
Package ‘DeepPINCS’
January 23, 2026

Type Package

Title Protein Interactions and Networks with Compounds based on
Sequences using Deep Learning

Description
The identification of novel compound-protein interaction (CPI) is important in drug discovery. Re-
vealing unknown compound-protein interactions is useful to design a new drug for a target pro-
tein by screening candidate compounds. The accurate CPI prediction assists in effective drug dis-
covery process. To identify potential CPI effectively, prediction methods based on machine learn-
ing and deep learning have been developed. Data for sequences are provided as discrete sym-
bolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-
entry system) strings and proteins are sequences in which the characters are amino acids. The out-
come is defined as a variable that indicates how strong two molecules inter-
act with each other or whether there is an interaction between them. In this package, a deep-
learning based model that takes only sequence information of both compounds and pro-
teins as input and the outcome as output is used to predict CPI. The model is implemented by us-
ing compound and protein encoders with useful features. The CPI model also sup-
ports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical inter-
action (CCI), or single compounds and proteins. Although the model is designed for pro-
teins, DNA and RNA can be used if they are represented as sequences.

Version 1.19.0

Date 2023-07-06

LazyData TRUE

LazyDataCompression xz

Depends keras, R (>= 4.1)

Imports tensorflow, CatEncoders, matlab, rcdk, stringdist, tokenizers,
webchem, purrr, ttgsea, PRROC, reticulate, stats

Suggests knitr, testthat, rmarkdown

License Artistic-2.0

biocViews Software, Network, GraphAndNetwork, NeuralNetwork

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/DeepPINCS

1

2 antiviral_drug

git_branch devel

git_last_commit bdbf3fc

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Dongmin Jung [cre, aut] (ORCID:
<https://orcid.org/0000-0001-7499-8422>)

Maintainer Dongmin Jung <dmdmjung@gmail.com>

Contents
antiviral_drug . 2
cpi_model . 3
encoder_in_out . 8
example_bioassay . 10
example_cci . 11
example_chem . 11
example_cpi . 12
example_pd . 12
example_ppi . 13
example_prot . 13
get_canonical_smiles . 14
get_fingerprint . 15
get_graph_structure_node_feature . 16
get_seq_encode_pad . 17
metric_concordance_index . 18
metric_f1_score . 19
multiple_sampling_generator . 20
SARS_CoV2_3CL_Protease . 21
seq_check . 22
seq_preprocessing . 23

Index 25

antiviral_drug List of antiviral drugs with SMILES strings

Description

81 antiviral drugs with SMILES strings

Usage

antiviral_drug

https://orcid.org/0000-0001-7499-8422

cpi_model 3

Value

SMILES string

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep
Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

cpi_model Deep learning model fitting and prediction for compound-protein in-
teractions

Description

The model for compound-protein interactions (CPI) takes the pair of SMILES strings of compounds
and amino acid sequences (one letter amino acid code) of proteins as input. They are fed into the
compound and protein encoders, respectively, and then these encoders are concatenated. Due to the
combination of compound and protein encoders, there are many kinds of CPI models. However,
the graph neural network such as the graph concolutional network (GCN) is only available for
compounds. We need to select one of types of compounds. For graph and fingerprint, the SMILES
sequences are not used for encoders, because the information of graph or fingerprint is extracted
from the SMILES sequenes and then it is fed into encoders. For sequence, the unigram is used as
default, but the n-gram is available only for proteins. Since the CPI model needs some arguments
of encoders, we may have to match the names of such arguments.

Usage

fit_cpi(smiles = NULL, AAseq = NULL, outcome,
convert_canonical_smiles = TRUE,
compound_type = NULL, compound_max_atoms,
compound_length_seq, protein_length_seq,
compound_embedding_dim, protein_embedding_dim,
protein_ngram_max = 1, protein_ngram_min = 1,
smiles_val = NULL, AAseq_val = NULL, outcome_val = NULL,
net_args = list(

compound,
compound_args,
protein,
protein_args,
fc_units = c(1),
fc_activation = c("linear"), ...),

net_names = list(
name_compound_max_atoms = NULL,

4 cpi_model

name_compound_feature_dim = NULL,
name_compound_fingerprint_size = NULL,
name_compound_embedding_layer = NULL,
name_compound_length_seq = NULL,
name_compound_num_tokens = NULL,
name_compound_embedding_dim = NULL,
name_protein_length_seq = NULL,
name_protein_num_tokens = NULL,
name_protein_embedding_dim = NULL),

preprocessor_only = FALSE,
preprocessing = list(

outcome = NULL,
outcome_val = NULL,
convert_canonical_smiles = NULL,
canonical_smiles = NULL,
compound_type = NULL,
compound_max_atoms = NULL,
compound_A_pad = NULL,
compound_X_pad = NULL,
compound_A_pad_val = NULL,
compound_X_pad_val = NULL,
compound_fingerprint = NULL,
compound_fingerprint_val = NULL,
smiles_encode_pad = NULL,
smiles_val_encode_pad = NULL,
compound_lenc = NULL,
compound_length_seq = NULL,
compound_num_tokens = NULL,
compound_embedding_dim = NULL,
AAseq_encode_pad = NULL,
AAseq_val_encode_pad = NULL,
protein_lenc = NULL,
protein_length_seq = NULL,
protein_num_tokens = NULL,
protein_embedding_dim = NULL,
protein_ngram_max = NULL,
protein_ngram_min = NULL),

batch_size, use_generator = FALSE,
validation_split = 0, ...)

predict_cpi(modelRes, smiles = NULL, AAseq = NULL,
preprocessing = list(

canonical_smiles = NULL,
compound_A_pad = NULL,
compound_X_pad = NULL,
compound_fingerprint = NULL,
smiles_encode_pad = NULL,
AAseq_encode_pad = NULL),

cpi_model 5

use_generator = FALSE,
batch_size = NULL)

Arguments

smiles SMILES strings, each column for the element of a pair (default: NULL)

AAseq amino acid sequences, each column for the element of a pair (default: NULL)

outcome a variable that indicates how strong two molecules interact with each other or
whether there is an interaction between them

convert_canonical_smiles

SMILES strings are converted to canonical SMILES strings if TRUE (default:
TRUE)

compound_type "graph", "fingerprint" or "sequence"
compound_max_atoms

maximum number of atoms for compounds
compound_length_seq

length of compound sequence
protein_length_seq

length of protein sequence
compound_embedding_dim

dimension of the dense embedding for compounds
protein_embedding_dim

dimension of the dense embedding for proteins
protein_ngram_max

maximum size of an n-gram for protein sequences (default: 1)
protein_ngram_min

minimum size of an n-gram for protein sequences (default: 1)

smiles_val SMILES strings for validation (default: NULL)

AAseq_val amino acid sequences for validation (default: NULL)

outcome_val outcome for validation (default: NULL)

net_args list of arguments for compound and protein encoder networks and for fully con-
nected layer

• compound : encoder network for compounds
• compound_args : arguments of compound encoder
• protein : encoder network for proteins
• protein_args : arguments of protein encoder
• fc_units : dimensionality of the output space in the fully connected layer

(default: 1)
• fc_activation : activation of the fully connected layer (default: "linear")
• ... : arguments of "keras::compile" but for object

net_names list of names of arguments used in both the CPI model and encoder networks,
names are set to NULL as default

• name_compound_max_atoms : corresponding name for the maximum num-
ber of atoms in the compound encoder, "max_atoms" if NULL

6 cpi_model

• name_compound_feature_dim : corresponding name for the dimension of
node features in the compound encoder, "feature_dim" if NULL

• name_compound_fingerprint_size : corresponding name for the length of a
fingerprint in the compound encoder, "fingerprint_size" if NULL

• name_compound_embedding_layer : corresponding name for the use of the
embedding layer in the compound encoder, "embedding_layer" if NULL

• name_compound_length_seq : corresponding name for the length of se-
quences in the compound encoder, "length_seq" if NULL

• name_compound_num_tokens : corresponding name for the total number
of distinct strings in the compound encoder, "num_tokens" if NULL

• name_compound_embedding_dim : corresponding name for dimension of
the dense embedding in the compound encoder, "embedding_dim" if NULL

• name_protein_length_seq : corresponding name for the length of sequences
in the protein encoder, "length_seq" if NULL

• name_protein_num_tokens : corresponding name for the total number of
distinct strings in the protein encoder, "num_tokens" if NULL

• name_protein_embedding_dim : corresponding name for dimension of the
dense embedding in the protein encoder, "embedding_dim" if NULL

preprocessor_only

model is not fitted after preprocessing if TRUE (default: FALSE)

preprocessing list of preprocessed results for "fit_cpi" or "predict_cpi", they are set to NULL
as default

• outcome : outcome variable
• outcome_val : outcome variable for validation
• convert_canonical_smiles : canonical representation used for preprocessing

if TRUE
• canonical_smiles : canonical representation of SMILES
• compound_type : "graph", "fingerprint" or "sequence"
• compound_max_atoms : maximum number of atoms for compounds
• compound_A_pad : padded or turncated adjacency matrix of compounds
• compound_X_pad : padded or turncated node features of compounds
• compound_A_pad_val : padded or turncated adjacency matrix for valida-

tion
• compound_X_pad_val : padded or turncated node features for validation
• compound_fingerprint : fingerprint of compounds
• compound_fingerprint_val : fingerprint for validation
• smiles_encode_pad : encoded SMILES sequence which is padded or trun-

cated
• smiles_val_encode_pad : encoded SMILES sequence for validation
• compound_lenc : encoded labels for characters of SMILES strings
• compound_length_seq : length of compound sequence
• compound_num_tokens : total number of characters of compounds
• compound_embedding_dim : dimension of the dense embedding for com-

pounds

cpi_model 7

• AAseq_encode_pad : encoded amino acid sequence which is padded or
truncated

• AAseq_val_encode_pad : encoded amino acid sequence for validation
• protein_lenc : encoded labels for characters of amino acid sequenes
• protein_length_seq : length of protein sequence
• protein_num_tokens : total number of characters of proteins
• protein_embedding_dim : dimension of the dense embedding for proteins
• protein_ngram_max : maximum size of an n-gram for protein sequences
• protein_ngram_min : minimum size of an n-gram for protein sequences
• removed_smiles : index for removed smiles while checking
• removed_AAseq : index for removed AAseq while checking
• removed_smiles_val : index for removed smiles of validation
• removed_AAseq_val : index for removed AAseq of validation

batch_size batch size

use_generator use data generator if TRUE (default: FALSE)
validation_split

proportion of validation data, it is ignored when there is a validation set (default:
0)

modelRes result of the "fit_cpi"

... additional parameters for the "keras::fit" or "keras::fit_generator"

Value

model

Author(s)

Dongmin Jung

See Also

keras::compile, keras::fit, keras::fit_generator, keras::layer_dense, keras::keras_model, purrr::pluck,
webchem::is.smiles

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
compound_max_atoms <- 50
protein_embedding_dim <- 16
protein_length_seq <- 100
gcn_cnn_cpi <- fit_cpi(

smiles = example_cpi[1:100, 1],
AAseq = example_cpi[1:100, 2],
outcome = example_cpi[1:100, 3],
compound_type = "graph",
compound_max_atoms = compound_max_atoms,
protein_length_seq = protein_length_seq,

8 encoder_in_out

protein_embedding_dim = protein_embedding_dim,
net_args = list(

compound = "gcn_in_out",
compound_args = list(

gcn_units = c(128, 64),
gcn_activation = c("relu", "relu"),
fc_units = c(10),
fc_activation = c("relu")),

protein = "cnn_in_out",
protein_args = list(

cnn_filters = c(32),
cnn_kernel_size = c(3),
cnn_activation = c("relu"),
fc_units = c(10),
fc_activation = c("relu")),

fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = "accuracy"),

epochs = 2, batch_size = 16)
pred <- predict_cpi(gcn_cnn_cpi, example_cpi[101:110, 1], example_cpi[101:110, 2])

gcn_cnn_cpi2 <- fit_cpi(
preprocessing = gcn_cnn_cpi$preprocessing,
net_args = list(

compound = "gcn_in_out",
compound_args = list(

gcn_units = c(128, 64),
gcn_activation = c("relu", "relu"),
fc_units = c(10),
fc_activation = c("relu")),

protein = "cnn_in_out",
protein_args = list(

cnn_filters = c(32),
cnn_kernel_size = c(3),
cnn_activation = c("relu"),
fc_units = c(10),
fc_activation = c("relu")),

fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = "accuracy"),

epochs = 2, batch_size = 16)
pred <- predict_cpi(gcn_cnn_cpi2, preprocessing = pred$preprocessing)

}

encoder_in_out Input and output tensors of encoders

encoder_in_out 9

Description

The graph convolutional network (GCN), recurrent neural network (RNN), convolutional neural
network (CNN), and multilayer perceptron (MLP) are used as encoders. The last layer of the en-
coders is the fully connected layer. The units and activation can be vectors and the length of the
vectors represents the number of layers.

Usage

gcn_in_out(max_atoms, feature_dim, gcn_units, gcn_activation,
fc_units, fc_activation)

rnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
num_tokens, embedding_dim, rnn_type, rnn_bidirectional,
rnn_units, rnn_activation, fc_units, fc_activation)

cnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
num_tokens, embedding_dim, cnn_filters, cnn_kernel_size, cnn_activation,
fc_units, fc_activation)

mlp_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
num_tokens, embedding_dim, fc_units, fc_activation)

Arguments

max_atoms maximum number of atoms for gcn
feature_dim dimension of atom features for gcn
gcn_units dimensionality of the output space in the gcn layer
gcn_activation activation of the gcn layer
fingerprint_size

the length of a fingerprint
embedding_layer

use the embedding layer if TRUE (default: TRUE)
embedding_dim a non-negative integer for dimension of the dense embedding
length_seq length of input sequences
num_tokens total number of distinct strings
cnn_filters dimensionality of the output space in the cnn layer
cnn_kernel_size

length of the 1D convolution window in the cnn layer
cnn_activation activation of the cnn layer
rnn_type "lstm" or "gru"
rnn_bidirectional

use the bidirectional wrapper for rnn if TRUE
rnn_units dimensionality of the output space in the rnn layer
rnn_activation activation of the rnn layer
fc_units dimensionality of the output space in the fully connected layer
fc_activation activation of the fully connected layer

10 example_bioassay

Value

input and output tensors of encoders

Author(s)

Dongmin Jung

See Also

keras::layer_activation, keras::bidirectional, keras::layer_conv_1d, keras::layer_dense, keras::layer_dot,
keras::layer_embedding, keras::layer_global_average_pooling_1d, keras::layer_input, keras::layer_lstm,
keras::layer_gru, keras::layer_flatten

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
gcn_in_out(max_atoms = 50,

feature_dim = 50,
gcn_units = c(128, 64),
gcn_activation = c("relu", "relu"),
fc_units = c(10),
fc_activation = c("relu"))

}

example_bioassay Example Data for PubChem AID1706 bioassay

Description

This is a compound-protein interaction data set retrieved from PubChem AID1706 bioassay. The
data is balanced and a randomly selected subset of a dataset of size 5000. The label is 1 if the score
is greater than or equal to 15, otherwise it is 0.

Usage

example_bioassay

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep
Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

example_cci 11

example_cci Example Data for Chemical-Chemical Interactions

Description

The data is a randomly selected subset with size 1000 for chemical-chemical interactions. The two
SMILES strings are for compound pairs and the label is for their interactions.

Usage

example_cci

Value

chemical-chemical interaction data

Author(s)

Dongmin Jung

Source

Huang, K., Xiao, C., Hoang, T., Glass, L., & Sun, J. (2020). CASTER: Predicting drug interactions
with chemical substructure representation. AAAI.

example_chem Example Data for Compounds

Description

Blood-Brain-Barrier (BBB) is a permeability barrier for maintaining homeostasis of Central Ner-
vous System (CNS). The data is a curated compound dataset with known BBB permeability. Com-
pounds are divided into two groups according to whether the brain to blood concentration ratio was
greater or less than 0.1. The row name labels each row with the compound name.

Usage

example_chem

Value

compound data

Author(s)

Dongmin Jung

12 example_pd

Source

Gao, Z., Chen, Y., Cai, X., & Xu, R. (2017). Predict drug permeability to blood-brain-barrier from
clinical phenotypes: drug side effects and drug indications. Bioinformatics, 33(6), 901-908.

example_cpi Example Data for Compound-Protein Interactions

Description

The data consist of compound-protein pairs and their interactions of human. The SMILES and
amino acid sequences are used for compounds and proteins, respectively. The binary outcome label
is whether or not they interact each other.

Usage

example_cpi

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Tsubaki, M., Tomii, K., & Sese, J. (2019). Compound-protein interaction prediction with end-to-
end learning of neural networks for graphs and sequences. Bioinformatics, 35(2), 309-318.

example_pd Example Data for Primer-Dimer

Description

This is a primer-primer interaction data set with size 319. The two sequences are for primer pairs
and the label is for their interactions.

Usage

example_pd

Value

primer sequences and dimer formation data

example_ppi 13

Author(s)

Dongmin Jung

Source

Johnston, A. D., Lu, J., Ru, K. L., Korbie, D., & Trau, M. (2019). PrimerROC: accurate condition-
independent dimer prediction using ROC analysis. Scientific reports.

example_ppi Example Data for Protein-Protein Interactions

Description

The data is a randomly selected subset with size 5000 for protein-protein interactions of yeast. The
two amino acid sequences are for protein pairs and the label is for their interactions.

Usage

example_ppi

Value

protein-protein interaction data

Author(s)

Dongmin Jung

Source

Chen, M., et al. (2019). Multifaceted protein-protein interaction prediction based on siamese resid-
ual rcnn. Bioinformatics, 35(14), i305-i314.

example_prot Example Data for Proteins

Description

This is a protein data set retrieved from Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB).The data consist of amino acid sequences with three classes.
The row name labels each row with the PDB identification code.

Usage

example_prot

14 get_canonical_smiles

Value

protein data

Author(s)

Dongmin Jung

Source

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) and https://www.kaggle.com/shahir/protein-
data-set

get_canonical_smiles Convert SMILES strings to canonical SMILES strings

Description

There may be many different ways to construct the SMILES string for a given molecule. A canoni-
cal representation is a unique ordering of the atoms for a given molecular graph.

Usage

get_canonical_smiles(smiles)

Arguments

smiles SMILES strings

Value

canonical representation of SMILES

Author(s)

Dongmin Jung

References

Leach, A. R., & Gillet, V. J. (2007). An introduction to chemoinformatics. Springer.

See Also

rcdk::parse.smile, rcdk::get.smiles, rcdk::smiles.flavors

Examples

get_canonical_smiles(example_cpi[1, 1])

get_fingerprint 15

get_fingerprint Molecular fingerprint of compounds from SMILES strings

Description

A molecular fingerprint is a way of encoding the structural features of a molecule. The most com-
mon type of fingerprint is a sequence of ones and zeros. Fingerprints are special kinds of descriptors
that characterize a molecule and its properties as a binary bit vector that represents the presence or
absence of particular substructure in the molecule. For such a fingerprint, the Chemistry Develop-
ment Kit (CDK) is used as a cheminformatics tool.

Usage

get_fingerprint(smiles, ...)

Arguments

smiles SMILES strings

... arguments for "rcdk::get.fingerprint" but for molecule

Value

a fingerprint of a compound

Author(s)

Dongmin Jung

References

Balakin, K. V. (2009). Pharmaceutical data mining: approaches and applications for drug discovery.
Wiley.

See Also

rcdk::get.fingerprint, rcdk::parse.smiles

Examples

get_fingerprint(example_cpi[1, 1])

16 get_graph_structure_node_feature

get_graph_structure_node_feature

Graph structure and node features from SMILES strings

Description

In molecular graph representations, nodes represent atoms and edges represent bonds. For molecu-
lar features, the Chemistry Development Kit (CDK) is used as a cheminformatics tool. The degree
of an atom in the graph representation and the atomic symbol and implicit hydrogen count for an
atom are used as molecular features.

Usage

get_graph_structure_node_feature(smiles, max_atoms,
element_list = c(

"C", "N", "O", "S", "F", "Si", "P", "Cl",
"Br", "Mg", "Na", "Ca", "Fe", "Al", "I",
"B", "K", "Se", "Zn", "H", "Cu", "Mn"))

Arguments

smiles SMILES strings

max_atoms maximum number of atoms

element_list list of atom symbols

Value

A_pad a padded or turncated adjacency matrix for each SMILES string

X_pad a padded or turncated node features for each SMILES string

feature_dim dimension of node features

element_list list of atom symbols

Author(s)

Dongmin Jung

References

Balakin, K. V. (2009). Pharmaceutical data mining: approaches and applications for drug discovery.
Wiley.

See Also

matlab::padarray, purrr::chuck, rcdk::get.adjacency.matrix, rcdk::get.atoms, rcdk::get.hydrogen.count,
rcdk::get.symbol rcdk::parse.smiles

get_seq_encode_pad 17

Examples

get_graph_structure_node_feature(example_cpi[1, 1], 10)

get_seq_encode_pad Vectorization of characters of strings

Description

A vectorization of characters of strings is necessary. Vectorized characters are padded or truncated.

Usage

get_seq_encode_pad(sequences, length_seq, ngram_max = 1, ngram_min = 1,
lenc = NULL)

Arguments

sequences SMILE strings or amino acid sequences

length_seq length of input sequences

ngram_max maximum size of an n-gram (default: 1)

ngram_min minimum size of an n-gram (default: 1)

lenc encoded labels for characters, LableEncoder object fitted by "CatEncoders::LabelEncoder.fit"
(default: NULL)

Value
sequences_encode_pad

for each SMILES string, an encoded sequence which is padded or truncated

lenc encoded labels for characters

num_token total number of characters

Author(s)

Dongmin Jung

See Also

CatEncoders::LabelEncoder.fit, CatEncoders::transform, keras::pad_sequences, stringdist::qgrams,
tokenizers::tokenize_ngrams

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
get_seq_encode_pad(example_cpi[1, 2], 10)

}

18 metric_concordance_index

metric_concordance_index

Concordance index

Description

The concordance index or c-index can be seen as one of the model performance metrics. It repre-
sents a good fit of the model.

Author(s)

Dongmin Jung

References

Kose, U., & Alzubi, J. (2020). Deep learning for cancer diagnosis. Springer.

See Also

keras::k_cast, keras::k_equal, keras::k_sum, tensorflow::tf

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
compound_length_seq <- 50
compound_embedding_dim <- 16
protein_embedding_dim <- 16
protein_length_seq <- 100

mlp_cnn_cpi <- fit_cpi(
smiles = example_cpi[1:100, 1],
AAseq = example_cpi[1:100, 2],
outcome = example_cpi[1:100, 3],
compound_type = "sequence",
compound_length_seq = compound_length_seq,
compound_embedding_dim = compound_embedding_dim,
protein_length_seq = protein_length_seq,
protein_embedding_dim = protein_embedding_dim,
net_args = list(
compound = "mlp_in_out",
compound_args = list(

fc_units = c(10),
fc_activation = c("relu")),

protein = "cnn_in_out",
protein_args = list(

cnn_filters = c(32),
cnn_kernel_size = c(3),
cnn_activation = c("relu"),
fc_units = c(10),
fc_activation = c("relu")),

metric_f1_score 19

fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = custom_metric("concordance_index",

metric_concordance_index)),
epochs = 2,
batch_size = 16)

}

metric_f1_score F1-score

Description

The F1-score is a metric combining precision and recall. It is typically used instead of accuracy in
the case of severe class imbalance in the dataset. The higher the values of F1-score, the better the
validation of the model.

Author(s)

Dongmin Jung

References

Kubben, P., Dumontier, M., & Dekker, A. (2019). Fundamentals of clinical data science. Springer.

Mishra, A., Suseendran, G., & Phung, T. N. (Eds.). (2020). Soft Computing Applications and
Techniques in Healthcare. CRC Press.

See Also

keras::k_equal, keras::k_sum, tensorflow::tf

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
compound_length_seq <- 50
compound_embedding_dim <- 16
protein_embedding_dim <- 16
protein_length_seq <- 100

mlp_cnn_cpi <- fit_cpi(
smiles = example_cpi[1:100, 1],
AAseq = example_cpi[1:100, 2],
outcome = example_cpi[1:100, 3],
compound_type = "sequence",
compound_length_seq = compound_length_seq,
compound_embedding_dim = compound_embedding_dim,
protein_length_seq = protein_length_seq,

20 multiple_sampling_generator

protein_embedding_dim = protein_embedding_dim,
net_args = list(
compound = "mlp_in_out",
compound_args = list(

fc_units = c(10),
fc_activation = c("relu")),

protein = "cnn_in_out",
protein_args = list(

cnn_filters = c(32),
cnn_kernel_size = c(3),
cnn_activation = c("relu"),
fc_units = c(10),
fc_activation = c("relu")),

fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = custom_metric("F1_score",

metric_f1_score)),
epochs = 2,
batch_size = 16)

}

multiple_sampling_generator

Generator function for multiple inputs

Description

This is a generator function that yields batches of data with multiple inputs.

Usage

multiple_sampling_generator(X_data, Y_data = NULL, batch_size,
shuffle = TRUE)

Arguments

X_data list of multiple inputs

Y_data targets (default: NULL)

batch_size batch size

shuffle whether to shuffle the data or not (default: TRUE)

Value

generator for "keras::fit" or "keras::predict"

SARS_CoV2_3CL_Protease 21

Author(s)

Dongmin Jung

Examples

X_data <- c(list(matrix(rnorm(200), ncol = 2)),
list(matrix(rnorm(200), ncol = 2)))

Y_data <- matrix(rnorm(100), ncol = 1)
multiple_sampling_generator(X_data, Y_data, 32)

SARS_CoV2_3CL_Protease

Amino Acid Sequence for the SARS coronavirus 3C-like Protease

Description

306 amino acid residues of the SARS coronavirus 3C-like Protease

Usage

SARS_CoV2_3CL_Protease

Value

amino acid sequence

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep
Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

22 seq_check

seq_check Check SMILES strings and amino acid sequences

Description

In real-world cases, most of the data are not complete and contains incorrect values, missing values,
and so on. Thus, there may be invalid sequences in the data. This function can find such sequences
and remove them from the data. For SMILES strings, the function "webchem::is.smiles" is used. A
valid amino acid sequence means a string that only contains capital letters of an alphabet.

Usage

seq_check(smiles = NULL, AAseq = NULL, outcome = NULL)

Arguments

smiles SMILES strings (default: NULL)

AAseq amino acid sequences (default: NULL)

outcome a variable that indicates how strong two molecules interact with each other or
whether there is an interaction between them (default: NULL)

Value

valid sequences

Author(s)

Dongmin Jung

References

Dey, N., Wagh, S., Mahalle, P. N., & Pathan, M. S. (Eds.). (2019). Applied machine learning for
smart data analysis. CRC Press.

See Also

webchem::is.smiles

Examples

seq_check(smiles = example_cpi[1, 1], outcome = example_cpi[1, 3])

seq_preprocessing 23

seq_preprocessing Preprocessing for SMILES strings and amino acid sequences

Description

Preprocessing helps make the data suitable for the model depending on the type of data the prepro-
cessing works upon. Preprocessing is more time consuming for text data. The adjacency matrix and
node feature, fingerprint, or string data are preprocessed from sequences.

Usage

seq_preprocessing(smiles = NULL,
AAseq = NULL,
type,
convert_canonical_smiles,
max_atoms,
length_seq,
lenc = NULL,
ngram_max = 1,
ngram_min = 1)

Arguments

smiles SMILES strings (default: NULL)

AAseq amino acid sequences (default: NULL)

type "graph", "fingerprint" or "sequence"
convert_canonical_smiles

SMILES strings are converted to canonical SMILES strings if TRUE

max_atoms maximum number of atoms for compounds

length_seq length of compound or protein sequence

lenc encoded labels for characters of SMILES strings or amino acid sequenes (de-
fault: NULL)

ngram_max maximum size of an n-gram for protein sequences (default: 1)

ngram_min minimum size of an n-gram for protein sequences (default: 1)

Value
canonical_smiles

canonical representation of SMILES
convert_canonical_smiles

canonical representation is used or not

A_pad padded or turncated adjacency matrix of compounds if type is "graph"

X_pad padded or turncated node features of compounds if type is "graph"

24 seq_preprocessing

fp fingerprint of compounds if type is "fingerprint"
sequences_encode_pad

encoded sequences which are padded or truncated

lenc encoded labels for characters of SMILES strings or amino acid sequenes

length_seq length of compound or protein sequence

num_tokens total number of characters of compounds or proteins

Author(s)

Dongmin Jung

References

Dey, N., Wagh, S., Mahalle, P. N., & Pathan, M. S. (Eds.). (2019). Applied machine learning for
smart data analysis. CRC Press.

Examples

seq_preprocessing(smiles = cbind(example_cpi[1, 1]),
type = "fingerprint",
convert_canonical_smiles = TRUE)

Index

antiviral_drug, 2

cnn_in_out (encoder_in_out), 8
cpi_model, 3

encoder_in_out, 8
example_bioassay, 10
example_cci, 11
example_chem, 11
example_cpi, 12
example_pd, 12
example_ppi, 13
example_prot, 13

fit_cpi (cpi_model), 3

gcn_in_out (encoder_in_out), 8
get_canonical_smiles, 14
get_fingerprint, 15
get_graph_structure_node_feature, 16
get_seq_encode_pad, 17

metric_concordance_index, 18
metric_f1_score, 19
mlp_in_out (encoder_in_out), 8
multiple_sampling_generator, 20

predict_cpi (cpi_model), 3

rnn_in_out (encoder_in_out), 8

SARS_CoV2_3CL_Protease, 21
seq_check, 22
seq_preprocessing, 23

25

	antiviral_drug
	cpi_model
	encoder_in_out
	example_bioassay
	example_cci
	example_chem
	example_cpi
	example_pd
	example_ppi
	example_prot
	get_canonical_smiles
	get_fingerprint
	get_graph_structure_node_feature
	get_seq_encode_pad
	metric_concordance_index
	metric_f1_score
	multiple_sampling_generator
	SARS_CoV2_3CL_Protease
	seq_check
	seq_preprocessing
	Index

