
Package ‘Coralysis’
January 23, 2026

Type Package

Title Coralysis sensitive identification of imbalanced cell types and
states in single-cell data via multi-level integration

Version 1.1.0

Description
Coralysis is an R package featuring a multi-level integration algorithm for sensitive integration,
reference-mapping, and cell-state identification in single-cell data. The multi-level integration
algorithm is inspired by the process of assembling a puzzle - where one begins by grouping pieces
based on low-to high-
level features, such as color and shading, before looking into shape and patterns.
This approach progressively blends the batch effects and separates cell types across multi-
ple rounds
of divisive clustering.

License GPL-3

Imports Matrix, aricode, LiblineaR, SparseM, ggplot2, umap, Rtsne,
pheatmap, reshape2, dplyr, SingleCellExperiment,
SummarizedExperiment, S4Vectors, methods, stats, utils, RANN,
sparseMatrixStats, irlba, flexclust, scran, class, matrixStats,
tidyr, cowplot, uwot, scatterpie, RColorBrewer, ggrastr,
ggrepel, RSpectra, BiocParallel, withr

Depends R (>= 4.2.0)

Suggests knitr, rmarkdown, bluster, ComplexHeatmap, circlize, scater,
viridis, scRNAseq, SingleR, MouseGastrulationData, testthat (>=
3.0.0), BiocStyle, scrapper

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

biocViews SingleCell, RNASeq, Proteomics, Transcriptomics,
GeneExpression, BatchEffect, Clustering, Annotation,
Classification, DifferentialExpression, DimensionReduction,
Software

NeedsCompilation no

1

2 Contents

URL https://github.com/elolab/Coralysis,

https://elolab.github.io/Coralysis/

BugReports https://github.com/elolab/Coralysis/issues

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/Coralysis

git_branch devel

git_last_commit 94d3ee0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author António Sousa [cre, aut] (ORCID:
<https://orcid.org/0000-0003-4779-6459>),

Johannes Smolander [ctb, aut] (ORCID:
<https://orcid.org/0000-0003-3872-9668>),

Sini Junttila [aut] (ORCID: <https://orcid.org/0000-0003-3754-5584>),
Laura L Elo [aut] (ORCID: <https://orcid.org/0000-0001-5648-4532>)

Maintainer António Sousa <aggode@utu.fi>

Contents
.randomColors . 3
AggregateClusterExpression . 3
AggregateDataByBatch . 4
BinCellClusterProbability . 5
CellBinsFeatureCorrelation . 7
CellClusterProbabilityDistribution . 8
ClusterCells . 10
DownOverSampleEvenlyBatches . 11
DownOverSampling . 11
FindAllClusterMarkers . 12
FindBatchKNN . 14
FindClusterBatchKNN . 14
FindClusterMarkers . 15
GetCellClusterProbability . 17
GetFeatureCoefficients . 19
HeatmapFeatures . 20
LogisticRegression . 22
MajorityVotingFeatures . 23
PCAElbowPlot . 24
PlotClusterTree . 26
PlotDimRed . 27
PlotExpression . 30
PrepareData . 32
RandomlyDivisiveClustering . 33

https://github.com/elolab/Coralysis
https://elolab.github.io/Coralysis/
https://github.com/elolab/Coralysis/issues
https://orcid.org/0000-0003-4779-6459
https://orcid.org/0000-0003-3872-9668
https://orcid.org/0000-0003-3754-5584
https://orcid.org/0000-0001-5648-4532

.randomColors 3

ReferenceMapping . 33
RunDivisiveICP . 36
RunParallelDivisiveICP . 38
RunPCA . 42
RunTSNE . 45
RunUMAP . 47
SampleClusterBatchProbs . 49
SampleClusterProbs . 50
SamplePCACells . 50
Scale . 51
ScaleByBatch . 52
SummariseCellClusterProbability . 52
TabulateCellBinsByGroup . 54
VlnPlot . 56

Index 58

.randomColors Random colors

Description

The function returns a group of random colors.

Usage

.randomColors(ncolors)

Arguments

ncolors Integer. Number of colors to generate randomly.

Value

Random colors.

AggregateClusterExpression

Aggregates cell feature expression by clusters

Description

The function aggregates cell feature expression by clusters provided.

Usage

AggregateClusterExpression(mtx, cluster, select.features = NULL, fun = "mean")

4 AggregateDataByBatch

Arguments

mtx Matrix with features vs cells (rows vs cols) with feature expression to aggregate.

cluster Cluster identities vector corresponding to the cells in mtx.

select.features

Should features be selected. By default NULL, all features used.

fun Character specifying if feature expression should be aggregated by mean or sum.
By default "mean".

Value

Matrix of feature expressed aggregated by clusters.

AggregateDataByBatch Aggregates feature expression by cell clusters, per batch if provided.

Description

The function aggregates feature expression by cell clusters, per batch if provided.

Usage

AggregateDataByBatch.SingleCellExperiment(object, batch.label, nhvg, p, ...)

S4 method for signature 'SingleCellExperiment'
AggregateDataByBatch(object, batch.label, nhvg = 2000L, p = 30L, ...)

Arguments

object An object of SingleCellExperiment class.

batch.label Cluster identities vector corresponding to the cells in mtx.

nhvg Integer of the number of highly variable features to select. By default 2000.

p Integer. By default 30.

... Parameters to be passed to ClusterCells() function.

Value

A SingleCellExperiment object with feature expression aggregated by clusters.

BinCellClusterProbability 5

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Import data from Zenodo
data.url <- "https://zenodo.org/records/14871436/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

Run with a batch
set.seed(1204)
sce <- AggregateDataByBatch(object = sce, batch.label = "batch")
logcounts(sce)[1:10, 1:10]
head(metadata(sce)$clusters)

Run without a batch
set.seed(1204)
sce <- AggregateDataByBatch(object = sce, batch.label = NULL)
logcounts(sce)[1:10, 1:10]
head(metadata(sce)$clusters)

BinCellClusterProbability

Bin cell cluster probability

Description

Bin cell cluster probability by a given cell label.

Usage

BinCellClusterProbability.SingleCellExperiment(
object,
label,
icp.run,
icp.round,
funs,
bins,
aggregate.bins.by,
use.assay

)

S4 method for signature 'SingleCellExperiment'
BinCellClusterProbability(
object,
label,
icp.run = NULL,
icp.round = NULL,

6 BinCellClusterProbability

funs = "mean",
bins = 20,
aggregate.bins.by = "mean",
use.assay = "logcounts"

)

Arguments

object An object of SingleCellExperiment class with ICP cell cluster probability ta-
bles saved in metadata(object)$coralysis$joint.probability. After run-
ning one of RunParallelICP or RunParallelDivisiveICP.

label Label of interest available in colData(object) to group by the bins of cell
cluster probability.

icp.run ICP run(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Specify a numeric vector to retrieve a spe-
cific set of tables.

icp.round ICP round(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Only relevant if probabilities were ob-
tained with the function RunParallelDivisiveICP, i.e., divisive ICP was per-
formed. Otherwise it is ignored and internally assumed as icp.round = 1, i.e.,
only one round.

funs One function to summarise ICP cell cluster probability. One of "mean" or
"median". By default "mean".

bins Number of bins to bin cell cluster probability by cell label given. By default
20.

aggregate.bins.by

One function to aggregate One of "mean" or "median". By default "mean".

use.assay Name of the assay that should be used to obtain the average expression of fea-
tures across cell label probability bins.

Value

A SingleCellExperiment class object with feature average expression by cell label probability
bins.

Examples

Packages
suppressPackageStartupMessages(library("SingleCellExperiment"))

Import data from Zenodo
data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

Prepare data
sce <- PrepareData(object = sce)

Multi-level integration - 'L = 4' just for highlighting purposes

CellBinsFeatureCorrelation 7

set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "batch", L = 4,
threads = 2

)

Cell states SCE object for a given cell type annotation or clustering
cellstate.sce <- BinCellClusterProbability(

object = sce, label = "cell_type",
icp.round = 4, bins = 20

)
cellstate.sce

CellBinsFeatureCorrelation

Cell bins feature correlation

Description

Correlation between cell bins for the given labels and features.

Usage

CellBinsFeatureCorrelation.SingleCellExperiment(object, labels, method)

S4 method for signature 'SingleCellExperiment'
CellBinsFeatureCorrelation(object, labels = NULL, method = "pearson")

Arguments

object An object of SingleCellExperiment class obtained with the function BinCellClusterProbability().

labels Character of label(s) from the label provided to the function BinCellClusterProbability().
By default NULL, i.e., all labels are used.

method Character specifying the correlation method to use. One of "pearson", "kendall"
or "spearman". By default "pearson" is used.

Value

A data frame with the correlation coefficient for each feature (rows) across labels (columns).

Examples

Packages
suppressPackageStartupMessages(library("SingleCellExperiment"))

Import data from Zenodo

8 CellClusterProbabilityDistribution

data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

Prepare data
sce <- PrepareData(object = sce)

Multi-level integration - 'L = 4' just for highlighting purposes
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "batch", L = 4,
threads = 2

)

Cell states SCE object for a given cell type annotation or clustering
cellstate.sce <- BinCellClusterProbability(

object = sce, label = "cell_type",
icp.round = 4, bins = 20

)
cellstate.sce

Pearson correlated features with "Monocyte"
cor.features.mono <- CellBinsFeatureCorrelation(

object = cellstate.sce,
labels = "Monocyte"

)

CellClusterProbabilityDistribution

Cell cluster probability distribution

Description

Plot cell cluster probability distribution per label by group.

Usage

CellClusterProbabilityDistribution.SingleCellExperiment(
object,
label,
group,
probability

)

S4 method for signature 'SingleCellExperiment'
CellClusterProbabilityDistribution(
object,
label,

CellClusterProbabilityDistribution 9

group,
probability = "scaled_mean_probs"

)

Arguments

object An object of SingleCellExperiment class with aggregated cell cluster prob-
ability available in colData(object), which can be obtained after running
SummariseCellClusterProbability().

label Character specifying the colData variable to use as cell type/cluster label.

group Character specifying the colData variable to use as categorical group variable.

probability Character specifying the aggregated cell cluster probability variable available in
colData, used to plot its distribution. One of "mean_probs", "scaled_mean_probs",
"median_probs", "scaled_median_probs". The availability of these variables
in colData depends on the parameters given to the function SummariseCellClusterProbability()
beforehand. By default assumes that "scaled_mean_probs" is available in
colData, which is only true if SummariseCellClusterProbability() func-
tion was run with funs = "mean" and scale.funs = TRUE.

Value

A plot of class ggplot.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 4, L = 25, C = 1, d = 0.5,
train.with.bnn = FALSE,

10 ClusterCells

use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Summarise cell cluster probability
sce <- SummariseCellClusterProbability(object = sce, icp.round = 2) # saved in 'colData'

Search for differences in probabilities across group(s)
give an interesting variable to the "group" parameter
prob.dist <- CellClusterProbabilityDistribution(

object = sce, label = "Species",
group = "Batch",
probability = "scaled_mean_probs"

)
prob.dist # print plot

ClusterCells Cluster cells

Description

The function clusters cells with the K-means++ algorithm

Usage

ClusterCells(object, nclusters = 500, use.emb = TRUE, emb.name = "PCA")

Arguments

object An object of SingleCellExperiment class.

nclusters Cluster the cells into n clusters. Ignored if the number of cells in object is
lower or equal to nclusters.

use.emb Should the embedding be used to cluster or the log-transformed data. By default
TRUE.

emb.name Which embedding to use. By default "PCA".

Value

A SingleCellExperiment object with clusters.

DownOverSampleEvenlyBatches 11

DownOverSampleEvenlyBatches

Down- and oversample data evenly batches

Description

The function down- and over-samples cluster cells evenly by batch.

Usage

DownOverSampleEvenlyBatches(x, batch, n = 50)

Arguments

x A character or numeric vector of data to down-and oversample.

batch A character vector with batch labels corresponding to x.

n How many cells to include per cluster.

Value

a list containing the output of the LiblineaR prediction

DownOverSampling Down- and oversample data

Description

The function implements a script down- and oversamples data to include n cells.

Usage

DownOverSampling(x, n = 50)

Arguments

x A character or numeric vector of data to down-and oversample.

n How many cells to include per cluster.

Value

a list containing the output of the LiblineaR prediction

12 FindAllClusterMarkers

FindAllClusterMarkers Identification of feature markers for all clusters

Description

FindAllClusterMarkers enables identifying feature markers for all clusters at once. This is done
by differential expresission analysis where cells from one cluster are compared against the cells
from the rest of the clusters. Feature and cell filters can be applied to accelerate the analysis, but
this might lead to missing weak signals.

Usage

FindAllClusterMarkers.SingleCellExperiment(
object,
clustering.label,
test,
log2fc.threshold,
min.pct,
min.diff.pct,
min.cells.group,
max.cells.per.cluster,
return.thresh,
only.pos

)

S4 method for signature 'SingleCellExperiment'
FindAllClusterMarkers(
object,
clustering.label,
test = "wilcox",
log2fc.threshold = 0.25,
min.pct = 0.1,
min.diff.pct = NULL,
min.cells.group = 3,
max.cells.per.cluster = NULL,
return.thresh = 0.01,
only.pos = FALSE

)

Arguments

object A SingleCellExperiment object.
clustering.label

A variable name (of class character) available in the cell metadata colData(object)
with the clustering labels (character or factor) to use.

test Which test to use. Only "wilcox" (the Wilcoxon rank-sum test, AKA Mann-
Whitney U test) is supported at the moment.

FindAllClusterMarkers 13

log2fc.threshold

Filters out features that have log2 fold-change of the averaged feature expression
values below this threshold. Default is 0.25.

min.pct Filters out features that have dropout rate (fraction of cells expressing a feature)
below this threshold in both comparison groups. Default is 0.1.

min.diff.pct Filters out features that do not have this minimum difference in the dropout
rates (fraction of cells expressing a feature) between the two comparison groups.
Default is NULL.

min.cells.group

The minimum number of cells in the two comparison groups to perform the DE
analysis. If the number of cells is below the threshold, then the DE analysis of
this cluster is skipped. Default is 3.

max.cells.per.cluster

The maximum number of cells per cluster if downsampling is performed to
speed up the DE analysis. Default is NULL, i.e., no downsampling.

return.thresh If only.pos=TRUE, then return only features that have the adjusted p-value (ad-
justed by the Bonferroni method) below or equal to this threshold. Default is
0.01.

only.pos Whether to return only features that have an adjusted p-value (adjusted by the
Bonferroni method) below or equal to the threshold. Default is FALSE.

Value

A data frame of the results if positive results were found, else NULL.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Markers
dge <- FindAllClusterMarkers(sce, clustering.label = "Species")
dge

14 FindClusterBatchKNN

FindBatchKNN Find batch k nearest neighbors

Description

The function finds batch k nearest neighbors for the cell with the highest probability for every batch.

Usage

FindBatchKNN(idx, group, prob, k = 10)

Arguments

idx A numeric vector with the cell ids to retrieve from the data set.

group A character vector with batch labels corresponding to idx.

prob A numeric vector with cell probabilities corresponding to idx.

k The number of nearest neighbors to search for. Default is 10.

Value

a list containing the k nearest neighbors for every cell queried

FindClusterBatchKNN Find batch k nearest neighbors per cluster

Description

The function finds batch k nearest neighbors for the cell with the highest probability for every batch
per cluster.

Usage

FindClusterBatchKNN(preds, probs, batch, k = 10, k.prop = NULL)

Arguments

preds A numeric vector with the cell cluster predictions.

probs A numeric matrix with cell cluster probabilities.

batch A character with batch labels.

k The number of nearest neighbors to search for. Default is 10.

k.prop A numeric (higher than 0 and lower than 1) corresponding to the fraction of
cells per cluster to use as k nearest neighbors. Default is NULL meaning that the
number of k nearest neighbors is equal to k. If given, k parameter is ignored and
k is calculated based on k.prop.

FindClusterMarkers 15

Value

a list containing the k nearest neighbors for every cluster

FindClusterMarkers Differential expression between cell clusters

Description

FindClusterMarkers enables identifying feature markers for one cluster or two arbitrary combi-
nations of clusters, e.g. 1_2 vs. 3_4_5. Feature and cell filters can be applied to accelerate the
analysis, but this might lead to missing weak signals.

Usage

FindClusterMarkers.SingleCellExperiment(
object,
clustering.label,
clusters.1,
clusters.2,
test,
log2fc.threshold,
min.pct,
min.diff.pct,
min.cells.group,
max.cells.per.cluster,
return.thresh,
only.pos

)

S4 method for signature 'SingleCellExperiment'
FindClusterMarkers(
object,
clustering.label,
clusters.1 = NULL,
clusters.2 = NULL,
test = "wilcox",
log2fc.threshold = 0.25,
min.pct = 0.1,
min.diff.pct = NULL,
min.cells.group = 3,
max.cells.per.cluster = NULL,
return.thresh = 0.01,
only.pos = FALSE

)

16 FindClusterMarkers

Arguments

object A SingleCellExperiment object.
clustering.label

A variable name (of class character) available in the cell metadata colData(object)
with the clustering labels (character or factor) to use.

clusters.1 a character or numeric vector denoting which clusters to use in the first group
(named group.1 in the results)

clusters.2 a character or numeric vector denoting which clusters to use in the second group
(named group.2 in the results)

test Which test to use. Only "wilcoxon" (the Wilcoxon rank-sum test, AKA Mann-
Whitney U test) is supported at the moment.

log2fc.threshold

Filters out features that have log2 fold-change of the averaged feature expression
values below this threshold. Default is 0.25.

min.pct Filters out features that have dropout rate (fraction of cells expressing a feature)
below this threshold in both comparison groups Default is 0.1.

min.diff.pct Filters out features that do not have this minimum difference in the dropout
rates (fraction of cells expressing a feature) between the two comparison groups.
Default is NULL.

min.cells.group

The minimum number of cells in the two comparison groups to perform the DE
analysis. If the number of cells is below the threshold, then the DE analysis is
not performed. Default is 3.

max.cells.per.cluster

The maximun number of cells per cluster if downsampling is performed to speed
up the DE analysis. Default is NULL, i.e. no downsampling.

return.thresh If only.pos=TRUE, then return only features that have the adjusted p-value (ad-
justed by the Bonferroni method) below or equal to this threshold. Default is
0.01.

only.pos Whether to return only features that have an adjusted p-value (adjusted by the
Bonferroni method) below or equal to the threshold. Default is FALSE.

Value

a data frame of the results if positive results were found, else NULL

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

GetCellClusterProbability 17

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Markers between versicolor vs virginica
dge <- FindClusterMarkers(sce,

clustering.label = "Species",
clusters.1 = "versicolor",
clusters.2 = "virginica"

)
dge

GetCellClusterProbability

Get ICP cell cluster probability

Description

Get ICP cell cluster probability table(s)

Usage

GetCellClusterProbability.SingleCellExperiment(
object,
icp.run,
icp.round,
concatenate

)

S4 method for signature 'SingleCellExperiment'
GetCellClusterProbability(
object,
icp.run = NULL,
icp.round = NULL,
concatenate = TRUE

)

Arguments

object An object of SingleCellExperiment class with ICP cell cluster probability ta-
bles saved in metadata(object)$coralysis$joint.probability. After run-
ning RunParallelDivisiveICP.

18 GetCellClusterProbability

icp.run ICP run(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Specify a numeric vector to retrieve a spe-
cific set of tables.

icp.round ICP round(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved.

concatenate Concatenate list of ICP cell cluster probability tables retrieved. By default TRUE,
i.e., the list of ICP cell cluster probability tables is concatenated.

Value

A list with ICP cell cluster probability tables or a matrix with concatenated tables.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Get cluster probability for all ICP runs
probs <- GetCellClusterProbability(object = sce, icp.round = 1, concatenate = TRUE)
probs[1:10, 1:5]

GetFeatureCoefficients 19

GetFeatureCoefficients

Get feature coefficients

Description

Get feature coefficients from ICP models.

Usage

GetFeatureCoefficients.SingleCellExperiment(
object,
icp.run = NULL,
icp.round = NULL

)

S4 method for signature 'SingleCellExperiment'
GetFeatureCoefficients(object, icp.run = NULL, icp.round = NULL)

Arguments

object An object of SingleCellExperiment class with ICP cell cluster probability ta-
bles saved in metadata(object)$coralysis$joint.probability. After run-
ning RunParallelDivisiveICP.

icp.run ICP run(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Specify a numeric vector to retrieve a spe-
cific set of tables.

icp.round ICP round(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved.

Value

A list of feature coefficient weights per cluster per ICP run/round.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

20 HeatmapFeatures

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 4, L = 25, C = 1, d = 0.5,
train.with.bnn = FALSE,
use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

GetFeatureCoefficients
gene_coefficients_icp_7_1 <- GetFeatureCoefficients(object = sce, icp.run = 7, icp.round = 1)
head(gene_coefficients_icp_7_1$icp_13)

HeatmapFeatures Heatmap visualization of the expression of features by clusters

Description

The HeatmapFeatures function draws a heatmap of features by cluster identity.

Usage

HeatmapFeatures.SingleCellExperiment(
object,
clustering.label,
features,
use.color,
seed.color,
...

)

S4 method for signature 'SingleCellExperiment'
HeatmapFeatures(
object,
clustering.label,
features,
use.color = NULL,
seed.color = 123,

HeatmapFeatures 21

...
)

Arguments

object of SingleCellExperiment class
clustering.label

A variable name (of class character) available in the cell metadata colData(object)
with the clustering labels (character or factor) to use.

features Feature names to plot by cluster (character) matching row.names(object).

use.color Character specifying the colors for the clusters. By default NULL, i.e., colors are
randomly chosen based on the seed given at seed.color. It is overwritten in
case the argument annotation_colors is provided.

seed.color Seed to randomly select colors for the clusters. By default 123. It is overwritten
in case the argument annotation_colors is provided.

... Parameters to pass to pheatmap::pheatmap function.

Value

nothing

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Plot features by clustering, i.e., grouping variable
without scaling rows (using 'logcounts' expression):
HeatmapFeatures(

object = sce, clustering.label = "Species",
features = row.names(sce)[1:4]

)

scaling rows:
HeatmapFeatures(

object = sce, clustering.label = "Species",
features = row.names(sce)[1:4], scale = "row"

22 LogisticRegression

) # scale

LogisticRegression Clustering projection using logistic regression from the LiblineaR R
package

Description

The function implements a script that downsamples data a dataset, trains a logistic regression clas-
sifier model and then projects its clustering onto itself using a trained L1-regularized logistic re-
gression model.

Usage

LogisticRegression(
training.sparse.matrix = NULL,
training.ident = NULL,
C = 0.3,
reg.type = "L1",
test.sparse.matrix = NULL,
d = 0.3,
batch.label = NULL,
training_ident_subset = NULL

)

Arguments

training.sparse.matrix

A sparse matrix (dgCMatrix) containing training sample’s feature expression
data with features in rows and cells in columns. Default is NULL.

training.ident A named factor containing sample’s cluster labels for each cell in training.sparse.matrix.
Default is NULL.

C Cost of constraints violation in L1-regularized logistic regression (C). Default is
0.3.

reg.type "L1" for LASSO and "L2" for Ridge. Default is "L1".
test.sparse.matrix

A sparse matrix (dgCMatrix) containing test sample’s feature expression data
with features in rows and cells in columns. Default is NULL.

d A numeric smaller than 1 and greater than 0 that determines how many cells
per cluster should be down- and oversampled (d in N/k*d), where N is the total
number of cells and k the number of clusters. Default is 0.3.

batch.label A character vector with batch labels corresponding to the cells given in training.ident.
The character batch labels need to be named with the cells names given in
training.ident. By default NULL, i.e., cells are sampled evenly regardless
their batch.

MajorityVotingFeatures 23

training_ident_subset

A character or numeric vector with cell ids to use as train set. By default NULL.
If given, the down- and oversampled parameters are ignored.

Value

a list containing the output of the LiblineaR prediction

MajorityVotingFeatures

Majority voting features by label

Description

Get ICP feature coefficients for a label of interest by majority voting label across ICP clusters.

Usage

MajorityVotingFeatures.SingleCellExperiment(object, label)

S4 method for signature 'SingleCellExperiment'
MajorityVotingFeatures(object, label)

Arguments

object An object of SingleCellExperiment class with ICP cell cluster probability ta-
bles saved in metadata(object)$coralysis$joint.probability. After run-
ning RunParallelDivisiveICP.

label Label of interest available in colData(object).

Value

A list of with a list of data frames with feature weights per label and a data frame with a summary
by label.

Examples

Not run:
Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Import data from Zenodo
data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "batch",

24 PCAElbowPlot

k = 4, L = 10, C = 1, d = 0.5,
train.with.bnn = FALSE, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2

)

Get coefficients by majority voting for a given categorical variable
coeff <- MajorityVotingFeatures(object = sce, label = "cell_type")
gene_coeff$summary
order.rows <- order(coeff$feature_coeff$Monocyte$coeff_clt2,

decreasing = TRUE
)
head(coeff$feature_coeff$Monocyte[order.rows,], n = 10)

End(Not run)

PCAElbowPlot Elbow plot of the standard deviations of the principal components

Description

Draw an elbow plot of the standard deviations of the principal components to deduce an appropriate
value for p.

Usage

PCAElbowPlot.SingleCellExperiment(object, dimred.name, return.plot)

S4 method for signature 'SingleCellExperiment'
PCAElbowPlot(object, dimred.name = "PCA", return.plot = FALSE)

Arguments

object A SingleCellExperiment object obtained after running RunParallelDivisiveICP.

dimred.name Dimensional reduction name of the PCA to select from reducedDimNames(object).
By default "PCA".

return.plot logical indicating if the ggplot2 object should be returned. By default FALSE.

Value

A ggplot2 object, if return.plot=TRUE.

PCAElbowPlot 25

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Integrated PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "joint.probability", p = 10)

Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),
PlotDimRed(

object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

Plot Elbow
PCAElbowPlot(sce)

26 PlotClusterTree

PlotClusterTree Plot cluster tree

Description

Plot cluster tree by or cluster probability or categorical variable.

Usage

PlotClusterTree.SingleCellExperiment(
object,
icp.run,
color.by,
use.color,
seed.color,
legend.title,
return.data

)

S4 method for signature 'SingleCellExperiment'
PlotClusterTree(
object,
icp.run,
color.by = NULL,
use.color = NULL,
seed.color = 123,
legend.title = color.by,
return.data = FALSE

)

Arguments

object An object of SingleCellExperiment class.

icp.run ICP run(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Specify a numeric vector to retrieve a spe-
cific set of tables.

color.by Categorical variable available in colData(object) to plot. If NULL the cluster
probability is represented instead. By default NULL.

use.color Character specifying the colors. By default NULL, i.e., colors are randomly cho-
sen based on the seed given at seed.color.

seed.color Seed to randomly select colors. By default 123.

legend.title Legend title. By default the same as given at color.by. Ignored if color.by is
NULL.

return.data Return data frame used to plot. Logical. By default FALSE, i.e., only the plot is
returned.

PlotDimRed 27

Value

A plot of class ggplot or a list with a plot of class ggplot and a data frame.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch", k = 4,
L = 25, C = 1, d = 0.5, train.with.bnn = FALSE,
use.cluster.seed = FALSE, build.train.set = FALSE,
ari.cutoff = 0.1, threads = 2, RNGseed = 1024

)

Plot probability
PlotClusterTree(object = sce, icp.run = 2)

Plot batch label distribution
PlotClusterTree(object = sce, icp.run = 2, color.by = "Batch")

Plot species label distribution
PlotClusterTree(object = sce, icp.run = 2, color.by = "Species")

PlotDimRed Plot dimensional reduction categorical variables

Description

Plot categorical variables in dimensional reduction.

28 PlotDimRed

Usage

PlotDimRed.SingleCellExperiment(
object,
color.by,
dimred,
dims,
use.color,
point.size,
point.stroke,
legend.nrow,
seed.color,
label,
plot.theme,
rasterise,
rasterise.dpi,
legend.justification,
legend.size,
legend.title

)

S4 method for signature 'SingleCellExperiment'
PlotDimRed(
object,
color.by,
dimred = tail(reducedDimNames(object), n = 1),
dims = 1:2,
use.color = NULL,
point.size = 1,
point.stroke = 1,
legend.nrow = 2,
seed.color = 123,
label = FALSE,
plot.theme = theme_classic(),
rasterise = (ncol(object) <= 30000),
rasterise.dpi = 300,
legend.justification = "center",
legend.size = 10,
legend.title = color.by

)

Arguments

object An object of SingleCellExperiment class.

color.by Categorical variable available in colData(object) to plot.

dimred Dimensional reduction available in ReducedDimNames(object) to plot. By de-
fault the last dimensional reduction in the object is used.

dims Dimensions from the dimensional reduction embedding to plot.

PlotDimRed 29

use.color Character specifying the colors. By default NULL, i.e., colors are randomly cho-
sen based on the seed given at seed.color.

point.size Size of points. By default 1.

point.stroke Size of stroke. By default 1.

legend.nrow Display legend items by this number of rows. By default 2.

seed.color Seed to randomly select colors. By default 123.

label Logical to add or not categorical labels to the centroid categories. By default
FALSE, i.e., labels are not added.

plot.theme Plot theme available in ggplot2. By default theme_classic().

rasterise Logical specifying if points should be rasterised or not. By default TRUE, if more
than 3e4 cells, otherwise FALSE.

rasterise.dpi In case rasterise = TRUE, DPI to use. By default 300.
legend.justification

Legend justification. By default "center".

legend.size Legend size. By default 10

legend.title Legend title. By default the same as given at color.by.

Value

A plot of class ggplot.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Compute dimensional reduction
sce <- RunPCA(

object = sce, assay.name = "logcounts", p = 4,
pca.method = "stats"

)

Plot batch
PlotDimRed(object = sce, color.by = "Batch", dimred = "PCA", legend.nrow = 1)

30 PlotExpression

Plot cell type annotations
PlotDimRed(

object = sce, color.by = "Species", legend.nrow = 1,
dimred = "PCA", label = TRUE

)

PlotExpression Plot dimensional reduction feature expression

Description

Plot feature expression in dimensional reduction.

Usage

PlotExpression.SingleCellExperiment(
object,
color.by,
dimred,
scale.values,
color.scale,
plot.theme,
legend.title,
point.size,
point.stroke

)

S4 method for signature 'SingleCellExperiment'
PlotExpression(
object,
color.by,
dimred = tail(reducedDimNames(object), n = 1),
scale.values = FALSE,
color.scale = "inferno",
plot.theme = theme_classic(),
legend.title = color.by,
point.size = 1,
point.stroke = 1

)

Arguments

object An object of SingleCellExperiment class.

color.by Categorical variable available in colData(object) to plot.

dimred Dimensional reduction available in ReducedDimNames(object) to plot. By de-
fault the last dimensional reduction in the object is used.

PlotExpression 31

scale.values Logical specifying if values should be scaled. By default FALSE, i.e., values are
not scaled.

color.scale Character of color scale palette to be passed to ggplot2::scale_color_viridis_c.
By default inferno. Other palettes are also available such as viridis.

plot.theme Plot theme available in ggplot2. By default theme_classic().

legend.title Legend title. By default the same as given at color.by.

point.size Size of points. By default 1.

point.stroke Size of stroke. By default 1.

Value

A plot of class ggplot.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Compute dimensional reduction
sce <- RunPCA(

object = sce, assay.name = "logcounts", p = 4,
pca.method = "stats"

)

Plot expression level of one or more features
one
PlotExpression(object = sce, color.by = "Petal.Width")

more than one
features <- row.names(sce)[1:4]
exp.plots <- lapply(X = features, FUN = function(x) {

PlotExpression(object = sce, color.by = x, scale.values = TRUE)
})
cowplot::plot_grid(plotlist = exp.plots, ncol = 2, align = "vh")

32 PrepareData

PrepareData Prepare SingleCellExperiment object for analysis

Description

This function prepares the SingleCellExperiment object for analysis. The only required input is
an object of class SingleCellExperiment with at least data in the logcounts slot.

Usage

PrepareData.SingleCellExperiment(object)

S4 method for signature 'SingleCellExperiment'
PrepareData(object)

Arguments

object An object of SingleCellExperiment class.

Value

An object of SingleCellExperiment class.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))
sce <- PrepareData(sce)

RandomlyDivisiveClustering 33

RandomlyDivisiveClustering

Split randomly every cluster into k clusters

Description

Splits randomly every cluster given into k clusters

Usage

RandomlyDivisiveClustering(cluster, k, cluster.names = NULL)

Arguments

cluster A clustering result in which each cluster will be divided randomly into k clusters.

k The number of clusters that each cluster given in cluster should be randomly
divided into.

cluster.names Names to name the cluster result given. By default NULL.

Value

A clustering result where every cluster given was split randomly into k clusters.

ReferenceMapping Reference mapping

Description

This function allows to project new query data sets onto a reference built with Coralysis as well as
transfer cell labels from the reference to queries.

Usage

ReferenceMapping.SingleCellExperiment(
ref,
query,
ref.label,
label.prune.cutoff,
scale.query.by,
project.umap,
select.icp.models,
k.nn,
dimred.name.prefix

)

34 ReferenceMapping

S4 method for signature 'SingleCellExperiment,SingleCellExperiment'
ReferenceMapping(
ref,
query,
ref.label,
label.prune.cutoff = 0.5,
scale.query.by = NULL,
project.umap = FALSE,
select.icp.models = metadata(ref)$coralysis$pca.params$select.icp.tables,
k.nn = 10,
dimred.name.prefix = ""

)

Arguments

ref An object of SingleCellExperiment class trained with Coralysis and after run-
ning RunPCA(..., return.model = TRUE) function.

query An object of SingleCellExperiment class to project onto ref.

ref.label A character cell metadata column name from the ref object to transfer to the
queries.

label.prune.cutoff

A numeric cutoff value used to prune low-confidence predicted cell labels, based
on the confidence probability scores stored in the coral_probability column
of colData. By default is 0.5, i.e., cell labels with confidence scores less than
or equal to 0.5 are considered unclassified and set to NA. The resulting pruned
cell labels are stored in pruned_coral_labels. Set to 0 to ignore it.

scale.query.by Should the query data be scaled by cell or by feature. By default is NULL, i.e.,
is not scaled. Scale it if reference was scaled.

project.umap Project query data onto reference UMAP (logical). By default FALSE. If TRUE,
the ref object needs to have a UMAP embedding obtained with RunUMAP(...,
return.model = TRUE) function.

select.icp.models

Select the reference ICP models to use for query cluster probability prediction.
By default metadata(ref)$coralysis$pca.params$select.icp.tables, i.e.,
the models selected to compute the reference PCA are selected. If NULL all are
used. Otherwise a numeric vector should be given to select the ICP models of
interest.

k.nn The number of k nearest neighbors to use in the classification KNN algorithm
used to transfer labels from the reference to queries (integer). By default 10.

dimred.name.prefix

Dimensional reduction name prefix to add to the computed PCA and UMAP. By
default nothing is added, i.e., dimred.name.prefix = "".

Value

An object of SingleCellExperiment class.

ReferenceMapping 35

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Create reference & query SCE objects
ref <- sce[, sce$Batch == "b1"]
query <- sce[, sce$Batch == "b2"]

1) Train the reference
set.seed(123)
ref <- RunParallelDivisiveICP(

object = ref, k = 2, L = 25, C = 1,
train.k.nn = 10, train.k.nn.prop = NULL,
use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)
2) Compute reference PCA & UMAP
ref <- RunPCA(ref, p = 5, return.model = TRUE, pca.method = "stats")
set.seed(123)
ref <- RunUMAP(ref, return.model = TRUE)

Plot
PlotDimRed(object = ref, color.by = "Species", legend.nrow = 1)

3) Project & predict query cell labels
map <- ReferenceMapping(

ref = ref, query = query, ref.label = "Species",
project.umap = TRUE

)

Confusion matrix: predictions (rows) x ground-truth (cols)
preds_x_truth <- table(map$coral_labels, map$Species)
print(preds_x_truth)

Accuracy score
acc <- sum(diag(preds_x_truth)) / sum(preds_x_truth) * 100
print(paste0("Coralysis accuracy score: ", round(acc), "%"))

36 RunDivisiveICP

Visualize: ground-truth, prediction, confidence scores
cowplot::plot_grid(

PlotDimRed(
object = map, color.by = "Species",
legend.nrow = 1

),
PlotDimRed(

object = map, color.by = "coral_labels",
legend.nrow = 1

),
PlotExpression(

object = map, color.by = "coral_probability",
color.scale = "viridis"

),
ncol = 2, align = "vh"

)

RunDivisiveICP Divisive Iterative Clustering Projection (ICP) clustering

Description

The function implements divisive Iterative Clustering Projection (ICP) clustering: a supervised
learning-based clustering, which maximizes clustering similarity between the clustering and its
projection by logistic regression, doing it in a divisive clustering manner.

Usage

RunDivisiveICP(
normalized.data = NULL,
batch.label = NULL,
k = 16,
d = 0.3,
r = 5,
C = 5,
reg.type = "L1",
max.iter = 200,
icp.batch.size = Inf,
train.with.bnn = TRUE,
train.k.nn = 10,
train.k.nn.prop = NULL,
cluster.seed = NULL,
divisive.method = "random",
allow.free.k = FALSE,
ari.cutoff = 0.5,
verbose = TRUE

)

RunDivisiveICP 37

Arguments

normalized.data

A sparse matrix (dgCMatrix) containing normalized feature expression data
with cells in rows and features in columns. Default is NULL.

batch.label A character vector with batch labels corresponding to the cells given in normalized.data.
The character batch labels need to be named with the cells names given in the
rows of normalized.data. By default NULL, i.e., cells are sampled evenly re-
gardless their batch.

k A positive integer power of two, i.e., 2**n, where n>0, specifying the number
of clusters in the last Iterative Clustering Projection (ICP) round. Decreasing k
leads to smaller cell populations diversity and vice versa. Default is 16, i.e., the
divisive clustering 2 -> 4 -> 8 -> 16 is performed.

d A numeric that defines how many cells per cluster should be down- and oversam-
pled (d in ceiling(N/k*d)), when stratified.downsampling=FALSE, or what frac-
tion should be downsampled in the stratified approach ,stratified.downsampling=TRUE.
Default is 0.3.

r A positive integer that denotes the number of reiterations performed until the
algorithm stops. Default is 5.

C Cost of constraints violation (C) for L1-regulatization. Default is 0.3.

reg.type "L1" for LASSO and "L2" for Ridge. Default is "L1".

max.iter A positive integer that denotes the maximum number of iterations performed
until the algorithm ends. Default is 200.

icp.batch.size A positive integer that specifies how many cells to randomly select for each ICP
run from the complete data set. This is a new feature intended to speed up the
process with larger data sets. Default is Inf, which means using all cells.

train.with.bnn Train data with batch nearest neighbors. Default is TRUE. Only used if batch.label
is given.

train.k.nn Train data with batch nearest neighbors using k nearest neighbors. Default is 10.
Only used if train.with.bnn is TRUE.

train.k.nn.prop

A numeric (higher than 0 and lower than 1) corresponding to the fraction of cells
per cluster to use as train.k.nn nearest neighbors. Default is NULL meaning
that the number of train.k.nn nearest neighbors is equal to train.k.nn. If
given, train.k.nn parameter is ignored and train.k.nn is calculated based on
train.k.nn.prop. A vector with different proportions for the different divisive
clustering rounds can be given, otherwise the same value is given for all.

cluster.seed A cluster seed to start and guide the clustering to more reproducible clusterings
across runs (factor). Default is NULL. Otherwise, a random clustering takes place
to start divisive clustering with ICP.

divisive.method

Divisive method (character). One of "random" (randomly sample two clusters
out of every cluster previously found), "cluster" or "cluster.batch" (sample
two clusters out of every cluster previously found based on the cluster probabil-
ity distribution across batches or per batch). By default "random".

38 RunParallelDivisiveICP

allow.free.k Allow free k (logical). Allow ICP algorithm to decrease the k given in case it
does not find k target clusters. By default FALSE.

ari.cutoff Include ICP models and probability tables with an Adjusted Rand Index higher
than ari.cutoff (numeric). By default 0.5. A value that can range between 0
(include all) and lower than 1.

verbose A logical value to print verbose during the ICP run in case. Default is TRUE.
Verbose might help debugging errors by printing intermediate ICP projection
results.

Value

A list that includes the probability matrix and the clustering similarity measures: ARI, NMI, etc.

RunParallelDivisiveICP

Multi-level integration

Description

Run divisive ICP clustering in parallel in order to perform multi-level integration.

Usage

RunParallelDivisiveICP.SingleCellExperiment(
object,
batch.label,
k,
d,
L,
r,
C,
reg.type,
max.iter,
threads,
icp.batch.size,
train.with.bnn,
train.k.nn,
train.k.nn.prop,
build.train.set,
build.train.params,
scale.by,
use.cluster.seed,
divisive.method,
allow.free.k,
ari.cutoff,
verbose,

RunParallelDivisiveICP 39

RNGseed,
BPPARAM

)

S4 method for signature 'SingleCellExperiment'
RunParallelDivisiveICP(
object,
batch.label = NULL,
k = 16,
d = 0.3,
L = 50,
r = 5,
C = 0.3,
reg.type = "L1",
max.iter = 200,
threads = 0,
icp.batch.size = Inf,
train.with.bnn = TRUE,
train.k.nn = 10,
train.k.nn.prop = 0.3,
build.train.set = TRUE,
build.train.params = list(),
scale.by = NULL,
use.cluster.seed = TRUE,
divisive.method = "cluster.batch",
allow.free.k = TRUE,
ari.cutoff = 0.3,
verbose = FALSE,
RNGseed = 123,
BPPARAM = NULL

)

Arguments

object An object of SingleCellExperiment class.

batch.label A variable name (of class character) available in the cell metadata colData(object)
with the batch labels (character or factor) to use. The variable provided must
not contain NAs. By default NULL, i.e., cells are sampled evenly regardless their
batch.

k A positive integer power of two, i.e., 2**n, where n>0, specifying the number
of clusters in the last Iterative Clustering Projection (ICP) round. Decreasing k
leads to smaller cell populations diversity and vice versa. Default is 16, i.e., the
divisive clustering 2 -> 4 -> 8 -> 16 is performed.

d A numeric greater than 0 and smaller than 1 that determines how many cells
n are down- or oversampled from each cluster into the training data (n=N/k*d),
where N is the total number of cells, k is the number of clusters in ICP. Increasing
above 0.3 leads greadually to smaller cell populations diversity. Default is 0.3.

40 RunParallelDivisiveICP

L A positive integer greater than 1 denoting the number of the ICP runs to run.
Default is 50.

r A positive integer that denotes the number of reiterations performed until the
ICP algorithm stops. Increasing recommended with a significantly larger sample
size (tens of thousands of cells). Default is 5.

C A positive real number denoting the cost of constraints violation in the L1-
regularized logistic regression model from the LIBLINEAR library. Decreasing
leads to more stringent feature selection, i.e. less features are selected that are
used to build the projection classifier. Decreasing to a very low value (~ 0.01)
can lead to failure to identify central cell populations. Default 0.3.

reg.type "L1" or "L2". L2-regularization was not investigated in the manuscript, but it
leads to a more conventional outcome (less subpopulations). Default is "L1".

max.iter A positive integer that denotes the maximum number of iterations performed
until ICP stops. This parameter is only useful in situations where ICP converges
extremely slowly, preventing the algorithm to run too long. In most cases, reach-
ing the number of reiterations (r=5) terminates the algorithm. Default is 200.

threads A positive integer that specifies how many logical processors (threads) to use in
parallel computation. Set 1 to disable parallelism altogether or 0 to use all avail-
able threads except one. Default is 0. This argument is ignored if BPPARAM is
provided as threads should be given directly to the BiocParallelParam object.

icp.batch.size A positive integer that specifies how many cells to randomly select. It behaves
differently depending on build.train.set. If build.train.set=FALSE, it
randomly samples cells for each ICP run from the complete dataset. If build.train.set=TRUE,
it randomly samples cells once, before building the training set with the sam-
pled cells (per batch if batch.label different than NULL). Default is Inf, which
means using all cells.

train.with.bnn Train data with batch nearest neighbors. Default is TRUE. Only used if batch.label
is given.

train.k.nn Train data with batch nearest neighbors using k nearest neighbors. Default is 10.
Only used if train.with.bnn is TRUE and train.k.nn.prop is NULL.

train.k.nn.prop

A numeric (higher than 0 and lower than 1) corresponding to the fraction of
cells per cluster to use as train.k.nn nearest neighbors. If NULL the number of
train.k.nn nearest neighbors is equal to train.k.nn. If given, train.k.nn
parameter is ignored and train.k.nn is calculated based on train.k.nn.prop.
By default 0.3 meaning that 30 proportions for the different divisive clustering
rounds can be given, otherwise the same value is given for all.

build.train.set

Logical specifying if a training set should be built from the data or the whole
data should be used for training. By default TRUE.

build.train.params

A list of parameters to be passed to the function AggregateDataByBatch().
Only provided if build.train.set is TRUE.

scale.by A character specifying if the data should be scaled by cell or by feature before
training. Default is NULL, i.e., the data is not scaled before training.

RunParallelDivisiveICP 41

use.cluster.seed

Should the same starting clustering result be provided to ensure more repro-
ducible results (logical). If FALSE, each ICP run starts with a total random clus-
tering and, thus, independent clustering. By default TRUE, i.e., the same cluster-
ing result is provided based on PCA density sampling. If batch.label different
than NULL, the PCA density sampling is performed in a batch wise manner.

divisive.method

Divisive method (character). One of "random" (randomly sample two clusters
out of every cluster previously found), "cluster" or "cluster.batch" (sample
two clusters out of every cluster previously found based on the cluster probabil-
ity distribution across batches or per batch). By default "cluster.batch". If
batch.label is NULL, it is automatically set to cluster. It can be set to random
if explicitly provided.

allow.free.k Allow free k (logical). Allow ICP algorithm to decrease the k given in case it
does not find k target clusters. By default TRUE.

ari.cutoff Include ICP models and probability tables with an Adjusted Rand Index higher
than ari.cutoff (numeric). By default 0.3. A value that can range between 0
(include all) and lower than 1.

verbose A logical value to print verbose during the ICP run in case. Default is FALSE.
Verbose might help debugging errors by printing intermediate ICP projection
results.

RNGseed Seed number passed to the parallel backend via BiocParallel to ensure repro-
ducibility. Defaults to 123. If the BPPARAM parameter is provided, RNGseed is
ignored and should be set within BPPARAM.

BPPARAM A BiocParallelParam object specifying the parallel backend to use. This con-
trols how tasks are distributed across workers. Use MulticoreParam (for Unix-
like systems) and SnowParam (for Windows or cross-platform). If not specified,
i.e., NULL, the default backend uses MulticoreParam for Unix-like systems and
SnowParam for Windows.

Value

A SingleCellExperiment object.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)

42 RunPCA

)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Integrated PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "joint.probability", p = 10)

Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),
PlotDimRed(

object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

RunPCA Principal Component Analysis

Description

Perform principal component analysis using assays or the joint probability matrix as input.

Usage

RunPCA.SingleCellExperiment(
object,
assay.name,
p,
scale,
center,
threshold,

RunPCA 43

pca.method,
return.model,
select.icp.tables,
features,
dimred.name

)

S4 method for signature 'SingleCellExperiment'
RunPCA(
object,
assay.name = "joint.probability",
p = 50,
scale = TRUE,
center = TRUE,
threshold = 0,
pca.method = "irlba",
return.model = FALSE,
select.icp.tables = NULL,
features = NULL,
dimred.name = "PCA"

)

Arguments

object A SingleCellExperiment object.

assay.name Name of the assay to compute PCA. One of assayNames(object) or joint.probability.
By default joint.probability is used. Use joint.probability to obtain an
integrated embedding after running RunParallelDivisiveICP. One of the as-
says in assayNames(object) can be provided before performing integration to
assess if data requires integration.

p A positive integer denoting the number of principal components to calculate and
select. Default is 50.

scale A logical specifying whether the probabilities should be standardized to unit-
variance before running PCA. Default is TRUE.

center A logical specifying whether the probabilities should be centered before running
PCA. Default is TRUE.

threshold A threshold for filtering out ICP runs before PCA with the lower terminal pro-
jection accuracy below the threshold. Default is 0.

pca.method A character specifying the PCA method. One of "irlba" (default), "RSpectra"
or "stats". Set seed before, if the method is "irlba" to ensure reproducibility.

return.model A logical specifying if the PCA model should or not be retrieved. By default
FALSE. Only implemented for pca.method = "stats". If TRUE, the pca.method
is coerced to "stats".

select.icp.tables

Select the ICP cluster probability tables to perform PCA. By default NULL, i.e.,
all are used, except if the ICP tables were obtained with the function RunParallelDivisiveICP,

44 RunPCA

in which the ICP tables correspond to the last round of divisive clustering for ev-
ery epoch. A vector of integers should be given otherwise.

features A character of feature names matching row.names(object) to select from be-
fore computing PCA. Only used if assay.name is one of the assays in assayNames(object),
otherwise it is ignored.

dimred.name Dimensional reduction name given to the returned PCA. By default "PCA".

Value

object of SingleCellExperiment class

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Integrated PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "joint.probability", p = 10)

Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),

RunTSNE 45

PlotDimRed(
object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

RunTSNE Barnes-Hut implementation of t-Distributed Stochastic Neighbor Em-
bedding (t-SNE)

Description

Run nonlinear dimensionality reduction using t-SNE with the PCA-transformed consensus matrix
as input.

Usage

RunTSNE.SingleCellExperiment(
object,
dims,
dimred.type,
perplexity,
dimred.name,
...

)

S4 method for signature 'SingleCellExperiment'
RunTSNE(
object,
dims = NULL,
dimred.type = "PCA",
perplexity = 30,
dimred.name = "TSNE",
...

)

Arguments

object Object of SingleCellExperiment class.

dims Dimensions to select from dimred.type. By default NULL, i.e., all the dimen-
sions are selected. Provide a numeric vector to select a specific range, e.g., dims
= 1:10 to select the first 10 dimensions.

dimred.type Dimensional reduction type to use. By default "PCA".

perplexity Perplexity of t-SNE.

dimred.name Dimensional reduction name given to the returned t-SNE. By default "TSNE".

46 RunTSNE

... Parameters to be passed to the Rtsne function. The parameters given should
match the parameters accepted by the Rtsne function. Check possible parame-
ters with ?Rtsne::Rtsne.

Value

A SingleCellExperiment object.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Run PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(

object = sce, assay.name = "logcounts",
pca.method = "stats", p = nrow(sce)

)

Run t-SNE
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunTSNE(object = sce, dimred.type = "PCA", check_duplicates = FALSE)

Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),
PlotDimRed(

object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

RunUMAP 47

RunUMAP Uniform Manifold Approximation and Projection (UMAP)

Description

Run nonlinear dimensionality reduction using UMAP with a dimensional reduction as input.

Usage

RunUMAP.SingleCellExperiment(
object,
dims,
dimred.type,
return.model,
umap.method,
dimred.name,
...

)

S4 method for signature 'SingleCellExperiment'
RunUMAP(
object,
dims = NULL,
dimred.type = "PCA",
return.model = FALSE,
umap.method = "umap",
dimred.name = "UMAP",
...

)

Arguments

object An object of SingleCellExperiment class.

dims Dimensions to select from dimred.type. By default NULL, i.e., all the dimen-
sions are selected. Provide a numeric vector to select a specific range, e.g., dims
= 1:10 to select the first 10 dimensions.

dimred.type Dimensional reduction type to use. By default "PCA".

return.model Return UMAP model. By default FALSE.

umap.method UMAP method to use: "umap" or "uwot". By default "umap".

dimred.name Dimensional reduction name given to the returned UMAP. By default "UMAP".

... Parameters to be passed to the umap function. The parameters given should
match the parameters accepted by the umap function depending on the umap.method
given. Check possible parameters with ?umap::umap or ?uwot::umap depend-
ing if umap.method is "umap" or "uwot".

48 RunUMAP

Value

A SingleCellExperiment object.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Integrated PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "joint.probability", p = 10)

Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),
PlotDimRed(

object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

Run UMAP

SampleClusterBatchProbs 49

set.seed(123)
sce <- RunUMAP(sce, dimred.type = "PCA")

Plot results
Plot result
cowplot::plot_grid(

PlotDimRed(
object = sce, color.by = "Batch",
legend.nrow = 1

),
PlotDimRed(

object = sce, color.by = "Species",
legend.nrow = 1

),
ncol = 2

)

SampleClusterBatchProbs

Sample cells based on cluster probabilities distribution batch wise

Description

Samples cells based on cluster probabilities distribution batch wise

Usage

SampleClusterBatchProbs(cluster, probs, batch, q.split = 0.5)

Arguments

cluster Clustering cell labels predicted by ICP (factor).

probs Clustering probabilities predicted by ICP (matrix).

batch Batch labels for the corresponding clusters (character or factor).

q.split Split (cell) batch principal component distribution by this quantile (numeric).
By default 0.5, i.e., median.

Value

A factor with cell cluster identities.

50 SamplePCACells

SampleClusterProbs Sample cells based on cluster probabilities distribution

Description

Samples cells based on cluster probabilities distribution

Usage

SampleClusterProbs(cluster, probs, q.split = 0.5)

Arguments

cluster Clustering cell labels predicted by ICP (factor).

probs Clustering probabilities predicted by ICP (matrix).

q.split Split (cell) batch principal component distribution by this quantile (numeric).
By default 0.5, i.e., median.

Value

A factor with cell cluster identities.

SamplePCACells Sample cells based on principal components distribution

Description

Samples cells based on their distributions along one principal component

Usage

SamplePCACells(
data,
batch = NULL,
q.split = 0.5,
p = 30,
use.pc = "PC1",
center = TRUE,
scale. = TRUE

)

Scale 51

Arguments

data Data to compute PCA and sample cells from. Rows and columns should repre-
sent cells and features, respectively.

batch Batch cell label identity (character) matching cells giving in data. Use NULL in
the absence of batches. If the batch is given the cells are sampled in a batch wise
manner, otherwise the cells are sampled without any grouping factor. By default
is NULL.

q.split Split (cell) batch principal component distribution by this quantile (numeric).
By default 0.5, i.e., median.

p Number of principal components to compute (integer). By default 30.

use.pc Which principal component should be used for sampling cells per batch. By
default "PC1", i.e., first principal component is used.

center Should the features given in data centered before performing the PCA (logical).
By default TRUE.

scale. Should the features given in data scaled before performing the PCA (logical).
By default TRUE.

Value

A factor with cell cluster identities (two clusters).

Scale Scale a sparse matrix by row or column

Description

Faster implementation of scale function. It diverges from the scale function by not performing
the root-mean-square when scale=TRUE and center=FALSE. In this case it divides the values by
the standard deviation of the column or row used (depending on scale.by).

Usage

Scale(x, center = TRUE, scale = TRUE, scale.by = "col")

Arguments

x A matrix of class ‘dgCMatrix‘.

center A logical. By default TRUE. Subtract the values by the row or column mean
depending on the ‘scale.by‘ parameter.

scale A logical. By default TRUE. Divide the values by the row or column standard
deviation depending on the ‘scale.by‘ parameter

scale.by Scale by ‘row‘ or ‘col‘ (=column), i.e., use the row or column mean and/or
standard deviations to center and /or scale the data. Default is col.

52 SummariseCellClusterProbability

Value

A matrix of class ‘dgCMatrix‘.

ScaleByBatch Scale sparse matrix by features (column) by batch

Description

Scales features by batch

Usage

ScaleByBatch(x, batch)

Arguments

x A matrix of class ‘dgCMatrix‘. Cells by features (rows x columns).

batch A character vector with batch labels corresponding to the cells given in x. The
character batch labels need to be named with the cells names given in the rows
of x.

Value

A scaled matrix of class ‘dgCMatrix‘.

SummariseCellClusterProbability

Summarise ICP cell cluster probability

Description

Summarise ICP cell cluster probability table(s)

Usage

SummariseCellClusterProbability.SingleCellExperiment(
object,
icp.run,
icp.round,
funs,
scale.funs,
save.in.sce

)

S4 method for signature 'SingleCellExperiment'

SummariseCellClusterProbability 53

SummariseCellClusterProbability(
object,
icp.run = NULL,
icp.round = NULL,
funs = c("mean", "median"),
scale.funs = TRUE,
save.in.sce = TRUE

)

Arguments

object An object of SingleCellExperiment class with ICP cell cluster probability ta-
bles saved in metadata(object)$coralysis$joint.probability. After run-
ning RunParallelDivisiveICP.

icp.run ICP run(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved. Specify a numeric vector to retrieve a spe-
cific set of tables.

icp.round ICP round(s) to retrieve from metadata(object)$coralysis$joint.probability.
By default NULL, i.e., all are retrieved.

funs Functions to summarise ICP cell cluster probability: "mean" and/or "median".
By default c("mean", "median"), i.e, both mean and median are calculated.
Set to NULL to not estimate any.

scale.funs Scale in the range 0-1 the summarised probability obtained with funs. By de-
fault TRUE, i.e., summarised probability will be scaled in the 0-1 range.

save.in.sce Save the data frame into the cell metadata from the SingleCellExperiment ob-
ject or return the data frame. By default TRUE, i.e., the summary of probabilities
retrieved is save in the SCE object in colData(object).

Value

A data frame or a SingleCellExperiment object with ICP cell cluster probability summarised.

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

54 TabulateCellBinsByGroup

Prepare SCE object for analysis
sce <- PrepareData(sce)

Multi-level integration (just for highlighting purposes; use default parameters)
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "Batch",
k = 2, L = 25, C = 1, train.k.nn = 10,
train.k.nn.prop = NULL, use.cluster.seed = FALSE,
build.train.set = FALSE, ari.cutoff = 0.1,
threads = 2, RNGseed = 1024

)

Integrated PCA
set.seed(125) # to ensure reproducibility for the default 'irlba' method
sce <- RunPCA(object = sce, assay.name = "joint.probability", p = 10)

Summarise cluster probability
sce <- SummariseCellClusterProbability(

object = sce, icp.round = 1,
save.in.sce = TRUE

) # saved in 'colData'

Plot the clustering result for ICP run no. 3
PlotDimRed(object = sce, color.by = "icp_run_round_3_1_clusters")

Plot Coralysis mean cell cluster probabilities
PlotExpression(

object = sce, color.by = "mean_probs",
color.scale = "viridis"

)

TabulateCellBinsByGroup

Tabulate cell bins by group

Description

Frequency of cells per cell cluster probability bin by group for each label. The label has to be
specified beforehand to the function BinCellClusterProbability().

Usage

TabulateCellBinsByGroup.SingleCellExperiment(object, group, relative, margin)

S4 method for signature 'SingleCellExperiment'
TabulateCellBinsByGroup(object, group, relative = FALSE, margin = 1)

TabulateCellBinsByGroup 55

Arguments

object An object of SingleCellExperiment class obtained with the function BinCellClusterProbability().

group Character specifying the colData variable from the SingleCellExperiment
object provided to the function BinCellClusterProbability() to use as cat-
egorical group variable.

relative Logical specifying if relative proportions of cell bins per group should be re-
turned. By default FALSE, i.e., absolute values are returned.

margin If relative is TRUE, proportions should be calculated by: rows (1, the default);
columns (2); or overall (NULL).

Value

A list of tables with the frequency of cells per bin of cell cluster probability by group for each label.

Examples

Packages
suppressPackageStartupMessages(library("SingleCellExperiment"))

Import data from Zenodo
data.url <- "https://zenodo.org/records/14845751/files/pbmc_10Xassays.rds?download=1"
sce <- readRDS(file = url(data.url))

Prepare data
sce <- PrepareData(object = sce)

Multi-level integration - 'L = 4' just for highlighting purposes
set.seed(123)
sce <- RunParallelDivisiveICP(

object = sce, batch.label = "batch", L = 4,
threads = 2

)

Cell states SCE object for a given cell type annotation or clustering
cellstate.sce <- BinCellClusterProbability(

object = sce, label = "cell_type",
icp.round = 4, bins = 20

)
cellstate.sce

Tabulate cell bins by group
give an interesting variable to the "group" parameter
cellbins.tables <- TabulateCellBinsByGroup(

object = cellstate.sce,
group = "batch",
relative = TRUE,
margin = 1

)

56 VlnPlot

VlnPlot Visualization of feature expression using violin plots

Description

The VlnPlot function enables visualizing expression levels of feature(s), across clusters using vio-
lin plots.

Usage

VlnPlot.SingleCellExperiment(
object,
clustering.label,
features,
return.plot,
rotate.x.axis.labels

)

S4 method for signature 'SingleCellExperiment'
VlnPlot(
object,
clustering.label,
features,
return.plot = FALSE,
rotate.x.axis.labels = FALSE

)

Arguments

object of SingleCellExperiment class

clustering.label

A variable name (of class character) available in the cell metadata colData(object)
with the clustering labels (character or factor) to use.

features Feature names to plot by cluster (character) matching row.names(object).

return.plot return.plot whether to return the ggplot2 object. Default is FALSE.

rotate.x.axis.labels

a logical denoting whether the x-axis labels should be rotated 90 degrees or just
draw it. Default is FALSE.

Value

A ggplot2 object if return.plot=TRUE.

VlnPlot 57

Examples

Import package
suppressPackageStartupMessages(library("SingleCellExperiment"))

Create toy SCE data
batches <- c("b1", "b2")
set.seed(239)
batch <- sample(x = batches, size = nrow(iris), replace = TRUE)
sce <- SingleCellExperiment(

assays = list(logcounts = t(iris[, 1:4])),
colData = DataFrame(

"Species" = iris$Species,
"Batch" = batch

)
)
colnames(sce) <- paste0("samp", 1:ncol(sce))

Plot features by clustering/grouping variable
VlnPlot(sce,

clustering.label = "Species",
features = row.names(sce)[1:4],
rotate.x.axis.labels = TRUE

)

Index

∗ Approximation
RunUMAP, 47

∗ Barnes-Hut
RunTSNE, 45

∗ Bin
BinCellClusterProbability, 5

∗ Cell
CellBinsFeatureCorrelation, 7
GetCellClusterProbability, 17

∗ DE
FindAllClusterMarkers, 12
FindClusterMarkers, 15

∗ Dimensional
PlotClusterTree, 26
PlotDimRed, 27
PlotExpression, 30

∗ Distribution
CellClusterProbabilityDistribution,

8
∗ Embedding

RunTSNE, 45
∗ Feature

GetFeatureCoefficients, 19
∗ ICP

ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ LIBLINEAR
ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ Majority
MajorityVotingFeatures, 23

∗ Manifold
RunUMAP, 47

∗ Neighbor
RunTSNE, 45

∗ PCA
PCAElbowPlot, 24
RunPCA, 42

∗ Projection

RunUMAP, 47
∗ Stochastic

RunTSNE, 45
∗ Summarise

SummariseCellClusterProbability,
52

∗ Table
TabulateCellBinsByGroup, 54

∗ UMAP
RunUMAP, 47

∗ Uniform
RunUMAP, 47

∗ aggregated
AggregateDataByBatch, 4

∗ analysis
FindAllClusterMarkers, 12
FindClusterMarkers, 15

∗ and
RunUMAP, 47

∗ batches
AggregateDataByBatch, 4

∗ bins
CellBinsFeatureCorrelation, 7
TabulateCellBinsByGroup, 54

∗ cell
BinCellClusterProbability, 5
CellClusterProbabilityDistribution,

8
SummariseCellClusterProbability,

52
TabulateCellBinsByGroup, 54

∗ clean
PrepareData, 32

∗ clustering
ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ cluster
BinCellClusterProbability, 5
CellClusterProbabilityDistribution,

58

INDEX 59

8
GetCellClusterProbability, 17
SummariseCellClusterProbability,

52
∗ coefficients

GetFeatureCoefficients, 19
MajorityVotingFeatures, 23

∗ correlation
CellBinsFeatureCorrelation, 7

∗ data
PrepareData, 32

∗ differential
FindAllClusterMarkers, 12
FindClusterMarkers, 15

∗ eigendecomposition
RunPCA, 42

∗ elbow
PCAElbowPlot, 24

∗ expression
AggregateDataByBatch, 4
FindAllClusterMarkers, 12
FindClusterMarkers, 15

∗ feature
AggregateDataByBatch, 4
CellBinsFeatureCorrelation, 7
FindAllClusterMarkers, 12
FindClusterMarkers, 15
HeatmapFeatures, 20
MajorityVotingFeatures, 23

∗ grouped
HeatmapFeatures, 20

∗ group
TabulateCellBinsByGroup, 54

∗ heatmap
HeatmapFeatures, 20

∗ implementation
RunTSNE, 45

∗ internal
.randomColors, 3
AggregateClusterExpression, 3
ClusterCells, 10
DownOverSampleEvenlyBatches, 11
DownOverSampling, 11
FindBatchKNN, 14
FindClusterBatchKNN, 14
LogisticRegression, 22
RandomlyDivisiveClustering, 33
RunDivisiveICP, 36

SampleClusterBatchProbs, 49
SampleClusterProbs, 50
SamplePCACells, 50
Scale, 51
ScaleByBatch, 52

∗ iterative
ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ logistic
ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ markers
FindAllClusterMarkers, 12
FindClusterMarkers, 15

∗ normalized
PrepareData, 32

∗ of
RunTSNE, 45

∗ plot
PCAElbowPlot, 24
VlnPlot, 56

∗ prepare
PrepareData, 32

∗ probability
BinCellClusterProbability, 5
CellClusterProbabilityDistribution,

8
GetCellClusterProbability, 17
SummariseCellClusterProbability,

52
∗ projection

ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ reduction
PlotClusterTree, 26
PlotDimRed, 27
PlotExpression, 30

∗ regression
ReferenceMapping, 33
RunParallelDivisiveICP, 38

∗ t-Distributed
RunTSNE, 45

∗ t-SNE
RunTSNE, 45

∗ violin
VlnPlot, 56

∗ visualization
PlotClusterTree, 26

60 INDEX

PlotDimRed, 27
PlotExpression, 30

∗ voting
MajorityVotingFeatures, 23

∗ weights
GetFeatureCoefficients, 19
MajorityVotingFeatures, 23

.randomColors, 3

AggregateClusterExpression, 3
AggregateDataByBatch, 4
AggregateDataByBatch,SingleCellExperiment-method

(AggregateDataByBatch), 4
AggregateDataByBatch.SingleCellExperiment

(AggregateDataByBatch), 4

BinCellClusterProbability, 5
BinCellClusterProbability,SingleCellExperiment-method

(BinCellClusterProbability), 5
BinCellClusterProbability.SingleCellExperiment

(BinCellClusterProbability), 5

CellBinsFeatureCorrelation, 7
CellBinsFeatureCorrelation,SingleCellExperiment-method

(CellBinsFeatureCorrelation), 7
CellBinsFeatureCorrelation.SingleCellExperiment

(CellBinsFeatureCorrelation), 7
CellClusterProbabilityDistribution, 8
CellClusterProbabilityDistribution,SingleCellExperiment-method

(CellClusterProbabilityDistribution),
8

CellClusterProbabilityDistribution.SingleCellExperiment
(CellClusterProbabilityDistribution),
8

ClusterCells, 10

DownOverSampleEvenlyBatches, 11
DownOverSampling, 11

FindAllClusterMarkers, 12
FindAllClusterMarkers,SingleCellExperiment-method

(FindAllClusterMarkers), 12
FindAllClusterMarkers.SingleCellExperiment

(FindAllClusterMarkers), 12
FindBatchKNN, 14
FindClusterBatchKNN, 14
FindClusterMarkers, 15
FindClusterMarkers,SingleCellExperiment-method

(FindClusterMarkers), 15

FindClusterMarkers.SingleCellExperiment
(FindClusterMarkers), 15

GetCellClusterProbability, 17
GetCellClusterProbability,SingleCellExperiment-method

(GetCellClusterProbability), 17
GetCellClusterProbability.SingleCellExperiment

(GetCellClusterProbability), 17
GetFeatureCoefficients, 19
GetFeatureCoefficients,SingleCellExperiment-method

(GetFeatureCoefficients), 19
GetFeatureCoefficients.SingleCellExperiment

(GetFeatureCoefficients), 19

HeatmapFeatures, 20
HeatmapFeatures,SingleCellExperiment-method

(HeatmapFeatures), 20
HeatmapFeatures.SingleCellExperiment

(HeatmapFeatures), 20

LogisticRegression, 22

MajorityVotingFeatures, 23
MajorityVotingFeatures,SingleCellExperiment-method

(MajorityVotingFeatures), 23
MajorityVotingFeatures.SingleCellExperiment

(MajorityVotingFeatures), 23

PCAElbowPlot, 24
PCAElbowPlot,SingleCellExperiment-method

(PCAElbowPlot), 24
PCAElbowPlot.SingleCellExperiment

(PCAElbowPlot), 24
PlotClusterTree, 26
PlotClusterTree,SingleCellExperiment-method

(PlotClusterTree), 26
PlotClusterTree.SingleCellExperiment

(PlotClusterTree), 26
PlotDimRed, 27
PlotDimRed,SingleCellExperiment-method

(PlotDimRed), 27
PlotDimRed.SingleCellExperiment

(PlotDimRed), 27
PlotExpression, 30
PlotExpression,SingleCellExperiment-method

(PlotExpression), 30
PlotExpression.SingleCellExperiment

(PlotExpression), 30
PrepareData, 32

INDEX 61

PrepareData,SingleCellExperiment-method
(PrepareData), 32

PrepareData.SingleCellExperiment
(PrepareData), 32

RandomlyDivisiveClustering, 33
ReferenceMapping, 33
ReferenceMapping,SingleCellExperiment,SingleCellExperiment-method

(ReferenceMapping), 33
ReferenceMapping.SingleCellExperiment

(ReferenceMapping), 33
RunDivisiveICP, 36
RunParallelDivisiveICP, 38
RunParallelDivisiveICP,SingleCellExperiment-method

(RunParallelDivisiveICP), 38
RunParallelDivisiveICP.SingleCellExperiment

(RunParallelDivisiveICP), 38
RunPCA, 42
RunPCA,SingleCellExperiment-method

(RunPCA), 42
RunPCA.SingleCellExperiment (RunPCA), 42
RunTSNE, 45
RunTSNE,SingleCellExperiment-method

(RunTSNE), 45
RunTSNE.SingleCellExperiment (RunTSNE),

45
RunUMAP, 47
RunUMAP,SingleCellExperiment-method

(RunUMAP), 47
RunUMAP.SingleCellExperiment (RunUMAP),

47

SampleClusterBatchProbs, 49
SampleClusterProbs, 50
SamplePCACells, 50
Scale, 51
ScaleByBatch, 52
SummariseCellClusterProbability, 52
SummariseCellClusterProbability,SingleCellExperiment-method

(SummariseCellClusterProbability),
52

SummariseCellClusterProbability.SingleCellExperiment
(SummariseCellClusterProbability),
52

TabulateCellBinsByGroup, 54
TabulateCellBinsByGroup,SingleCellExperiment-method

(TabulateCellBinsByGroup), 54

TabulateCellBinsByGroup.SingleCellExperiment
(TabulateCellBinsByGroup), 54

VlnPlot, 56
VlnPlot,SingleCellExperiment-method

(VlnPlot), 56
VlnPlot.SingleCellExperiment (VlnPlot),

56

	.randomColors
	AggregateClusterExpression
	AggregateDataByBatch
	BinCellClusterProbability
	CellBinsFeatureCorrelation
	CellClusterProbabilityDistribution
	ClusterCells
	DownOverSampleEvenlyBatches
	DownOverSampling
	FindAllClusterMarkers
	FindBatchKNN
	FindClusterBatchKNN
	FindClusterMarkers
	GetCellClusterProbability
	GetFeatureCoefficients
	HeatmapFeatures
	LogisticRegression
	MajorityVotingFeatures
	PCAElbowPlot
	PlotClusterTree
	PlotDimRed
	PlotExpression
	PrepareData
	RandomlyDivisiveClustering
	ReferenceMapping
	RunDivisiveICP
	RunParallelDivisiveICP
	RunPCA
	RunTSNE
	RunUMAP
	SampleClusterBatchProbs
	SampleClusterProbs
	SamplePCACells
	Scale
	ScaleByBatch
	SummariseCellClusterProbability
	TabulateCellBinsByGroup
	VlnPlot
	Index

