

Package ‘Dune’

January 23, 2026

Title Improving replicability in single-cell RNA-Seq cell type discovery

Version 1.23.0

Description Given a set of clustering labels, Dune merges pairs of clusters to increase mean ARI between labels, improving replicability.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports BiocParallel, SummarizedExperiment, utils, ggplot2, dplyr, tidyr, RColorBrewer, magrittr, ganimate, purrr, aricode

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

Depends R (>= 3.6)

biocViews Clustering, GeneExpression, RNASeq, Software, SingleCell, Transcriptomics, Visualization

git_url <https://git.bioconductor.org/packages/Dune>

git_branch devel

git_last_commit 9318153

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Hector Roux de Bezieux [aut, cre] (ORCID: <<https://orcid.org/0000-0002-1489-8339>>), Kelly Street [aut]

Maintainer Hector Roux de Bezieux <hector.rouxdebezieux@berkeley.edu>

Contents

.adjustedRandIndex	2
ARIImp	3
ARIs	3
ARItrend	4
clusMat	5
clusterConversion	5
ConfusionEvolution	6
ConfusionPlot	7
Dune	7
functionTracking	9
intermediateMat	10
NMIImp	11
NMIs	11
NMItrend	12
nuclei	13
plotARIs	13
plotNMIs	14
plotPrePost	15
whenToStop	15

Index

17

.adjustedRandIndex *adjustedRandIndex*

Description

adjustedRandIndex

Usage

.adjustedRandIndex(tab)

Arguments

tab The confusion matrix

Value

The ARI

ARIImp*ARI improvement*

Description

Compute the ARI improvement over the ARI merging procedure

Usage

```
ARIImp(merger, unclustered = NULL)
```

Arguments

merger	the result from having run Dune on the dataset
unclustered	The value assigned to unclustered cells. Default to NULL

Value

a vector with the mean ARI between methods at each merge

See Also

[ARItrend](#)

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plot(0:nrow(merger$merges), ARIImp(merger))
```

ARI*ARI Matrix*

Description

ARI Matrix

Usage

```
ARI(clusMat, unclustered = NULL)
```

Arguments

clusMat	The clustering matrix with a row per cell and a column per clustering label type
unclustered	The value assigned to unclustered cells. Default to NULL

Details

In the ARI matrix where each cell i,j is the adjusted Rand Index between columns i and j of the original clusMat. If unclustered is not NULL, the cells which have been assigned to the unclustered cluster will not be counted towards computing the ARI.

Value

The ARI matrix

Examples

```
data("clusMat", package = "Dune")
ARIs(clusMat)
```

ARItrend

ARI improvement plot

Description

A plot to see how ARI improves over merging

Usage

```
ARItrend(merger, unclustered = NULL)
```

Arguments

merger	the result from having run Dune on the dataset
unclustered	The value assigned to unclustered cells. Default to NULL

Value

a [ggplot](#) object

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
ARItrend(merger)
```

clusMat*A clustering matrix used to demonstrate the ari-merging process.*

Description

A clustering matrix used to demonstrate the ari-merging process.

Usage

```
clusMat
```

Format

An object of class `matrix` (inherits from `array`) with 100 rows and 5 columns.

Details

This matrix has 100 samples with 5 cluster labels. Cluster labels 2 through 5 are modified versions of cluster label 1, where some clusters from label 1 were broken down into smaller clusters. It is just a toy dataset that can be re-generated with the code in https://github.com/HectorRDB/Pipeline_Brain/blob/master/Sandbox/crea

clusterConversion*clusterConversion*

Description

Find the conversion between the old cluster and the final clusters

Usage

```
clusterConversion(merger, p = 1, average_n = NULL, n_steps = NULL)
```

Arguments

<code>merger</code>	the result from having run Dune on the dataset
<code>p</code>	A value between 0 and 1. We stop when the metric used for merging has improved by <code>p</code> of the final total improvement. Default to 1 (i.e running the full merging).
<code>average_n</code>	Alternatively, you can specify the average number of clusters you want to have.
<code>n_steps</code>	Finally, you can specify the number of merging steps to do before stopping.

Details

If more than one of `p`,`average_n` and `n_steps` is specified, then the order of preference is `n_steps`, then `average_n` then `p`.

Value

A list containing a matrix per clustering method, with a column for the old labels and a column for the new labels.

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
clusterConversion(merger)[[2]]
```

ConfusionEvolution

*Plot the evolution of the ConfusionPlot as merging happens***Description**

Animated version of [ConfusionPlot](#)

Usage

```
ConfusionEvolution(merger, unclustered = NULL, x, y, state_length = 1)
```

Arguments

merger	the result from having run Dune on the dataset
unclustered	The value assigned to unclustered cells. Default to NULL
x	The name of the first cluster label to plot
y	The name of the second cluster label to plot
state_length	Time between steps. Default to 1. See transition_states for details.

Details

See [ConfusionPlot](#) and [animate](#).

Value

a `gganim` object

Examples

```
## Not run:
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
ConfusionEvolution(merger, x = "A", y = "B")
## End(Not run)
```

ConfusionPlot	<i>Plot confusion matrix</i>
---------------	------------------------------

Description

A plot to visualize how alike two clustering labels are

Usage

```
ConfusionPlot(x, y = NULL)
```

Arguments

x	A vector of clustering labels or a matrix of clustering labels. See details.
y	Optional. Another vector of clustering labels

Value

a [ggplot](#) object

Examples

```
data("nuclei", package = "Dune")
ConfusionPlot(nuclei[, c("SC3", "Monocle")])
```

Dune	<i>Dune</i>
------	-------------

Description

Compute the Metric between every pair of clustering labels after merging every possible pair of clusters. Find the one that improves the Metric merging the most, merge the pair. Repeat until there is no improvement.

Usage

```
Dune(clusMat, ...)

## S4 method for signature 'matrix'
Dune(
  clusMat,
  unclustered = NULL,
  verbose = FALSE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  metric = "NMI"
```

```

)
## S4 method for signature 'data.frame'
Dune(
  clusMat,
  unclustered = NULL,
  verbose = FALSE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  metric = "NMI"
)

## S4 method for signature 'SummarizedExperiment'
Dune(
  clusMat,
  cluster_columns,
  unclustered = NULL,
  verbose = FALSE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  metric = "NMI"
)

```

Arguments

clusMat	the matrix of samples by clustering labels.
...	parameters including:
unclustered	The value assigned to unclustered cells. Default to NULL
verbose	Whether or not the print cluster merging as it happens.
parallel	Logical, defaults to FALSE. Set to TRUE if you want to parallelize the fitting.
BPPARAM	object of class <code>bpparam</code> Class that specifies the back-end to be used for computations. See <code>bpparam</code> in <code>BiocParallel</code> package for details. Won't be used if <code>parallel</code> is FALSE.
metric	The metric that is tracked to decide which clusters to merge. For now, either ARI and NMI are accepted. Default to NMI. See details.
cluster_columns	if <code>clusMat</code> is a <code>SummarizedExperiment</code> , then this defines the columns of <code>colData</code> that are outputs from a clustering algorithm.

Details

The Dune algorithm merges pairs of clusters in order to improve the mean adjusted Rand Index or the mean normalized mutual information with other clustering labels. It returns a list with five components.: #'

- `initialMat`: The initial matrix of cluster labels
- `currentMat`: The final matrix of cluster labels

- **merges**: The step-by-step detail of the merges, recapitulating which clusters were merged in which cluster label
- **impMetric**: How much each merge improved the mean Metric between the cluster label that has been merged and the other cluster labels.
- **metric**: The metric that was used to find the merges.

Value

A list with four components: the initial matrix of clustering labels, the final matrix of clustering labels, the merge info matrix and the Metric improvement vector.

See Also

`clusterConversion ARIImp`

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
# clusters 11 to 14 from cluster label 5 and 3 are subset of cluster 2 from
# other cluster labels. Designing cluster 2 as unclustered therefore means we
# do fewer merges.
merger2 <- Dune(clusMat = clusMat, unclustered = 2)
merger$merges
merger2$merges
```

functionTracking

Track the evolution of a function along merging

Description

For a given ARI merging, compute the evolution on the function f

Usage

```
functionTracking(merger, f, p = 1, n_steps = NULL, ...)
```

Arguments

<code>merger</code>	the result from having run <code>Dune</code> on the dataset
<code>f</code>	the function used. It must takes as input a clustering matrix and return a value
<code>p</code>	A value between 0 and 1. We stop when the metric used for merging has improved by p of the final total improvement. Default to 1 (i.e running the full merging).
<code>n_steps</code>	Alternatively, you can specify the number of merging steps to do before stopping.
<code>...</code>	additional arguments passed to f

Value

a vector of length the number of merges

Examples

```
# Return the number of clusters for the fourth cluster label
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
f <- function(clusMat, i) dplyr::n_distinct(clusMat[, i])
functionTracking(merger, f, i = 4)
```

intermediateMat

Find the clustering matrix that we would get if we stopped the ARI merging early

Description

Find the clustering matrix that we would get if we stopped the ARI merging early

Usage

```
intermediateMat(merger, p = 1, average_n = NULL, n_steps = NULL)
```

Arguments

merger	the result from having run Dune on the dataset
p	A value between 0 and 1. We stop when the metric used for merging has improved by p of the final total improvement. Default to 1 (i.e running the full merging).
average_n	Alternatively, you can specify the average number of clusters you want to have.
n_steps	Finally, you can specify the number of merging steps to do before stopping.

Details

If more than one of p,average_n and n_steps is specified, then the order of preference is n_steps, then average_n then p.

Value

A data.frame with the same dimensions as the currentMat of the merger argument, plus one column with cell names, related to the rownames of the original input

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
head(intermediateMat(merger, n_steps = 1))
```

NMIImp*NMI improvement*

Description

Compute the NMI improvement over the NMI merging procedure

Usage

```
NMIImp(merger, unclustered = NULL)
```

Arguments

merger	the result from having run Dune on the dataset
unclustered	The value assigned to unclustered cells. Default to NULL

Value

a vector with the mean NMI between methods at each merge

See Also

[NMItrend](#)

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plot(0:nrow(merger$merges), NMIImp(merger))
```

NMIs

NMI Matrix

Description

NMI Matrix

Usage

```
NMIs(clusMat, unclustered = NULL)
```

Arguments

clusMat	The clustering matrix with a row per cell and a column per clustering label type
unclustered	The value assigned to unclustered cells. Default to NULL

Details

In the NMI matrix where each cell i, j is the normalized mutual information between columns i and j of the original `clusMat`. If `unclustered` is not `NULL`, the cells which have been assigned to the unclustered cluster will not be counted towards computing the NMI.

Value

The NMI matrix

Examples

```
data("clusMat", package = "Dune")
NMIs(clusMat)
```

NMITrend

NMI improvement plot

Description

A plot to see how NMI improves over merging

Usage

```
NMITrend(merger, unclustered = NULL)
```

Arguments

<code>merger</code>	the result from having run <code>Dune</code> on the dataset
<code>unclustered</code>	The value assigned to unclustered cells. Default to <code>NULL</code>

Value

a `ggplot` object

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
NMITrend(merger)
```

nuclei

*Cluster labels for a subset of the allen Smart-Seq nuclei dataset***Description**

Cluster labels for a subset of the allen Smart-Seq nuclei dataset

Usage

```
nuclei
```

Format

An object of class `data.frame` with 1744 rows and 7 columns.

Details

This matrix of clusters was obtained by running 3 clustering algorithms on a brain snRNA-Seq dataset from Tasic et .al (<https://doi.org/10.1038/s41586-018-0654-5>). This dataset was then subsetted to the GABAergic neurons. Code to reproduce all this can be found in the github repository from the Dune paper (https://github.com/HectorRDB/Dune_Paper).

plotARIs

*Plot an heatmap of the ARI matrix***Description**

We can compute the ARI between pairs of cluster labels. This function plots a matrix where a cell is the adjusted Rand Index between cluster label of row i and cluster label of column j.

Usage

```
plotARIs(clusMat, unclustered = NULL, values = TRUE, numericalLabels = FALSE)
```

Arguments

clusMat	The clustering matrix with a row per cell and a column per clustering label type
unclustered	The value assigned to unclustered cells. Default to <code>NULL</code>
values	Whether to also display the ARI values. Default to <code>TRUE</code> .
numericalLabels	Whether labels are numerical values. Default to <code>FALSE</code> .

Value

a `ggplot` object

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plotARIs(merger$initialMat)
plotARIs(merger$currentMat)
```

plotNMIs

Plot an heatmap of the NMI matrix

Description

We can compute the NMI between pairs of cluster labels. This function plots a matrix where a cell is the Normalized Mutual Information between cluster label of row i and cluster label of column j.

Usage

```
plotNMIs(clusMat, unclustered = NULL, values = TRUE, numericalLabels = FALSE)
```

Arguments

clusMat	The clustering matrix with a row per cell and a column per clustering label type
unclustered	The value assigned to unclustered cells. Default to NULL
values	Whether to also display the ARI values. Default to TRUE.
numericalLabels	Whether labels are numerical values. Default to FALSE.

Value

a [ggplot](#) object

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat, metric = "NMI")
plotNMIs(merger$initialMat)
plotNMIs(merger$currentMat)
```

`plotPrePost`

Plot the reduction in cluster size for an ARI merging with Dune

Description

Plot the reduction in cluster size for an ARI merging with Dune

Usage

```
plotPrePost(merger)
```

Arguments

`merger` The output from an ARI merging, by calling [Dune](#)

Value

a [ggplot](#) object #' @importFrom dplyr mutate

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plotPrePost(merger)
```

`whenToStop`

When to Stop

Description

When to Stop

Usage

```
whenToStop(merger, p = 1, average_n = NULL)
```

Arguments

`merger` the result from having run [Dune](#) on the dataset

`p` A value between 0 and 1. We stop when the metric used for merging has improved by `p` of the final total improvement. Default to 1 (i.e running the full merging).

`average_n` Alternatively, you can specify the average number of clusters you want to have.

Details

The [Dune](#) process improves the metric. This return the first merging step after which the metric has been improved by p of the total. Setting p = 1 just return the number of merges.

Value

An integer giving the step where to stop.

Examples

```
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
whenToStop(merger, p = .5)
```

Index

* **datasets**
 clusMat, 5
 nuclei, 13
 .adjustedRandIndex, 2

 animate, 6
 ARIImp, 3
 ARIs, 3
 ARItrend, 4

 clusMat, 5
 clusterConversion, 5
 ConfusionEvolution, 6
 ConfusionPlot, 6, 7

 Dune, 3–6, 7, 9–12, 15, 16
 Dune, data.frame-method (Dune), 7
 Dune, matrix-method (Dune), 7
 Dune, SummarizedExperiment-method
 (Dune), 7

 functionTracking, 9

 ggplot, 4, 7, 12–15

 intermediateMat, 10

 NMIImp, 11
 NMIs, 11
 NMItrend, 12
 nuclei, 13

 plotARIs, 13
 plotNMIs, 14
 plotPrePost, 15

 SummarizedExperiment, 8

 transition_states, 6

 whenToStop, 15