Package ‘DSS’

January 23, 2026

Title Dispersion shrinkage for sequencing data

Version 2.59.0

Date 2023-1-11

Author Hao Wu<hao.wu@emory.edu>, Hao Feng<hxf155@case.edu>
Depends R (>= 3.5.0), methods, Biobase, BiocParallel, bsseq, parallel
Imports utils, graphics, stats, splines

Maintainer Hao Wu <hao.wu@emory.edu>, Hao Feng <hxf155@case . edu>

Description DSS is an R library performing differntial analysis for
count-based sequencing data. It detectes differentially
expressed genes (DEGs) from RNA-seq, and differentially
methylated loci or regions (DML/DMRs) from bisulfite sequencing
(BS-seq). The core of DSS is a new dispersion shrinkage method
for estimating the dispersion parameter from Gamma-Poisson or
Beta-Binomial distributions.

License GPL
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown, edgeR

biocViews Sequencing, RNASeq, DNAMethylation,GeneExpression,
DifferentialExpression,DifferentialMethylation

git_url https://git.bioconductor.org/packages/DSS
git_branch devel

git_last_commit 78fb7ed
git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents

DSS-package
callDML

2 callDML
calDMR 4
design e 7
dispersion e 7
DMLfitmultiFactor 8
DMLtest e e e e 10
DMLtestmultiFactor 12
DSS.DE 15
estDispersion 16
estNormFactors 17
makeBSseqData L. 18
normalizationFactor L 19
RRBS . . . 20
SeqCountSet-class 21
seqDatao L 22
showOneDMR 23
waldTest o e 24
Index 26
DSS-package Dispersion shrinkage for sequencing data
Description
DSS is an R library performing the differential expression analysis for RNA-seq count data. Com-
pared with other similar packages (DESeq, edgeR), DSS implements a new dispersion shrinkage
method to estimate the gene-specific biological variance. Extensive simulation results showed that
DSS performs favorabily compared to DESeq and edgeR when the variation of biological variances
is large.
DSS only works for two group comparison at this time. We plan to extend the functionalities and
make it work for more general experimental designs in the near future.
Author(s)
Hao Wu <hao.wu@emory.edu>
callDML Function to detect differntially methylated loci (DML) from bisulfite
sequencing (BS-seq) data.
Description

This function takes the results from DML testing procedure ('DMLtest’ function) and calls DMLs.
Regions will CpG sites being statistically significant are deemed as DMLs.

callDML

Usage

callDML(DMLresult, delta=0.1, p.threshold=1e-5)

Arguments

DMLresult

delta

p.threshold

Value

A data frame representing the results for DML detection. This should be the
result returned from *"DMLtest’ function.

A threshold for defining DML. In DML testing procedure, hypothesis test that
the two groups means are equalis is conducted at each CpG site. Here if "delta’
is specified, the function will compute the posterior probability that the differ-
ence of the means are greater than delta,and then call DML based on that. This
only works when the test results are from *DMLtest’, which is for two-group
comparison. For general design, this has to be set to 0.

When delta is not specified, this is the threshold of p-values for defining DML,
e.g. Loci with p-values less than this threshold will be deemed DMLs. When
delta is specified, CpG sites with posterior probability greater than 1-p.threshold
are deemed DML.

A data frame for DMLs. Each row is for a DML. DMLs are sorted by statistical significance. The

columns are

chr

pos

mul, mu2
diff
diff.se
stat
phil, phi2
pval

fdr

Chromosome number.

Genomic coordinates.

Mean methylations of two groups.

Difference of mean methylations of two groups.
Standard error of the methylation difference.

Wald statistics.

Estimated dispersions in two groups.

P-values. This is obtained from normal distribution.

False discovery rate.

postprob.overThreshold

Author(s)

The posterior probability of the difference in methylation greater than delta.
This columns is only available when delta>0.

Hao Wu <hao.wu@emory.edu>

See Also

DMLtest, calDMR

4 calDMR

Examples

Not run:
require(bsseq)

first read in methylation data.

path <- file.path(system.file(package="DSS"), "extdata")

dat1.1 <- read.table(file.path(path, "cond1_1.txt"), header=TRUE)
dat1.2 <- read.table(file.path(path, "cond1_2.txt"), header=TRUE)
dat2.1 <- read.table(file.path(path, "cond2_1.txt"), header=TRUE)
dat2.2 <- read.table(file.path(path, "cond2_2.txt"), header=TRUE)

make BSseq objects
BSobj <- makeBSsegData(list(dat1.1, datl1.2, dat2.1, dat2.2),
c("C1”,"C2", "N1", "N2"))

DML test
dmlTest <- DMLtest(BSobj, groupl=c(”"C1", "C2"), group2=c("N1","N2"))

call DML
dmls <- callDML(dmlTest)
head(dmls)

call DML with a threshold
dmls2 <- callDML(dmlTest, delta=0.1)
head(dmls2)

For whole-genome BS-seq data, perform DML test with smoothing

require(bsseqData)

data(BS.cancer.ex)

takea smallportionof data and test

BSobj <- BS.cancer.ex[10000:15000,]

dmlTest <- DMLtest(BSobj, groupl=c("C1"”, "C2", "C3"), group2=c("N1","N2","N3"),
smoothing=TRUE, smoothing.span=500)

dmls <- callDML(dmlTest)

head(dmls)

from multifactor design

data(RRBS)

DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell+case:cell)
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef="cellrN")

dml = callDML(DMLtest.cell, p.threshold=0.05) ## this produce a warning
dml = callDML(DMLtest.cell, delta=0, p.threshold=0.05) ## no warning

head(dml)

End(Not run)

callDMR Function to detect differntially methylated regions (DMR) from bisul-
fite sequencing (BS-seq) data.

callDMR 5

Description

This function takes the results from DML testing procedure ("callDML’ function) and calls DMRs.
Regions will CpG sites being statistically significant are detected as DMRs. Nearby DMRs are
merged into longer ones. Some restrictions including the minimum length, minimum number of
CpG sites, etc. are applied.

Usage

callDMR(DMLresult, delta=0, p.threshold=1e-5,
minlen=50, minCG=3, dis.merge=100, pct.sig=0.5)

Arguments
DMLresult A data frame representing the results for DML detection. This should be the
result returned from *"DMLtest” or "’DMLtest.multiFactor’ function.
delta A threshold for defining DMR. In DML detection procedure, a hypothesis test

that the two groups means are equal is conducted at each CpG site. Here if
"delta’ is specified, the function will compute the posterior probability that the
difference of the means are greater than delta, and then construct DMR based
on that. This only works when the test results are from "DMLtest’, which is for
two-group comparison.

p.threshold A threshold of p-values for calling DMR. Loci with p-values less than this
threshold will be picked and joint to form the DMRs. See ’details’ for more

information.
minlen Minimum length (in basepairs) required for DMR. Default is 50 bps.
minCG Minimum number of CpG sites required for DMR. Default is 3.
dis.merge When two DMRs are very close to each other and the distance (in bps) is less

than this number, they will be merged into one. Default is 50 bps.

pct.sig In all DMRs, the percentage of CG sites with significant p-values (less than
p-threshold) must be greater than this threshold. Default is 0.5. This is mainly
used for correcting the effects of merging of nearby DMRs.

Details

The choices of ’delta’ and ’p.threshold’ are somewhat arbitrary. The default value for p-value
threshold for calling DMR is le-5. The statistical test on loci level is less powerful when smoothing
is NOT applied, so users can consider to use a less stringent criteria, such as 0.001, in order to get
satisfactory number of DMRs. This function is reasonably fast since the computationally intesnsive
part is in "’DMLtest’. Users can try different p.threshold values to obtain satisfactory results.

’delta’ is only supported when the experiment is for two-group comparison. This is because in
multifactor design, the estimated coefficients in the regression are based on a GLM framework
(loosely speaking), thus they don’t have clear meaning of methylation level differences. So when
the input DMLresult is from DMLtest.multiFactor, ’delta’ cannot be specified.

When specifying a ’delta’ value, the posterior probability (pp) of each CpG site being DML is
computed. Then the p.threshold is applied on 1-pp, e.g., sites with 1-pp<p.threshold is deemed
significant. In this case, the criteria for DMR calling is more stringent and users might consider to
use a more liberal p.threshold in order to get more regions.

6 calDMR

Value

A data frame for DMRs. Each row is for a DMR. Rows are sorted by "areaStat", which is the sum
of test statistics of all CpG sites in the region. The columns are:

chr Chromosome number.

start, end Genomic coordinates.

length Length of the DMR, in bps.

nCG Number of CpG sites contained in the DMR.

meanMethy1, meanMethy?2
Average methylation levels in two conditions.

diff.Methy The difference in the methylation levels between two conditions. diff. Methy=meanMethy1-
meanMethy?2.
areaStat The sum of the test statistics of all CpG sites within the DMR.
Author(s)

Hao Wu <hao.wu@emory.edu>

See Also
DMLtest, callDML

Examples

Not run:
require(bsseq)
require(bssegData)
data(BS.cancer.ex)

take a small portion of data and test

BSobj <- BS.cancer.ex[140000:150000,]

dmlTest <- DMLtest(BSobj, groupl=c("C1"”, "C2", "C3"), group2=c("N1","N2","N3"),
smoothing=TRUE, smoothing.span=500)

call DMR based on test results
dmrs <- callDMR(dmlTest)
head(dmrs)

or one can specify a threshold for difference in methylation level
dmrs2 <- callDMR(dmlTest, delta=0.1)
head (dmrs2)

visualize one DMR
showOneDMR (dmrs[1,], BSobj)

from multifactor design - using a loose threshold to demonstrate

data(RRBS)
DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell+case:cell)

design 7

DMLtest.cell = DMLtest.multiFactor(DMLfit, coef="cellrN")
dmr = callDMR(DMLtest.cell, p.threshold=0.05)
dmr

End(Not run)

design Experimental design for the example RRBS dataset

Description

The RRBS dataset is from 16 samples with two factors (case and cell), each has two levels (so it’s
a 2x2 design).

Usage

data(RRBS)

Examples

data(RRBS)
RRBS
design

dispersion Acessor functions for the ’dispersion’ slot in a SeqCountData object.

Description
Dispersion parameter for a gene represents its coefficient of variation of expressions. It characterizes
the biological variations.

Usage

S4 method for signature 'SeqgCountSet'

dispersion(object)

S4 replacement method for signature 'SeqCountSet,numeric'
dispersion(object) <- value

Arguments

object A SeqCountData object.

value A numeric vector with the same length as number of genes.

8 DML fit. multiFactor

Details

If the counts from biological replicates are modeled as negative binomial distribution, the variance
(v) and mean (m) should hold following relationship: v=m+m”2*phi, where phi is the dispersion.
Another interpretation is that phi represents the biological variations among replicates when under-
lying expressions are modeled as a Gamma distribution.

Author(s)

Hao Wu <hao.wu@emory.edu>

See Also

normalizationFactor

Examples

data(segData)

obtain

seqData=estNormFactors(seqData, "quantile")
segData=estDispersion(seqData)
dispersion(seqData)

assign
dispersion(seqData)=rep(0.1, nrow(exprs(segData)))

DMLfit.multiFactor Fit a linear model for BS-seq data from general experimental design

Description

This function takes a BSseq object, a data frame for experimental design and a model formula and
then fit a linear model.

Usage
DMLfit.multiFactor(BSobj, design, formula, smoothing=FALSE, smoothing.span=500)

Arguments
BSobj An object of BSseq class for the BS-seq data.
design A data frame for experimental design. Number of rows must match the number
of columns of the counts in BSob;j.
formula A formula for the linear model.
smoothing A flag to indicate whether to apply smoothing. When true, the counts will be

smoothed by a simple moving average method.

smoothing.span The size of smoothing window, in basepairs. Default is 500.

DML fit. multiFactor 9

Details

The lineear model fitting is done through ordinary least square on the arscine transformed methyla-
tion percentages. The estimated standard errors are computed with consideration of the data (count)
distribution and transformation. This function is extremely efficient. The computation takes around
20 minutes for 4 million CpG sites.

Value

A list with following components

gr An object of ’GRanges’ for locations of the CpG sites.

design The input data frame for experimental design.

formula The input formula for the model.

X The design matrix used in regression. It is created based on design and formula.
fit The model fitting results. This is a list itself, with three components: "beta’ - the

estimated coefficients; ’var.beta’ - estimated variance/covariance matrices for
beta. ’phi’ - estimated beta-binomial dispersion parameters. Note that var.beta
for a CpG site should be a ncol(X) x ncol(X) matrix, but is flattend to a vector
so that the matrices for all CpG sites can be saved as a matrix.

Author(s)

Hao Wu<hao.wu@emory.edu>

See Also

DMLtest.multiFactor, DMLtest

Examples

Not run:

data(RRBS)

model fitting

DMLfit = DMLfit.multiFactor(RRBS, design, ~casetcell+case:cell)

with smoothing:
DMLfit.sm = DMLfit.multiFactor(RRBS, design, ~casetcell+case:cell, smoothing=TRUE)

hypothesis testing
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef=3)

look at distributions of test statistics and p-values
par(mfrow=c(1,2))

hist(DMLtest.cell$stat, 100, main="test statistics”)
hist(DMLtest.cell$pvals, 100, main="P values")

End(Not run)

10 DML test

DMLtest Function to perform statistical test of differntially methylated loci
(DML) for two group comparisons of bisulfite sequencing (BS-seq)
data.

Description

This function takes a BSseq object and two group labels, then perform statistical tests for differntial
methylation at each CpG site.

Usage

DMLtest(BSobj, groupl, group2, equal.disp = FALSE, smoothing = FALSE,
smoothing.span = 500, ncores)

Arguments

BSobj An object of BSseq class for the BS-seq data.

groupl, group2 Vectors of sample names or indexes for the two groups to be tested. See more
description in details.

equal.disp A flag to indicate whether the dispersion in two groups are deemed equal. De-
fault is FALSE, and the dispersion shrinkages are performed on two conditions
independently.

smoothing A flag to indicate whether to apply smoothing in estimating mean methylation
levels.

smoothing.span The size of smoothing window, in basepairs. Default is 500.

ncores Number of CPU cores used in parallel computing. See sections ’Parallelization’
for details.

Details

This is the core function for DML/DMR detection. Tests are performed at each CpG site under the
null hypothesis that two groups means are equal. There is an option for applying smoothing or not
in estimating mean methylation levels. We recommend to use smoothing=TRUE for whole-genome
BS-seq data, and smoothing=FALSE for sparser data such like from RRBS or hydroxyl-methylation
data (TAB-seq). If there is not biological replicate, smoothing=TRUE is required. See "Single
replicate" section for details.

The BS-seq count data are modeled as Beta-Binomial distribution, where the biological variations
are captured by the dispersion parameter. The dispersion parameters are estimated through a shri-
nakge estimator based on a Bayesian hierarchical model. Then a Wald test is performed at each
CpG site.

Due to the differences in coverages, some CpG sites are not covered in both groups, and the test
cannot be performed. Those loci will be ignored in test and results will be "NA".

DMLtest 11

Value

A data frame with each row corresponding to a CpG site. Rows are sorted by chromosome number
and genomic coordinates. The columns include:

chr Chromosome number.

pos Genomic coordinates.

mul, mu2 Mean methylations of two groups.

diff Difference of mean methylations of two groups. diff=mul-mu?2.
diff.se Standard error of the methylation difference.

stat Wald statistics.

pval P-values. This is obtained from normal distribution.

fdr False discovery rate.

Single replicate

When there is no biological replicate in one or both treatment groups, users can either (1) specify
equal.disp=TRUE, which assumes both groups have the same dispersion, then the data from two
groups are combined and used as replicates to estimate dispersion; or (2) specify smoothing=TRUE,
which uses the smoothed means (methylation levels) to estimate dispersions via a shrinkage esti-
mator. This smoothing procedure uses data from neighboring CpG sites as "pseudo-replicate” for
estimating biological variance.

Parallelization

The shrinkage estimation for dispersion is the most computational component in DML testing.
We use the *mcapply’ function in ’parallel’ package to implement parallelization. Note that older
version of DSS (<2.4x) used the ’bplapply’ function in ’BiocParallel’ package. However, that
function somehow has significantly reduced performance in the new release (>1.25), so we switched
to mcapply. A drawback is that the progress bar cannot be displayed under the paralelle computing
setting.

Users might experience problems on Windows, since the mcapply function relies on forking but
Windows does not support forking. Thus, we suggest to use ncores=1 on Windows. For more
details, please read the ’parallel” documentation.

Estimating mean methylation levels

When smoothing=FALSE, the mean methylation levels are estimated based on the ratios of methy-
lated and total read counts, and the spatial correlations among nearby CpG sites are ignored. When
smoothing=TRUE, smoothing based on moving average or the BSmooth method is used to esti-
mate the mean methylaion level at each site. Moving average is recommended because it is much
faster than BSmooth, and the results are reasonable similar in terms of mean estimation, dispersion
estimation, and DMR calling results.

Author(s)

Hao Wu <hao.wu@emory.edu>

12 DML test.multiFactor

See Also
makeBSseqData, callDML, callDMR

Examples

Not run:
require(bsseq)

first read in methylation data.

path <- file.path(system.file(package="DSS"), "extdata")

dat1.1 <- read.table(file.path(path, "cond1_1.txt"), header=TRUE)
dat1.2 <- read.table(file.path(path, "cond1_2.txt"), header=TRUE)
dat2.1 <- read.table(file.path(path, "cond2_1.txt"), header=TRUE)
dat2.2 <- read.table(file.path(path, "cond2_2.txt"), header=TRUE)

make BSseq objects
BSobj <- makeBSseqData(list(datl1.1, datl1.2, dat2.1, dat2.2),
C(IIC'I II’IICZN, IIN1 II, IINZII))

DML test without smoothing
dmlTest <- DMLtest(BSobj, groupl=c("C1", "C2"), group2=c("N1", "N2"))
head(dmlTest)

For whole-genome BS-seq data, perform DML test with smoothing

require(bssegData)

data(BS.cancer.ex)

take a small portion of data and test

BSobj <- BS.cancer.ex[10000:15000,]

dmlTest <- DMLtest(BSobj, groupl=c("C1"”, "C2", "C3"), group2=c("N1","N2","N3"),
smoothing=TRUE, smoothing.span=500)

head(dmlTest)

Examples for Parallelization

use single core - this has not parallelization

system.time(dmlTest <- DMLtest(BSobj, groupl=c("C1", "C2"), group2=c(”"N1", "N2"), ncores=1))
use 4 cores - it's about twice as fast

system.time(dmlTest <- DMLtest(BSobj, groupl=c("C1", "C2"), group2=c(”"N1", "N2"), ncores=4))

End(Not run)

DMLtest.multiFactor Perform statistical test for BS-seq data from general experimental de-
sign

Description

This function takes the linar model fitting results and performs Wald test at each CpG site, then
return test statistics, p-values and FDR.

DML test.multiFactor 13

Usage

DMLtest.multiFactor(DMLfit, coef = 2, term, Contrast)

Arguments

DMLfit Result object returned from *DMLfit.multiFactor’ function.

coef It can be an integer to indicate which coefficient in the linear model is be tested
for being zero. Be careful of intercept. If the model contains intercept, coef=2
indicate testing the first factor in the formula. If the model has no intercept,
testing first factor should use coef=1.

It can also be a character for the terms to be tested. In that case it must match one
of the column names in the design matrix. One can look at colnames(DML(fit$X)
to obtain the column names.

term The term(s) to be tested, as one or a vector of characters. Can be multiple terms.
See "Hypothesis test’ section for details.

Contrast A contrast matrix for hypothesis testing. The number of rows must equal to the
number of columns in the design matrix ncol(DMLfit$X). See "Hypothesis test’
section for details.

Value

A data frame with following columns: chr, pos, stat, pvals, fdr. Each row is for a CpG site. Note
that the CpG sites are sorted by chromosome and position.

Hypothesis test

User can specify one of the following parameter for testing: ’coef’, term’, or *Contrast’.

When specifying ’coef’, it tests *one* parameter in the model, which corresponds to one column
in the design matrix. In this case, A Wald test is performed using the estimated coefficient and
standard error from *DMLfit.multiFactor’. P-values are derived from test statistics based on normal
distribution.

When specifying ’term’, it tests the whole term in the model. If the term is continuous or a cate-
gorical variable with only two levels (one degree of freedom), it is equivalent to specifying ’coef’
because it tests only one parameter in the model. However, when the term is a categorical variable
with more than two levels, it will test multiple parameters at the same time so it’s a compound
hypothesis test, and a F-test will be performed.

Specifying *Contrast’ matrix provides the most flexible test procedure. It can test any linear combi-
nation of the parameter, and F-test will be performed. Let L be the contrast matrix. The hypothesis
test performed is HO: LAT * beta = 0. Thus the number of rows in L must equal to the number of
items of beta (which is the number of columns in the design matrix).

Using “term’ or ’Contrast’ will be slower especially when there are a lot of CpG sites, because the
computation cannot be vectorized (each CpG site has a different variance/covariance matrix for the
estimated coefficients).

FDR is computed using cannonical Benjamini-Hochberg procedure.

14 DML test.multiFactor

Author(s)

Hao Wu<hao.wu@emory.edu>

See Also
DML fit.multiFactor, DMLtest

Examples

Not run:

data(RRBS)

model fitting

DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell+case:cell)

hypothesis testing - following two lines do the same thing
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef=3)
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef="cellrN")

this doesn't work
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef="cell")

look at distributions of test statistics and p-values
par(mfrow=c(1,2))

hist(DMLtest.cell$stat, 100, main="test statistics")
hist(DMLtest.cell$pvals, 100, main="P values")

Using term or Contrast
DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell)

following 4 tests should produce the same results,

since 'case' only has two levels.

However the p-values from F-tests (using term or Contrast) are
slightly different, due to normal approximation in Wald test.
testl = DMLtest.multiFactor(DMLfit, coef=2)

test2 = DMLtest.multiFactor(DMLfit, coef="caseSLE")

test3 = DMLtest.multiFactor(DMLfit, term="case")

Contrast = matrix(c(@,1,0), ncol=1)

test4 = DMLtest.multiFactor(DMLfit, Contrast=Contrast)
cor(cbind(test1$pval, test2$pval, test3$pval, testd4$pval))

note the different usage of term and coef.

'term' has to be in the formula, whereas 'coef' has to be in colnames
of the design matrix.

DMLfit = DMLfit.multiFactor(RRBS, design, ~casetcell+case:cell)
DMLtest.cell = DMLtest.multiFactor(DMLfit, coef="cellrN")

DMLtest.cell = DMLtest.multiFactor(DMLfit, term="cell")

DMLtest.int = DMLtest.multiFactor(DMLfit, coef="caseSLE:cellrN")
DMLtest.int = DMLtest.multiFactor(DMLfit, term="case:cell")

End(Not run)

DSS.DE

15

DSS.DE

Perform RNA-seq differential expression analysis in two-group com-
parison

Description

This is the top level wrapper function for RNA-seq differential expression analysis in a two-group
comparison. Users only need to provide the count matrix and a vector for design, and obtain DE

test results.

Usage

DSS.DE(counts, design)

Arguments

counts

design

Value

A matrix of integers with rows corresponding to genes and columns for samples.

A vector representing the treatment groups. It must be a vector of 0 and 1. The
length of the vector must match the number of columns of input count matrix.

A data frame with each row corresponding to a gene. Rows are sorted according to wald test
statistics. The columns are:

gene Index
mMUA

muB

1fc
difExpr
stats
pval

others

Author(s)

index for input gene orders, integers from 1 to the number of genes.
sample mean (after normalization) for sample A.

sample mean (after normalization) for sample B.

log fold change of expressions between two groups.

differences in expressions between two groups.

Wald test statistics.

p-values.

input gene annotations supplied as AnnotatedDataFrame when constructed the
SeqCountData object.

Hao Wu <hao.wu@emory.edu>

Examples

counts = matrix(rpois(600, 10), ncol=6)
design = c(0,0,0,1,1,1)
result = DSS.DE(counts, design)

head(result)

16 estDispersion

estDispersion Estimate and shrink tag-specific dipsersions

Description

This function first estimate tag-specific dipsersions using a method of moment estimator. Then
the dipsersions are shrunk based a penalized likelihood approach. The function works for general
experimental designs.

Usage

S4 method for signature 'SeqCountSet'’
estDispersion(segData, trend=FALSE)

Arguments

seqData An object of SeqCountSet class.

trend A binary indicator for modeling the dispersion~expression trend.
Details

The function takes and object of seqCountData class and return the same oject with “dispersion”
field filled.

With “trend=TRUE” the dependence of dispersion on mean expressions will be modeled. In that
case the shrinkage will be performed conditional on mean expressions.

The function works for multiple factor designs. But option “trend=TRUE” only applicable for
single factor experiment.

Author(s)

Hao Wu <hao.wu@emory.edu>

Examples

data(segData)
seqData=estNormFactors(seqData)
segData=estDispersion(seqData)
head(dispersion(segData))

For multiple factor design

data(seqgData)

Y=exprs(seqData)

design=data.frame(gender=c(rep(”"M",4), rep("F",4)), strain=rep(c("WT", "Mutant"),4))
X=as.data.frame(model.matrix(~gender+strain, data=design))

seqData=newSeqCountSet(Y, X)

seqData=estDispersion(segData)

head(dispersion(segData))

estNormFactors 17

the hypothesis testing for multifactor experiments can be performed

using edgeR function, with DSS estimated dispersions

Not run:

library(edgeR)

fit.edgeR <- glmFit(Y, X, lib.size=normalizationFactor(segData), dispersion=dispersion(seqgData))
1rt.edgeR <- glmLRT(fit.edgeR, coef=2)

head(lrt.edgeR$table)

End(Not run)

estNormFactors Estimate normalization factors

Description

This function estimates normalization factors for the input ’seqCountSet’ object and return the same
object with normalizationFactor field filled or replaced.

Usage

S4 method for signature 'SeqgCountSet'

estNormFactors(segData, method=c(”"1lr"”, "quantile”, "total”, "median"))
Arguments

seqData An object of "SeqCountSet" class.

method Methods to be used in computing normalization factors. Currently available

options only include methods to compute normalization factor to adjust for se-
quencing depths. Available options use (1) "Ir": using median of logratio of
counts. Similar to the TMM method. (2) "quantile" (default): 75th quantile, (3)
"total": total counts, or (4) "median": median counts to constuct the normaliza-
tion factors. From all methods the normalization factor will be a vector with
same length as number of columns for input counts.

Value

The same "SeqCountSet" object with normalizationFactor field filled or replaced.

Author(s)

Hao Wu <hao.wu@emory.edu>

18 makeBSseqData

Examples

data(seqgData)

compare different methods
segData=estNormFactors(seqData, "1lr")
k1=normalizationFactor(segData)
seqData=estNormFactors(seqData, "quantile")
k2=normalizationFactor(segData)
seqData=estNormFactors(seqData, "total")
k3=normalizationFactor(segData)
cor(cbind(k1,k2,k3))

assign size factor
normalizationFactor(segData)=k1

or normalization factor can be a matrix

dd=exprs(segData)

f=matrix(runif(length(dd), 1,10), nrow=nrow(dd), ncol=ncol(dd))
normalizationFactor(segData)=f
head(normalizationFactor(segData))

makeBSseqgData Create an object of BSseq class from several data frames.

Description

This is an utility function to merge BS-seq data from replicated experiment and create an object of
BSseq class.

After sequence alignment and proper processing, the BS-seq data can be summarized by following
information at each C position (mostly CpG sites, with some CH): chromosome number, genomic
coordinate, total number of reads covering the position, and number of reads showing methylation
at this position. For replicated samples, the data need to be merged based on the chromosome
number and genomic coordinates. This function provide such functionality. It takes replicated data
as a list of data frames, merged them, and create a BSseq object.

Usage

makeBSseqData(dat, sampleNames)

Arguments
dat A list of multiple data frames from biological replicates. Each element repre-
sents data from one replicate. The data frame MUST contain following columns
in correct order: (1) Chromosome number; (2) Genomic coordinates; (3) Read
coverage of the position from BS-seq data; (4) Number of reads showing methy-
lation of the position. The colnames MUST BE "chr", "pos", "N", "X".
sampleNames A vector of characters for the sample names. The length of the vector should

match the length of the input list.

normalizationFactor 19

Value

An object of "BSseq’ class.

Author(s)

Hao Wu <hao.wu@emory.edu>

See Also
callDML

Examples

require(bsseq)

first read in methylation data.

path <- file.path(system.file(package="DSS"), "extdata")

dat1.1 <- read.table(file.path(path, "cond1_1.txt"), header=TRUE)
dat1.2 <- read.table(file.path(path, "cond1_2.txt"), header=TRUE)
dat2.1 <- read.table(file.path(path, "cond2_1.txt"), header=TRUE)
dat2.2 <- read.table(file.path(path, "cond2_2.txt"), header=TRUE)

make BSseq objects
BSobj <- makeBSseqData(list(datl1.1, datl1.2, dat2.1, dat2.2),
C(HC‘I ”,”CZ", IIN1 II, 1IN2M>)

BSobj
sampleNames (BSobj)

normalizationFactor Accessor functions for the 'normalizationFactor’ slot in a SeqCount-
Data object.

Description

The normalization factors are used to adjust for technical or biological biases in the sequencing
experiments. The factors can either be (1) a vector with length equals to the number of columns of
the count data; or (2) a matrix with the same dimension of the count data.

Usage

S4 method for signature 'SeqCountSet'’
normalizationFactor(object)

S4 replacement method for signature 'SeqCountSet,numeric'
normalizationFactor(object) <- value

S4 replacement method for signature 'SeqCountSet,matrix’
normalizationFactor(object) <- value

20 RRBS

Arguments
object A SeqCountData object.
value A numeric vector or matrix. If it is a vector it must have length equals to the
number of columns of the count data. For matrix it must have the same dimen-
sion of the count data.
Details

The vector normalization factors are used mostly to correct for sequencing depth from different
datasets. The matrix factor applies a different normalizing constant for each gene at each sample to
adjust for a broader range of artifacts such as GC content.

Author(s)

Hao Wu <hao.wu@emory.edu>

See Also

dispersion

Examples

data(segData)

obtain nomalization factor
seqData=estNormFactors(seqData, "quantile")
normalizationFactor(segData)

assign as vector
normalizationFactor(segData)=rep(1, ncol(exprs(seqData))) ## getan error here

or assign as a matrix
f=matrix (1, nrow=nrow(exprs(seqData)), ncol=ncol(exprs(seqData)))
normalizationFactor(segData)=f

RRBS An example dataset for multiple factor design

Description

The dataset contains RRBS data for 5000 CpG sites from 16 samples. The experimental design is
provided in the ’design’ data frame.

Usage

data(”RRBS")

SeqCountSet-class 21

Examples

data(RRBS)
RRBS
design

SeqCountSet-class Class "SeqCountSet" - container for count data from sequencing ex-
periment

Description

This class is the main container for storing *RNA-seq* data. It is directly inherited fro ’Expression-
Set’ class, with two more fields *normalizationFactor’ for normalization factors and ’dispersion’ for
gene-wise dispersions.

The class for BS-seq data is *BSseq*, which is imported from bsseq package.

Slots

normalizationFactor: Normalization factor for counts.
dispersion: Gene-wise dispersions.

experimentData: See ’ExpressionSet’.

assayData: See 'ExpressionSet’.

phenoData: See ’ExpressionSet’.

featureData: See ’ExpressionSet’.

annotation: See ’ExpressionSet’.

protocolData: See ’ExpressionSet’.

Extends

Class "ExpressionSet”, directly. Class "eSet"”, by class "ExpressionSet", distance 2. Class
"VersionedBiobase", by class "ExpressionSet", distance 3. Class "Versioned"”, by class "Ex-
pressionSet", distance 4.

Constructor

newSeqCountSet(counts,designs,normalizationFactor, featureData): Creates a’SeqCountSet’
object.
counts A matrix of integers with rows corresponding to genes and columns for samples.
designs A vector or data frame representing experimental design. The length of the vector
or number of rows of the data frame must match the number of columns of input counts.
This field can be accessed using 'pData’ function.
normalizationFactor A vector or matrix of normalization factors for the counts.
featureData Additional information for genes as an ’AnnotatedDataFrame’ object. This
field can be access by using *featureData’ function.

22 seqData

Methods

dispersion, dispersion<- : Access and set gene-wise dispersions.

normalizationFactor, normalizationFactor<- : Access and set normalization factors.

Note

This is similar to *’CountDataSet’” in DESeq or "'DGEList’ in edgeR.

Author(s)

Hao Wu <hao.wu@emory.edu>

See Also

dispersion, normalizationFactor

Examples

simulate data from RNA-seq
counts=matrix(rpois(600, 10), ncol=6)
designs=c(0,0,0,1,1,1)
segData=newSeqCountSet(counts, designs)
segData

pData(segData)

head(exprs(segData))

multiple factor designs

design=data.frame(gender=c(rep(”"M",4), rep("F",4)), strain=rep(c("WT", "Mutant"),4))
X=model.matrix(~gender+strain, data=design)

counts=matrix(rpois(800, 10), ncol=8)

seqData=newSeqCountSet(counts, as.data.frame(X))

segData

pData(segData)

seqData A simulated ’SeqCountData’ object.

Description
The object is created based on simulation for 1000 genes and two treatment groups with 4 replicates
in each group.

Usage

data(seqData)

showOneDMR 23

Examples

data(segData)
seqgData

showOneDMR Visualze the count data for one DMR

Description

Given one DMR and an BSseq object, this function generate a multiple panel figure, each for a
sample, to visualze the counts. There is a bar at each CpG, the gray bar shows the total coverage,
and the black bar shows the methylated count.

Usage

showOneDMR(OneDMR, BSobj, ext = 500, ylim)

Arguments
OneDMR A data frame with one row representing one DMR. It must have chr, start, and
end columns. This is typically a row from the result generated from callDMR.
BSobj An object of class BSseq.
ext The amount (in bps) the plotting region should be extended in both directions.
ylim Y-axis limit.
Value

This function only generates a figure and has no return values.

Author(s)

Hao Wu <hao.wu@emory.edu>

See Also
callDMR

Examples

Not run:
require(bsseq)
require(bsseqData)
data(BS.cancer.ex)

takea small portion of data and test
BSobj <- BS.cancer.ex[140000:150000,]
dmlTest <- DMLtest(BSobj, groupl=c("C1"”, "C2", "C3"), group2=c("N1","N2","N3"),

24 waldTest

smoothing=TRUE, smoothing.span=500)

call DMR based on test results
dmrs <- callDMR(dmlTest)

visualize one DMR
showOneDMR (dmrs[1,], BSobj)

End(Not run)

waldTest Perform gene-wise Wald test for two group comparisons for sequenc-
ing count data.

Description

The counts from two groups are modeled as negative binomial random variables with means and
dispersions estimated. Wald statistics will be constructed. P-values will be obtained based on
Gaussian assumption.

Usage

S4 method for signature 'SegCountSet'’
waldTest(segData, sampleA, sampleB, equal.var, fdr.method=c(”"BH", "locfdr"))

Arguments
seqData An object of SeqCountSet class.
sampleA The sample labels for the first sample to be compared in two-group comparison.
sampleB The sample labels for the second sample to be compared in two-group compar-
ison.
equal.var A boolean to indicate whether to use the same or different means in two groups
for computing variances in Wald test. Default is FALSE.
fdr.method Method to compute FDR. Availabile options are "BH" for Benjamini-Hochberg
FDR method, or local FDR from "locfdr" package.
Details

The input seqCountData object Must have normalizationFactor and dispersion fields filled, e.g.,
estNormFactors and estDispersion need to be called prior to this. With group means and shrunk
dispersions ready, the variances for difference in group means will be constructed based on Negative
Binomial distribution. P-values will be obtained under the assumption that the Wald test statistics
are normally distributed. Genes with O counts in both groups will be assigned 0 for test statistics
and 1 for p-values.

waldTest 25

Value

A data frame with each row corresponding to a gene. Rows are sorted according to wald test
statistics. The columns are:

gene Index index for input gene orders, integers from 1 to the number of genes.
muA sample mean (after normalization) for sample A.
muB sample mean (after normalization) for sample B.
1fc log fold change of expressions between two groups.
difExpr differences in expressions between two groups.
stats Wald test statistics.
pval p-values.
fdr FDR.
local.fdr Local FDR if the FDR method is "locfdr".
others input gene annotations supplied as AnnotatedDataFrame when constructed the
SeqCountData object.
Author(s)

Hao Wu <hao.wu@emory.edu>

Examples

data(seqgData)
seqData=estNormFactors(seqData)
segData=estDispersion(seqData)
result=waldTest(segData, @, 1)
head(result)

Index

* RNA-seq
estDispersion, 16
* classes
SeqCountSet-class, 21
x datasets
design, 7
RRBS, 20
segData, 22
+ normalization
estNormFactors, 17
x package
DSS-package, 2

callDML, 2
callDMR, 4

design, 7

dispersion, 7

dispersion, SeqCountSet-method
(dispersion), 7

dispersion<- (dispersion), 7

dispersion<-,SeqCountSet, numeric-method
(dispersion), 7

DMLfit.multiFactor, 8

DMLtest, 10

DMLtest.multiFactor, 12

DSS (DSS-package), 2

DSS-package, 2

DSS.DE, 15

eSet, 21

estDispersion, 16

estDispersion, SeqCountSet-method
(estDispersion), 16

estNormFactors, 17

estNormFactors, SeqCountSet-method
(estNormFactors), 17

ExpressionSet, 21

makeBSseqData, 18

26

newSeqCountSet (SeqCountSet-class), 21
normalizationFactor, 19
normalizationFactor, SeqCountSet-method
(normalizationFactor), 19
normalizationFactor<-
(normalizationFactor), 19
normalizationFactor<-,SeqCountSet,matrix-method
(normalizationFactor), 19
normalizationFactor<-,SeqCountSet,numeric-method
(normalizationFactor), 19

RRBS, 20

SegCountSet (SeqCountSet-class), 21
SeqCountSet-class, 21

seqData, 22

showOneDMR, 23

Versioned, 21
VersionedBiobase, 2/

waldTest, 24
waldTest, SeqCountSet-method (waldTest),
24

	DSS-package
	callDML
	callDMR
	design
	dispersion
	DMLfit.multiFactor
	DMLtest
	DMLtest.multiFactor
	DSS.DE
	estDispersion
	estNormFactors
	makeBSseqData
	normalizationFactor
	RRBS
	SeqCountSet-class
	seqData
	showOneDMR
	waldTest
	Index

