt" and "test_file4.txt" are tab-delimited text files,
each contains various human gene names in different columns.

Value

Various files used as inputs to run examples and tests

Author(s)
Shuye Pu

24 extract_longest_tx

Source

The original gene annotation (gtf) file is downloaded from https://www.gencodegenes.org’/human/.
Except for the gtf file, all other files are derived from experimental data produced in-house at the
Greenblatt Lab, University of Toronto, Canada.

extract_longest_tx Extract the longest transcript for each protein-coding genes

Description

Gene level computations require selecting one transcript per gene to avoid bias by genes with multi-
ple isoforms. In ideal case, the most abundant transcript (principal or canonical isoform) should be
chosen. However, the most abundant isoform may vary depending on tissue type or physiological
condition, the longest transcript is usually the principal isoform, and alternatively spliced isoforms
are not. This method get the longest transcript for each gene. The longest transcript is defined as the
isoform that has the longest transcript length. In case of tie, the one with longer CDS is selected. If
the lengths of CDS tie again, the transcript with smaller id is selected arbitrarily.

Usage

extract_longest_tx(txdb)

Arguments

txdb a TxDb object defined in the GenomicFeatures package

Value
a dataframe of transcript information with the following columns: "tx_id tx_name gene_id nexon
tx_len cds_len utr5_len utr3_len"

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf”,
package = "GenomicPlot”

)

txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
longestTx <- extract_longest_tx(txdb)

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz
https://thedonnellycentre.utoronto.ca/faculty/jack-greenblatt

filter_by_nonoverlaps_stranded 25

filter_by_nonoverlaps_stranded
Filter GRanges by nonoverlaps in a stranded way

Description

This function reports all query GRanges that do not overlaps GRanges in subject. Strand informa-
tion is used to define overlap.

Usage
filter_by_nonoverlaps_stranded(
query,
subject,
maxgap = -1L,

minoverlap = 0L,
ignore.order = TRUE

)
Arguments
query a GRanges object
subject a GRanges object
maxgap an integer denoting the distance that define overlap
minoverlap The minimum amount of overlap between intervals as a single integer greater

than 0. If you modify this argument, maxgap must be held fixed.

ignore.order logical, indicating whether the order of query and subject can be switched, de-
fault = TRUE. This parameter is used to avoid the situation that the size of
overlaps is bigger than the size of subject, which will produce an error when
plotting Venn diagrams.

Value

a GRanges object

Author(s)
Shuye Pu

Examples

query <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", "4", men o momy

)

subject <- GRanges("chr19”,

26 filter_by_overlaps_nonstranded

IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),
strand = c("+", "=, mon o mgmy

)

res <- filter_by_nonoverlaps_stranded(query, subject)
res

filter_by_overlaps_nonstranded
Filter GRanges by overlaps in a nonstranded way

Description

This function reports all query GRanges that have overlaps in subject GRanges. Strand information
is not required.

Usage
filter_by_overlaps_nonstranded(
query,
subject,
maxgap = -1L,

minoverlap = 0oL,
ignore.order = TRUE

)
Arguments
query a GRanges object
subject a GRanges object
maxgap an integer denoting the distance that define overlap
minoverlap The minimum amount of overlap between intervals as a single integer greater

than 0. If you modify this argument, maxgap must be held fixed.

ignore.order logical, indicating whether the order of query and subject can be switched, de-
fault = TRUE. This parameter is used to avoid the situation that the size of
overlaps is bigger than the size of subject, which will produce an error when
plotting Venn diagrams.

Value

a GRanges object

Author(s)
Shuye Pu

filter_by_overlaps_stranded 27

Examples

query <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", 4", mon o momy

)

subject <- GRanges("chr19”,
IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),
Stl"and = C(”+II’ n_n n_n II+II)

’ ’

)

res <- filter_by_overlaps_nonstranded(query, subject, ignore.order = TRUE)
res

filter_by_overlaps_stranded
Filter GRanges by overlaps in a stranded way

Description

This function reports all query GRanges that have overlaps in subject GRanges. Strand information
is used to define overlap.

Usage
filter_by_overlaps_stranded(
query,
subject,
maxgap = -1L,

minoverlap = 0L,
ignore.order = TRUE

)
Arguments
query a GRanges object
subject a GRanges object
maxgap an integer denoting the distance that define overlap
minoverlap The minimum amount of overlap between intervals as a single integer greater

than 0. If you modify this argument, maxgap must be held fixed.

ignore.order logical, indicating whether the order of query and subject can be switched, de-
fault = TRUE. Overlaps in query and subject often have different sizes. This
parameter will make the function use whichever is smaller to avoid errors when
making Venn diagrams.

28 find_mate

Value

a GRanges object

Author(s)
Shuye Pu

Examples

query <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", "+n, monmomy

)

subject <- GRanges("chr19”,
IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),

Strand - C(”"’”, n_u’ n_n’ n+n)
)
res <- filter_by_overlaps_stranded(query, subject)
res
resf <- filter_by_overlaps_stranded(query, subject, ignore.order = FALSE)
resf
find_mate Find wig/bw file for the negative strand
Description

Find the file name of the negative strand, if a .wig/bw file for positive strand if provided, by looking
for file names with one character difference. If no negative strand file is found, assume the input
.wig/bw file is non-stranded

Usage

find_mate(inputFile, verbose = FALSE)

Arguments
inputFile path to a .wig/bw file, presumably for positive strand
verbose logical, whether to output additional information
Value

path to the negative .wig/bw file or NULL

gene2tx 29

Author(s)
Shuye Pu

Examples

queryFile <- system.file("extdata”, "test_wig_chr19_+.wig",
package = "GenomicPlot”

)

names(queryFile) <- "test_wig"”

out <- GenomicPlot:::find_mate(inputFile = queryFile, verbose = TRUE)

gene2tx Translate gene names to transcript ids using a GTF file for a subset of
genes

Description

Given a list of gene names in a file or in a character vector, turn them into a vector of transcript ids.

Usage

gene2tx(gtfFile, genelList, geneCol = 1)

Arguments
gtfFile path to a GTF file
genelList path to a tab-delimited text file with one gene name on each line, or a character
vector of gene names (eg. RPRD1B)
geneCol the position of the column that containing gene names in the case that geneList
is a file
Value

a vector of transcript ids (eg. ENST00000577222.1)

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf”,
package = "GenomicPlot”

)
genes <- c("RPRDIA”, "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2")

tx <- gene2tx(gtfFile = gtfFile, genelList = genes)

30 GenomicPlot

GenomicPlot GenomicPlot-package

Description

An R package for efficient and flexible visualization of genome-wide NGS coverage profiles

Details

The goal of ‘GenomicPlot‘ is to provide an efficient visualization tool for next generation sequenc-
ing (NGS) data with rich functionality and flexibility. ‘GenomicPlot‘ enables plotting of NGS data
in various formats (bam, bed, wig and bigwig); both coverage and enrichment over input can be
computed and displayed with respect to genomic features (such as UTR, CDS, enhancer), and user
defined genomic loci or regions. Statistical tests on signal intensity within user defined regions of
interest can be performed and presented as box plots or pie charts. Parallel processing is enabled to
speed up computation on multi-core platforms. Main functions are as follows:

* plot_5parts_metagene generates genomic (with introns) or metagenomic (without introns)
plots around gene body and its upstream and downstream regions, the gene body can be further
segmented into 5’UTR, CDS and 3’UTR.

* plot_start_end plots genomic profiles around the start and end of genomic features (like
exons or introns), or user defined genomic regions. A center region with user defined width
can be plotted simultaneously.

* plot_locus plots distance between sample peaks and genomic features, or distance from one
set of peaks to another set of peaks.

* plot_region plots signal profiles within and around genomic features, or user defined ge-
nomic regions.

* plot_peak_annotation plots peak annotation statistics (distribution in different type of genes,
and in different parts of genes).

* plot_overlap_bed plots peak overlaps as Venn diagrams.

* Random features can be generated and plotted to serve as contrast to real features in plot_locus_with_random
and plot_start_end_with_random.

 All profile line plots have error bands.

» Statistical analysis results on user defined regions of interest are plotted along with the profile
plots in plot_region, plot_locus and plot_locus_with_random.
Author(s)

Shuye Pu
_PACKAGE

get_genomic_feature_coordinates 31

get_genomic_feature_coordinates
Extract genomic features from TxDb object

Description

Extract genomic coordinates and make bed or bed 12 files from a TxDb object for a variety of
annotated genomic features. The output of this function is a list. The first element of the list is a
GRanges object that provide the start and end information of the feature. The second element is a
GRangesList providing information for sub-components. The third element is the name of a bed
file.

Usage

get_genomic_feature_coordinates(
txdb,
featureName,
featureSource = NULL,
export = FALSE,
longest = FALSE,
protein_coding = FALSE

)
Arguments
txdb a TxDb object defined in the GenomicFeatures package
featureName one of the genomic feature in c("utr3", "utr5", "cds", "intron", "exon", "tran-

non

script", "gene")

featureSource the name of the gtf/gff3 file or the online database from which txdb is derived,
used as name of output file

export logical, indicating if the bed file should be produced

longest logical, indicating whether the output should be limited to the longest transcript
of each gene

protein_coding logical, indicating whether to limit to protein_coding genes

Details

For "utr3", "utr5", "cds" and "transcript", the GRanges object denotes the start and end of the feature
in one transcript, and the range is named by the transcript id and may span introns; the GrangesList
object is a list of exons comprising each feature and indexed on transcript id. The bed file is in
bed12 format. For "exon" and "intron", the GRanges object denotes unnamed ranges of individual
exon and intron, and the GrangesList object is a list of exons or introns belonging to one transcript
and indexed on transcript id. The bed file is in bed6 format. For "gene", both GRanges object and
GRangesList object have the same ranges and names. The bed file is in bed6 format.

32 get_targeted_genes

Value

a list of three objects, the first is a GRanges object, the second is a GRangesList object, the last is
the output file name if export is TRUE.

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf"”,
package = "GenomicPlot”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
output <- get_genomic_feature_coordinates(txdb,

featureName = "cds"”, featureSource = "gencode”,
export = FALSE, longest = TRUE, protein_coding = TRUE

)
get_targeted_genes Get the number of peaks overlapping each feature of all protein-coding
genes
Description

Annotate each peak with genomic features based on overlap, and produce summary statistics for
distribution of peaks in features of protein-coding genes. If a peak overlap multiple features, a
feature is assigned to the peak in the following order of precedence: "5’UTR", "3’UTR", "CDS",
"Intron", "Promoter", "TTS".

Usage

get_targeted_genes(peak, features, stranded = TRUE)

Arguments

peak a GRanges object defining query ranges

features a GRangesList object representing genomic features

stranded logical, indicating whether the overlap should be strand-specific
Value

a list object

get_txdb_features 33

Note

used in plot_peak_annotation

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)

txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
f <- get_txdb_features(txdb, dsTSS = 100, fiveP = @, threeP = 1000)

p <- RCAS::importBed(system.file("extdata”, "test_chip_peak_chr19.bed",
package = "GenomicPlot”

))
ann <- get_targeted_genes(peak = p, features = f, stranded = FALSE)

get_txdb_features Get genomic coordinates of features of protein-coding genes

Description

Get genomic coordinates of promoter, 5’UTR, CDS, 3°’'UTR, TTS and intron for the longest tran-
script of protein-coding genes. The range of promoter is defined by fiveP and dsTSS upstream and
downstream TSS, respectively, the TTS ranges from the 3’ end of the gene to threeP downstream,
or the start of a downstream gene, whichever is closer.

Usage
get_txdb_features(txdb, fiveP = -1000, dsTSS = 300, threeP = 1000, nc = 2)

Arguments
txdb a TxDb object defined in the GenomicFeatures package
fiveP extension upstream of the 5’ boundary of genes
dsTSS range of promoter extending downstream of TSS
threeP extension downstream of the 3’ boundary of genes
nc number of cores for parallel processing

Value

a GRangesList object

34 gt5_genomic

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot"”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")

f <- get_txdb_features(txdb, dsTSS = 100, fiveP = -100, threeP = 100)

gf5_genomic Toy data for examples and testing of the ‘GenomicPlot* package

Description

Genomic coordinates of 72 transcripts in hg19 for genomic features promoter, 5’UTR, CDS, 3’UTR,
TTS, as well as user inputs for processing these features. See prepare_5parts_genomic_features
for details.

Value
A named list with the following elements:

windowRs a list of 5 GrangesList objects for the 5 genomic features
nbins a positive integer

scaled_bins a vector of 5 integers

fiveP a negative integer

threeP a positive integer

meta logical

longest logical

Author(s)
Shuye Pu

Source

The data is produced by running the following code:

txdb <- AnnotationDbi::loadDb(system.file("extdata", "txdb.sql", package = "GenomicPlot"))
gf5_genomic <- GenomicPlot::prepare_Sparts_genomic_features(txdb, meta = FALSE, nbins = 100,
fiveP = -2000, threeP = 1000, longest = TRUE)

gf5_meta 35

gf5_meta Toy data for examples and testing of the ‘GenomicPlot* package

Description

Metagenomic coordinates of 72 transcripts in hgl19 for genomic features promoter, 5’UTR, CDS,
3’UTR, TTS, as well as user inputs for processing these features. See prepare_5parts_genomic_features
for details.

Value

A named list with the following elements:

windowRs a list of 5 GrangesList objects for the 5 genomic features
nbins a positive integer

scaled_bins a vector of 5 integers

fiveP a negative integer

threeP a positive integer

meta logical

longest logical

Author(s)
Shuye Pu

Source

The data is produced by running the following code:

txdb <- AnnotationDbi::loadDb(system.file("extdata", "txdb.sql", package = "GenomicPlot"))
gf5_meta <- GenomicPlot::prepare_5parts_genomic_features(txdb, meta = TRUE, nbins = 100,
fiveP = -2000, threeP = 1000, longest = TRUE)

gr2df Convert GRanges to dataframe

Description
Convert a GRanges object with meta data columns to a dataframe, with the first 6 columns corre-
sponding those of BED6 format, and the meta data as additional columns

Usage
gr2df(gr)

36 handle_bam

Arguments

gr a GRanges object

Value

a dataframe

Author(s)
Shuye Pu
Examples
gr2 <- GenomicRanges: :GRanges(c("chr1”, "chr1"),
IRanges: :IRanges(c(7, 13), width = 3),
strand = C(”+H’ II_II)
)

GenomicRanges: :mcols(gr2) <- data.frame(
score = ¢(0.3, 0.9),
cat = c(TRUE, FALSE)

)
df2 <- gr2df(gr2)

handle_bam Handle files in bam format

Description

This is a function for read NGS reads data in bam format, store the input data in a list of GRanges
objects or RleList objects. For paired-end reads, only take the second read in a pair, assuming which
is the sense read for strand-specific RNAseq.

Usage
handle_bam(inputFile, importParams = NULL, verbose = FALSE)

Arguments
inputFile a string denoting path to the input file
importParams a list of parameters, refer to handle_input for details
verbose logical, whether to output additional information
Details

The reads are filtered using mapq score >= 10 by default, only mapped reads are counted towards
library size.

handle bed 37

Value

a list object with four elements, 'query’ is a list GRanges objects or RleList objects, ’size’ is the
library size, ’type’ is the input file type, weight’ is the name of the metadata column to be used as
weight for coverage calculation

Author(s)
Shuye Pu

Examples

queryFiles <- system.file("”extdata”, "treat_chr19.bam”,
package = "GenomicPlot”

)

names(queryFiles) <- "query”

bamimportParams <- setImportParams(

offset = -1, fix_width = @, fix_point = "start”, norm = TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl19"
)

out <- handle_bam(
inputFile = queryFiles, importParams = bamimportParams, verbose = TRUE

)

handle_bed Handle files in bedlnarrowPeaklbroadPeak format

Description

This is a function for read peaks data in bed format, store the input data in a list of GRanges objects
or RleList objects.

Usage
handle_bed(inputFile, importParams = NULL, verbose = FALSE)

Arguments
inputFile a string denoting path to the input file
importParams a list of parameters, refer to handle_input for details
verbose logical, whether to output additional information
Value

a list object with four elements, ’query’ is a list GRanges objects or RleList objects, ’size’ is the
library size, ’type’ is the input file type, *weight’ is the name of the metadata column to be used as
weight for coverage calculation

38 handle_bedGraph

Author(s)
Shuye Pu
Examples
queryFiles <- system.file("extdata”, "test_chip_peak_chr19.narrowPeak”,
package = "GenomicPlot”
)

names(queryFiles) <- "narrowPeak”

bedimportParams <- setImportParams(
offset = @, fix_width = 100, fix_point = "center"”, norm = FALSE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

out <- handle_bed(queryFiles, bedimportParams, verbose = TRUE)
lapply(out$query, sum)

handle_bedGraph Handle files in bedGraph format

Description

This is a function for read peaks data in bedGraph format, store the input data in a list of GRanges
objects or RleList objects.

Usage

handle_bedGraph(inputFile, importParams = NULL, verbose = FALSE)

Arguments

inputFile a string denoting path to the input file
importParams a list of parameters, refer to handle_input for details

verbose logical, whether to output additional information

Value

a list object with four elements, 'query’ is a list GRanges objects or RleList objects, ’size’ is the
library size, type’ is the input file type, *weight’ is the name of the metadata column to be used as
weight for coverage calculation

Author(s)
Shuye Pu

handle_bw 39

Examples

queryFiles <- system.file("extdata”, "test_chr19.bedGraph”,
package = "GenomicPlot”

)

names(queryFiles) <- "chipPeak"”

importParams <- setImportParams(
offset = @, fix_width = @, fix_point = "start”, norm = FALSE,
useScore = TRUE, outRle = FALSE, useSizeFactor = FALSE, genome = "hgl19",
val = 4, skip =1

)
out <- handle_bedGraph(queryFiles, importParams, verbose = TRUE)
out$query
handle_bw Handle files in bwlbigwiglbigWig|BigWig|BWIBIGWIG format
Description

This is a function for read NGS coverage data in bigwig format, store the input data in a list of
GRanges objects or RleList objects. The input bw file can be stranded or non-stranded. Library size
is calculate as the sum of all coverage.

Usage

handle_bw(inputFile, importParams, verbose = FALSE)

Arguments
inputFile a string denoting path to the input file
importParams a list of parameters, refer to handle_input for details
verbose logical, whether to output additional information
Details

For stranded files, forward and reverse strands are stored in separate files, with + or ’p’ in the
forward strand file name and ’-” or 'm’ in the reverse strand file name.
Value

a list object with four elements, 'query’ is a list GRanges objects or RleList objects, ’size’ is the
estimated library size, 'type’ is the input file type, weight’ is the name of the metadata column to be
used as weight for coverage calculation

Author(s)
Shuye Pu

40 handle_input

Examples

queryFiles <- system.file("extdata”, "test_wig_chri19_+.bw",
package = "GenomicPlot”

)

names(queryFiles) <- "test_bw"

wigimportParams <- setImportParams(

offset = @, fix_width = @, fix_point = "start”, norm = FALSE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

out <- handle_bw(queryFiles, wigimportParams, verbose = TRUE)

handle_input Handle import of NGS data with various formats

Description

This is a wrapper function for read NGS data in different file formats, store the input data in a list of
GRanges objects or RleList objects. File names end in bedlbamlbwlbigwiglbigWigIBigWigIBWIBIGWIG
are recognized, and a named list of files with mixed formats are allowed.

Usage

handle_input(inputFiles, importParams = NULL, verbose = FALSE, nc = 2)

Arguments

inputFiles a vector of strings denoting file names

importParams a list with the 9 elements: list(offset, fix_width, fix_point, useScore, outRle,
norm, genome, useSizeFactor). Details are described in the documentation of
setImportParams function

verbose logical, whether to output additional information
nc integer, number of cores for parallel processing
Details

when “useScore’ is TRUE, the score column of the bed file will be used in the metadata column
’score’ of the GRanges object, or the *Values’ field of the RleList object. Otherwise the value 1 will
be used instead. When the intended use of the input bed is a reference feature, both useScore’ and
’outRle’ should be set to FALSE.

Value

a list object with four elements, ’query’ is a list GRanges objects or RleList objects, ’size’ is the
library size, ’type’ is the input file type, *weight’ is the name of the metadata column to be used as
weight for coverage calculation

handle_wig

Author(s)
Shuye Pu

Examples

queryFilesl <- system.file("extdata”, "treat_chr19.bam”,
package = "GenomicPlot”

)

names(queryFiles1) <- "query"”

inputFiles1 <- system.file("extdata”, "input_chr19.bam",
package = "GenomicPlot"”

)

names(inputFiles1) <- "input”

bamimportParams <- setImportParams(

offset = -1, fix_width = @, fix_point = "start"”, norm = TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

out_list <- handle_input(
inputFiles = c(queryFilesl1, inputFiles1),
importParams = bamimportParams, verbose = TRUE, nc = 2

)

queryFiles2 <- system.file("extdata”, "test_wig_chr19_+.wig",
package = "GenomicPlot"”

)

names(queryFiles2) <- "test_wig"

wigimportParams <- setImportParams(

offset = @, fix_width = @, fix_point = "start”, norm = FALSE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

out <- handle_input(queryFiles2, wigimportParams, verbose = TRUE)

queryFiles3 <- system.file("extdata”, "test_wig_chr19_+.bw",
package = "GenomicPlot”

)

names(queryFiles3) <- "test_bw"

out <- handle_input(c(queryFiles1, queryFiles2, queryFiles3),
wigimportParams,
verbose = TRUE

41

handle_wig Handle files in wig format

42 handle_wig

Description

This is a function for read NGS coverage data in wig format, store the input data in a list of GRanges
objects or RleList objects. The input wig file can be stranded or non-stranded. Library size is
calculate as the sum of all coverage.

Usage

handle_wig(inputFile, importParams, verbose = FALSE)

Arguments

inputFile a string denoting path to the input file
importParams a list of parameters, refer to handle_input for details

verbose logical, whether to output additional information

Details

For stranded files, forward and reverse strands are stored in separate files, with ’+ or ’p’ in the
forward strand file name and ’-’ or 'm’ in the reverse strand file name.

Value

a list object with four elements, 'query’ is a list GRanges objects or RleList objects, ’size’ is the
library size, type’ is the input file type, *weight’ is the name of the metadata column to be used as
weight for coverage calculation

Author(s)

Shuye Pu

Examples

queryFiles <- system.file("extdata”, "test_wig_chr19_+.wig",
package = "GenomicPlot”

)

names(queryFiles) <- "test_wig"
wigimportParams <- setImportParams(

offset = @, fix_width = @, fix_point = "start”, norm = FALSE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"

out <- handle_wig(queryFiles, wigimportParams, verbose = TRUE)

impute_hm 43

impute_hm Impute missing values

Description

Replace 0 and missing values in a sparse non-negative matrix with half of minimum of non-zero
values, to avoid use of arbitrary pseudo numbers, and to allow computing ratios and log transfor-
mation of matrices. When a matrix is sparse (assuming it has many all-zero rows and few all-zero
columns), the half of minimum of non-zero values is a number that is small enough so that is will
not distort the data too much (comparing to a pseudo count = 1), but large enough to avoid huge
ratios when used as a denominator.

Usage

impute_hm(fullmatrix, verbose = FALSE)

Arguments

fullmatrix a numeric matrix

verbose logical, whether to output additional information
Value

a numeric matrix

Author(s)

Shuye Pu

Examples

fullMatrix <- matrix(rlnorm(100), ncol = 10)
for (i in 5:6) {

fullMatrix[i - 1, 4:7] <- 0@
3

imp <- GenomicPlot:::impute_hm(fullMatrix, verbose = TRUE)

44

inspect_matrix

inspect_matrix Inspect a numeric matrix

Description

Check the matrix for NA, NaN, INF, -INF and 0 values

Usage

inspect_matrix(fullmatrix, verbose = FALSE)

Arguments

fullmatrix a numeric matrix

verbose logical, indicating whether to print out the stats in the console
Value

a numerical matrix summarizing the unusual values

Author(s)

Shuye Pu

Examples

fullMatrix <- matrix(rnorm(100), ncol = 10)
for (i in 5:6) {
fullMatrix[i, 4:7] <- NaN

fullMatrix[i + 1, 4:7] <- NA
fullMatrix[i + 2, 4:7] <~ -Inf
fullMatrix[i - 1, 4:7] <- 0@
fullMatrix[i - 2, 1:3] <- Inf

}

GenomicPlot: ::inspect_matrix(fullMatrix, verbose = TRUE)

make_subTxDb_from_GTF 45

make_subTxDb_from_GTF Make TxDb object from a GTF file for a subset of genes

Description

Make a partial TxDb object given a GTF file and a list of gene names in a file or in a character
vector.

Usage

make_subTxDb_from_GTF(gtfFile, genome = "hg19"”, genelList, geneCol = 1)

Arguments
gtfFile path to a GTF file
genome version of genome, like "hg19"
genelList path to a tab-delimited text file with one gene name on each line, or a character
vector of gene names
geneCol the position of the column that containing gene names in the case that geneList
is a file
Value
a TxDb object
Author(s)
Shuye Pu
Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)
genes <- c("RPRD1A", "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2")

txdb <- make_subTxDb_from_GTF(gtfFile = gtfFile, geneList = genes)

46

overlap_pair

overlap_pair

Plot two-sets Venn diagram

Description

This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges,
as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain
order may produce an error.

Usage

overlap_pair(apair, overlap_fun, title = NULL)

Arguments
apair
overlap_fun

title

Value

a list of two vectors

the name of the function that defines overlap, depending on the type of object in
the vectors. For GRanges, use filter_by_overlaps_strandedor filter_by_nonoverlaps_stranded
for gene names, use intersect.

main title of the figure

a VennDiagram object

Author(s)
Shuye Pu

Examples

test_list <- list(A =c(1, 2, 3, 4, 5), B =c(4, 5, 7))
overlap_pair(test_list, intersect, title = "test")

GRanges overlap

query <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", "+", "=", "=")

)

subject <- GRanges("chr19”,
IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),
Strand - C(”"’”, n_u’ n_n’ n+n)

)

overlap_pair(

list(query = query, subject = subject),
filter_by_overlaps_stranded

overlap_quad 47

overlap_quad Plot four-sets Venn diagram

Description

This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges,
as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain
order may produce an error.

Usage

overlap_quad(aquad, overlap_fun, title = NULL)

Arguments
aquad a list of four vectors
overlap_fun the name of the function that defines overlap, depending on the type of object in
the vectors. For GRanges, use filter_by_overlaps_strandedor filter_by_nonoverlaps_stranded
for gene names, use intersect.
title main title of the figure
Value

a VennDiagram object

Author(s)
Shuye Pu

Examples

test_list <- list(A = c(1, 2, 3, 4, 5), B=c(4, 5, 7), C=c(1, 3), D=26)
overlap_quad(test_list, intersect)

GRanges overlap

queryl <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", "+", "=", "=")

)

query2 <- GRanges("chr19”,
IRanges(rep(c(1, 15), 2), width = c(1, 20, 40, 50)),
Strand - C(”"’”, n+u, n_n’ n_n)

48

overlap_triple

subject1l <- GRanges("chr19”,
IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),
strand = c("+", "=t Mmooy

)

’ ’

subject2 <- GRanges("chri19”,
IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)),
strand = c("+", "= mon g

)

overlap_quad(list(

subject1

subjectl, subject2 = subject2, queryl = queryl,

query2 = query?2
), filter_by_overlaps_stranded)

overlap_triple

Plot three-sets Venn diagram

Description

This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges,
as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain
order may produce an error.

Usage

overlap_triple(atriple, overlap_fun, title = NULL)

Arguments

atriple

overlap_fun

title

Value

a list of three vectors

the name of the function that defines overlap, depending on the type of object in
the vectors. For GRanges, use filter_by_overlaps_strandedor filter_by_nonoverlaps_stranded
for gene names, use intersect.

main title of the figure

a VennDiagram object

Author(s)

Shuye Pu

parallel_countOverlaps 49

Examples

test_list <- list(A =c(1, 2, 3, 4, 5), B=c(4, 5, 7), C=c(1, 3))
overlap_triple(test_list, intersect, title = "test")

GRanges overlap

query <- GRanges("chr19”,
IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)),
strand = c("+", "+", "=", "=")

)

subject1 <- GRanges("chr19”,
IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)),
strand = C(II+H’ II_II’ n_n II+II)

’

)

subject2 <- GRanges("chr19”,
IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)),

n_n n_n nyn

strand = c("+", , ,

overlap_triple(
list(subjectl = subjectl, subject2 = subject2, query = query),
filter_by_overlaps_stranded

parallel_countOverlaps
Parallel execution of countOverlaps

Description

Function for parallel computation of countOverlaps function in the GenomicRanges package

Usage

parallel_countOverlaps(grange_list, tileBins, nc = 2, switch = FALSE)

Arguments

grange_list a list of GRanges objects.

tileBins a GRanges object of tiled genome

nc integer, number of cores for parallel processing

switch logical, switch the order of query and feature
Value

a list of numeric vectors

50 parallel_scoreMatrixBin

Author(s)

Shuye Pu

Examples

bedQueryFiles <- c(

system.file("extdata”, "test_chip_peak_chr19.narrowPeak”,
package = "GenomicPlot”

),

system.file("extdata”, "test_chip_peak_chr19.bed”,
package = "GenomicPlot"),

system.file("extdata”, "test_clip_peak_chr19.bed",
package = "GenomicPlot")

)

names(bedQueryFiles) <- c("NarrowPeak"”, "SummitPeak”, "iCLIPPeak")

bedimportParams <- setImportParams(
offset = 0, fix_width = 100, fix_point = "center"”, norm = FALSE,
useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19"
)

out_list <- handle_input(
inputFiles = bedQueryFiles,
importParams = bedimportParams, verbose = TRUE, nc = 2

)

chromInfo <- circlize::read.chromInfo(species = "hg19")$df
seqi <- Seginfo(segnames = chromInfo$chr, seqlengths = chromInfo$end,
isCircular = rep(FALSE, nrow(chromInfo)),
genome = "hg19")
grange_list <- lapply(out_list, function(x) x$query)
tilewidth <- 100000
tileBins <- tileGenome(seqi,
tilewidth = tilewidth,
cut.last.tile.in.chrom = TRUE
)

score_list1 <- parallel_countOverlaps(grange_list, tileBins, nc = 2)
dplyr::glimpse(score_list1)

parallel_scoreMatrixBin
Parallel execution of scoreMatrixBin on a huge target windows object
split into chunks

parallel_scoreMatrixBin 51

Description

Function for parallel computation of scoreMatrixBin. The *windows’ parameter of the scoreMa-
trixBin method is split into nc chunks, and scoreMatrixBin is called on each chunk simultaneously
to speed up the computation.

Usage

parallel_scoreMatrixBin(

queryRegions,
windowRs,
bin_num,
bin_op,
weight_col,
stranded,

nc = 2

Arguments

queryRegions

windowRs
bin_num

bin_op

weight_col

stranded

nc

Value

a numeric matrix

Author(s)
Shuye Pu

Examples

a RleList object or Granges object providing input for the ’target’ parameter of
the scoreMatrixBin method.

a single GRangesL.ist object.

number of bins the windows should be divided into

operation on the signals in a bin, a string in c¢("mean", "max", "min", "median",
"sum") is accepted.

if the queryRegions is a GRanges object, a numeric column in meta data part
can be used as weights.

logical, indicating if the strand of the windows should be considered to deter-
mine upstream and downstream.

an integer denoting the number of cores requested, 2 is the default number that
is allowed by CRAN but 5 gives best trade-off between speed and space.

queryFiles <- system.file("extdata”, "chip_treat_chr19.bam",
package = "GenomicPlot”

)

names(queryFiles) <- "query"

chipimportParams <- setImportParams(

52 plot_Sparts_metagene

offset = @, fix_width = 150, fix_point = "start”, norm = TRUE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

queryRegion <- handle_input(queryFiles, chipimportParams,
verbose = TRUE

YLL[1]11$query

windowFiles <- system.file("extdata”, "test_chip_peak_chri19.narrowPeak”,
package = "GenomicPlot”

)

names(windowFiles) <- "narrowPeak"

importParams <- setImportParams(

offset = @, fix_width = @, fix_point = "start”, norm = FALSE,

useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hgl9"
)

windowRegion <- handle_bed(windowFiles, importParams, verbose = TRUE)$query

out <- parallel_scoreMatrixBin(
queryRegions = queryRegion,
windowRs = windowRegion,
bin_num = 50,

bin_op = "mean”,
weight_col = "score”,
stranded = TRUE,
nc = 2

)

#

plot_5parts_metagene Plot promoter, 5’UTR, CDS, 3’UTR and TTS

Description

Plot reads or peak Coverage/base/gene of samples given in the query files around genes. The up-
stream and downstream windows flanking genes can be given separately, metagene plots are gener-
ated with 5’UTR, CDS and 3’UTR segments. The length of each segments are prorated according
to the median length of each segments. If Input files are provided, ratio over Input is computed and
displayed as well.

Usage

plot_5parts_metagene(
queryFiles,
gFeatures_list,
inputFiles = NULL,
importParams = NULL,

plot_Sparts_metagene 53

verbose = FALSE,
transform = NA,
smooth = FALSE,
scale = FALSE,
stranded = TRUE,
outPrefix = NULL,
heatmap = FALSE,
heatRange = NULL,

rmOutlier = 0,
Ylab = "Coverage/base/gene”,
hw = c(10, 10),
nc = 2
)
Arguments
queryFiles a vector of sample file names. The file should be in .bam, .bed, .wig or .bw

format, mixture of formats is allowed
gFeatures_list alistof genomic features as output of the function prepare_5parts_genomic_features

inputFiles a vector of input sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed

importParams a list of parameters for handle_input

verbose logical, indicating whether to output additional information (data used for plot-
ting or statistical test results)

transform logical, whether to log2 transform the matrix

smooth logical, indicating whether the line should smoothed with a spline smoothing
algorithm

scale logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared

stranded logical, indicating whether the strand of the feature should be considered

outPrefix a string specifying output file prefix for plots (outPrefix.pdf)

heatmap logical, indicating whether a heatmap of the score matrix should be generated

heatRange a numeric vector with three elements, defining custom range for color ramp,

default=NULL, i.e. the range is defined automatically based on the c(minimun,
median, maximum) of a data matrix

rmOutlier a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution.

Ylab a string for y-axis label
hw a vector of two elements specifying the height and width of the output figures
nc integer, number of cores for parallel processing

Value

a dataframe containing the data used for plotting

54 plot_bam_correlation

Author(s)
Shuye Pu

Examples

data(gf5_meta)
queryfiles <- system.file("extdata”, "treat_chr19.bam”,

package = "GenomicPlot")
names(queryfiles) <- "clip_bam"
inputfiles <- system.file("extdata”, "input_chr19.bam”,
package = "GenomicPlot")

names(inputfiles) <- "clip_input”

bamimportParams <- setImportParams(
offset = -1, fix_width = @, fix_point = "start”, norm = TRUE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"

plot_5parts_metagene(
queryFiles = queryfiles,
gFeatures_list = list("metagene” = gf5_meta),
inputFiles = inputfiles,
scale = FALSE,
verbose = FALSE,
transform = NA,
smooth = TRUE,
stranded = TRUE,
outPrefix = NULL,
importParams = bamimportParams,
heatmap = TRUE,
rmOutlier = 0,
nc = 2

plot_bam_correlation Plot correlation of bam files

Description

Plot correlation in reads coverage distributions along the genome for bam files. Generates a finger-
print plot, a heatmap of correlation coefficients with hierarchical clustering, a pairwise correlation
plot and a PCA plot.

Usage

plot_bam_correlation(
bamFiles,
binSize = 1e+06,

plot_bam_correlation

outPrefix

55

NULL,

importParams = NULL,
grouping = NULL,

verbose =

nc = 2

Arguments

bamFiles
binSize
outPrefix
importParams
grouping
verbose

hw

nc

Value

FALSE,
hw = c(8, 8),

a named vector of strings denoting file names

an integer denoting the tile width for tiling the genome, default 1000000

a string denoting output file name in pdf format

a list of parameters for handle_input

a named vector for bamFiles group assignment

logical, indicating whether to output additional information

a vector of two elements specifying the height and width of the output figures

integer, number of cores for parallel processing

a dataframe of read counts per bin per sample

Examples

bamQueryFiles <- c(
system.file("extdata"”, "chip_input_chr19.bam”, package = "GenomicPlot"),
system.file("extdata”, "chip_treat_chr19.bam”, package = "GenomicPlot")

)

grouping <- c(1, 2)
names (bamQueryFiles) <- names(grouping) <- c("chip_input”, "chip_treat"”)

bamImportParams <- setImportParams(
offset = @, fix_width = 150, fix_point = "start”, norm = FALSE,

useScore =

)

FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hgl9"

plot_bam_correlation(

bamFiles =
importParams

bamQueryFiles, binSize = 100000, outPrefix = NULL,
= bamImportParams, nc = 2, verbose = FALSE

56

plot_locus

plot_locus Plot signal around custom genomic loci

Description

Plot reads or peak Coverage/base/gene of samples given in the query files around reference locus
(start, end or center of a genomic region) defined in the centerFiles. The upstream and downstream
windows flanking loci can be given separately, a smaller window can be defined to allow statistical
comparisons between samples for the same reference, or between references for a given sample. If
Input files are provided, ratio over Input is computed and displayed as well.

Usage

plot_locus(
queryFiles,
centerFiles,
txdb = NULL,
ext = c(-100, 100),
hl = c(0, 0),
shade = TRUE,
smooth = FALSE,
importParams = NULL,
verbose = FALSE,
binSize = 10,
refPoint = "center”,
Xlab = "Center”,

Ylab = "Coverage/base/gene”,

inputFiles = NULL,
stranded = TRUE,
heatmap = TRUE,
scale = FALSE,
outPrefix = NULL,
rmOutlier = 0,
transform = NA,

statsMethod = "wilcox.test",
heatRange = NULL,
hw = c(8, 8),
nc = 2

)

Arguments
queryFiles a vector of sample file names. The file should be in .bam, .bed, .wig or .bw
format, mixture of formats is allowed
centerFiles a named vector of reference file names or genomic features in c("utr3", "utr5",

"cds", "intron",

only

non

non

exon",

transcript

non
>

gene"). The file should be in .bed format

plot_locus

txdb

ext

hl

shade

smooth

importParams

verbose

binSize
refPoint
Xlab
Ylab

inputFiles

stranded
heatmap

scale
outPrefix
rmOutlier
transform
statsMethod

heatRange

hw

nc

Value

57

a TxDb object defined in the GenomicFeatures package. Default NULL, needed
only when genomic features are used as centerFiles.

a vector of two integers defining upstream and downstream boundaries of the
plot window, flanking the reference locus

a vector of two integers defining upstream and downstream boundaries of the
highlight window, flanking the reference locus

logical indicating whether to place a shaded rectangle around the point of inter-
est

logical, indicating whether the line should smoothed with a spline smoothing
algorithm

a list of parameters for handle_input

logical, indicating whether to output additional information (data used for plot-
ting or statistical test results)

an integer defines bin size for intensity calculation
a string in c("start", "center", "end")

a string denotes the label on x-axis

a string for y-axis label

a vector of input sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed

logical, indicating whether the strand of the feature should be considered
logical, indicating whether a heatmap of the score matrix should be generated

logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared

a string specifying output file prefix for plots (outPrefix.pdf)

a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution.

a string in c("log", "log2", "log10"), default = NA indicating no transformation
of data matrix

a string in c("wilcox.test", "t.test"), for pair-wise group comparisons

a numeric vector with three elements, defining custom range for color ramp,
default=NULL, i.e. the range is defined automatically based on the c(minimun,
median, maximum) of a data matrix

a vector of two elements specifying the height and width of the output figures

integer, number of cores for parallel processing

a list of two dataframes containing the data used for plotting and for statistical testing

Author(s)

Shuye Pu

58

Examples

centerfiles <- c¢(
system.file("extdata”, "test_clip_peak_chr19.bed"”, package
system.file("extdata"”, "test_chip_peak_chr19.bed”, package

names(centerfiles) <- c("iCLIPPeak"”, "SummitPeak")
queryfiles <- c(
system.file("extdata”, "chip_treat_chr19.bam”, package

names(queryfiles) <- c("chip_bam")
inputfiles <- c(

system.file("extdata”, "chip_input_chr19.bam”, package
names(inputfiles) <- c("chip_input")

chipimportParams <- setImportParams(
offset = @, fix_width = 150, fix_point = "start”, norm

plot_locus_with_random

"GenomicPlot"),
"GenomicPlot"))

"GenomicPlot"))

"GenomicPlot"))

TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl19"

plot_locus(
queryFiles = queryfiles,
centerFiles = centerfiles,
ext = c(-500, 500),
hl = c(-100, 100),
shade = TRUE,
smooth = TRUE,
importParams = chipimportParams,
binSize = 10,
refPoint = "center”,
Xlab = "Center”,
inputFiles = inputfiles,
stranded = TRUE,
scale = FALSE,
outPrefix = NULL,
verbose = FALSE,
transform = NA,
rmOutlier = 0,
Ylab = "Coverage/base/peak”,

statsMethod = "wilcox.test"”,
heatmap = TRUE,
nc = 2

plot_locus_with_random

Plot signal around custom genomic loci and random loci for compar-

ison

plot_locus_with_random 59

Description

Plot reads or peak Coverage/base/gene of samples given in the query files around reference locus
defined in the centerFiles. The upstream and downstream windows flanking loci can be given
separately, a smaller window can be defined to allow statistical comparisons between reference and
random loci. The loci are further divided into sub-groups that are overlapping with c("5’UTR",
"CDS", "3’UTR"), "unrestricted" means all loci regardless of overlapping.

Usage

plot_locus_with_random(
queryFiles,
centerFiles,
txdb,
ext = c(-200, 200),
hl = c(-100, 100),
shade = FALSE,
importParams = NULL,
verbose = FALSE,
smooth = FALSE,
transform = NA,
binSize = 10,
refPoint = "center”,
Xlab = "Center”,
Ylab = "Coverage/base/gene”,
inputFiles = NULL,
stranded = TRUE,
scale = FALSE,
outPrefix = NULL,
rmOutlier = 0,
n_random = 1,

hw = c(8, 8),
detailed = FALSE,
statsMethod = "wilcox.test",
nc = 2
)
Arguments
queryFiles a vector of sample file names. The file should be in .bam, .bed, .wig or .bw
format, mixture of formats is allowed
centerFiles a vector of reference file names. The file should be .bed format only
txdb a TxDb object defined in the ‘GenomicFeatures‘ package
ext a vector of two integers defining upstream and downstream boundaries of the
plot window, flanking the reference locus
hl a vector of two integers defining upstream and downstream boundaries of the

highlight window, flanking the reference locus

60

shade

importParams

verbose

smooth

transform

binSize
refPoint
Xlab
Ylab

inputFiles

stranded

scale

outPrefix

rmOutlier

n_random

hw

detailed
statsMethod

nc

Value

plot_locus_with_random

logical indicating whether to place a shaded rectangle around the point of inter-
est

a list of parameters for handle_input

logical, indicating whether to output additional information (data used for plot-
ting or statistical test results)

logical, indicating whether the line should smoothed with a spline smoothing
algorithm

a string in ¢("log", "log2", "log10"), default = NA i ndicating no transformation
of data matrix

an integer defines bin size for intensity calculation

a string in c("start", "center", "end")

a string denotes the label on x-axis

a string for y-axis label

a vector of input sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed

logical, indicating whether the strand of the feature should be considered

logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared

a string specifying output file prefix for plots (outPrefix.pdf)

a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution

an integer denotes the number of randomization should be performed

a vector of two elements specifying the height and width of the output figures
logical, indicating whether to plot each parts of gene.

a string in c("wilcox.test", "t.test"), for pair-wise groups comparisons

integer, number of cores for parallel processing

a dataframe containing the data used for plotting

Author(s)

Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)

txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
bedQueryFiles <- c(

plot_named_list

system.file("extdata”, "test_chip_peak_chr19.narrowPeak"”,

package = "GenomicPlot"),
system.file("extdata”, "test_chip_peak_chr19.bed”, package = "GenomicPlot"),
system.file("extdata”, "test_clip_peak_chr19.bed"”, package = "GenomicPlot")
)

names(bedQueryFiles) <- c(”NarrowPeak”, "SummitPeak”, "iCLIPPeak™)

bamQueryFiles <- system.file("”extdata”, "treat_chr19.bam”,
package = "GenomicPlot")

names (bamQueryFiles) <- "clip_bam”

bamInputFiles <- system.file("extdata”, "input_chr19.bam",
package = "GenomicPlot")

names(bamInputFiles) <- "clip_input”

bamImportParams <- setImportParams(
offset = -1, fix_width = @, fix_point = "start”, norm = TRUE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)
plot_locus_with_random(
queryFiles = bamQueryFiles,
centerFiles = bedQueryFiles[3],
txdb = txdb,
ext = c(-200, 200),
hl = c(-50, 50),
shade = TRUE,
importParams = bamImportParams,
verbose = FALSE,
smooth = TRUE,
transform = NA,
binSize = 10,
refPoint = "center”,
Xlab = "Center",
Ylab = "Coverage/base/peak”,
inputFiles = bamInputFiles,
stranded = TRUE,
scale = FALSE,
outPrefix = NULL,
rmOutlier = 0,
n_random = 1,

hw = c(8, 8),

detailed = FALSE,
statsMethod = "wilcox.test”,
nc = 2)

61

plot_named_list plot a named list as a figure

62 plot_named_list

Description

This is a helper function for displaying function arguments for a plotting function. If the runtime
value of the argument is a small object, its values is displayed, otherwise, only the name of the value
of the argument is displayed.

Usage

plot_named_list(params)

Arguments

params a list produced by as.list(environment()), with names being the arguments and
values being the runtime values when the function is called.

Value

a ggplot object

Author(s)
Shuye Pu

Examples

data(gf5_genomic)

gtfFile <- system.file("extdata”, "gencode.vl19.annotation_chri19.gtf”,
package = "GenomicPlot”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")

queryfiles <- system.file("extdata”, "treat_chr19.bam”,
package = "GenomicPlot”

)

names(queryfiles) <- "query”

inputfiles <- system.file("extdata”, "input_chr19.bam”,
package = "GenomicPlot”

)

names(inputfiles) <- "input”

bamimportParams <- setImportParams(

offset = -1, fix_width = @, fix_point = "start"”, norm = TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

alist <- list(
"txdb" = txdb, "treat"” = queryfiles, "control” = inputfiles,
"feature" = gf5_genomic, "param” = bamimportParams

plot_overlap_bed

63

GenomicPlot:::plot_named_list(alist)

plot_overlap_bed

Plot Venn diagrams depicting overlap of genomic regions

Description

This function takes a list of up to 4 bed file names, and produce a Venn diagram

Usage

plot_overlap_bed(

bedList,
outPrefix

NULL,

importParams = NULL,
pairOnly = TRUE,
stranded = TRUE,

hw = c(8, 8),
FALSE

verbose =

Arguments

bedList
outPrefix
importParams
pairOnly

stranded

hw

verbose

Value

a ggplot object

Author(s)

Shuye Pu

a named list of bed files, with list length =2, 3 or 4

a string for plot file name

a list of parameters for handle_input

logical, indicating whether only pair-wise overlap is desirable

logical, indicating whether the feature is stranded. For nonstranded feature, only
"*" is accepted as strand

a vector of two elements specifying the height and width of the output figures

logical, indicating whether to output additional information

64 plot_overlap_genes

Examples
queryFiles <- c(
system.file("extdata"”, "test_chip_peak_chr19.narrowPeak”,
package = "GenomicPlot”
) ’
system.file("extdata"”, "test_chip_peak_chr19.bed”,
package = "GenomicPlot”
))
system.file("extdata"”, "test_clip_peak_chr19.bed”,
package = "GenomicPlot”
)
)
names(queryFiles) <- c(”narrowPeak”, "summitPeak”, "clipPeak")

bedimportParams <- setImportParams(
offset = @, fix_width = 100, fix_point = "center"”, norm = FALSE,
useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19"
)

plot_overlap_bed(
bedList = queryFiles, importParams = bedimportParams, pairOnly = FALSE,
stranded = FALSE, outPrefix = NULL

plot_overlap_genes Plot Venn diagrams depicting overlap of gene lists

Description

This function takes a list of (at most 4) tab-delimited file names, and produce a Venn diagram

Usage
plot_overlap_genes(
filelist,
columnList,
pairOnly = TRUE,
hw = c(8, 8),
outPrefix = NULL
)
Arguments
filelList a named list of tab-delimited files
columnList a vector of integers denoting the columns that have gene names in the list of files
pairOnly logical, indicating whether only pair-wise overlap is desirable
hw a vector of two elements specifying the height and width of the output figures

outPrefix a string for plot file name

plot_peak_annotation 65

Value

a list of vectors of gene names

Author(s)
Shuye Pu
Examples
testfilel <- system.file("extdata”, "test_filel.txt",
package = "GenomicPlot”
)
testfile2 <- system.file("extdata”, "test_file2.txt",
package = "GenomicPlot”
)
testfile3 <- system.file("extdata”, "test_file3.txt",
package = "GenomicPlot”
)
testfile4 <- system.file("extdata”, "test_filed.txt",
package = "GenomicPlot”
)

testfiles <- c(testfilel, testfile2, testfile3, testfile4)
names(testfiles) <- c("test1”, "test2", "test3"”, "test4")

plot_overlap_genes(testfiles, c(3, 2, 1, 1), pairOnly = FALSE)

plot_peak_annotation Amnnotate peaks with genomic features and genes

Description

Produce a table of transcripts targeted by peaks, and generate plots for target gene types, and peak
distribution in genomic features

Usage

plot_peak_annotation(
peakFile,
gtfFile,
importParams = NULL,
fiveP = -1000,
dsTSS = 300,
threeP = 1000,
simple = FALSE,
outPrefix = NULL,
verbose = FALSE,
hw = c(8, 8),
nc = 2

66

plot_peak_annotation

Arguments
peakFile a string denoting the peak file name, only .bed format is allowed
gtfFile path to a gene annotation gtf file with gene_biotype field
importParams a list of parameters for handle_input
fiveP extension out of the 5’ boundary of genes for defining promoter: fiveP TSS +
dsTSS
dsTSS extension downstream of TSS for defining promoter: fiveP TSS + dsTSS
threeP extension out of the 3’ boundary of genes for defining termination region: -0
TTS + threeP
simple logical, indicating whether 5’UTR, CDS and 3’ UTR are annotated in the gtfFile
outPrefix a string denoting output file name in pdf format
verbose logical, to indicate whether to write the annotation results to a file
hw a vector of two elements specifying the height and width of the output figures
nc number of cores for parallel processing
Value

a list of three dataframes, ’annotation’ is the annotation of peaks into gene types, ’stat’ is the sum-
mary stats for pie chart, simplified’ is the summary stats excluding intron

Author(s)

Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)

centerFile <- system.file("extdata”, "test_chip_peak_chr19.bed”,
package = "GenomicPlot"”

)

names(centerFile) <- c("summitPeak")

bedimportParams <- setImportParams(
offset = @, fix_width = 100, fix_point = "center"”, norm = FALSE,
useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19"
)

plot_peak_annotation(
peakFile = centerFile, gtfFile = gtfFile, importParams = bedimportParams,
fiveP = -2000, dsTSS = 200, threeP = 2000, simple = FALSE

plot_region

67

plot_region

Plot signal inside as well as around custom genomic regions

Description

Plot reads or peak Coverage/base/gene of samples given in the query files inside regions defined in
the centerFiles. The upstream and downstream flanking windows can be given separately. If Input
files are provided, ratio over Input is computed and displayed as well.

Usage

plot_region(

queryFiles,

centerFiles,
txdb = NULL,

regionName = "region”,

inputFiles
nbins = 100,
importParams

verbose =

NULL,

= NULL,

FALSE,
scale = FALSE,
heatmap = FALSE,
fiveP = -1000,
threeP = 1000,
smooth = FALSE,
stranded = TRUE,

transform = NA,
outPrefix = NULL,
rmOutlier = 0,
heatRange = NULL,
Ylab = "Coverage/base/gene”,
statsMethod = "wilcox.test”,
hw = c(8, 8),
nc =2
)
Arguments
queryFiles a named vector of sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed
centerFiles a named vector of reference file names or genomic features in c("utr3", "utrS",
"cds", "intron", "exon", "transcript”, "gene"). The file should be in .bed format
only
txdb a TxDb object defined in the GenomicFeatures package. Default NULL, needed
only when genomic features are used as centerFiles.
regionName a string specifying the name of the center region in the plots

68 plot_region
inputFiles a named vector of input sample file names. The file should be in .bam, .bed,
.wig or .bw format, mixture of formats is allowed
nbins an integer defines the total number of bins
importParams a list of parameters for handle_input
verbose logical, indicating whether to output additional information (data used for plot-
ting or statistical test results)
scale logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared
heatmap logical, indicating whether a heatmap of the score matrix should be generated
fiveP an integer, indicating extension out or inside of the 5’ boundary of gene by
negative or positive number
threeP an integer, indicating extension out or inside of the 5’ boundary of gene by
positive or negative number
smooth logical, indicating whether the line should smoothed with a spline smoothing
algorithm
stranded logical, indicating whether the strand of the feature should be considered
transform a string in c("log", "log2", "log10"), default = NA indicating no transformation
of data matrix
outPrefix a string specifying output file prefix for plots (outPrefix.pdf)
rmOutlier a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution
heatRange a numeric vector with three elements, defining custom range for color ramp,
default=NULL, i.e. the range is defined automatically based on the c(minimun,
median, maximum) of a data matrix
Ylab a string for y-axis label
statsMethod a string in c("wilcox.test", "t.test"), for pair-wise group comparisons
hw a vector of two elements specifying the height and width of the output figures
nc integer, number of cores for parallel processing
Value
a dataframe containing the data used for plotting
Author(s)
Shuye Pu
Examples
centerfiles <- system.file("extdata”, "test_chip_peak_chri19.narrowPeak”,
package = "GenomicPlot")

names(centerfiles) <- c("NarrowPeak")

queryfiles <- c(

plot_start_end 69

system.file("extdata"”, "chip_treat_chr19.bam”, package = "GenomicPlot"))
names(queryfiles) <- c("chip_bam")
inputfiles <- c(

system.file("extdata"”, "chip_input_chr19.bam”, package = "GenomicPlot"))
names(inputfiles) <- c("chip_input")

chipimportParams <- setImportParams(
offset = @, fix_width = 150, fix_point = "start”, norm = TRUE,
useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9",
chr = c("chr19"))

plot_region(
queryFiles = queryfiles,
centerFiles = centerfiles,
inputFiles = inputfiles,
nbins = 100,
heatmap = TRUE,
scale = FALSE,
regionName = "narrowPeak"”,
importParams = chipimportParams,
verbose = FALSE,

fiveP = -500,
threeP = 500,
smooth = TRUE,
transform = "log2",

stranded = TRUE,

outPrefix = NULL,

Ylab = "Coverage/base/peak”,
rmOutlier = 0,

nc = 2

plot_start_end Plot signals around the start and the end of genomic features

Description

Plot reads or peak Coverage/base/gene of samples given in the query files around start and end
of custom features. The upstream and downstream windows can be given separately, within the
window, a smaller window can be defined to highlight region of interest. A line plot will be dis-
played for both start and end of feature. If Input files are provided, ratio over Input is computed and
displayed as well.

Usage

plot_start_end(
queryFiles,
inputFiles = NULL,
centerFiles,

70

txdb = NULL,
importParams

binSize =
insert = @

plot_start_end

= NULL,

10,

’

verbose = FALSE,
ext = c(-500, 100, -100, 500),

hl =

c(-50, 50, -50, 50),

stranded = TRUE,
scale = FALSE,
smooth = FALSE,

rmOutlier = 0,
outPrefix = NULL,
transform = NA,
shade = TRUE,
Ylab = "Coverage/base/gene”,
hw = c(8, 8),
nc = 2
)
Arguments
queryFiles a vector of sample file names. The file should be in .bam, .bed, .wig or .bw
format, mixture of formats is allowed
inputFiles a vector of input sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed
centerFiles bed files that define the custom features, or features in c("utr3", "utr5", "cds",
"intron", "exon", "transcript”, "gene"), multiple features are allowed.
txdb a TxDb object defined in the GenomicFeatures package. Default NULL, needed
only when genomic features are used in the place of centerFiles.
importParams a list of parameters for handle_input
binSize an integer defines bin size for intensity calculation
insert an integer specifies the length of the center regions to be included, in addition to
the start and end of the feature
verbose logical, whether to output additional information (including data used for plot-
ting or statistical test results)
ext a vector of four integers defining upstream and downstream boundaries of the
plot window, flanking the start and end of features
hl a vector of four integers defining upstream and downstream boundaries of the
highlight window, flanking the start and end of features
stranded logical, indicating whether the strand of the feature should be considered
scale logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared
smooth logical, indicating whether the line should smoothed with a spline smoothing

algorithm

plot_start_end 71

rmOutlier a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution

outPrefix a string specifying output file prefix for plots (outPrefix.pdf)

transform a string in ¢("log", "log2", "log10"), default = NA, indicating no transformation
of data matrix

shade logical indicating whether to place a shaded rectangle around the point of inter-
est

Ylab a string for y-axis label

hw a vector of two elements specifying the height and width of the output figures

nc integer, number of cores for parallel processing

Value

a list of two objects, the first is a GRanges object, the second is a GRangesList object

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf”,
package = "GenomicPlot”

)

txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
bamQueryFiles <- system.file("”extdata”, "treat_chr19.bam”,
package = "GenomicPlot")
names (bamQueryFiles) <- "clip_bam"
bamInputFiles <- system.file("”extdata”, "input_chr19.bam",
package = "GenomicPlot")
names(bamInputFiles) <- "clip_input”

bamimportParams <- setImportParams(

offset = -1, fix_width = @, fix_point = "start"”, norm = TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl19"
)

plot_start_end(
queryFiles = bamQueryFiles,
inputFiles = bamInputFiles,
txdb = txdb,
centerFiles = "intron",
binSize = 10,
importParams = bamimportParams,
ext = c(-500, 200, -200, 500),
hl = c(-100, 100, -100, 100),
insert = 100,
stranded = TRUE,

72

scale = FALSE,
smooth = TRUE,

transform = "log2",
outPrefix = NULL,
nc = 2

plot_start_end_with_random

plot_start_end_with_random

Plot signals around the start and the end of genomic features and ran-

dom regions

Description

Usage

plot_start_end_with_random(

queryFiles,

inputFiles = NULL,

txdb = NULL,

centerFile,

importParams = NULL,
binSize = 10,

insert = 0,

verbose = FALSE,

ext = c(-500, 200, -200, 500),
hl = c(-50, 50, -50, 50),
randomize = FALSE,
stranded = TRUE,

scale = FALSE,

smooth = FALSE,

rmOutlier = 0,

outPrefix = NULL,
transform = NA,

shade = TRUE,
nc = 2,
hw = c(8, 8),

Ylab = "Coverage/base/gene”

Plot reads or peak Coverage/base/gene of samples given in the query files around start, end and
center of genomic features or custom feature given in a .bed file. The upstream and downstream
windows can be given separately. If Input files are provided, ratio over Input is computed and
displayed as well. A random feature can be generated to serve as a background for contrasting.

plot_start_end_with_random 73

Arguments

queryFiles
inputFiles
txdb
centerFile
importParams
binSize
insert
verbose
ext

hl
randomize
stranded
scale
smooth
rmOutlier
outPrefix
transform

shade

nc
hw
Ylab

Value

a vector of sample file names. The file should be in .bam, .bed, .wig or .bw
format, mixture of formats is allowed

a vector of input sample file names. The file should be in .bam, .bed, .wig or
.bw format, mixture of formats is allowed

a TxDb object defined in the GenomicFeatures package. Default NULL, needed
only when genomic features are used in the place of centerFile.

a bed file that defines the custom feature, or a feature in c("utr3", "utr5", "cds",

"non non non

"intron", "exon", "transcript”, "gene"), multiple features are not allowed.
a list of parameters for handle_input
an integer defines bin size for intensity calculation

an integer specifies the length of the center regions to be included, in addition to
the start and end of the feature

logical, whether to output additional information (data used for plotting or sta-
tistical test results)

a vector of four integers defining upstream and downstream boundaries of the
plot window, flanking the start and end of features

a vector of four integers defining upstream and downstream boundaries of the
highlight window, flanking the start and end of features

logical, indicating if randomized feature should generated and used as a contrast
to the real feature. The ransomized feature is generated by shifting the given
feature with a random offset within the range of ext[1] and ext[4]

logical, indicating whether the strand of the feature s hould be considered

logical, indicating whether the score matrix should be scaled to the range 0:1,
so that samples with different baseline can be compared

logical, indicating whether the line should smoothed with a spline smoothing
algorithm

a numeric value serving as a multiplier of the MAD in Hampel filter for outliers
identification, O indicating not removing outliers. For Gaussian distribution, use
3, adjust based on data distribution

a string specifying output file prefix for plots (outPrefix.pdf)

a string in c("log", "log2", "log10"), default = NA indicating no transformation
of data matrix

logical indicating whether to place a shaded rectangle around the point of inter-
est

integer, number of cores for parallel processing
a vector of two elements specifying the height and width of the output figures

a string for y-axis label

a list of two objects, the first is a GRanges object, the second is a GRangesList object

74

prepare_3parts_genomic_features

Author(s)

Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")

bamQueryFiles <- system.file("”extdata”, "treat_chr19.bam”,
package = "GenomicPlot")

names (bamQueryFiles) <- "clip_bam"

bamInputFiles <- system.file("”extdata”, "input_chr19.bam",
package = "GenomicPlot")

names(bamInputFiles) <- "clip_input”

bamImportParams <- setImportParams(

offset = -1, fix_width = @, fix_point = "start”, norm = TRUE,

useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hgl9"
)

plot_start_end_with_random(
queryFiles = bamQueryFiles,
inputFiles = bamInputFiles,
txdb = txdb,
centerFile = "intron",
binSize = 10,
importParams = bamImportParams,
ext = c(-100, 100, -100, 100),
hl = c(-20, 20, -20, 20),
insert = 100,
stranded = TRUE,
scale = FALSE,
smooth = TRUE,
verbose = TRUE,
transform = "log2",
outPrefix = NULL,
randomize = TRUE,
nc = 2

prepare_3parts_genomic_features
Demarcate genes into promoter, gene body and TTS features

prepare_3parts_genomic_features 75

Description

This is a helper function for "plot_3parts_metagene’, used to speed up plotting of multiple data sets
with the same configuration. Use featureName="transcript’ and meta=FALSE and longest=TRUE

for genes.

Usage

prepare_3parts_genomic_features(

txdb,
featureName =
meta = TRUE,
nbins = 100,
fiveP = -1000
threeP = 1000

"transcript”,

’

’

longest = TRUE,
protein_coding = TRUE,
verbose = FALSE

Arguments
txdb
featureName

meta

nbins
fiveP
threeP

longest

protein_coding

verbose

Value

a TxDb object defined in the GenomicFeatures package

one of the gene feature in c("utr3", "utrS", "cds", "transcript")

logical, indicating whether a metagene (intron excluded) or genomic (intron in-
cluded) plot should be produced

an integer defines the total number of bins
extension out of the 5° boundary of gene
extension out of the 3’ boundary of gene

logical, indicating whether the output should be limited to the longest transcript
of each gene

logical, indicating whether to limit to protein_coding genes

logical, whether to output additional information

non non

a named list with the elements c("windowRs", "nbins", "scaled_bins", "fiveP", "threeP", "meta",

"longest")

Author(s)

Shuye Pu

76 prepare_5parts_genomic_features

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf",
package = "GenomicPlot”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
gf <- prepare_3parts_genomic_features(txdb,

meta = FALSE, nbins = 100, fiveP = -1000, threeP = 1000,
longest = FALSE

prepare_5parts_genomic_features
Demarcate genes into promoter, 5’UTR, CDS, 3’UTR and TTS features

Description

This is a helper function for "plot_Sparts_metagene’, used to speed up plotting of multiple data sets
with the same configuration. Only protein-coding genes are considered.

Usage
prepare_5parts_genomic_features(
txdb,
meta = TRUE,
nbins = 100,
fiveP = -1000,

threeP = 1000,

longest = TRUE,
verbose = FALSE,
subsetTx = NULL

)
Arguments

txdb a TxDb object defined in the GenomicFeatures package

meta logical, indicating whether a metagene (intron excluded) or gene (intron in-
cluded) plot should be produced

nbins an integer defines the total number of bins

fiveP extension out of the 5° boundary of gene

threeP extension out of the 3’ boundary of gene

longest logical, indicating whether the output should be limited to the longest transcript
of each gene

verbose logical, whether to output additional information

subsetTx a vector of transcript names (eg. ENST00000587541.1) for subsetting the genome

process_scoreMatrix

Value

77

a named list with the elements c("windowRs", "nbins", "scaled_bins", "fiveP", "threeP", "meta",

"longest")

Author(s)
Shuye Pu

Examples

gtfFile <- system.file("extdata”, "gencode.v19.annotation_chri19.gtf”,
package = "GenomicPlot”

)
txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hgl19")
gf <- prepare_5parts_genomic_features(txdb,

meta = TRUE, nbins = 100, fiveP = -0, threeP = 0,
longest = TRUE

process_scoreMatrix Preprocess scoreMatrix before plotting

Description

This is a helper function for manipulate the score matrix produced by ScoreMatrix or ScoreMatrin-
Bin functions defined in the ‘genomation® package. To facilitate downstream analysis, imputation
of missing values is performed implicitly when log transformation is required, otherwise missing

values are replaced with 0.

Usage

process_scoreMatrix(
fullmatrix,
scale = FALSE,
rmOutlier = 0,
transform = NA,
verbose = FALSE

)
Arguments
fullmatrix a numeric matrix, with bins in columns and genomic windows in rows
scale logical, indicating whether the score matrix should be scaled to the range 0:1,

so that samples with different baseline can be compared

78

rmOutlier

transform

verbose

Details

process_scoreMatrix

a numeric value to multiple the *'mad’ when detecting outliers, can be adjusted
based on data. Default 0, indicating not to remove outliers.

a string in c("log", "log2", "log10"), default = NA indicating no transformation
of data matrix

logical, indicating whether to output additional information (data used for plot-
ting or statistical test results)

If inputFiles for the plotting function is null, all operations (scale, rmOutlier and transform) can
be applied to the score matrix, in the order of rmOutlier -> transform -> scale. When inputFiles
are provided, only rmOutlier can be applied to the score matrix, as transform and scale will affect
ratio calculation, especially when log2 transformation of the ratio is intended. However, all these
operations can be applied to the resulting ratio matrix. In order to avoid introducing distortion into
the processed data, use caution when applying these operations.

Value

a numeric matrix with the same dimension as the fullmatrix

Author(s)

Shuye Pu

Examples

fullMatrix <- matrix(rlnorm(100), ncol = 10)

for (i in 5:6) {
fullMatrix[i
fullMatrix[i
fullMatrix[i
fullMatrix[i
fullMatrix[i
3

, 4:7] <- NaN

171 <= NA
-Inf
7] <- 0
:3] <- Inf

- &~ &~
~
—_
A
I

fullMatrix[9, 4:7] <- runif(4) + 90

wo <- process_scoreMatrix(fullMatrix, rmOutlier = 3, verbose = TRUE)
tf <- process_scoreMatrix(fullMatrix,
rmOutlier = @, transform = "log2"”, verbose = TRUE

)

scaled <- process_scoreMatrix(fullMatrix, scale = TRUE, verbose = TRUE)

rank_rows 79

rank_rows Rank rows of a matrix based on user input

Description

The rows of a input numeric matrix is ordered based row sum, row maximum, or hierarchical
clustering of the rows with euclidean distance and centroid linkage. This a helper function for
drawing matrix heatmaps.

Usage

rank_rows(fullmatrix, ranking = "Hierarchical”)
Arguments

fullmatrix a numeric matrix

ranking a string in ¢("Sum", "Max", "Hierarchical", "None")
Value

a numeric matrix

Author(s)
Shuye Pu

Examples

fullMatrix <- matrix(rnorm(100), ncol = 10)
for (i in 5:8) {
fullMatrix[i, 4:7] <- runif(4) + i

3
apply(fullMatrix, 1, sum)
ranked <- rank_rows(fullMatrix, ranking = "Sum")

apply(ranked, 1, sum)

ratio_over_input compute ratio over input

Description

compute enrichment of IP samples over Input samples

Usage

ratio_over_input(IP, Input, verbose = FALSE)

80 rm_outlier

Arguments
IP a numerical matrix
Input another numerical matrix with same dimensions as the IP matrix
verbose logical, whether to output additional information

Value

a numerical matrix with same dimensions as the IP matrix

Author(s)
Shuye Pu

Examples

IP <- matrix(rlnorm(10@), ncol = 10)
Input <- matrix(runif(100), ncol = 10)

ratio <- GenomicPlot:::ratio_over_input(IP, Input, verbose = TRUE)

rm_outlier Remove outliers from scoreMatrix

Description

This is a helper function for dealing with excessively high values using Hampel filter. If outliers
are detected, replace the outliers with the up bound = median(rowmax) + multiplier*mad(rowmax).
This function is experimental. For data with normal distribution, the multiplier is usually set at 3.
As the read counts data distribution is highly skewed, it is difficult to define a boundary for outliers,
try the multiplier values between 10 to 1000.

Usage

rm_outlier(fullmatrix, verbose = FALSE, multiplier = 1000)

Arguments
fullmatrix a numeric matrix, with bins in columns and genomic windows in rows
verbose logical, whether to output the outlier information to the console
multiplier a numeric value to multiple the *'mad’, default 1000, maybe adjusted based on
data
Value

a numeric matrix

setImportParams 81

Author(s)
Shuye Pu

Examples

fullmatrix <- matrix(rnorm(100), ncol = 10)

maxm <- max(fullmatrix)

fullmatrix[3, 9] <- maxm + 1000

fullmatrix[8, 1] <- maxm + 500

rm_outlier(fullmatrix, verbose = TRUE, multiplier = 100)
rm_outlier(fullmatrix, verbose = TRUE, multiplier = 1000)

setImportParams set parameters for handle_input function

Description

This function save as a template for setting up import parameters for reading NGS data, it provides
default values for each parameter.

Usage

setImportParams(
offset = 0,
fix_width = 0,
fix_point = "start”,
norm = FALSE,
useScore = FALSE,
outRle = TRUE,
useSizeFactor = FALSE,
saveRds = FALSE,
genome = "hgl19"”,

val = 4,
skip = 0,
chr = NULL
)
Arguments
offset an integer, -1 indicating the bam reads should be shrunk to the -1 position at the
5’end of the reads, which corresponds to the cross link site in iCLIP.
fix_width an integer, for bam file, defines how long the reads should be extended from the
start position, ignored when offset is not 0; for bed files, defines the width of
each interval centering on the ‘fix_point*.
fix_point a string in c("start", "end", "center") denoting the anchor point for extension,

ignored when offset is not 0.

82

norm

useScore

outRle

useSizeFactor

saveRds

genome

val

skip

chr

Value

set_seqinfo

logical, indicating whether the output RleList should be normalized to RPM
using library sizes.

logical, indicating whether the ’score’ column of the bed file should be used in
calculation of coverage.

logical, indicating whether the output should be RleList objects or GRanges
objects.

logical, indicating whether the library size should be adjusted with a size factor,
using the ’calcNormFactors’ function in the edgeR package, only applicable to
ChIPseq data.

logical, indicating whether the results of handle_input should be saved for fast
reloading

a string denoting the genome name and version.

integer, indicating the column that will be used as score/value. default 4 for
bedGraph.

integer, indicating how many rows will be skipped before reading in data, default
0.

a vector of string, denoting chromosomes to be included, like c¢("chrl", "chr2",
"chrX"), default NULL indicating all chromosomes will be included.

a list of nine elements

Author(s)
Shuye Pu

Examples

importParams1 <- setImportParams()
importParams2 <- setImportParams(offset = -1, saveRds = TRUE)

set_seqinfo

Set standard chromosome size of model organisms

Description

This is a helper function for making Seqinfo objects, which is a components of GRanges and TxDb
objects. It also serves to unify seqlevels between GRanges and TxDb objects. Mitochondrial chro-
mosome is not included.

Usage

set_seqinfo(genome = "hgl19")

start_parallel 83

Arguments

genome a string denoting the genome name and version

Value

a Seqinfo object defined in the Seqinfo package.

Author(s)
Shuye Pu

Examples

out <- set_seqginfo(genome = "hg19")

start_parallel Prepare for parallel processing

Description

Creating a virtual cluster for parallel processing

Usage

start_parallel(nc = 2, verbose = FALSE)

Arguments
nc a positive integer greater than 1, denoting number of cores requested
verbose logical, whether to output additional information

Value

an object of class c("SOCKcluster", "cluster"), depending on platform

Author(s)
Shuye Pu

Examples

cl <- start_parallel(2L)
stop_parallel(cl)

84 txdb.sql

stop_parallel Stop parallel processing

Description

Stopping a virtual cluster after parallel processing is finished

Usage

stop_parallel(cl)

Arguments

cl a cluster or SOCKcluster object depending on platform

Value

0 if the cluster is stopped successfully, 1 otherwise.

Author(s)
Shuye Pu

Examples

cl <- start_parallel(2L)
stop_parallel(cl)

txdb.sql Toy data for examples and testing of the ‘GenomicPlot* package

Description

A tiny TxDb object holding genomic feature coordinates of 72 transcripts in hg19.

Value

A SQLIlite database

Author(s)
Shuye Pu

txdb.sql

Source

The data is produced by running the following code:
gtffile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot")
txdb <- custom_TxDb_from_GTF(gtffile, genome = "hg19")

AnnotationDbi::saveDb(txdb, "./inst/extdata/txdb.sql")

85

Index

+ datasets
extdata, 23
gf5_genomic, 34
gf5_meta, 35
txdb.sql, 84

x internal
find_mate, 28
impute_hm, 43
inspect_matrix, 44
plot_named_list, 61
ratio_over_input, 79

aov_TukeyHSD, 4

check_constraints, 5
chip_input_chr19.bam (extdata), 23
chip_treat_chr19.bam (extdata), 23
custom_TxDb_from_GTF, 6

draw_boxplot_by_factor, 6, 8
draw_boxplot_wo_outlier, 8
draw_combo_plot, 9
draw_locus_profile, 10
draw_matrix_heatmap, 12
draw_mean_se_barplot, 13
draw_quantile_plot, 14
draw_rank_plot, 15
draw_region_landmark, 16
draw_region_name, 17
draw_region_profile, 18
draw_stacked_plot, 19
draw_stacked_profile, 20

effective_size, 22
extdata, 23
extract_longest_tx, 24

filter_by_nonoverlaps_stranded, 25,
4648

filter_by_overlaps_nonstranded, 26

filter_by_overlaps_stranded, 27, 4648

86

find_mate, 28

gencode.v19.annotation_chri19.gtf
(extdata), 23

gene2tx, 29

GenomicPlot, 30

get_genomic_feature_coordinates, 31

get_targeted_genes, 32

get_txdb_features, 33

gf5_genomic, 34

gf5_meta, 35

gr2df, 35

handle_bam, 36

handle_bed, 37

handle_bedGraph, 38

handle_bw, 39
handle_input, 36-39, 40, 42, 57, 60, 70
handle_wig, 41

impute_hm, 43
input_chr19.bam (extdata), 23
inspect_matrix, 44

make_subTxDb_from_GTF, 45

overlap_pair, 46
overlap_quad, 47
overlap_triple, 48

parallel_countOverlaps, 49
parallel_scoreMatrixBin, 50
plot_5parts_metagene, 17-20, 30, 52
plot_bam_correlation, 54
plot_locus, 7, 11, 14, 15, 20, 30, 56
plot_locus_with_random, 7, 11, 14, 15, 30,
58
plot_named_list, 61
plot_overlap_bed, 30, 63
plot_overlap_genes, 64
plot_peak_annotation, 30, 65

INDEX

plot_region, 7, 17-20, 30, 67

plot_start_end, 21, 30, 69

plot_start_end_with_random, 21, 30, 72

prepare_3parts_genomic_features, 74

prepare_5parts_genomic_features, 34, 35,
53,76

process_scoreMatrix, 77

rank_rows, 79
ratio_over_input, 79
rm_outlier, 80

set_seqinfo, 82
setImportParams, 40, 81
start_parallel, 83
stop_parallel, 84

test_chip_peak_chr19.bed (extdata), 23
test_chip_peak_chr19.narrowPeak

(extdata), 23
test_chr19.bedGraph (extdata), 23
test_clip_peak_chr19.bed (extdata), 23
test_filel.txt (extdata), 23
test_file2.txt (extdata), 23
test_file3.txt (extdata), 23
test_file4.txt (extdata), 23
test_wig_chr19_+.bw (extdata), 23
test_wig_chr19_+.wig (extdata), 23
treat_chri19.bam (extdata), 23
txdb.sql, 84

	aov_TukeyHSD
	check_constraints
	custom_TxDb_from_GTF
	draw_boxplot_by_factor
	draw_boxplot_wo_outlier
	draw_combo_plot
	draw_locus_profile
	draw_matrix_heatmap
	draw_mean_se_barplot
	draw_quantile_plot
	draw_rank_plot
	draw_region_landmark
	draw_region_name
	draw_region_profile
	draw_stacked_plot
	draw_stacked_profile
	effective_size
	extdata
	extract_longest_tx
	filter_by_nonoverlaps_stranded
	filter_by_overlaps_nonstranded
	filter_by_overlaps_stranded
	find_mate
	gene2tx
	GenomicPlot
	get_genomic_feature_coordinates
	get_targeted_genes
	get_txdb_features
	gf5_genomic
	gf5_meta
	gr2df
	handle_bam
	handle_bed
	handle_bedGraph
	handle_bw
	handle_input
	handle_wig
	impute_hm
	inspect_matrix
	make_subTxDb_from_GTF
	overlap_pair
	overlap_quad
	overlap_triple
	parallel_countOverlaps
	parallel_scoreMatrixBin
	plot_5parts_metagene
	plot_bam_correlation
	plot_locus
	plot_locus_with_random
	plot_named_list
	plot_overlap_bed
	plot_overlap_genes
	plot_peak_annotation
	plot_region
	plot_start_end
	plot_start_end_with_random
	prepare_3parts_genomic_features
	prepare_5parts_genomic_features
	process_scoreMatrix
	rank_rows
	ratio_over_input
	rm_outlier
	setImportParams
	set_seqinfo
	start_parallel
	stop_parallel
	txdb.sql
	Index

