Package ‘ChIPpeakAnno’

January 22, 2026

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,
ChIP-chip experiments, or any experiments that result in large
number of genomic interval data

Version 3.45.2
Encoding UTF-8

Author Lihua Julie Zhu,
Jianhong Ou,
Jun Yu,

Kai Hu,

Haibo Liu,
Junhui Li,

Hervé Pages,
Claude Gazin,
Nathan Lawson,
Ryan Thompson,
Simon Lin,
David Lapointe,
Michael Green

Maintainer Jianhong Ou <jou@morgridge.org>,
Lihua Julie Zhu <julie.zhu@umassmed.edu>,
Kai Hu <kai . hu@umassmed. edu>,
Junhui Li <junhui.li@umassmed.edu>

Depends R (>= 3.5), methods, IRanges (>= 2.13.12), GenomicRanges (>=
1.31.8), S4Vectors (>= 0.17.25)

Imports AnnotationDbi, BiocGenerics (>= 0.1.0), Biostrings (>=
2.47.6), pwalign, DBI, dplyr, GenomeInfoDb, GenomicAlignments,
GenomicFeatures, RBGL, Rsamtools, SummarizedExperiment,
VennDiagram, biomaRt, ggplot2, grDevices, graph, graphics,
grid, InteractionSet, KEGGREST, matrixStats, multtest,
regioneR, rtracklayer, stats, utils, universalmotif, stringr,
tibble, tidyr, data.table, scales, ensembldb

Suggests AnnotationHub, BSgenome, limma, reactome.db, BiocManager,
BiocStyle, BSgenome.Ecoli. NCBI.20080805,

1

2 Contents

BSgenome.Hsapiens.UCSC.hg19, org.Ce.eg.db, org.Hs.eg.db,
BSgenome.Celegans.UCSC.cel0, BSgenome.Drerio.UCSC.danRer7,
BSgenome.Hsapiens.UCSC.hg38, DelayedArray, idr, seqint,
EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, EnsDb.Hsapiens.v86,
TxDb.Hsapiens.UCSC.hg18.knownGene,
TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Hsapiens.UCSC.hg38.knownGene, GO.db, gplots, UpSetR,
knitr, rmarkdown, reshape2, testthat, track Viewer, motifStack,
OrganismDbi, BiocFileCache

Description The package encompasses a range of functions for identifying the
closest gene, exon, miRNA, or custom features—such as highly conserved
elements and user-supplied transcription factor binding sites.

Additionally, users can retrieve sequences around the peaks and obtain
enriched Gene Ontology (GO) or Pathway terms. In version 2.0.5 and beyond,
new functionalities have been introduced. These include features for
identifying peaks associated with bi-directional promoters along with
summary statistics (peaksNearBDP), summarizing motif occurrences in

peaks (summarizePatternInPeaks), and associating additional identifiers

with annotated peaks or enrichedGO (addGenelDs). The package integrates
with various other packages such as biomaRt, IRanges, Biostrings, BSgenome,
GO.db, multtest, and stat to enhance its analytical capabilities.

License GPL (>=2)

LazyLoad yes

LazyData true

LazyDataCompression xz

biocViews Annotation, ChIPSeq, ChIPchip
VignetteBuilder knitr

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/ChIPpeak Anno
git_branch devel

git_last_commit a293c4f
git_last_commit_date 2025-11-11
Repository Bioconductor 3.23
Date/Publication 2026-01-22

Contents
ChIPpeakAnno-package 4
addAnCestors e e e e e e 6
addGenelDs e e e e e e 7
addMetadata e e 9
annoGR-class e e e 10

annoPeaks 11

Contents

3
annotatedPeak oo 13
annotatePeakInBatch oL oL 14
assignChromosomeRegion o 21
bdp . . 24
bindist-class 25
binOverFeature e 25
binOverGene 27
binOverRegions 28
ChIPpeakAnno-deprecated 29
cntOverlaps e 30
condenseMatrixByColnames Lo o 31
convert2EntrezID 31
countPatternInSeqs L L 32
cumulativePercentageo 33
downstreams e 34
egOrgMap e 35
enrichedGO 36
enrichmentPlot 37
EnsDb2GR 38
estFragmentLength oL oL 39
estLibSize L 40
ExonPlusUtrhuman.GRCh37 o 41
featureAlignedDistribution oL oL 42
featureAlignedExtendSignal oL oL 43
featureAlignedHeatmap 45
featureAlignedSignal oL 46
findEnhancers 47
findMotifsInPromoterSeqs o 49
findOverlappingPeaks 52
findOverlapsOfPeaks 54
genomicElementDistribution 0oL 56
genomicElementUpSetR 58
getAllPeakSequence 59
GEtANNOLAtION e e e 61
getEnrichedGO oL 62
getEnrichedPATH e 65
getGeneSeq o e e e e 67
getGO . . . e 68
getUniqueGOidCount e e 69
getVennCounts 70
HOT.spots o o e e 72
hyperGtest o e e e e e e e e e 73
IDRfilter 74
makeVennDiagram L 76
mergePlusMinusPeaks L o 78
metagenePlot 80
myPeakList 81

oligoFrequency 81

4 ChIPpeakAnno-package

oligoSummary e e e e e 82
peakPermTest 83
Peaks.Stel2.Replicatel 85
Peaks.Stel2.Replicate2 86
Peaks.Stel2.Replicate3 86
peaksl . . . Lo 87
peaks2 . . .o 88
peaksd . . .o e 88
peaksNearBDP 89
permPool-class e 90
plel .o 91
plotBinOverRegions e 93
preparePool 94
reCenterPeaks L e 95
summarizeOverlapsByBins Lo 96
summarizePatternInPeaks 0oL oo 97
tileCount 99
tileGRanges L e 100
toGRanges e 101
translatePattern L. L e 104
TSS.human.GRCh37 e 105
TSS.human.GRCh38 e 105
TSS.human.NCBI36 106
TSS.mouse. GRCm38 107
TSS.mouse. NCBIM37 e 107
TSSratRGSC3.4 e 108
TSS.ratRnor 5.0 e 109
TSS.zebrafish.Zv8 109
TSS.zebrafish.ZvO 110
TxDb2GR e 111
wgEncodeTfbsV3 oL 111
write2FASTA e 113
XZEL o o v e e 114
Index 115

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChlP-seq or ChIP-
chip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene On-
tology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved
elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome,
GO.db, hypergeometric test phyper and multtest package.

ChIPpeakAnno-package 5

Details
Package: ChIPpeakAnno
Type: Package
Version: 3.0.0
Date: 2014-10-24
License: LGPL
LazyLoad: yes

Author(s)

Lihua Julie Zhu, Jianhong Ou, Hervé Pages, Claude Gazin, Nathan Lawson, Simon Lin, David
Lapointe and Michael Green

Maintainer: Jianhong Ou <jianhong.ou @umassmed.edu>, Lihua Julie Zhu <julie.zhu @umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypoth-
esis testing under dependency. Annals of Statistics. Accepted.

3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.

5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hy-
pothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.

7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol.
6: 65-70.

8. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

9. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

Examples

if(interactive()){
data(myPeakList)
library(ensembldb)
library(EnsDb.Hsapiens.v75)
anno <- annoGR(EnsDb.Hsapiens.v75)
annotatedPeak <-
annotatePeakInBatch(myPeakList[1:6], AnnotationData=anno)

6 addAncestors

addAncestors Add GO IDs of the ancestors for a given vector of GO ids

Description

Add GO IDs of the ancestors for a given vector of GO IDs leveraging GO.db

Usage

n n

addAncestors(go.ids, ontology = c("bp”, "cc”", "mf"))

Arguments
go.ids A matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.
ontology bp for biological process, cc for cellular component and mf for molecular func-
tion.
Value

A vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added.

Author(s)

Lihua Julie Zhu

Examples

go.ids = cbind(c("G0:0008150", "GO:0005576", "GO:0003674"),
c(”"ND", "IDA", "ND"),
c("BP", "BP", "BP"),
C(I,1", II‘III’ II-IIV))

library(GO.db)

addAncestors(go.ids, ontology="bp")

addGenelDs 7

addGenelDs Add common IDs to annotated peaks such as gene symbol, entrez ID,
ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and
refseq id leveraging organism annotation dataset. For example, org.Hs.eg.db is the dataset from
orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db pack-
age for mouse.

Usage
addGenelIDs(
annotatedPeak,
orgAnn,
IDs2Add = c("symbol"),
feature_id_type = "ensembl_gene_id",
silence = TRUE,
mart
)
Arguments

annotatedPeak GRanges or a vector of feature IDs.
orgAnn organism annotation dataset such as org.Hs.eg.db.

IDs2Add a vector of annotation identifiers to be added
feature_id_type
type of ID to be annotated, default is ensembl_gene_id

silence TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.
mart mart object, see useMart of biomaRt package for details
Details

One of orgAnn and mart should be assigned.

* If orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id, gene_symbol,
gene_alias or refseq_id. And parameter IDs2Add can be set to any combination of identifiers

non non "non non

such as "accnum", "ensembl", "ensemblprot”, "ensembltrans”, "entrez_id", "enzyme", "gene-

non non non "non

name", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene" and "uniprot”. Some IDs are
unique to an organism, such as "omim" for org.Hs.eg.db and "mgi" for org.Mm.eg.db.

Here is the definition of different IDs :
— accnum: GenBank accession numbers
— ensembl: Ensembl gene accession numbers
— ensemblprot: Ensembl protein accession numbers

8 addGenelDs

— ensembltrans: Ensembl transcript accession numbers

— entrez_id: entrez gene identifiers

— enzyme: EC numbers

— genename: gene name

— pfam: Pfam identifiers

— pmid: PubMed identifiers

— prosite: PROSITE identifiers

- refseq: RefSeq identifiers

— symbol: gene abbreviations

— unigene: UniGene cluster identifiers

— uniprot: Uniprot accession numbers

— omim: OMIM(Mendelian Inheritance in Man) identifiers

— mgi: Jackson Laboratory MGI gene accession numbers

 If mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add pa-

rameters, please refer to getBM in bioMart package. Parameter feature_id_type should be
one valid filter name listed by listFilters(mart) such as ensemble_gene_id. And parameter

IDs2Add should be one or more valid attributes name listed by listAttributes(mart) such as
external_gene_id, entrezgene, wikigene_name, or mirbase_transcript_name.

Value

GRanges if the input is a GRanges or dataframe if input is a vector.

Author(s)
Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also
getBM, AnnotationDb

Examples

data(annotatedPeak)
library(org.Hs.eg.db)
addGenelIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db",
IDs2Add=c("symbol”, "omim"))
##addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",
IDs2Add=c("symbol”, "genename"))
if(interactive()){
mart <- useMart("ENSEMBL_MART_ENSEMBL", host="www.ensembl.org",
dataset="hsapiens_gene_ensembl")
##mart <- useMart(biomart="ensembl”,6 dataset="hsapiens_gene_ensembl")
addGeneIDs(annotatedPeak[1:6,], mart=mart,

addMetadata 9

IDs2Add=c("hgnc_symbol”, "entrezgene"))

addMetadata Add metadata of the GRanges objects used for findOverlapsOfPeaks

Description

Add metadata to to overlapping peaks after calling findOverlapsOfPeaks.

Usage
addMetadata(ol, colNames = NULL, FUN = ¢, ...)
Arguments
ol An object of overlappingPeaks, which is output of findOverlapsOfPeaks.
colNames Names of metadata column to be added. If it is NULL, addMetadata will guess
what to add.
FUN A function to be called
Arguments to the function call.
Value

return value is An object of overlappingPeaks.

Author(s)

Jianhong Ou

See Also

See Also as findOverlapsOfPeaks

Examples

peaks1 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200,1563000,1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),
strand="+",
score=1:5, id=letters[1:5])
peaks2 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c (1549800, 1554400, 1565000,1569400,167888600),
end=c (1550599, 1560799, 1565399,1571199,167888999),
names=c("f1","f2","f3","f4" "f5")),
strand="+",
score=6:10, id=LETTERS[1:5])

10

annoGR-class

ol <- findOverlapsOfPeaks(peaks1, peaks2)

addMetadata(ol)

annoGR-class

Class annoGR

Description

An object of class annoGR represents the annotation data could be used by annotationPeakInBatch.

Usage

S4 method for signature 'annoGR'

info(object)

S4 method for signature 'GRanges'
annoGR(ranges, feature = "group”, date, ...)

S4 method for signature 'TxDb'

annoGR(
ranges,

feature = c("gene”, "transcript”, "exon"”, "CDS", "fiveUTR", "threeUTR"”, "tRNAs",
"geneModel”),

date,
source,
mdata,

OrganismDb

S4 method for signature 'EnsDb'

annoGR(
ranges,

feature = c("gene"”, "transcript”, "exon”, "disjointExons"),

date,
source,
mdata

Arguments

object
ranges
feature

date

annoGR object.

an object of GRanges, TxDb or EnsDb
annotation type

a Date object

could be following parameters

annoPeaks 11

source character, where the annotation comes from
mdata data frame, metadata from annotation
OrganismDb an object of OrganismDb. It is used for extracting gene symbol for geneModel
group for TxDb
Slots

segnames, ranges, strand, elementMetadata, seqinfo slots inherit from GRanges. The ranges
must have unique names.

source character, where the annotation comes from
date a Date object

feature annotation type, could be "gene", "exon", "transcript”, "CDS", "fiveUTR", "threeUTR",
"microRNA", "tRNAs", "geneModel" for TxDb object, or "gene", "exon", "transcript" for
EnsDb object

mdata data frame, metadata from annotation

Objects from the Class

Objects can be created by calls of the form new("”annoGR", date, elementMetadata, feature,
mdata, ranges, seqinfo, segnames, source, strand)

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
library(EnsDb.Hsapiens.v79)
anno <- annoGR(EnsDb.Hsapiens.v79)

annoPeaks Annotate peaks

Description

Annotate peaks by annoGR object in the given range.

12 annoPeaks

Usage

annoPeaks (
peaks,
annoData,
bindingType = c("nearestBiDirectionalPromoters”, "startSite"”, "endSite”, "fullRange"),
bindingRegion = c(-5000, 5000),
ignore.peak.strand = TRUE,
select = c("all”, "bestOne"),

Arguments
peaks peak list, GRanges object
annoData annotation data, GRanges object
bindingType Specifying the criteria to associate peaks with annotation. Here is how to use it

together with the parameter bindingRegion

* To obtain peaks within 5kb upstream and up to 3kb downstream of TSS
within the gene body, set bindingType = "startSite" and bindingRegion =
¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of gene/Exon End, set bindingType = "endSite" and bindingRegion
= ¢(-5000, 3000)

* To obtain peaks from Skb upstream to 3kb downstream of genes/Exons , set
bindingType = "fullRange" and bindingRegion = c(-5000, 3000)

* To obtain peaks with nearest bi-directional promoters within Skb upstream
and 3kb downstream of TSS, set bindingType = "nearestBiDirectionalPro-
moters" and bindingRegion = c(-5000, 3000)

startSite start position of the feature (strand is considered)

endSite end position of the feature (strand is considered)

fullRange whole range of the feature

nearestBiDirectionalPromoters nearest promoters from both direction of the
peaks (strand is considered). It will report bidirectional promoters if there
are promoters in both directions in the given region (defined by bindingRe-
gion). Otherwise, it will report the closest promoter in one direction.

bindingRegion Annotation range used together with bindingType, which is a vector with two
integer values, default to ¢ (-5000, 5000). The first one must be no bigger than
0, which means upstream. And the sec ond one must be no less than 1, which
means downstream (1 is the site position, 2 is the next base of the site position).
For details, see bindingType.

ignore.peak.strand
ignore the peaks strand or not.

select "all" or "bestOne". Return the annotation containing all or the best one. The
"bestOne" is selected by the shortest distance to the sites and then similarity
between peak and annotations. Ignored if bindingType is nearestBiDirectional-
Promoters.

annotatedPeak 13

Not used.

Value

Output is a GRanges object of the annotated peaks.

Author(s)

Jianhong Ou

See Also

See Also as annotatePeakInBatch

Examples

library(ensembldb)

library(EnsDb.Hsapiens.v75)

data("myPeakList")

annoGR <- toGRanges(EnsDb.Hsapiens.v75)
seqlevelsStyle(myPeakList) <- seqlevelsStyle(annoGR)
annoPeaks(myPeakList, annoGR)

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT1-binding regions that are identified in un-stimulated cells using ChIP-
seq technology (Robertson et al., 2007)

Usage

annotatedPeak

Format

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot names holding the id of the peak, slot strand holding the strands and slot space
holding the chromosome location where the peak is located. In addition, the following variables are
included.

list("'feature'') id of the feature such as ensembl gene ID

list("'insideFeature'') upstream: peak resides upstream of the feature; downstream: peak resides
downstream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps
with the start of the feature; overlapEnd: peak overlaps with the end of the feature; include-
Feature: peak include the feature entirely

list("'distancetoFeature'') distance to the nearest feature such as transcription start site

14 annotatePeakInBatch

list("'start_position'") start position of the feature such as gene

list("'end_position'') end position of the feature such as the gene

Details

obtained by data(TSS.human.GRCh37)
data(myPeakList)
annotatePeakInBatch(myPeakList, AnnotationData = TSS.human.GRCh37, output="b", multiple=F)

Examples

data(annotatedPeak)
head(annotatedPeak, 4) # show first 4 ranges
if (interactive() || Sys.getenv("USER")=="jou") {
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)),
xlab="Distance To Nearest TSS"”, main="", breaks=1000,
ylim=c(@, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max (as.numeric(as.character(y)))+100))

}

annotatePeakInBatch Obtain the distance to the nearest TSS, miRNA, and/or exon for a list
of peaks

Description

Obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging
IRanges and biomaRt package

Usage
annotatePeakInBatch(

myPeakList,

mart,

featureType = c("TSS", "miRNA", "Exon"),

AnnotationData,

output = c("nearestlLocation”, "overlapping”, "both"”, "shortestDistance”, "inside",
"upstream&inside”, "inside&downstream”, "upstream”, "downstream”,
"upstreamORdownstream”, "nearestBiDirectionalPromoters”),

multiple = c(TRUE, FALSE),

maxgap = -1L,

PeakLocForDistance = c("start"”, "middle”, "end”, "endMinusStart"),

FeatureLocForDistance = c("TSS", "middle"”, "start”, "end”, "geneEnd"),

select = c("all”, "first"”, "last”, "arbitrary"”),
ignore.strand = TRUE,

annotatePeakInBatch

15

bindingRegion = NULL,

Arguments

myPeakList
mart

featureType

AnnotationData

output

multiple

A GRanges object

A mart object, used if AnnotationData is not supplied, see useMart of bioMaRt
package for details

A charcter vector used with mart argument if AnnotationData is not supplied;
choose from "TSS", "miRNA" or "Exon"

A GRanges or annoGR object. It can be obtained from the function getAnnota-
tion or customized annotation of class GRanges containing additional variable:
strand (1 or + for plus strand and -1 or - for minus strand). Pre-compliled anno-
tations, such as TSS.human.NCBI36, TSS.mouse.NCBIM37, TSS.rat. RGSC3.4
and TSS.zebrafish.Zv8, are provided by this package (attach them with data()
function). Another method to provide annotation data is to obtain through biomaRt
in real time by using the mart and featureType option

nearestLocation (default) will output the nearest features calculated as Peak-
Loc - FeatureLocForDistance; when selected, the output can consist of both
"strictly nearest features (non-overlapping)" and "overlapping features" as
long as they are the nearest

overlapping will output overlapping features with maximum gap specified as
maxgap between peak range and feature range; it is possible for a peak
to be annotated with zero ("NA" will be returned) or multiple overlapping
features if exist

both will output all the nearest features as well as any features that overlap with
the peak that is not the nearest

shortestDistance will output the features with the shortest distance; the "short-
est distance" is determined from either ends of the feature to either ends of
the peak

upstream&inside will output all upstream and overlapping features with max-
imum gap

inside&downstream will output all downstream and overlapping features with
maximum gap

upstream will output all upstream features with maximum gap

downstream will output all downstream features with maximum gap

upstreamORdownstream will output all upstream features with maximum gap
or downstream with maximum gap

nearestBiDirectionalPromoters will use annoPeaks to annotate peaks. Near-
est promoters from both direction of the peaks (strand is considered). It
will report bidirectional promoters if there are promoters in both directions
in the given region (defined by bindingRegion). Otherwise, it will report
the closest promoter in one direction.

Not applicable when output is nearest. TRUE: output multiple overlapping fea-

tures for each peak. FALSE: output at most one overlapping feature for each

peak. This parameter is kept for backward compatibility, please use select.

16

annotatePeakInBatch

maxgap The maximum gap that is allowed between 2 ranges for the ranges to be consid-
ered as overlapping. The gap between 2 ranges is the number of positions that
separate them. The gap between 2 adjacent ranges is 0. By convention when
one range has its start or end strictly inside the other (i.e. non-disjoint ranges),
the gap is considered to be -1.

PeakLocForDistance
Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of the
peak to calculate the distance to feature, endMinusStart means using the end of
the peak to calculate the distance to features on plus strand and the start of the
peak to calculate the distance to features on minus strand. To be compatible with
previous version, by default using start

FeatureLocForDistance
Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

select "all" may return multiple overlapping peaks, "first" will return the first overlap-
ping peak, "last" will return the last overlapping peak and "arbitrary" will return
one of the overlapping peaks.

ignore.strand When set to TRUE, the strand information is ignored in the annotation. Unless
you have stranded peaks and you are interested in annotating peaks to the fea-
tures in the same strand only, you should just use the default setting ignore.strand
= TRUE.

bindingRegion Annotation range used for annoPeaks, which is a vector with two integer values,
default to ¢ (-5000, 5000). The first one must be no bigger than 0. And the sec
ond one must be no less than 1. Once bindingRegion is defined, annotation will
based on annoPeaks. Here is how to use it together with the parameter output
and FeatureLLocForDistance.

* To obtain peaks with nearest bi-directional promoters within 5kb upstream
and 3kb downstream of TSS, set output = "nearestBiDirectionalPromoters"
and bindingRegion = ¢(-5000, 3000)

* To obtain peaks within Skb upstream and up to 3kb downstream of TSS
within the gene body, set output="overlapping", FeatureLocForDistance="TSS"
and bindingRegion = ¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of gene/Exon End, set output="overlapping", FeatureLocForDis-
tance="geneEnd" and bindingRegion = c(-5000, 3000)

* To obtain peaks from Skb upstream to 3kb downstream of genes/Exons,
set output="overlapping", bindingType = "fullRange" and bindingRegion =
¢(-5000, 3000)

For details, see annoPeaks.

Parameters could be passed to annoPeaks

annotatePeakInBatch 17

Value

An object of GRanges with slot start holding the start position of the peak, slot end holding the end
position of the peak, slot space holding the chromosome location where the peak is located, slot
rownames holding the id of the peak. In addition, the following variables are included.

list("feature")
id of the feature such as ensembl gene ID

list("insideFeature")
upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak
overlaps with the start of the feature; overlapEnd: peak overlaps with the end of
the feature; includeFeature: peak include the feature entirely

list("distancetoFeature")
distance to the nearest feature such as transcription start site. By default, the
distance is calculated as the distance between the start of the binding site and the
TSS that is the gene start for genes located on the forward strand and the gene
end for genes located on the reverse strand. The user can specify the location of
peak and location of feature for calculating this

list("start_position”)
start position of the feature such as gene

list("end_position™)
end position of the feature such as the gene

list("strand”) 1 or + for positive strand and -1 or - for negative strand where the feature is

located
list("shortestDistance"”)

The shortest distance from either end of peak to either end the feature.
list("fromOverlappingOrNearest")

Relevant only when output is set to "both". If "nearestLocation": indicates this

feature’s start (feature’s end for features from minus strand) is the closest to

the peak start ("strictly nearest” or "nearest overlapping"); if "Overlapping":

indicates this feature overlaps with this peak although it is not the nearest (non-

nearest overlapping)

Author(s)
Lihua Julie Zhu, Jianhong Ou

References
1. Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

2. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset." In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8

See Also

getAnnotation, findOverlappingPeaks, makeVennDiagram, addGenelDs, peaksNearBDP, summa-
rizePatternInPeaks, annoGR, annoPeaks

18 annotatePeakInBatch

Examples

example 1: annotate myPeakList by TxDb or EnsDb.

data(myPeakList)

library(ensembldb)

library(EnsDb.Hsapiens.v75)

annoData <- annoGR(EnsDb.Hsapiens.v75)

annotatePeak = annotatePeakInBatch(myPeakList[1:6], AnnotationData=annoData)
annotatePeak

example 2: annotate myPeakList (GRanges)

with TSS.human.NCBI36 (Granges)

data(TSS.human.NCBI36)

annotatedPeak = annotatePeakInBatch(myPeakList[1:6],
AnnotationData=TSS.human.NCBI36)

annotatedPeak

example 3: you have a list of transcription factor biding sites from
literature and are interested in determining the extent of the overlap
to the list of peaks from your experiment. Prior calling the function
annotatePeakInBatch, need to represent both dataset as GRanges

where start is the start of the binding site, end is the end of the

binding site, names is the name of the binding site, space and strand
are the chromosome name and strand where the binding site is located.

myexp <- GRanges(seqnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1543200,1557200, 1563000, 1569800,
167889600,100,1000),
end=c(1555199,1560599,1565199,1573799,
167893599, 200,1200),
names=c("p1"”,"p2","p3", " "p4","p5","p6", "p7")),
strand="+"
literature <- GRanges(segnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1549800,1554400, 1565000, 1569400,
167888600,120,800),
end=c(1550599,1560799,1565399,1571199,
167888999, 140,1400),
names=c("f1","f2","f3", "f4" "f5" "f6" ,"f7")),
strand=rep(c("+", "-"), c(5, 2)))
annotatedPeakl <- annotatePeakInBatch(myexp,
AnnotationData=literature)
pie(table(annotatedPeakl$insideFeature))
annotatedPeakl
use toGRanges or rtracklayer::import to convert BED or GFF format
to GRanges before calling annotatePeakInBatch
test.bed <- data.frame(space=c("4", "6"),
start=c("”100", "1000"),
end=c("200", "1100"),
name=c("peakl1”, "peak2"))
test.GR = toGRanges(test.bed)
annotatePeakInBatch(test.GR, AnnotationData = literature)

annotatePeakInBatch 19

library(testthat)
peak <- GRanges(segnames = "chri1"”,
IRanges(start = 24736757, end=24737528,
names = "testPeak"))
data(TSS.human.GRCh37)
TSS.human.GRCh37[names (TSS.human.GRCh37)== "ENSG00000001461"]
GRanges object with 1 range and 1 metadata column:

seqgnames ranges strand | description

#<Rle> <IRanges> <Rle> | <character>

ENSG00000001461 1 24742285-24799466 + | NIPA-like domain con..
peak

#GRanges object with 1 range and @ metadata columns:

segnames ranges strand

#<Rle> <IRanges> <Rle>

testPeak chr1 24736757-24737528 *

TSS.human.GRCh37[names (TSS. human.GRCh37)== "ENSG00000001460"]

#GRanges object with 1 range and 1 metadata column:

segnames ranges strand | description

#<Rle> <IRanges> <Rle> | <character>

ENSG00000001460 1 24683490-24743424 - | UPFQ490 protein Clor..

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "start")

stopifnot(ap$feature=="ENSG0O00Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "end")

stopifnot(ap$feature=="ENSG0O0Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "middle")

stopifnot(ap$feature=="ENSG0O00Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "endMinusStart”)

stopifnot(ap$feature=="ENSG0O0000001461")

Let's calculate the distances between the peak and the TSS of the genes

in the annotation file used for annotating the peaks.

Please note that we need to compute the distance using the annotation

file TSS.human.GRCh37.

If you would like to use TxDb.Hsapiens.UCSC.hg19.knownGene,

then you will need to annotate the peaks

using TxDb.Hsapiens.UCSC.hg19.knownGene as well.

using start

start(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==

"ENSG00Q00001461"]) #picked
#[1] -5528
start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460" 1)

#[1] -6667

using middle

(start(peak) + end(peak))/2 -

start(TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSGQ0000001461"])
#[1] -5142.5
(start(peak) + end(peak))/2 -
end(TSS. human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001460"1)
[1] 49480566

20

annotatePeakInBatch

end(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSGO0000001461"]) #picked
[1] -4757
end(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460"])
[1] -5896
using endMinusStart
end(peak) - start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG0O0000001461"1) ## picked
[1] -4575
start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460"1)
#[1] -6667
###HH#H using txdb object to annotate the peaks
library(org.Hs.eg.db)
select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
columns=c("ENSEMBL", "ENTREZID"”, "SYMBOL"))
SYMBOL ENSEMBL ENTREZID
STPG1 ENSG0O0000001460 90529
select(org.Hs.eg.db, key= "ENSG0O000Q0001461", keytype="ENSEMBL",
columns=c("ENSEMBL", "ENTREZID", "SYMBOL"))
#ENSEMBL ENTREZID SYMBOL
ENSG00000001461 57185 NIPAL3
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb.ann.current <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
note: the annotation of STPG1 shifted from old version
here we set the old one for the test
txdb.ann <- GRanges('chr1', IRanges(start=c(24683489, 24742245),
end=c (24741587, 24799473)),
strand=c('-", '+'), gene_id=c('90529', '57185"'))
names(txdb.ann) <- txdb.ann$gene_id
STPG1 <- select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
columns=c("SYMBOL", "ENSEMBL", "ENTREZID"))[1,3]
NIPAL3 <- select(org.Hs.eg.db, key="NIPAL3", keytype="SYMBOL",
columns=c("SYMBOL", "ENSEMBL", "ENTREZID"))[1,3]
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "start")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "end")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "middle")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "endMinusStart")
expect_equal (ap$feature, NIPAL3)
txdb.ann.current[NIPAL3]
txdb.ann[txdb.ann$gene_id == NIPAL3]
GRanges object with 1 range and 1 metadata column:

seqgnames ranges strand | gene_id
<Rle> <IRanges> <Rle> | <character>
57185 chr1 24742245-24799473 + | 57185

assignChromosomeRegion 21

txdb.ann.current[STPG1]
txdb.ann[txdb.ann$gene_id == STPG1]
GRanges object with 1 range and 1 metadata column:

segnames ranges strand | gene_id
<Rle> <IRanges> <Rle> | <character>
90529 chr1 24683489-24741587 - 90529

assignChromosomeRegion
Summarize peak distribution over exon, intron, enhancer, proximal
promoter;, 5 prime UTR and 3 prime UTR

Description

Summarize peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and 3
prime UTR

Usage

assignChromosomeRegion(
peaks.RD,
exon,
TSS,
utrb,
utr3,
proximal.promoter.cutoff = c(upstream = 2000, downstream = 100),
immediate.downstream.cutoff = c(upstream = @, downstream = 1000),
nucleotidelLevel = FALSE,
precedence = NULL,

TxDb = NULL
)
Arguments

peaks.RD peaks in GRanges: See example below

exon exon data obtained from getAnnotation or customized annotation of class GRanges
containing additional variable: strand (1 or + for plus strand and -1 or - for mi-
nus strand). This parameter is for backward compatibility only. TxDb should be
used instead.

TSS TSS data obtained from getAnnotation or customized annotation of class GRanges

containing additional variable: strand (1 or + for plus strand and -1 or - for minus
strand). For example, data(TSS.human.NCBI36),data(TSS.mouse. NCBIM37),
data(TSS.rat. RGSC3.4) and data(TSS.zebrafish.Zv8). This parameter is for back-
ward compatibility only. TxDb should be used instead.

22 assignChromosomeRegion

utrb 5 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

utr3 3 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

proximal.promoter.cutoff
Specify the cutoff in bases to classify proximal promoter or enhencer. Peaks that
reside within proximal.promoter.cutoff upstream from or overlap with transcrip-
tion start site are classified as proximal promoters. Peaks that reside upstream
of the proximal.promoter.cutoff from gene start are classified as enhancers. The
default is upstream 2000 bases and downstream 100 bases.

immediate.downstream.cutoff
Specify the cutoff in bases to classify immediate downstream region or enhancer
region. Peaks that reside within immediate.downstream.cutoff downstream of
gene end but not overlap 3 prime UTR are classified as immediate downstream.
Peaks that reside downstream over immediate.downstreatm.cutoff from gene
end are classified as enhancers. The default is upstream 0 bases and downstream
1000 bases.

nucleotidelevel
Logical. Choose between peak centric and nucleotide centric view. Default=FALSE

precedence If no precedence specified, double count will be enabled, which means that if
a peak overlap with both promoter and 5’UTR, both promoter and 5’UTR will
be incremented. If a precedence order is specified, for example, if promoter is
specified before 5’UTR, then only promoter will be incremented for the same ex-

non

ample. The values could be any conbinations of "Promoters", "immediateDown-
stream”, "fiveUTRs", "threeUTRs", "Exons" and "Introns", Default=NULL

TxDb an object of TxDb or similar including EnsDb

Value
A list of two named vectors: percentage and jaccard (Jaccard Index). The information in the vectors:

list("Exons") Percent or the picard index of the peaks resided in exon regions.
list("Introns")

Percent or the picard index of the peaks resided in intron regions.
list("fiveUTRs")

Percent or the picard index of the peaks resided in 5 prime UTR regions.
list("threeUTRs")

Percent or the picard index of the peaks resided in 3 prime UTR regions.
list("Promoter™)

Percent or the picard index of the peaks resided in proximal promoter regions.
list("ImmediateDownstream”)

Percent or the picard index of the peaks resided in immediate downstream re-

gions.

assignChromosomeRegion 23

list("Intergenic.Region")
Percent or the picard index of the peaks resided in intergenic regions.

The Jaccard index, also known as Intersection over Union. The Jaccard index is between O and 1.
The higher the index, the more significant the overlap between the peak region and the genomic
features in consideration.

Author(s)
Jianhong Ou, Lihua Julie Zhu

References

1. Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

2. Zhu L.J. (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. Methods Mol Biol.
2013;1067:105-24. doi: 10.1007/978-1-62703-607-8_8.

See Also

genomicElementDistribution, genomicElementUpSetR, binOverFeature, binOverGene, binOver-
Regions

Examples

if (interactive() || Sys.getenv("USER")=="jou"){
##Display the list of genomes available at UCSC:
#library(rtracklayer)
#ucscGenomes()[, "db"]
Display the list of Tracks supported by makeTxDbFromUCSC()
#supportedUCSCtables()
##Retrieving a full transcript dataset for Human from UCSC
##TranscriptDb <-
#i# makeTxDbFromUCSC(genome="hg19", tablename="ensGene")
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
exons <- exons(TxDb, columns=NULL)
fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
Feature.distribution <-
assignChromosomeRegion(exons, nucleotidelLevel=TRUE, TxDb=TxDb)
barplot(Feature.distribution$percentage)
assignChromosomeRegion(fiveUTRs, nucleotidelevel=FALSE, TxDb=TxDb)

data(myPeakList)
assignChromosomeRegion(myPeakList, nucleotidelLevel=TRUE,
precedence=c("Promoters”, "immediateDownstream”,
"fiveUTRs", "threeUTRs",
"Exons", "Introns"),
TxDb=TxDb)

24 bdp

bdp obtain the peaks near bi-directional promoters

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional

promoters.
Usage
bdp(peaks, annoData, maxgap = 2000L, ...)
Arguments
peaks peak list, GRanges object
annoData annotation data, annoGR object
maxgap maxgap between peak and TSS
Not used.
Value

Output is a list of GRanges object of the peaks near bi-directional promoters.

Author(s)

Jianhong Ou

See Also

See Also as annoPeaks, annoGR

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
library(ensembldb)
library(EnsDb.Hsapiens.v75)
data("myPeakList")
annoGR <- annoGR(EnsDb.Hsapiens.v75)
seqglevelsStyle(myPeakList) <- seqlevelsStyle(annoGR)
ChIPpeakAnno: : :bdp(myPeakList, annoGR)

bindist-class 25

bindist-class Class "bindist”

Description
An object of class "bindist"” represents the relevant fixed-width range of binding site from the
feature and number of possible binding site in each range.
Objects from the Class
Objects can be created by calls of the form new("bindist”, counts="integer"”, mids="integer",halfBinSize="intege
bindingType="character”, featureType="character").
See Also

preparePool, peakPermTest

binOverFeature Aggregate peaks over bins from the TSS

Description

Aggregate peaks over bins from the feature sites.

Usage

binOverFeature(

annotationData = GRanges(),

select = c("all”, "nearest"),
radius = 5000L,
nbins = 50L,

minGenelLen = 1L,

aroundGene = FALSE,

mbins = nbins,

featureSite = c("FeatureStart”, "FeatureEnd”, "bothEnd"),
PeakLocForDistance = c("all”, "end"”, "start”, "middle"),
FUN = sum,

errFun = sd,

xlab,

ylab,

main

26 binOverFeature

Arguments

Objects of GRanges to be analyzed

annotationData An object of GRanges or annoGR for annotation

select Logical: annotate the peaks to all features or the nearest one

radius The radius of the longest distance to feature site

nbins The number of bins

minGenelLen The minimal gene length

aroundGene Logical: count peaks around features or a given site of the features. Default =
FALSE

mbins if aroundGene set as TRUE, the number of bins intra-feature. The value will be

normalized by value * (radius/genelen) * (mbins/nbins)

featureSite which site of features should be used for distance calculation

PeakLocForDistance
which site of peaks should be used for distance calculation

FUN the function to be used for score calculation
errFun the function to be used for errorbar calculation or values for the errorbar.
xlab titles for each x axis
ylab titles for each y axis
main overall titles for each plot
Value

A data.frame with bin values.

Author(s)

Jianhong Ou

Examples

bed <- system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno")
gr1 <- toGRanges(bed, format="BED", header=FALSE)
data(TSS.human.GRCh37)
binOverFeature(grl, annotationData=TSS.human.GRCh37,

radius=5000, nbins=10, FUN=length, errFun=0)

binOverGene

27

binOverGene coverage of gene body

Description

calculate the coverage of gene body per gene per bin.

Usage

binOverGene(
cvglists,
TxDb,
upstream.cutoff = 0oL,
downstream.cutoff = upstream.cutoff,
nbinsGene = 100L,
nbinsUpstream = 20L,
nbinsDownstream = nbinsUpstream,
includeIntron = FALSE,
minGenelLen = nbinsGene,
maxGenelLen = Inf

)

Arguments
cvglists A list of SimpleRleList or RleList. It represents the coverage for samples.
TxDb An object of TxDb. It is used for extracting the annotations.

upstream.cutoff, downstream.cutoff
cutoff length for upstream or downstream of transcript.

nbinsGene, nbinsUpstream, nbinsDownstream
The number of bins for gene, upstream and downstream.

includeIntron A logical value which indicates including intron or not.

minGenelLen, maxGenelLen
minimal or maximal length of gene.

Author(s)

Jianhong Ou

See Also

binOverRegions, plotBinOverRegions

28 binOverRegions

Examples

if(Sys.getenv("USER")=="jou"){

path <- system.file("extdata"”, package="ChIPpeakAnno")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(rtracklayer)

files <- dir(path, "bigWig")

if(.Platform$0S. type != "windows"){

cvglists <- lapply(file.path(path, files), import,
format="BigWig", as="RlelList")

names(cvglists) <- sub(”.bigWig"”, "", files)

d <- binOverGene(cvglists, TxDb.Hsapiens.UCSC.hg19.knownGene)

plotBinOverRegions(d)

3

3

binOverRegions coverage of chromosome regions

Description

calculate the coverage of 5’UTR, CDS and 3’UTR per transcript per bin.

Usage

binOverRegions(
cvglists,
TxDb,
upstream.cutoff = 1000L,
downstream.cutoff = upstream.cutoff,
nbinsCDS = 100L,
nbinsUTR = 20L,
nbinsUpstream = 20L,
nbinsDownstream = nbinsUpstream,
includeIntron = FALSE,
minCDSLen = nbinsCDS,
minUTRLen = nbinsUTR,
maxCDSLen = Inf,

maxUTRLen = Inf
)
Arguments
cvglists A list of SimpleRleList or RleList. It represents the coverage for samples.
TxDb An object of TxDb. It is used for extracting the annotations.

upstream.cutoff, downstream.cutoff
cutoff length for upstream or downstream of transcript.

ChIPpeakAnno-deprecated 29

nbinsCDS, nbinsUTR, nbinsUpstream, nbinsDownstream
The number of bins for CDS, UTR, upstream and downstream.

includeIntron A logical value which indicates including intron or not.
minCDSLen, minUTRLen

minimal length of CDS or UTR of transcript.
maxCDSLen, maxUTRLen

maximal length of CDS or UTR of transctipt.

Author(s)

Jianhong Ou

See Also

binOverGene, plotBinOverRegions

Examples

if(Sys.getenv("USER")=="jou"){

path <- system.file("extdata"”, package="ChIPpeakAnno")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(rtracklayer)

files <- dir(path, "bigWig")

if(.Platform$0S.type != "windows"){

cvglists <- lapply(file.path(path, files), import,
format="BigWig", as="RlelList")

names(cvglists) <- sub(”.bigWig", "", files)

d <- binOverRegions(cvglists, TxDb.Hsapiens.UCSC.hg19.knownGene)

plotBinOverRegions(d)

}

3

ChIPpeakAnno-deprecated
Deprecated Functions in Package ChlPpeakAnno

Description
These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Arguments

Peaks1 GRanges: See example below.

Peaks2 GRanges: See example below.

30

cntOverlaps

maxgap, minoverlap

multiple

NameOfPeaks1
NameOfPeaks?2
select

annotate

ignore.strand

connectedPeaks

Details

Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps

in the IRanges package for a description of these arguments.

TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

Name of the Peaks], used for generating column name.
Name of the Peaks2, used for generating column name.

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

When set to TRUE, the strand information is ignored in the overlap calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges: See also findOverlapsOfPeaks.

findOverlappingPeaks is now deprecated wrappers for findOverlapsOfPeaks

See Also

Deprecated, findOverlapsOfPeaks, toGRanges

cntOverlaps

count overlaps

Description

Count overlaps with max gap.

Usage
cntOverlaps(A, B, maxgap = 0L, ...)
Arguments
A, B A GRanges object.
maxgap A single integer >= 0.

parameters passed to numOverlaps#’

condenseMatrixByColnames 31

condenseMatrixByColnames
Condense matrix by colnames

Description

Condense matrix by colnames

Usage

condenseMatrixByColnames(mx, iname, sep = ";", cnt = FALSE)
Arguments

mx a matrix to be condensed

iname the name of the column to be condensed

sep separator for condensed values,default ;

cnt TRUE/FALSE specifying whether adding count column or not?
Value

dataframe of condensed matrix

Author(s)
Jianhong Ou, Lihua Julie Zhu

Examples

a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)
colnames(a)<-c("con.1","con.2","index.1","index.2")
condenseMatrixByColnames(a, "con.1")
condenseMatrixByColnames(a,2)

convert2EntrezID Convert other common IDs to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID lever-
aging organism annotation dataset. For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db
package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

32 countPatternInSeqs

Usage

convert2EntrezID(IDs, orgAnn, ID_type = "ensembl_gene_id")

Arguments

IDs a vector of IDs such as ensembl gene ids

orgAnn organism annotation dataset such as org.Hs.eg.db

ID_type type of ID: can be ensemble_gene_id, gene_symbol or refseq_id
Value

vector of entrez ids

Author(s)
Lihua Julie Zhu

Examples

ensemblIDs = c("ENSGO0000115956", "ENSGO00Q0071082", "ENSG0Q000071054",
"ENSGQ0Q00115594", "ENSGO0Q0Q115594", "ENSGO000@115598", "ENSGO0000170417")
library(org.Hs.eg.db)

entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

countPatternInSeqgs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

countPatternInSegs(pattern, sequences)

Arguments
pattern DNAstringSet object
sequences a vector of sequences
Value

Total number of occurrence of the pattern in the sequences

cumulativePercentage 33

Author(s)

Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

Examples

library(Biostrings)
filepath =
system.file("extdata”, "examplePattern.fa"”, package="ChIPpeakAnno")
dict = readDNAStringSet(filepath = filepath, format="fasta",
use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT",
" AAAAAACCCCTTTTGGCCATCCCGGGACGGGCCCAT",
"ATCGAAAATTTCC")
countPatternInSeqs(pattern=dict[1], sequences=sequences)
countPatternInSeqs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet("ATNGMAA")
countPatternInSeqs(pattern=pattern, sequences=sequences)

cumulativePercentage Plot the cumulative percentage tag allocation in sample

Description

Plot the difference between the cumulative percentage tag allocation in paired samples.

Usage

cumulativePercentage(bamfiles, gr, input = 1, binWidth = 1000, ...)
Arguments

bamfiles Bam file names.

gr An object of GRanges

input Which file name is input. default 1.

binWidth The width of each bin.

parameter for summarizeOverlaps.

Value

A list of data.frame with the cumulative percentages.

34 downstreams

Author(s)

Jianhong Ou

References

Normalization, bias correction, and peak calling for ChIP-seq Aaron Diaz, Kiyoub Park, Daniel
A. Lim, Jun S. Song Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2012 May
3.Published in final edited form as: Stat Appl Genet Mol Biol. 2012 Mar 31; 11(3): 10.1515/1544-
6115.1750 /j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml. Published online 2012
Mar 31. doi: 10.1515/1544-6115.1750 PMCID: PMC3342857

Examples

Not run:

path <- system.file("extdata"”, "reads”, package="MMDiffBamSubset")
files <- dir(path, "bam$", full.names = TRUE)
library(BSgenome.Hsapiens.UCSC.hg19)

gr <- as(seqginfo(Hsapiens)["chr1”], "GRanges")
cumulativePercentage(files, gr)

End(Not run)

downstreams Get downstream coordinates

Description
Returns an object of the same type and length as x containing downstream ranges. The output range
is defined as

Usage

downstreams(gr, upstream, downstream)

Arguments

gr A GenomicRanges object
upstream, downstream
non-negative interges.

Details

(end(x) - upstream) to (end(x) + downstream -1)

for ranges on the + and * strand, and as

(start(x) - downstream + 1) to (start(x) + downstream)
for ranges on the - strand.

Note that the returned object might contain out-of-bound ranges.

egOrgMap 35

Value

A GenomicRanges object

Examples

gr <- GRanges("chr1”, IRanges(rep(1@, 3), width=6), c("+", "=-", "%"))
downstreams(gr, 2, 2)

egOrgMap Convert between the name of the organism annotation package
("OrgDb") and the name of the organism.

Description

Give a species name and return the organism annotation package name or give an organism annota-
tion package name then return the species name.
Usage

egOrgMap (name)

Arguments

name The name of the organism annotation package or the species.

Value

A object of character

Author(s)

Jianhong Ou

Examples

egOrgMap("org.Hs.eg.db")
egOrgMap("Mus musculus")

36 enrichedGO

enrichedGO Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage
enrichedGO

Format
A list of 3 dataframes.

list("'bp'') dataframe described the enriched biological process with 9 columns
£0.1d:GO biological process id
go.term:GO biological process term
go.Definition: GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

list("'mf'') dataframe described the enriched molecular function with the following 9 columns
£0.id:GO molecular function id
go.term:GO molecular function term
go.Definition: GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

list(''cc'") dataframe described the enriched cellular component the following 9 columns
£0.1d:GO cellular component id
go.term:GO cellular component term
go.Definition: GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

enrichmentPlot 37

Author(s)
Lihua Julie Zhu

Examples

data(enrichedGO)

dim(enrichedGo$mf)
dim(enrichedGO$cc)
dim(enrichedG0$bp)

enrichmentPlot plot enrichment results

Description

Plot the GO/KEGG/reactome enrichment results

Usage

enrichmentPlot(
res,
n = 20,
strlength = Inf,
style = c("v", "h"),
label_wrap = 40,
label_substring_to_remove = NULL,

orderBy = c("pvalue”, "termId”, "none")
)
Arguments
res output of getEnrichedGO, getEnrichedPATH.
n number of terms to be plot.
strlength shorten the description of term by the number of char.
style plot vertically or horizontally
label_wrap soft wrap the labels (i.e. descriptions of the GO or PATHWAY terms), default to

40 characters.
label_substring_to_remove

remove common substring from label, default to NULL. Special characters must
be escaped. E.g. if you would like to remove "Homo sapiens (human)" from
labels, you must use "Homo sapiens \\(human\\)".

orderBy order the data by pvalue, termld or none.

Value

an object of ggplot

38 EnsDb2GR

Author(s)

Jianhong Ou, Kai Hu

Examples

data(enrichedGO)
enrichmentPlot (enrichedGO)
if (interactive()||Sys.getenv("USER")=="jou") {

library(org.Hs.eg.db)
library(GO.db)
bed <- system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno")
gr1 <- toGRanges(bed, format="BED", header=FALSE)
gff <- system.file("extdata", "GFF_peaks.gff", package="ChIPpeakAnno")
gr2 <- toGRanges(gff, format="GFF", header=FALSE, skip=3)
library(EnsDb.Hsapiens.v75) ##(hg19)
annoData <- toGRanges(EnsDb.Hsapiens.v75)
grl.anno <- annoPeaks(gr1, annoData)
gr2.anno <- annoPeaks(gr2, annoData)
over <- lapply(GRangesList(gri=gri.anno, gr2=gr2.anno),

getEnrichedGO, orgAnn="org.Hs.eg.db",

maxP=.05, minGOterm=1@, condense=TRUE)
enrichmentPlot(overs$gril)
enrichmentPlot(over$gr2, style = "h")

EnsDb2GR EnsDb object to GRanges

Description

convert EnsDb object to GRanges

Usage

EnsDb2GR(ranges, feature)

Arguments

ranges an EnsDb object

feature feature type, could be disjointExons, gene, exon and transcript

estFragmentLength 39

estFragmentLength estimate the fragment length

Description

estimate the fragment length for bam files

Usage

estFragmentLength(
bamfiles,
index = bamfiles,
plot = TRUE,
lag.max = 1000,
minFragmentSize = 100,

)
Arguments
bamfiles The file names of the '/BAM’ ('SAM’ for asBam) files to be processed.
index The names of the index file of the 'TBAM’ file being processed; this is given
without the *.bai’ extension.
plot logical. If TRUE (the default) the acf is plotted.
lag.max maximum lag at which to calculate the acf. See acf
minFragmentSize
minimal fragment size to avoid the phantom peak.
Not used.
Value

numberic vector

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
path <- system.file("extdata”, "reads”, package="MMDiffBamSubset")
if(file.exists(path)){
WT.AB2 <- file.path(path, "WT_2.bam")
Null.AB2 <- file.path(path, "Null_2.bam")
Resc.AB2 <- file.path(path, "Resc_2.bam")
estFragmentLength(c(WT.AB2, Null.AB2, Resc.AB2))

40

estLibSize
}
estLibSize estimate the library size
Description
estimate the library size of bam files
Usage
estLibSize(bamfiles, index = bamfiles, ...)
Arguments
bamfiles The file names of the 'BAM’ ('SAM’ for asBam) files to be processed.
index The names of the index file of the " BAM’ file being processed; this is given
without the ’.bai’ extension.
Not used.
Value

numberic vector

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
path <- system.file("extdata”, "reads”, package="MMDiffBamSubset")
if(file.exists(path)){
WT.AB2 <- file.path(path, "WT_2.bam")
Null.AB2 <- file.path(path, "Null_2.bam")
Resc.AB2 <- file.path(path, "Resc_2.bam")
estLibSize(c(WT.AB2, Null.AB2, Resc.AB2))

ExonPlusUtr.human.GRCh37 41

ExonPlusUtr.human.GRCh37
Gene model with exon, 5’ UTR and 3’ UTR information for human
sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5 UTR and 3’ UTR information for human sapiens (GRCh37) obtained
from biomaRt

Usage

ExonPlusUtr.human.GRCh37

Format

GRanges with slot start holding the start position of the exon, slot end holding the end position
of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome
location where the gene is located. In addition, the following variables are included.
list("'strand'') 1 for positive strand and -1 for negative strand

list("'description'') description of the transcript

list("'ensembl_gene_id'') gene id

list("'utrSstart') 5° UTR start

list(""utrSend'') 5’ UTR end

list(""utr3start'') 3’ UTR start

list(""utr3end'") 3’ UTR end

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset
= "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-
Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37)
slotNames(ExonPlusUtr.human.GRCh37)

42 featureAlignedDistribution

featureAlignedDistribution
plot distribution in given ranges

Description

plot distribution in the given feature ranges

Usage

featureAlignedDistribution(
cvglists,
feature.gr,
upstream,
downstream,
n.tile = 100,
zeroAt,

Arguments

cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList

feature.gr An object of GRanges with identical width. If the width equal to 1, you can use
upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream
upstream or dwonstream from the feature.gr.

n.tile The number of tiles to generate for each element of feature.gr, default is 100
zeroAt zero point position of feature.gr

any paramters could be used by matplot

Value

invisible matrix of the plot.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, feature AlignedHeatmap

featureAlignedExtendSignal 43

Examples

cvglists <- list(A=RlelList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))),
B=RleList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
featureAlignedDistribution(cvglists, feature.gr, zeroAt=50, type="1")

featureAlignedExtendSignal
extract signals in given ranges from bam files

Description

extract signals in the given feature ranges from bam files (DNAseq only). The reads will be extended
to estimated fragement length.

Usage
featureAlignedExtendSignal(
bamfiles,
index = bamfiles,
feature.gr,
upstream,
downstream,
n.tile = 100,
fragmentLength,
librarySize,
pe = C(Ilauto”’ IIPEIIy IISEII)’
adjustFragmentLength,
gal,
)
Arguments
bamfiles The file names of the 'BAM’ ("'SAM’ for asBam) files to be processed.
index The names of the index file of the 'TBAM’ file being processed; this is given
without the ’.bai’ extension.
feature.gr An object of GRanges with identical width.

upstream, downstream
upstream or dwonstream from the feature.gr.

n.tile The number of tiles to generate for each element of feature.gr, default is 100

fragmentLength Estimated fragment length.

44 featureAlignedExtendSignal

librarySize Estimated library size.
pe Pair-end or not. Default auto.
adjustFragmentLength

A numberic vector with length 1. Adjust the fragments/reads length to.

gal A GAlignmentsList object or a list of GAlignmentPairs. If bamfiles is missing,
gal is required.

Not used.

Value

A list of matrix. In each matrix, each row record the signals for corresponding feature.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, estLibSize, estFragmentLength

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
path <- system.file("extdata"”, package="MMDiffBamSubset")
if(file.exists(path)){
WT.AB2 <- file.path(path, "reads”, "WT_2.bam")
Null.AB2 <- file.path(path, "reads”, "Null_2.bam")
Resc.AB2 <- file.path(path, "reads", "Resc_2.bam")
peaks <- file.path(path, "peaks"”, "WT_2_Macs_peaks.xls")
estLibSize(c(WT.AB2, Null.AB2, Resc.AB2))
feature.gr <- toGRanges(peaks, format="MACS")
feature.gr <- feature.gr[segnames(feature.gr)=="chr1” &
start(feature.gr)>3000000 &
end(feature.gr)<75000000]
sig <- featureAlignedExtendSignal(c(WT.AB2, Null.AB2, Resc.AB2),
feature.gr=reCenterPeaks(feature.gr, width=1),
upstream = 505,
downstream = 505,
n.tile=101,
fragmentLength=250,
librarySize=1e9)
featureAlignedHeatmap(sig, reCenterPeaks(feature.gr, width=1010),
zeroAt=.5, n.tile=101)

featureAlignedHeatmap 45

featureAlignedHeatmap Heatmap representing signals in given ranges

Description

plot heatmap in the given feature ranges

Usage

featureAlignedHeatmap (
cvglists,
feature.gr,
upstream,
downstream,
zeroAt,
n.tile = 100,
annoMcols = c(),
sortBy = names(cvglists)[1],
color = colorRampPalette(c("yellow”, "red"))(50),
lower.extreme,
upper.extreme,
margin = c(0.1, 0.01, 0.15, 0.1),
gap = 0.01,
newpage = TRUE,
gp = gpar(fontsize = 10),

)

Arguments
cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList
feature.gr An object of GRanges with identical width. If the width equal to 1, you can use

upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream
upstream or dwonstream from the feature.gr. It must keep same as feature-
AlignedSignal. It is used for x-axis label.

zeroAt zero point position of feature.gr
n.tile The number of tiles to generate for each element of feature.gr, default is 100
annoMcols The columns of metadata of feature.gr that specifies the annotations shown of

the right side of the heatmap.

sortBy Sort the feature.gr by columns by annoMcols and then the signals of the given
samples. Default is the first sample. Set to NULL to disable sort.

color vector of colors used in heatmap

46 featureAlignedSignal

lower.extreme, upper.extreme
The lower and upper boundary value of each samples

margin Margin for of the plot region.
gap Gap between each heatmap columns.
newpage Call grid.newpage or not. Default, TRUE
gp A gpar object can be used for text.
Not used.
Value

invisible gList object.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, feature AlignedDistribution

Examples

cvglists <- list(A=RleList(chri1=Rle(sample.int(5000, 100),
sample.int (300, 100))),
B=RlelList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
feature.gr$anno <- rep(c("typel”, "type2"), c(25, 24))
featureAlignedHeatmap(cvglists, feature.gr, zeroAt=50, annoMcols="anno")

featureAlignedSignal extract signals in given ranges

Description

extract signals in the given feature ranges

Usage

featureAlignedSignal(
cvglists,
feature.gr,
upstream,
downstream,
n.tile = 100,

findEnhancers 47

Arguments
cvglists List of SimpleRleList or RleList
feature.gr An object of GRanges with identical width.

upstream, downstream
Set the feature.gr to upstream and dwonstream from the center of the feature.gr
if they are set.

n.tile The number of tiles to generate for each element of feature.gr, default is 100

Not used.

Value

A list of matrix. In each matrix, each row record the signals for corresponding feature. rownames
of the matrix show the seqnames and coordinates.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedHeatmap, featureAlignedDistribution

Examples

cvglists <- list(A=RleList(chri1=Rle(sample.int(5000, 100),
sample.int (300, 100))),
B=RleList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
featureAlignedSignal(cvglists, feature.gr)

findEnhancers Find possible enhancers depend on DNA interaction data

Description

Find possible enhancers by data from chromosome conformation capture techniques such as 3C,
5C or HiC.

48 findEnhancers
Usage
findEnhancers(
peaks,
annoData,
DNAinteractiveData,
bindingType = c("nearestBiDirectionalPromoters”, "startSite”, "endSite"),
bindingRegion = c(-5000, 5000),
ignore.peak.strand = TRUE,
)
Arguments
peaks peak list, GRanges object
annoData annotation data, GRanges object
DNAinteractiveData
DNA interaction data, GRanges object with interaction blocks informations,
Glnteractions object, or BEDPE file which could be imported by importGIn-
teractions or BioclO::import or assembly in following list: hg38, hg19, mm10,
danRer10, danRer11.
bindingType Specifying the criteria to associate peaks with annotation. Here is how to use
it together with the parameter bindingRegion. The annotation will be shift to a
new position depend on the DNA interaction region.

* To obtain peaks within 5kb upstream and up to 3kb downstream of shift
TSS within the gene body, set bindingType = "startSite" and bindingRegion
= ¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of shift gene/Exon End, set bindingType = "endSite" and bindin-
gRegion = ¢(-5000, 3000)

* To obtain peaks with nearest bi-directional enhancer regions within Skb
upstream and 3kb downstream of shift TSS, set bindingType = "nearest-
BiDirectionalPromoters" and bindingRegion = ¢(-5000, 3000)

startSite start position of the feature (strand is considered)

endSite end position of the feature (strand is considered)

nearestBiDirectionalPromoters nearest enhancer regions from both direction
of the peaks (strand is considered). It will report bidirectional enhancer
regions if there are enhancer regions in both directions in the given region
(defined by bindingRegion). Otherwise, it will report the closest enhancer
regions in one direction.

bindingRegion Annotation range used together with bindingType, which is a vector with two

integer values, default to ¢ (-5000, 5000). The first one must be no bigger than
0. And the sec ond one must be no less than 1. For details, see bindingType.

ignore.peak.strand

ignore the peaks strand or not.

Not used.

findMotifsInPromoterSeqs 49

Value

Output is a GRanges object of the annotated peaks.

Author(s)

Jianhong Ou

See Also

See Also as annotatePeakInBatch

Examples

bed <- system.file("extdata"”,
"wgEncodeUmassDekker5CGm12878PkV2.bed.gz",
package="ChIPpeakAnno")

DNAinteractiveData <- toGRanges(gzfile(bed))

library(EnsDb.Hsapiens.v75)

annoData <- toGRanges(EnsDb.Hsapiens.v75, feature="gene")

data("myPeakList")

findEnhancers(myPeakList[500:1000], annoData, DNAinteractiveData)

findMotifsInPromoterSeqs
Find occurence of input motifs in the promoter regions of the input
gene list

Description

Find occurence of input motifs in the promoter regions of the input gene list

Usage

findMotifsInPromoterSeqs(
patternFilePatht,
patternFilePath2,
findPairedMotif = FALSE,
BSgenomeName,
txdb,
genelDs,
upstream = 5000L,
downstream = 5000L,
name.motif1 = "motif1"”,
name.motif2 = "motif2",
max.distance = 100L,
min.distance = 1L,
motif.orientation = c("both”, "motif1UpstreamOfMotif2", "motif2UpstreamOfMoif1"),

50 findMotifsInPromoterSeqs
ignore.strand = FALSE,
format = "fasta”,
skip = oL,
motifiLocForDistance = "end"”,
motif2LocForDistance = "start”,
outfile,
append = FALSE
)
Arguments
patternFilePathi
File path containing a list of known motifs. Required
patternFilePath2
File path containing a motif requried to be in the flanking regions of the motif(s)
in the first file, i.e, patternFilePath1. Requried if findPairedMotif is set to TRUE
findPairedMotif
Find motifs in paired configuration only or not. Default FALSE
BSgenomeName A BSgenome object. For a list of existing Bsgenomes, please refer use the func-
tion available.genomes in BSgenome package. For example,BSgenome.Hsapiens.UCSC.hg38
is for hg38, BSgenome.Hsapiens.UCSC.hg19 is for hg19, BSgenome.Mmusculus.UCSC.mm10
is for mm10, BSgenome.Celegans.UCSC.ce6 is for ce6 BSgenome.Rnorvegicus.UCSC.rn5
is for rn5, BSgenome.Drerio.UCSC.danRer7 is for Zv9, and BSgenome.Dmelanogaster. UCSC.dm3
is for dm3. Required
txdb A TxDb object. For creating and using TxDb object, please refer to GenomicFea-
tures package. For a list of existing TxDb object, please search for annotation
package starting with Txdb at http://www.bioconductor.org/packages/release/BiocViews.html#___Annot:
such as TxDb.Rnorvegicus.UCSC.rn5.refGene for rat, TxDb.Mmusculus. UCSC.mm10.knownGene
for mouse, TxDb.Hsapiens.UCSC.hg19.knownGene and TxDb.Hsapiens.UCSC.hg38.knownGene
for human, TxDb.Dmelanogaster. UCSC.dm3.ensGene for Drosophila and TxDb.Celegans.UCSC.ce6.ens
for C.elegans
genelDs One or more gene entrez IDs. For example the entrez ID for EWSIR is 2130
https://www.genecards.org/cgi-bin/carddisp.pl?gene=EWSR1 You can use the
addGenelDs function in ChIPpeakAnno to convert other types of Gene IDs to
entrez ID
upstream Number of bases upstream of the TSS to search for the motifs. Default SO00L
downstream Number of bases downstream of the TSS to search for the motifs. Default 5000L

name.motif1

name.motif2

max.distance

min.distance

Name of the motif in inputfilePath2 for labeling the output file column. Default
motifl. used only when searching for motifs in paired configuration

Name of the motif in inputfilePath2 for labeling the output file column. Default
motif2 used only when searching for motifs in paired configuration

maximum required gap between a paired motifs to be included in the output file.
Default 100L

Minimum required gap between a paired motifs to be included in the output file.
Default 1L

findMotitsInPromoterSeqs 51

motif.orientation
Required relative oriention between paired motifs: both means any orientation,
motif1UpstreamOfMotif2 means motifl needs to be located on the upstream of
motif2, and motif2UpstreamOfMoif]l means motif2 needs to be located on the
upstream of motifl. Default both

ignore.strand Specify whether paired motifs should be located on the same strand. Default

FALSE

format The format of the files specified in inputFilePathl and inputFilePath2. Default
fasta

skip Specify number of lines to skip at the beginning of the input file. Default OL

motifl1LocForDistance
Specify whether to use the start or end of the motifl location to calculate dis-
tance between paired motifs. Only applicable when findPairedMotif is set to
TRUE. Default end

motif2LocForDistance
Specify whether to use the start or end of the motif2 location to calculate dis-
tance between paired motifs. Only applicable when findPairedMotif is set to
TRUE. Default start

outfile File path to save the search results
append Specify whether to append the results to the specified output file, i.e., outfile.
Default FALSE
Details

This function outputs the motif occuring locations in the promoter regions of input gene list and
input motifs. It also can find paired motifs within specificed gap threshold

Value

A vector of numeric. It is the background corrected log2-transformed ratios, CPMRatios or Odd-
Ratios.

An object of GRanges with metadata "tx_start", "tx_end tx_strand", "tx_id", "tx_name", "Gene ID",
and motif specific information such as motif name, motif found, motif strand etc.

Author(s)
Lihua Julie Zhu, Kai Hu

Examples

library("BSgenome.Hsapiens.UCSC.hg38")
library("TxDb.Hsapiens.UCSC.hg38.knownGene")

patternFilePath1l =system.file("extdata”, "motifIRF4.fa", package="ChIPpeakAnno")

patternFilePath2 =system.file("extdata”, "motifAP1.fa", package="ChIPpeakAnno")

pairedMotifs <- findMotifsInPromoterSeqs(patternFilePathl = patternFilePathl,
patternFilePath2 = patternFilePath2,

52 findOverlappingPeaks

findPairedMotif = TRUE,

name.motif1 = "IRF4", name.motif2 = "AP1",

BSgenomeName = BSgenome.Hsapiens.UCSC.hg38,

genelDs = 7486, txdb = TxDb.Hsapiens.UCSC.hg38.knownGene,
outfile = "testPaired.x1s")

unPairedMotifs <- findMotifsInPromoterSeqs(patternFilePathl = patternFilePathi,
BSgenomeName = BSgenome.Hsapiens.UCSC.hg38,
genelDs = 7486, txdb = TxDb.Hsapiens.UCSC.hg38.knownGene,
outfile = "testUnPaired.x1s")

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

Usage
findOverlappingPeaks(
PeaksT,
Peaks2,
maxgap = -1L,

minoverlap = 0oL,

multiple = c(TRUE, FALSE),

NameOfPeaks1 = "TF1",

NameOfPeaks2 = "TF2",

select = c("all”, "first"”, "last"”, "arbitrary”),
annotate = 0,

ignore.strand = TRUE,

connectedPeaks = c("min", "merge"),
)
Arguments
Peaks1 GRanges: See example below.
Peaks2 GRanges: See example below.

maxgap, minoverlap
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

findOverlappingPeaks

NameOfPeaks1
NameOfPeaks?2
select

annotate

ignore.strand
connectedPeaks

Details

53

Name of the Peaks1, used for generating column name.
Name of the Peaks2, used for generating column name.

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

When set to TRUE, the strand information is ignored in the overlap calculations.
If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges: See also findOverlapsOfPeaks.

The new function findOverlapsOfPeaks is recommended.

Efficiently perform overlap queries with an interval tree implemented in IRanges.

Value
OverlappingPeaks
a data frame consists of input peaks information with added information: over-
lapFeature (upstream: peakl resides upstream of the peak2; downstream: peakl
resides downstream of the peak2; inside: peakl resides inside the peak2 en-
tirely; overlapStart: peakl overlaps with the start of the peak2; overlapEnd:
peakl overlaps with the end of the peak2; includeFeature: peakl include the
peak?2 entirely) and shortestDistance (shortest distance between the overlapping
peaks)
MergedPeaks GRanges contains merged overlapping peaks
Author(s)
Lihua Julie Zhu
References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN

0-262-53196-8

2.Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237 doi:10.1186/1471-2105-11-237

3. Zhu L (2013). Integrative analysis of ChIP-chip and ChIP-seq dataset. In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-

1-62703-607-8_8

See Also

findOverlapsOfPeaks, annotatePeakInBatch, makeVennDiagram

54 findOverlapsOfPeaks

Examples

if (interactive())

{
peaksl =
GRanges(seqgnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200, 1563000, 1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),
strand=as.integer(1))
peaks2 =

GRanges(seqgnames=c(6,6,6,6,5),
IRanges(start=c(1549800, 1554400, 1565000, 1569400,167888600) ,
end=c(1550599,1560799,1565399,1571199,167888999),
names=c("f1","f2", "f3","f4" ,"f5")),
strand=as.integer(1))
t1 =findOverlappingPeaks(peaks1, peaks2, maxgap=1000,
NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all"”, annotate=1)
r = t1$0verlappingPeaks
pie(table(r$overlapFeature))
as.data.frame(t1$MergedPeaks)
}

findOverlapsOfPeaks Find the overlapped peaks among two or more set of peaks.

Description

Find the overlapping peaks for two or more (less than five) set of peak ranges.

Usage
findOverlapsOfPeaks(

maxgap = -1L,

minoverlap = 0L,

ignore.strand = TRUE,

connectedPeaks = c("keepAll”, "min”, "merge")

Arguments

Objects of GRanges: See example below.

maxgap, minoverlap
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the TRanges package for a description of these arguments. If 0 < minoverlap
< 1, the function will find overlaps by percentage covered of interval and the
filter condition will be set to max covered percentage of overlapping peaks.

findOverlapsOfPeaks 55

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks are involved in any group of connected/overlapping peaks
in any input peak list, set it to "merge" will add 1 to the overlapping counts,
while set it to "min" will add the minimal involved peaks in each group of con-
nected/overlapped peaks to the overlapping counts. Set it to "keepAll" will add
the number of involved peaks for each peak list to the corresponding overlapping
counts. In addition, it will output counts as if connectedPeaks were set to "min".
For examples (https://support.bioconductor.org/p/133486/#133603), if 5 peaks
in groupl overlap with 2 peaks in group 2, setting connectedPeaks to "merge"
will add 1 to the overlapping counts; setting it to "keepAll" will add 5 peaks to
count.groupl, 2 to count.group2, and 2 to counts; setting it to “min” will add 2
to the overlapping counts.

Details

Efficiently perform overlap queries with an interval tree implemented with GRanges.

Value

return value is An object of overlappingPeaks.

venn_cnt an object of VennCounts

peaklist a list consists of all overlapping peaks or unique peaks

uniquePeaks an object of GRanges consists of all unique peaks

mergedPeaks an object of GRanges consists of all merged overlapping peaks

peaksInMergedPeaks
an object of GRanges consists of all peaks in each samples involved in the over-
lapping peaks

overlappingPeaks

a list of data frame consists of the annotation of all the overlapped peaks

all.peaks a list of GRanges object which contain the input peaks with formated rownames.

Author(s)

Jianhong Ou

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN
0-262-53196-8

2.Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

3. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset." In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8, http://link.springer.com/protocol/10.1007%2F978-1-62703-607-8_8

56 genomicElementDistribution

See Also

annotatePeakInBatch, make VennDiagram, getVennCounts, findOverlappingPeaks

Examples

peaks1 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200,1563000,1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),
strand="+")
peaks2 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1549800,1554400,1565000,1569400,167888600),
end=c (1550599, 1560799, 1565399,1571199,167888999),
names=c("f1","f2","f3","f4" "f5")),
strand="+"
t1 <- findOverlapsOfPeaks(peaks1, peaks2, maxgap=1000)
makeVennDiagram(t1)
t1$venn_cnt
t1$peaklist
t2 <- findOverlapsOfPeaks(peaks1, peaks2, minoverlap
makeVennDiagram(t2)

.5)

t3 <- findOverlapsOfPeaks(peaks1, peaks2, minoverlap = .90)
makeVennDiagram(t3)

genomicElementDistribution
Genomic Element distribution

Description

Plot pie chart for genomic element distribution

Usage

genomicElementDistribution(
peaks,
TxDb,
seqlev,
nucleotidelLevel = FALSE,
ignore.strand = TRUE,
promoterRegion = c(upstream = 2000, downstream = 100),
geneDownstream = c(upstream = @, downstream = 1000),
labels = list(genelLevel = c(promoter = "Promoter"”, geneDownstream = "Downstream”,

geneBody = "Gene body"”, distalIntergenic = "Distal Intergenic”), ExonIntron = c(exon
= "Exon", intron = "Intron”, intergenic = "Intergenic"), Exons = c(utr5="5" UTR",

utr3 = "3' UTR", CDS = "CDS", otherExon = "Other exon"), group = c(genelLevel =

genomicElementDistribution 57

"Transcript Level"”, promoterLevel = "Promoter Level"”, Exons = "Exon level”,
ExonIntron = "Exon/Intron/Intergenic")),

labelColors = c(promoter = "#E1F114", geneBody = "#9EFF00", geneDownstream = "#57CB1B",

distallntergenic = "#066A4B", exon = "#6600FF", intron = "#8FQQFF", intergenic =
"#DAQOFF", utr5 = "#@OFFDB", utr3 = "#Q@ODFFF", CDS = "#QQAQFF", otherExon =
"#QO6FFF"),

plot = TRUE,

keepExonsInGenesOnly = TRUE,

promoterLevel

)

Arguments

peaks peak list, GRanges object or a GRangesList.
TxDb an object of TxDb

seqlev sequence level should be involved. Default is all the sequence levels in intersect
of peaks and TxDb.

nucleotidelevel
Logical. Choose between peak centric and nucleotide centric view. Default=FALSE

ignore.strand logical. Whether the strand of the input ranges should be ignored or not. De-
fault=TRUE

promoterRegion numeric. The upstream and downstream of genes to define promoter region.

geneDownstream numeric. The upstream and downstream of genes to define gene downstream

region.
labels list. A list for labels for the genomic elements.
labelColors named character vector. The colors for each labels.
plot logic. Plot the pie chart for the genomic elements or not.
keepExonsInGenesOnly

logic. Keep the exons within annotated gene only.

promoterLevel list. The breaks, labels, and colors for divided range of promoters. The breaks
must be from 5° -> 3’ and the percentage will use the fixed precedence 3° -> 5’

Details

The distribution will be calculated by geneLevel, Exonlntron, and Exons The geneLevel will be
categorized as promoter region, gene body, gene downstream and distal intergenic region. The
Exonlntron will be categorized as exon, intron and intergenic. The Exons will be categorized as 5’
UTR, 3’UTR and CDS. The precedence will follow the order of labels defination. For example, for
Exonlntron, if a peak overlap with both exon and intron, and exon is specified before intron, then
only exon will be incremented for the same example.

Value

Invisible list of data for plot.

58 genomicElementUpSetR

Examples

if (interactive() || Sys.getenv("USER")=="jou"){
data(myPeakList)
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
seqinfo(myPeakList) <-
seqinfo(TxDb.Hsapiens.UCSC.hg19.knownGene)[seqlevels(myPeakList)]
myPeakList <- GenomicRanges::trim(myPeakList)
myPeaklList <- myPeakList[width(myPeakList)>0]
genomicElementDistribution(myPeakList,
TxDb.Hsapiens.UCSC.hg19.knownGene)
genomicElementDistribution(myPeakList,
TxDb.Hsapiens.UCSC.hg19.knownGene,
nucleotideLevel = TRUE)
genomicElementDistribution(myPeakList,
TxDb.Hsapiens.UCSC.hg19.knownGene,
promoterLevel=1ist(
#from 5' -> 3', fixed precedence 3' -> 5'
breaks = c(-2000, -1000, -500, @, 100),
labels = c("upstream 1-2Kb", "upstream @.5-1Kb",
"upstream <500b", "TSS - 100b"),
colors = c("#FFE5CC", "#FFCA99",
"#FFAD65", "#FF8E32")))

genomicElementUpSetR Genomic Element data for upset plot

Description

Prepare data for upset plot for genomic element distribution

Usage
genomicElementUpSetR(

peaks,

TxDb,

seqlev,

ignore.strand = TRUE,

breaks = list(distal_upstream = c(-1e+05, -10000, -1, 1), proximal_upstream = c(-10000,
-5000, -1, 1), distal_promoter = c(-5000, -2000, -1, 1), proximal_promoter = c(-2000,

200, -1, @), “5'UTR" = fiveUTRsByTranscript, ~3'UTR™ = threeUTRsByTranscript, CDS =
cds, exon = exons, intron = intronsByTranscript, gene_body = genes,

immediate_downstream = c(@, 2000, 1, 1), proximal_downstream = c(2000, 5000, 1, 1),
distal_downstream = c(5000, 1e+05, 1, 1))

getAllPeakSequence

Arguments

peaks
TxDb

seqlev

ignore.strand

breaks

Details

59

peak list, GRanges object or a GRangesList.
an object of TxDb

sequence level should be involved. Default is all the sequence levels in intersect
of peaks and TxDb.

logical. Whether the strand of the input ranges should be ignored or not. De-
fault=TRUE

list. A list for labels and sets for the genomic elements. The element could be an
S4 method for signature "TxDb’ or a numeric vector with length of 4. The three
numbers are c(upstream point, downstream point, promoter (-1) or downstream
(1), remove gene body or not (1: remove, 0: keep)).

The data will be calculated by for each breaks. No precedence will be considered.

Value

list of data for plot.

Examples

if (interactive() || Sys.getenv("USER")=="jou"){
data(myPeakList)
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
seginfo(myPeakList) <-
seqinfo(TxDb.Hsapiens.UCSC.hg19.knownGene)[seqlevels(myPeakList)]
myPeakList <- GenomicRanges::trim(myPeakList)
myPeakList <- myPeakList[width(myPeaklList)>0]
x <- genomicElementUpSetR(myPeakList,

TxDb.Hsapiens.UCSC.hg19.knownGene)

library(UpSetR)
upset(x$plotData, nsets=13, nintersects=NA)
}
3
getAllPeakSequence Obtain genomic sequences around the peaks
Description

Obtain genomic sequences around the peaks leveraging the BSgenome and biomaRt package

60 getAllPeakSequence

Usage

getAllPeakSequence(
myPeakList,
upstream = 200L,
downstream = upstream,

genome,
AnnotationData
)
Arguments
myPeakList An object of GRanges: See example below
upstream upstream offset from the peak start, e.g., 200
downstream downstream offset from the peak end, e.g., 200
genome BSgenome object or mart object. Please refer to available.genomes in BSgenome

package and useMart in bioMaRt package for details

AnnotationData GRanges object with annotation information.

Value

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot rownames holding the id of the peak and slot seqnames holding the chromosome
where the peak is located. In addition, the following variables are included:

upstream upstream offset from the peak start
downstream downstream offset from the peak end
sequence the sequence obtained

Author(s)

Lihua Julie Zhu, Jianhong Ou

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

use Annotation data from BSgenome
peaks <- GRanges(segnames=c("NC_008253", "NC_010468"),
IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1”, "peak2")))
library(BSgenome.Ecoli.NCBI.20080805)
seq <- getAllPeakSequence(peaks, upstream=20, downstream=20, genome=Ecoli)
write2FASTA(seq, file="test.fa")

getAnnotation 61

getAnnotation Obtain the TSS, exon or miRNA annotation for the specified species

Description

Obtain the TSS, exon or miRNA annotation for the specified species using the biomaRt package

Usage

getAnnotation(

mart,

featureType = c("TSS"”, "miRNA", "Exon", "5utr”, "3utr"”, "ExonPlusUtr"”, "transcript"”)
)

Arguments
mart A mart object, see useMart of biomaRt package for details.
featureType TSS, miRNA, Exon, 5’UTR, 3’UTR, transcript or Exon plus UTR. The default
is TSS.
Value

GRanges with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

list("strand”) 1 for positive strand and -1 for negative strand where the feature is located
list("description”)
description of the feeature such as gene

Note

For featureType of TSS, start is the transcription start site if strand is 1 (plus strand), otherwise, end
is the transcription start site.

Note that the version of the annotation db must match with the genome used for mapping be-
cause the coordinates may differ for different genome releases. For example, if you are using
Mus_musculus.v103 for mapping, you’d best also use EnsDb.Mmusculus.v103 for annotation. See
Examples for more info.

Author(s)
Lihua Julie Zhu, Jianhong Ou, Kai Hu

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

62 getEnrichedGO

Examples

if (interactive() || Sys.getenv("USER")=="jou")

{
library(biomaRt)
mart <- useMart(biomart="ensembl”, dataset="hsapiens_gene_ensembl"”)
Annotation <- getAnnotation(mart, featureType="TSS")

}

HHHHEHHHHHEHHEHHHHHEHHH AR

Below are 3 options to fetch the annotation file.

S HHEHHEHEEHEEE AR AR EEH AR HEEREERE

if (interactive() || Sys.getenv("USER")=="jou"){

Optionl: with the AnnotationHub package

library(AnnotationHub)

ah <- AnnotationHub()

EnsDb.Mmusculus <- query(ah, pattern = c(”"Mus musculus”, "EnsDb"))
EnsDb.Mmusculus.v101 <- EnsDb.Mmusculus[[length(EnsDb.Mmusculus)]]
class(EnsDb.Mmusculus.v101)

Option2: with the getAnnotation() function

library(ChIPpeakAnno)

library(biomaRt)

listMarts()

mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="mmusculus_gene_ensembl")

Annotation <- getAnnotation(mart)

Note that getAnnotation() queries biomart, which is always up-to-date.

Option3: build your own EnsDb package
This may need extra effort, and the ?makeEnsembldbPackage
is a good starting point.

}

getEnrichedGO Obtain enriched gene ontology (GO) terms that near the peaks

Description

Obtain enriched gene ontology (GO) terms based on the features near the enriched peaks using
GO.db package and GO gene mapping package such as org.Hs.db.eg to obtain the GO annotation
and using hypergeometric test (phyper) and multtest package for adjusting p-values

Usage

getEnrichedGO(
annotatedPeak,
orgAnn,
feature_id_type = "ensembl_gene_id",
maxP = 0.01,

getEnrichedGO 63

minGOterm = 10,
multiAdjMethod = NULL,
condense = FALSE,
removeAncestorByPval = NULL,
keepByLevel = NULL,
subGroupComparison = NULL

Arguments

annotatedPeak A GRanges object or a vector of feature IDs

orgAnn Organism annotation package such as org.Hs.eg.db for human and org. Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

feature_id_type
The feature type in annotatedPeak such as ensembl_gene_id, refseq_id, gene_symbol
or entrez_id

maxP The maximum p-value to be considered to be significant
minGOterm The minimum count in a genome for a GO term to be included

multiAdjMethod The multiple testing procedures, for details, see mt.rawp2adjp in multtest pack-

age
condense Condense the results or not.
removeAncestorByPval

Remove ancestor by p-value. P-value is calculated by fisher exact test. If gene
number in all of the children is significant greater than it in parent term, the
parent term will be removed from the list.

keepByLevel If the shortest path from the go term to ’all’ is greater than the given level, the
term will be removed.
subGroupComparison

A logical vector to split the peaks into two groups. The enrichment analysis
will compare the over-present GO terms in TRUE group and FALSE group sep-
arately. The analysis will split into two steps: 1. enrichment analysis for TRUE
group by hypergeometric test; 2. enrichment analysis for TRUE over FALSE
group by Fisher’s Exact test for the enriched GO terms. To keep the output same
format, if you want to compare FALSE vs TRUE, please repeat the analysis by
inverting the parameter. Default is NULL.

Value

A list with 3 elements

list("bp") enriched biological process with the following 9 variables
£0.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process

64

list("mf")

list("cc")

Author(s)

count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

enriched molecular function with the following 9 variables
£0.id:GO molecular function id

go.term:GO molecular function term

go.Definition:GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

enriched cellular component the following 9 variables
£0.1d:GO cellular component id

go.term:GO cellular component term

go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Lihua Julie Zhu. Jianhong Ou for subGroupComparison

References

getEnrichedGO

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.

New York: Wiley

See Also

phyper, hyperGtest

Examples

data(enrichedGO0)
enrichedGO$mf[1:10,]
enrichedGO$bp[1:10,]

enrichedG0$cc

if (interactive()) {

getEnrichedPATH 65

data(annotatedPeak)

library(org.Hs.eg.db)

library(GO.db)

enriched.GO = getEnrichedGO(annotatedPeak[1:6,],
orgAnn="org.Hs.eg.db",
maxP=0.01,
minGOterm=10,
multiAdjMethod= NULL)

dim(enriched.GO$mf)

colnames(enriched.GO$mf)

dim(enriched.G0$bp)

enriched.G0$cc

getEnrichedPATH Obtain enriched PATH that near the peaks

Description

Obtain enriched PATH that are near the peaks using path package such as reactome.db and path
mapping package such as org.Hs.db.eg to obtain the path annotation and using hypergeometric test
(phyper) and multtest package for adjusting p-values

Usage

getEnrichedPATH(
annotatedPeak,
orgAnn,
pathAnn,
feature_id_type = "ensembl_gene_id",
maxP = 0.01,
minPATHterm = 10,
multiAdjMethod = NULL,
subGroupComparison = NULL

Arguments

annotatedPeak GRanges such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

pathAnn pathway annotation package such as KEGG.db (deprecated), reactome.db, KEG-
GREST

feature_id_type
the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

66 getEnrichedPATH

maxP maximum p-value to be considered to be significant
minPATHterm minimum count in a genome for a path to be included

multiAdjMethod multiple testing procedures, for details, see mt.rawp2adjp in multtest package

subGroupComparison
A logical vector to split the peaks into two groups. The enrichment analysis
will compare the over-present GO terms in TRUE group and FALSE group sep-
arately. The analysis will split into two steps: 1. enrichment analysis for TRUE
group by hypergeometric test; 2. enrichment analysis for TRUE over FALSE
group by Fisher’s Exact test for the enriched GO terms. To keep the output same
format, if you want to compare FALSE vs TRUE, please repeat the analysis by
inverting the parameter. Default is NULL.

Value

A dataframe of enriched path with the following variables.

path.id KEGG PATH ID

EntrezID Entrez ID
count.InDataset

count of this PATH in this dataset

count.InGenome count of this PATH in the genome

pvalue pvalue from the hypergeometric test
totaltermInDataset
count of all PATH in this dataset
totaltermInGenome
count of all PATH in the genome
PATH PATH name
Author(s)

Jianhong Ou, Kai Hu

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

Examples

if (interactive()||Sys.getenv("USER")=="jou") {

data(annotatedPeak)

library(org.Hs.eg.db)

library(reactome.db)

enriched.PATH = getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db",

getGeneSeq

feature_id_type="ensembl_gene_id",
pathAnn="reactome.db"”, maxP=0.01,
minPATHterm=10, multiAdjMethod=NULL)
head(enriched.PATH)
enrichedKEGG = getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db",
feature_id_type="ensembl_gene_id",
pathAnn="KEGGREST", maxP=0.01,
minPATHterm=10, multiAdjMethod=NULL)
enrichmentPlot (enrichedKEGG)
}

67

getGeneSeq Get gene sequence using the biomaRt package

Description

Get gene sequence using the biomaRt package

Usage

getGeneSeq(LocationParameters, mart)

Arguments
LocationParameters
c(ensembl_gene_id, distance from the peak to the transcription start site of the
gene with the above ensemblID, upstream offset from the peak, downstream
offset from the peak, Gene Start, Gene End)
mart see useMart of bioMaRt package for details
Value

a list with the following items

feature_id ensemble gene ID
distancetoFeature

distance from the peak to the transcriptionstart site of the gene with the above

ensembl gene ID

upstream upstream offset from the peakStart

downstream downstream offset from the peakEnd

seq sequence obtained around the peak with above upstream and downstream offset
Note

internal function not intended to be called directly by users

68 getGO

Author(s)

Lihua Julie Zhu

Examples

if (interactive())

{

mart <- useMart(biomart="ensembl”, dataset="drerio_gene_ensembl")
LocationParameters =c("ENSDARGOQQ00054562",400, 750, 750,40454140,40454935)
getGeneSeq(LocationParameters, mart)

LocationParameters =c("ENSDARGQ@Q0Q054562",752, 750, 750,40454140,40454935)
getGeneSeq(LocationParameters, mart)

LocationParameters =c("ENSDARGQQQ00054562",750, 750, 750,40454140,40454935)
getGeneSeq(LocationParameters, mart)

LocationParameters =c("ENSDARGOQ000054562" ,-2, 750, 750,40454140,40454935)
getGeneSeqg(LocationParameters, mart)

LocationParameters =c("ENSDARG0Q0Q0054562",0, 750, 750,40454140,40454935)
getGeneSeqg(LocationParameters, mart)

LocationParameters =c("ENSDARGOQ0Q0054562",2, 750, 750,40454140,40454935)
getGeneSeqg(LocationParameters, mart)

LocationParameters =c("ENSDARG0Q000054562",1000, 750, 750,40454140,40454935)
getGeneSeqg(LocationParameters, mart)

getGO Obtain gene ontology (GO) terms for given genes

Description

Obtain gene ontology (GO) terms useing GO gene mapping package such as org.Hs.db.eg to obtain
the GO annotation.

Usage

getGO(all.genes, orgAnn = "org.Hs.eg.db"”, writeTo, ID_type = "gene_symbol")

getUniqueGOidCount 69

Arguments
all.genes A character vector of feature IDs
orgAnn Organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish
writeTo File path for output table
ID_type The feature type in annotatedPeak such as ensembl_gene_id, refseq_id, gene_symbol
Value

An invisible table with genes and GO terms.

Author(s)
Lihua Julie Zhu

See Also
getEnrichedGO

Examples

if (interactive()) {
data(annotatedPeak)
library(org.Hs.eg.db)
getGO(annotatedPeak[1:6]$feature,
orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

getUniqueGOidCount get the count for each unique GO ID

Description

get the count for each unique GO ID

Usage

getUniqueGOidCount (goList)

Arguments

golList a set of GO terms as character vector

70 getVennCounts

Value

a list with 2 variables

GOterm a vector of GO terms as character vector
GOcount counts corresponding to the above GOterm as numeric vector
Note

internal function not intended to be called directly by users

Author(s)
Lihua Julie Zhu

See Also
getEnrichedGO

Examples

goList= c("G0:0000075", "GO:0000082","GO:0000082" ,"G0O:0000122" ,"G0:0000122"
"G0:0000075" ,"GO: 0000082" , "GO: 0000082" , "GO: 0000122" , "GO: 0000122"
"G0:0000122","G0:0000122", "GO: 0000075", "GO:0000082","G0:000012")

getUniqueGOidCount(golList)

getVennCounts Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram

Description

Obtain Venn Counts for peak ranges using chromosome ranges or feature field, internal function for
makeVennDigram

Usage

getVennCounts(
maxgap = -1L,
minoverlap = 0oL,
by = c("region”, "feature”, "base"),
ignore.strand = TRUE,
connectedPeaks = c("min", "merge", "keepAll")

getVennCounts 71

Arguments

Objects of GRanges. See example below.
maxgap, minoverlap

Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

by region, feature or base, default region. feature means using feature field in the
GRanges for calculating overlap, region means using chromosome range for cal-
culating overlap, and base means using calculating overlap in nucleotide level.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Value
vennCounts vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts
Author(s)
Jianhong Ou
See Also

makeVennDiagram, findOverlappingPeaks

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
peaks1 = GRanges(segnames=c("1", "2", "3"),
IRanges(start = c(967654, 2010897, 2496704),
end = c(967754, 2010997, 2496804),
names = c("Sitel"”, "Site2", "Site3")),
strand=as.integer(1),
feature=c("a","b", "c"))
peaks2 =
GRanges(segnames= c("1", "2", "3", "1", "2"),
IRanges(start=c(967659, 2010898, 2496700, 3075866, 3123260),
end=c (967869, 2011108, 2496920, 3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),
strand = c(1L, 1L, -1L,-1L,1L),
feature=c("a","c","d","e", "a"))
getVennCounts(peaks1, peaks?2)
getVennCounts(peaks1,peaks2, by="feature")
getVennCounts(peaks1, peaks2, by="base")

72

HOTspots

HOT . spots High Occupancy of Transcription Related Factors regions

Description

High Occupancy of Transcription Related Factors regions of human (hg19)

Usage

HOT . spots

Format

An object of GRangesList

Details

How to generated the data:

temp <- tempfile()

url <- "http://metatracks.encodenets.gersteinlab.org"
download.file(file.path(url, "HOT_AIll_merged.tar.gz"), temp)

temp2 <- tempfile()

download.file(file.path(url, "HOT _intergenic_All_merged.tar.gz"), temp2)
untar(temp, exdir=dirname(temp))

untar(temp2, exdir=dirname(temp))

f <- dir(dirname(temp), "bed$")

HOT.spots <- sapply(file.path(dirname(temp), f), toGRanges, format="BED")
names(HOT.spots) <- gsub("_merged.bed", "",)

HOT.spots <- sapply(HOT.spots, unname)

HOT.spots <- GRangesList(HOT.spots)

save(list="HOT.spots",

file="data/HOT.spots.rda",

compress="xz", compression_level=9)

Source

http://metatracks.encodenets.gersteinlab.org/

hyperGtest 73

References

Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J, Birney E, Bickel
P, Snyder M, Gerstein M. Classification of human genomic regions based on experimentally de-
termined binding sites of more than 100 transcription-related factors. Genome Biol. 2012 Sep
26;13(9):R48. doi: 10.1186/gb-2012-13-9-r48. PubMed PMID: 22950945; PubMed Central PM-
CID: PM(C3491392.

Examples

data(HOT.spots)
elementNROWS (HOT. spots)

hyperGtest hypergeometric test

Description

hypergeometric test with lower.tail = FALSE used by getEnrichedGO

Usage

hyperGtest(alltermcount, thistermcount, totaltermInGenome, totaltermInPeakList)

Arguments

alltermcount a list with two variables: GOterm and GOcount which is GO terms and corre-
sponding counts in the whole genome

thistermcount a list with two variables: GOterm and GOcount which is GO terms and corre-
sponding counts in the peak list

totaltermInGenome

number of total GO terms in the whole genome
totaltermInPeakList

number of total GO terms in the peak list

Details

see phyper for details

Value
a list with 6 variables
thisterm GO term

thistermcount count of this GO term in the peak list

thistermtotal count of this GO term in the whole genome

pvalue pvalue of the hypergeometric test
totaltermInPeakList

number of total GO terms in the peak list
totaltermInGenome

number of total GO terms in the whole genome

Note

internal function not intended to be used directly by users

Author(s)

Lihua Julie ZHu

References

IDRfilter

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.

New York: Wiley

See Also

phyper, getEnrichedGO

Examples

goList= c("G0:0000075", "GO:0000082","G0:0000082","G0:0000122",
"G0:0000122","G0:0000075", "GO:0000082", "G0:0000082" ,
"G0:0000122","G0:0000122","G0:0000122","G0:0000122",
"G0:0000075", "GO:0000082","G0:000012")

alltermcount = 1list(GOterm=c("GO:0000075", "G0:0000082", "GO0:000012",
"G0:0000122"),
GOcount=c(100, 200, 10, 10))
thistermcount = getUniqueGOidCount(golList)
totaltermInPeakList = 15
totaltermInGenome = 1000
hyperGtest(alltermcount,thistermcount, totaltermInGenome, totaltermInPeakList)

IDRfilter Filter peaks by IDR (irreproducible discovery rate)

Description

Using IDR to assess the consistency of replicate experiments and obtain a high-confidence single

set of peaks

IDRfilter 75

Usage

IDRfilter(
peaksA,
peaksB,
bamfileA,
bamfileB,
maxgap = -1L,
minoverlap = oL,
singleEnd = TRUE,
IDRcutoff = 0.01,

Arguments

peaksA, peaksB peaklist, GRanges object.

bamfileA, bamfileB
file path of bam files.

maxgap, minoverlap
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

singleEnd (Default TRUE) A logical indicating if reads are single or paired-end.
IDRcutoff If the IDR no less than IDRcutoff, the peak will be removed.
Not used.
Value
An object GRanges
Author(s)
Jianhong Ou
References

Li, Qunhua, et al. "Measuring reproducibility of high-throughput experiments.” The annals of
applied statistics (2011): 1752-1779.

Examples

if(interactive()){
path <- system.file("extdata”, "reads"”, package="MMDiffBamSubset")
if(file.exists(path)){
bamfileA <- file.path(path, "reads”, "WT_2.bam")
bamfileB <- file.path(path, "reads”, "Resc_2.bam")
WT.AB2.Peaks <- file.path(path, "peaks"”, "WT_2_Macs_peaks.x1ls")
Resc.AB2.Peaks <- file.path(path, "peaks",
"Resc_2_Macs_peaks.x1ls")

76 make VennDiagram
peaksA=toGRanges(WT.AB2.Peaks, format="MACS")
peaksB=toGRanges(Resc.AB2.Peaks, format="MACS")
library(idr)
library(DelayedArray)

IDRfilter(peaksA, peaksB,
bamfileA, bamfileB)
}
}
makeVennDiagram Make Venn Diagram from a list of peaks
Description
Make Venn Diagram from two or more peak ranges, Also calculate p-value to determine whether
those peaks overlap significantly.
Usage
makeVennDiagram(
Peaks,
NameOfPeaks,
maxgap = -1L,
minoverlap = oL,
totalTest,
by = c("region"”, "feature"”, "base"),
ignore.strand = TRUE,
connectedPeaks = c("min"”, "merge", "keepAll", "keepFirstListConsistent”),
method = c("hyperG"”, "permutation”),
TxDb,
plot = TRUE,
Arguments

Peaks A list of peaks in GRanges format: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"). This will

be used as label in the Venn Diagram.

maxgap, minoverlap

Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

totalTest Numeric value to specify the total number of tests performed to obtain the list

of peaks. It should be much larger than the number of peaks in the largest peak
set.

makeVennDiagram

by

ignore.strand

connectedPeaks

method

TxDb
plot

Details

77

"region", "feature" or "base", default = "region". "feature" means using fea-
ture field in the GRanges for calculating overlap, "region" means using chro-
mosome range for calculating overlap, and "base" means calculating overlap in
nucleotide level.

Logical: when set to TRUE, the strand information is ignored in the overlap
calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any connected peak group. "keepAll" will show all the orginal counts
for each list while the final counts will be same as "min". "keepFirstListConsis-
tent" will keep the counts consistent with first list.

method to be used for p value calculation. hyperG means hypergeometric test
and permutation means peakPermTest.

An object of TxDb.
logical. If TRUE (default), a venn diagram is plotted.

Additional arguments to be passed to venn.diagram.

For customized graph options, please see venn.diagram in VennDiagram package.

Value

A p.value is calculated by hypergeometric test or permutation test to determine whether the overlaps
of peaks or features are significant.

Author(s)

Lihua Julie Zhu, Jianhong Ou

See Also

findOverlapsOfPeaks, venn.diagram, peakPermTest

Examples

if (interactive()){
peaks1 <- GRanges(segnames=c("1", "2", "3"),

IRanges(start=c(967654, 2010897, 2496704),
end=c(967754, 2010997, 2496804),
names=c("Sitel"”, "Site2", "Site3")),

strand="+",

feature=c("a","b","f"))

peaks2 = GRanges(segnames=c("1", "2", "3", "1",6 "2"),

IRanges(start = c(967659, 2010898,2496700,
3075866,3123260),
end = c(967869, 2011108, 2496920,
3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),

78 mergePlusMinusPeaks

strand = c("+", "+", "=U) UMMMy
feature=c("a","b","c","d","a"))
makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100,scaled=FALSE, euler.d=FALSE,
fill=c("#0Q9E73", "#FOE442"), # circle fill color
col=c("#D55E00", "#0072B2"), #circle border color
cat.col=c("#D55E00", "#0072B2"))

makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100,
fill=c("#0Q9E73", "#FOE442"), # circle fill color
col=c("#D55E00", "#0072B2"), #circle border color
cat.col=c("#D55E00", "#0072B2"))

#i##HH# 4-way diagram using annotated feature instead of chromosome ranges

makeVennDiagram(list(peaks1, peaks2, peaksl, peaks2),
NameOfPeaks=c("TF1", "TF2","TF3", "TF4"),
totalTest=100, by="feature",
main = "Venn Diagram for 4 peak lists”,
fill=c(1,2,3,4))

mergePlusMinusPeaks Merge peaks from plus strand and minus strand

Description

Merge peaks from plus strand and minus strand within certain distance apart, and output merged
peaks as bed format.

Usage

mergePlusMinusPeaks(

peaks.file,

columns = c("name”, "chromosome”, "start”, "end"”, "strand”, "count”, "count”, "count”,
"count"),

sep = "\t",

header = TRUE,

distance.threshold = 100,

plus.strand.start.gt.minus.strand.end = TRUE,

output.bedfile

Arguments

peaks.file Specify the peak file. The peak file should contain peaks from both plus and
minus strand

columns Specify the column names in the peak file

mergePlusMinusPeaks 79

sep Specify column delimiter, default tab-delimited
header Specify whether the file has a header row, default TRUE

distance.threshold

Specify the maximum gap allowed between the plus stranded and the nagative
stranded peak

plus.strand.start.gt.minus.strand.end

Specify whether plus strand peak start greater than the paired negative strand
peak end. Default to TRUE

output.bedfile Specify the bed output file name

Value

output the merged peaks in bed file and a data frame of the bed format

Author(s)
Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

Examples

if (interactive())
{
data(myPeakList)
data(TSS.human.NCBI36)
library(matrixStats)
peaks <- system.file("extdata"”, "guide-seq-peaks.txt”,
package = "ChIPpeakAnno")
merged.bed <- mergePlusMinusPeaks(peaks.file = peaks,

columns=c("name”, "chromosome"”,
"start”, "end”, "strand”,
"count”, "count"),

sep = "\t", header = TRUE,

distance.threshold = 100,
plus.strand.start.gt.minus.strand.end = TRUE,

output.bedfile = "T2test100bp.bed")

80

metagenePlot

metagenePlot

peak distance to features

Description

Bar plot for distance to features

Usage
metagenePlot (
peaks,
AnnotationData,
PeakLocForDistance = c("middle”, "start”, "end"),
FeatureLocForDistance = c("TSS", "middle", "geneEnd"),

upstream = 1e+05,
downstream = 1e+05

Arguments

peaks peak list, GRanges object or a GRangesList.

AnnotationData A GRanges object or a TxDb object.

PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance

Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, TSS means using
start of feature when feature is on plus strand and using end of feature when
feature is on minus strand, geneEnd means using end of feature when feature is
on plus strand and using start of feature when feature is on minus strand.

upstream, downstream

numeric(1). Upstream or downstream region of features to plot.

Details

the bar heatmap is indicates the peaks around features.

Examples

path <- system.file("extdata”,
files <- dir(path, "broadPeak")

peaks <- sapply(file.path(path, files), toGRanges, format="broadPeak")

peaks <- GRangeslList(peaks)

names(peaks) <- sub(".broadPeak",

package="ChIPpeakAnno")

nn

, basename(names(peaks)))

myPeakList 81

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
metagenePlot (peaks, TxDb.Hsapiens.UCSC.hg19.knownGene)

myPeakList An example GRanges object representing a ChlIP-seq peak dataset

Description
the putative STAT1-binding regions identified in un-stimulated cells using ChIP-seq technology
(Robertson et al., 2007)

Usage

myPeakList

Format

GRanges with slot rownames containing the ID of peak as character, slot start containing the start
position of the peak, slot end containing the end position of the peak and seqnames containing the
chromosome where the peak is located.

Source

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of
STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.
Nat Methods 4:651-7

Examples

data(myPeakList)
slotNames(myPeakList)

oligoFrequency get the oligonucleotide frequency

Description

Prepare the oligonucleotide frequency for given Markov order.

Usage

oligoFrequency(sequence, MarkovOrder = 3L)

Arguments

sequence The sequences packaged in DNAStringSet, DNAString object or output of func-
tion getAllPeakSequence.

MarkovOrder Markov order.

82 oligoSummary

Value

A numeric vector.

Author(s)

Jianhong Ou

See Also

See Also as oligoSummary

Examples

library(seqinr)
library(Biostrings)
oligoFrequency (DNAString ("AATTCGACGTACAGATGACTAGACT"))

oligoSummary Output a summary of consensus in the peaks

Description

Calculate the z-scores of all combinations of oligonucleotide in a given length by Markove chain.

Usage

oligoSummary (
sequence,
oligoLength = 6L,
fregs = NULL,
MarkovOrder = 3L,
quickMotif = FALSE,
revcomp = FALSE,
maxsize = 1e+05

Arguments

sequence The sequences packaged in DNAStringSet, DNAString object or output of func-
tion getAllPeakSequence.

oligolLength The length of oligonucleotide.

freqgs Output of function frequency.

MarkovOrder The order of Markov chain.

quickMotif Generate the motif by z-score of not.

revcomp Consider both the given strand and the reverse complement strand when search-

ing for motifs in a complementable alphabet (ie DNA). Default, FALSE.

maxsize Maximum allowed dataset size (in length of sequences).

peakPermTest 83

Value

A list is returned.

zscore A numeric vector. The z-scores of each oligonucleotide.
counts A numeric vector. The counts number of each oligonucleotide.
motifs a list of motif matrix.

Author(s)
Jianhong Ou

References

van Helden, Jacques, Marcel 1li del Olmo, and Jose E. Perez-Ortin. "Statistical analysis of yeast

genomic downstream sequences reveals putative polyadenylation signals." Nucleic Acids Research
28.4 (2000): 1000-1010.

See Also

See Also as frequency

Examples

if(interactive() || Sys.getenv("USER")=="jou"){
data(annotatedPeak)
library(BSgenome.Hsapiens.UCSC.hg19)
library(seqinr)
seq <- getAllPeakSequence(annotatedPeak[1:100],
upstream=20,
downstream=20,
genome=Hsapiens)

oligoSummary(seq)
}
peakPermTest Permutation Test for two given peak lists
Description

Performs a permutation test to seee if there is an association between two given peak lists.

84
Usage
peakPermTest (
peaks1,
peaks2,
ntimes = 100,
seed = as.integer(Sys.time()),
mc.cores = getOption(”"mc.cores”, 2L),
maxgap = -1L,
pool,
TxDb,
bindingDistribution,
bindingType = c("TSS", "geneEnd"),
featureType = c("transcript”, "exon"),
seqn = NA,
)
Arguments

peaks1, peaks2 an object of GRanges

peakPermTest

default is NA, which means not filter the universe pool for sampling. Otherwise

ntimes number of permutations
seed random seed
mc.cores The number of cores to use. see mclapply.
maxgap See findOverlaps in the IRanges package for a description of these arguments.
pool an object of permPool
TxDb an object of TxDb
bindingDistribution
an object of bindist
bindingType where the peaks should bind, TSS or geneEnd
featureType what annotation type should be used for detecting the binding distribution.
seqgn
the universe pool will be filtered by the seqnames in seqn.
further arguments to be passed to numOverlaps.
Value

A list of class permTestResults. See permTest

Author(s)

Jianhong Ou

References

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap methods and their application, Cambridge
University Press, United Kingdom, 156-160

Peaks.Stel12.Replicatel 85

See Also

preparePool, bindist

Examples

path <- system.file("extdata"”, package="ChIPpeakAnno")
#files <- dir(path, pattern="[12]_WS170.bed”, full.names=TRUE)
#peaks1 <- toGRanges(files[1], skip=5)
#peaks2 <- toGRanges(files[2], skip=5)
#peakPermTest (peaks1, peaks2, TxDb=TxDb.Celegans.UCSC.ce6.ensGene)
if(interactive()){
peaks1 <- toGRanges(file.path(path, "MACS2_peaks.x1ls"),
format="MACS2")
peaks2 <- toGRanges(file.path(path, "peaks.narrowPeak"),
format="narrowPeak")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
peakPermTest(peaks1, peaks2,
TxDb=TxDb.Hsapiens.UCSC.hg19.knownGene, min.pctA=10)

Peaks.Ste12.Replicatel
Stel2-binding sites from biological replicate 1 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Usage
Peaks.Stel2.Replicatel

Format

GRanges with slot names containing the ID of peak as character, slot start containing the start
position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37

Examples

data(Peaks.Stel12.Replicatel)
Peaks.Stel12.Replicatel

86 Peaks.Stel12.Replicate3

Peaks.Ste12.Replicate2
Stel2-binding sites from biological replicate 2 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Usage

Peaks.Stel12.Replicate2

Format

GRanges with slot names containing the ID of peak as character, slot start containing the start
position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Stel12.Replicate?2)
Peaks.Stel12.Replicate2

Peaks.Ste12.Replicate3
Ste12-binding sites from biological replicate 3 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Usage

Peaks.Stel12.Replicate3

peaksl 87

Format

GRanges with slot names containing the ID of peak as character, slot start containing the start
position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Stel12.Replicate3)
Peaks.Stel12.Replicate3

peaks1 An example GRanges object representing a ChlIP-seq peak dataset

Description

An example GRanges object representing a ChIP-seq peak dataset

Usage

peaks1

Format

GRanges

Examples

data(peaks1)
head(peaks1, n = 2)

88 peaks3

peaks2 An example GRanges object representing a ChlIP-seq peak dataset

Description

An example GRanges object representing a ChIP-seq peak dataset

Usage

peaks2

Format

GRanges

Examples

data(peaks?2)
head(peaks2, n = 2)

peaks3 An example GRanges object representing a ChlP-seq peak dataset

Description

An example GRanges object representing a ChIP-seq peak dataset

Usage

peaks3

Format

GRanges

Examples

data(peaks3)
head(peaks3, n = 2)

peaksNearBDP 89

peaksNearBDP obtain the peaks near bi-directional promoters

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional

promoters.
Usage

peaksNearBDP(myPeakList, AnnotationData, MaxDistance = 5000L, ...)
Arguments

myPeakList GRanges: See example below

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
GRanges containing additional variable: strand (1 or + for plus strand and -1 or -
for minus strand). For example, data(TSS.human.NCBI36), data(TSS.mouse.NCBIM37),
data(TSS.rat. RGSC3.4) and data(TSS.zebrafish.Zv8).

MaxDistance Specify the maximum gap allowed between the peak and nearest gene
Not used
Value
A list of 4

list("peaksWithBDP")
annotated Peaks containing bi-directional promoters.

GRangesList with slot start holding the start position of the peak, slot end hold-
ing the end position of the peak, slot space holding the chromosome location
where the peak is located, slot rownames holding the id of the peak. In addition,
the following variables are included.

feature: id of the feature such as ensembl gene ID

insideFeature: upstream: peak resides upstream of the feature; downstream:
peak resides downstream of the feature; inside: peak resides inside the fea-
ture; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak
overlaps with the end of the feature; includeFeature: peak include the feature
entirely.

distancetoFeature: distance to the nearest feature such as transcription start site.
By default, the distance is calculated as the distance between the start of the
binding site and the TSS that is the gene start for genes located on the forward
strand and the gene end for genes located on the reverse strand. The user can
specify the location of peak and location of feature for calculating this

feature_range: start and end position of the feature such as gene

feature_strand: 1 or + for positive strand and -1 or - for negative strand where
the feature is located

90 permPool-class

list("percentPeaksWithBDP")

The percent of input peaks containing bi-directional promoters
list("n.peaks")

The total number of input peaks
list("n.peaksWithBDP")

The # of input peaks containing bi-directional promoters

Author(s)
Lihua Julie Zhu, Jianhong Ou

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

Examples

if (interactive() || Sys.getenv("USER")=="jou")

{
library(GenomeInfoDb)
data(myPeakList)
data(TSS.human.NCBI36)
seqlevelsStyle(TSS.human.NCBI36) <- seqlevelsStyle(myPeakList)
annotatedBDP = peaksNearBDP(myPeakList[1:6,],
AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,
PeakLocForDistance = "middle",
FeaturelLocForDistance = "TSS")
c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks,
annotatedBDP$n. peaksWithBDP)
3
permPool-class Class "permPool”
Description

An object of class "permPool” represents the possible locations to do permutation test.

Slots

grs object of "GRangesList" The list of binding ranges

N vector of "integer"”, permutation number for each ranges

piel 91

Objects from the Class

Objects can be created by calls of the form new("”permPool”, grs="GRangesList"”, N="integer").

See Also

preparePool, peakPermTest

piel Pie Charts

Description

Draw a pie chart with percentage

Usage
piel(
X,
labels = names(x),
edges = 200,

radius = 0.8,
clockwise = FALSE,
init.angle = if (clockwise) 90 else 0,
density = NULL,
angle = 45,

col = NULL,

border = NULL,

1ty = NULL,

main = NULL,
percentage = TRUE,
rawNumber = FALSE,

digits = 3,
cutoff = 0.01,
legend = FALSE,

legendpos = "topright”,
legendcol = 2,
radius.innerlabel = radius,

)
Arguments
X a vector of non-negative numerical quantities. The values in x are displayed as
the areas of pie slices.
labels one or more expressions or character strings giving names for the slices. Other

objects are coerced by as.graphicsAnnot. For empty or NA (after coercion to
character) labels, no label nor pointing line is drawn.

92

edges

radius

clockwise

init.angle

density

angle

col

border, 1ty
main

percentage
rawNumber

digits

cutoff

legend

piel

the circular outline of the pie is approximated by a polygon with this many
edges.

the pie is drawn centered in a square box whose sides range from -1 to 1. If the
character strings labeling the slices are long it may be necessary to use a smaller
radius.

logical indicating if slices are drawn clockwise or counter clockwise (i.e., math-
ematically positive direction), the latter is default.

number specifying the starting angle (in degrees) for the slices. Defaults to 0
(i.e., "3 o’clock") unless clockwise is true where init.angle defaults to 90 (de-
grees), (i.e., "12 o’clock").

the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit the
drawing of shading lines.

the slope of shading lines, given as an angle in degrees (counter-clockwise).

a vector of colors to be used in filling or shading the slices. If missing a set of 6
pastel colours is used, unless density is specified when par("fg") is used.

(possibly vectors) arguments passed to polygon which draws each slice.

an overall title for the plot.

logical. Add percentage in the figure or not. default TRUE.

logical. Instead percentage, add raw number in the figure or not. default FALSE.

When set percentage as TRUE, how many significant digits are to be used for
percentage. see format. default 3.

When percentage is TRUE, if the percentage is lower than cutoff, it will NOT
be shown. default 0.01.

logical. Instead of lable, draw legend for the pie. default, FALSE.

legendpos, legendcol

legend position and legend columns. see legend

radius.innerlabel

Author(s)

Jianhong Ou

See Also

pie

Examples

piel(1:5)

position of percentage or raw number label relative to the circle.

graphical parameters can be given as arguments to pie. They will affect the main
title and labels only.

plotBinOverRegions 93

plotBinOverRegions plot the coverage of regions

Description

plot the output of binOverRegions or binOverGene

Usage

plotBinOverRegions(dat, ...)

Arguments

dat A list of matrix which indicate the coverage of regions per bin

Parameters could be used by matplot

Author(s)

Jianhong Ou

See Also

binOverRegions, binOverGene

Examples

if(interactive()){

path <- system.file("extdata"”, package="ChIPpeakAnno")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(rtracklayer)

files <- dir(path, "bigWig")

if(.Platform$0S. type != "windows"){

cvglists <- lapply(file.path(path, files), import,
format="BigWig", as="RlelList")

names(cvglists) <- sub(”.bigWig", "", files)

d <- binOverGene(cvglists, TxDb.Hsapiens.UCSC.hg19.knownGene)

plotBinOverRegions(d)

3

3

94 preparePool

preparePool prepare data for permutation test

Description

prepare data for permutation test peakPermTest

Usage
preparePool (
TxDb,
template,
bindingDistribution,
bindingType = c("TSS", "geneEnd"),
featureType = c("transcript”, "exon"),
segn = NA
)
Arguments
TxDb an object of TxDb
template an object of GRanges
bindingDistribution
an object of bindist
bindingType the relevant position to features
featureType feature type, transcript or exon.
segn seqnames. If given, the pool for permutation will be restrict in the given chro-
mosomes.
Value

a list with two elements, grs, a list of GRanges. N, the numbers of elements should be drawn from
in each GRanges.

Author(s)

Jianhong Ou

See Also

peakPermTest, bindist

reCenterPeaks 95

Examples

if(interactive() || Sys.getenv("USER")=="jou"){

path <- system.file("extdata”, package="ChIPpeakAnno")

peaksA <- toGRanges(file.path(path, "peaks.narrowPeak"),
format="narrowPeak")

peaksB <- toGRanges(file.path(path, "MACS2_peaks.x1s"), format="MACS2")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

ppp <- preparePool(TxDb.Hsapiens.UCSC.hg19.knownGene,
peaksA, bindingType="TSS",
featureType="transcript”)

reCenterPeaks re-center the peaks

Description

Create a new list of peaks based on the peak centers of given list.

Usage
reCenterPeaks(peaks, width = 2000L, ...)
Arguments
peaks An object of GRanges or annoGR.
width The width of new peaks
Not used.
Value
An object of GRanges.
Author(s)
Jianhong Ou
Examples

reCenterPeaks(GRanges("chr1”, IRanges(1, 10)), width=2)

96 summarizeOverlapsByBins

summarizeOverlapsByBins
Perform overlap queries between reads and genomic features by bins

Description

summarizeOverlapsByBins extends summarizeOverlaps by providing fixed window size and step
to split each feature into bins and then do queries. It will return counts by signalSummaryFUN,
which applied to bins in one feature, for each feature.

Usage

summarizeOverlapsByBins(
targetRegions,
reads,
windowSize = 50,
step = 10,
signalSummaryFUN = max,
mode = countByOverlaps,

Arguments

targetRegions A GRanges object of genomic regions of interest.

reads A GRanges, GRangesList GAlignments, GAlignmentsList, GAlignmentPairs or
BamFileList object that represents the data to be counted by summarizeOverlaps.

windowSize Size of windows

step Step of windows

signalSummaryFUN

function, which will be applied to the bins in each feature.

mode mode can be one of the pre-defined count methods. see summarizeOverlaps. de-
fault is countByOverlaps, alia of countOverlaps(features, reads, ignore.strand=ignore.strand)

Additional arguments passed to summarizeOverlaps.

Value

A RangedSummarizedExperiment object. The assays slot holds the counts, rowRanges holds the
annotation from features.

Author(s)

Jianhong Ou

summarizePatternInPeaks

Examples

fls <- list.files(system.file("extdata”, package="GenomicAlignments"),
recursive=TRUE, pattern="xbam$"”, full=TRUE)
names(fls) <- basename(fls)
genes <- GRanges(
segnames = c(rep("chr2L"”, 4), rep("chr2R”, 5), rep(”"chr3L”, 2)),
ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600,
4000, 7500, 5000, 5400),
width=c(rep(500, 3), 600, 900, 500, 300, 900,
300, 500, 500),
names=letters[1:11]))
se <- summarizeOverlapsByBins(genes, fls, windowSize=50, step=10)

summarizePatternInPeaks

Output a summary of the occurrence and enrichment of each pattern

in the sequences.

Description

Output a summary of the occurrence and enrichment of each pattern in the sequences.

Usage

summarizePatternInPeaks(
patternFilePath,
format = "fasta”,
BSgenomeName,
peaks,
revcomp = TRUE,
method = c("binom.test”, "permutation.test”),
expectFrequencyMethod = c("Markov"”, "Naive"),
MarkovOrder = 3L,
bgdForPerm = c("shuffle”, "chromosome"),
chromosome = c("asPeak”, "random"),
nperm = 1000,
alpha = 0.05,

Arguments

patternFilePath
Character value. The path to the file that contains the pattern.

format Character value. The format of file containing the oligonucleotide pattern, either

"fasta" (default) or "fastq".

98 summarizePatternInPeaks

BSgenomeName Character value. BSgenome object. Please refer to available.genomes in BSgenome
package for details.

peaks Character value. GRanges containing the peaks.

revcomp Boolean value, if TURE, also search the reverse compliment of pattern. Default
is TRUE.

method Character value. Method for pattern enrichment test, ’binom.test’ (default) or

’permutation.test’.
expectFrequencyMethod

Character value. Method for calculating the expected probability of pattern oc-
currence, 'Markov’ (default) or *Naive’.

MarkovOrder Integer value. The order of Markov chain. Default is 3.

bgdForPerm Character value. The method for obtaining the background sequence. ’chro-
mosome’ (default) selects background chromosome from chromosomes, refer
to ’chromosome’ parameter; ’shuffle’ will obtain the backgroud sequence by
shufflubg any k-mers in peak sequences, refer to ...’

chromosome Character value. Relevant if "bgdForPerm="chromosome’". ’asPeak’ means to
use the same chromosomes in peaks; 'random’ means to use all chromosomes
randomly. Default is "asPeak’.

nperm Integer value. The number of permutation test, default is 1000.
alpha Numeric value. The significant level for permutation test, default is 0.05.

Aditional parameter passed to function shuffle_sequences

Details

Please see shuffle_sequences for the more information bout ’shuffle’ method.

Value

A list including two data frames named 'motif_enrichment’ and motif_occurrence’. The 'mo-
tif enrichment’ has four columns:

 "patternNum": number of matched pattern

* "totalNumPatternWithSameLen": total number of pattern with the same length

» "expectedRate": expected rate of pattern for ’binom.test’ method

* "patternRate": real rate of pattern for ’permutation.test’ method

» "pValueBinomTest": p value of bimom test for ’binom.test” method

 "cutOffPermutationTest": cut off of permutation test for ’permutation.test’ method

The *motif_occurrence’ has 14 columns:

* "motifChr": Chromosome of motif
* "motifStartInChr": motif start position in chromosome
* "motifEndInChr": motif end position in chromosome

¢ "motifName": motif name

tileCount 99

* "motifPattern": motif pattern

* "motifStartInPeak": motif start position in peak
* "motifEndInPeak": motif end position in peak
* "motifFound": specific motif Found in peak

non

* "motifFoundStrand": strand of specific motif Found in peak,
of motif found in peaks

means reverse complement

¢ "peakChr": Chromosome of peak
 "peakStart": peak start position

» "peakEnd": peak end position

e "peakWidth": peak width

* "peakStrand": peak strand

Author(s)
Lihua Julie Zhu, Junhui Li, Kai Hu

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
filepath <- system.file("extdata”, "examplePattern.fa”,
package = "ChIPpeakAnno")
peaks <- GRanges(segnames = c("chr17", "chr3", "chr12", "chr8"),
IRanges(start = c(41275784, 10076141, 4654135, 31024288),
end = c(41276382, 10076732, 4654728, 31024996),
names = paste@("peak”, 1:4)))
result <- summarizePatternInPeaks(patternFilePath = filepath, peaks = peaks,
BSgenomeName = Hsapiens)

tileCount Perform overlap queries between reads and genome by windows

Description

tileCount extends summarizeOverlaps by providing fixed window size and step to split whole
genome into windows and then do queries. It will return counts in each windows.

Usage

tileCount(
reads,
genome,
windowSize = 1e+06,
step = l1et06,
keepPartialWindow = FALSE,
mode = countByOverlaps,

100 tileGRanges

Arguments
reads A GRanges, GRangesList GAlignments, GAlignmentsList, GAlignmentPairs or
BamFileList object that represents the data to be counted by summarizeOverlaps.
genome The object from/on which to get/set the sequence information.
windowSize Size of windows
step Step of windows
keepPartialWindow
Keep last partial window or not.
mode mode can be one of the pre-defined count methods. see summarizeOverlaps. de-
fault is countByOverlaps, alia of countOverlaps(features, reads, ignore.strand=ignore.strand)
Additional arguments passed to summarizeOverlaps.
Value

A RangedSummarizedExperiment object. The assays slot holds the counts, rowRanges holds the
annotation from genome.

Author(s)

Jianhong Ou

Examples

fls <- list.files(system.file("extdata”, package="GenomicAlignments"),
recursive=TRUE, pattern="xbam$", full=TRUE)

names(fls) <- basename(fls)

genes <- GRanges(seqlengths = c(chr2L=7000, chr2R=10000))

se <- tileCount(fls, genes, windowSize=1000, step=500)

tileGRanges Slide windows on a given GRanges object

Description

tileGRanges returns a set of genomic regions by sliding the windows in a given step. Each window
is called a "tile".

Usage

tileGRanges(targetRegions, windowSize, step, keepPartialWindow = FALSE, ...)

toGRanges 101

Arguments

targetRegions A GRanges object of genomic regions of interest.

windowSize Size of windows
step Step of windows
keepPartialWindow
Keep last partial window or not.
Not used.
Value
A GRanges object.
Author(s)
Jianhong Ou
Examples

genes <- GRanges(
segnames = c(rep("chr2L", 4), rep("chr2R”, 5), rep(“"chr3L”, 2)),
ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600,
4000, 7500, 5000, 5400),
width=c(rep(500, 3), 600, 900, 500, 300, 900,
300, 500, 500),
names=letters[1:11]))
se <- tileGRanges(genes, windowSize=50, step=10)

toGRanges Convert dataset to GRanges

Description

Convert UCSC BED format and its variants, such as GFF, or any user defined dataset such as MACS
output file to GRanges

Usage

toGRanges(data, ...)

S4 method for signature 'connection'
toGRanges (
data,
format = c("BED", "GFF", "GTF", "MACS", "MACS2", "MACS2.broad”, "narrowPeak"”,
"broadPeak”, "CSV", "others"),
header = FALSE,
comment.char = "#",

102

toGRanges

colNames = NULL,

)

S4 method for signature 'TxDb'

toGRanges (
data,

feature = c("gene”, "transcript”, "exon”, "CDS", "fiveUTR", "threeUTR"”, "tRNAs",
"geneModel”),

OrganismDb,

)

S4 method for signature 'EnsDb'

toGRanges (
data,

feature = c("gene"”, "transcript”, "exon"”, "disjointExons"),

)

S4 method for signature 'character'

toGRanges (
data,

format = c("BED", "GFF", "GTF", "MACS”, "MACS2", "MACS2.broad”, "narrowPeak”,
"broadPeak”, "CSV", "others"),
header = FALSE,

comment.char = "#",
colNames = NULL,
)
Arguments
data an object of data.frame, TxDb or EnsDb, or the file name of data to be imported.
Alternatively, data can be a readable txt-mode connection (See ?read.table).
parameters passed to read.table
format data format. If the data format is set to BED, GFF, narrowPeak or broadPeak,
please refer to http://genome.ucsc.edu/FAQ/FAQformat#formatl for column or-
der. "MACS" is for converting the excel output file from MACS1. "MACS2" is
for converting the output file from MACS2. If set to CSV, must have columns:
seqnames, start, end, strand.
header A logical value indicating whether the file contains the names of the variables as

comment.char

its first line. If missing, the value is determined from the file format: header is
set to TRUE if the first row contains one fewer field than the number of columns
or the format is set to ’CSV’.

character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

toGRanges

103

colNames If the data format is set to "others", colname must be defined. And the colname
must contain space, start and end. The column name for the chromosome #
should be named as space.
feature annotation type
OrganismDb an object of OrganismDb. It is used for extracting gene symbol for geneModel
group for TxDb
Value
An object of GRanges
Author(s)
Jianhong Ou
Examples

macs <- system.file("extdata”, "MACS_peaks.x1ls", package="ChIPpeakAnno")
macsOutput <- toGRanges(macs, format="MACS")
if(interactive() || Sys.getenv("USER")=="jou"){

MACS connection

macs <- readlLines(macs)

macs <- textConnection(macs)

macsOutput <-
close(macs)
bed

toGRanges(macs, format="MACS")

toGRanges(system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno"),
format="BED")

narrowPeak

toGRanges(system.file("extdata”, "peaks.narrowPeak”, package="ChIPpeakAnno"),

format

broadPeak

—n

narrowPeak")

toGRanges(system.file("extdata”, "TAF.broadPeak”, package="ChIPpeakAnno"),
format="broadPeak")

CSV

toGRanges(system.file("extdata”, "peaks.csv”, package="ChIPpeakAnno"),
format="CSV")

MACS2

toGRanges(system.file("extdata”, "MACS2_peaks.x1ls"”, package="ChIPpeakAnno"),
format="MACS2")

GFF

toGRanges(system.file("extdata”, "GFF_peaks.gff"”, package="ChIPpeakAnno"),
format="GFF")

EnsDb
library(EnsDb

.Hsapiens.v75)

toGRanges (EnsDb.Hsapiens.v75, feature="gene")

TxDb

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
toGRanges (TxDb.Hsapiens.UCSC.hg19.knownGene, feature="gene")

data.frame

macs <- system.file("extdata”, "MACS_peaks.x1ls"”, package="ChIPpeakAnno")

104 translatePattern

macs <- read.delim(macs, comment.char="#")

toGRanges (macs)
}
translatePattern translate pattern from IUPAC Extended Genetic Alphabet to regular
expression
Description

translate pattern containing the IUPAC nucleotide ambiguity codes to regular expression. For
example,Y->[CIT], R-> [AIG], S-> [GIC], W-> [AIT], K-> [TIUIG], M-> [AIC], B-> [CIGIT], D-
> [AIGIT], H-> [AICIT], V-> [AICIG] and N-> [AICITIG].

Usage

translatePattern(pattern)

Arguments

pattern a character vector with the [IUPAC nucleotide ambiguity codes

Value

a character vector with the pattern represented as regular expression

Author(s)

Lihua Julie Zhu

See Also

countPatternInSeqs, summarizePatternInPeaks

Examples

patternl = "AACCNWMK"
translatePattern(patterni)

TSS.human.GRCh37 105

TSS. human.GRCh37 TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Usage
TSS.human.GRCh37

Format

A GRanges object with slot start holding the start position of the gene, slot end holding the end
position of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome
location where the gene is located and slot strand holding the strinad information. In addition, the
following variables are included.

list("'description'') description of the gene

Details

The dataset TSS.human.GRCh37 was obtained by:

mart = useMart(biomart = "ENSEMBL_MART_ENSEMBL", host="grch37.ensembl.org", path="/biomart/martservice",
dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh37)
slotNames (TSS.human.GRCh37)

TSS. human.GRCh38 TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Usage
TSS. human.GRCh38

Format

A ’GRanges’ [package "GenomicRanges"] object with ensembl id as names.

106 TSS.human.NCBI36

Details
used in the examples Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh38)
slotNames (TSS. human.GRCh38)

TSS. human.NCBI36 TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Description

TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Usage

TSS.human.NCBI36

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list("'description'') description of the gene

Details

used in the examples Annotation data obtained by:
mart = useMart(biomart = "ensembl_mart_47", dataset = "hsapiens_gene_ensembl", archive=TRUE)

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.NCBI36)
slotNames (TSS.human.NCBI36)

TSS.mouse. GRCm38 107

TSS.mouse.GRCm38 TSS annotation data for Mus musculus (GRCm38.pl) obtained from
biomaRt

Description

TSS annotation data for Mus musculus (GRCm38.p1) obtained from biomaRt

Usage

TSS.mouse.GRCm38

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list("'description'') description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.GRCm38)
slotNames (TSS.mouse.GRCm38)

TSS.mouse.NCBIM37 TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Description

TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Usage

TSS.mouse.NCBIM37

108 TSS.rat. RGSC3.4

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list(""description'') description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.NCBIM37)
slotNames (TSS.mouse.NCBIM37)

TSS.rat.RGSC3.4 TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Description

TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Usage
TSS.rat.RGSC3.4

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list("'description'') description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.RGSC3.4)
slotNames(TSS.rat.RGSC3.4)

TSS.rat.Rnor_5.0 109

TSS.rat.Rnor_5.0 TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from
biomaRt

Description

TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from biomaRt

Usage

TSS.rat.Rnor_5.0

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list("'description'') description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.Rnor_5.0)
slotNames(TSS.rat.Rnor_5.0)

TSS.zebrafish.zZv8 TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Description

A GRanges object to annotate TSS for zebrafish (Zv8) obtained from biomaRt

Usage

TSS.zebrafish.Zv8

110 TSS.zebrafish.Zv9

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list(""description'') description of the gene

Details

Annotation data obtained by: mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="may2009.archive.ensemb]
path="/biomart/martservice", dataset="drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv8)
slotNames(TSS.zebrafish.zv8)

TSS.zebrafish.zZv9 TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Description

TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Usage
TSS.zebrafish.Zv9

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

list(''description'’) description of the gene

Details

Annotation data obtained by:

mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="mar2015.archive.ensembl.org",
path="/biomart/martservice", dataset="drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

TxDb2GR 111

Examples

data(TSS.zebrafish.zZv9)
slotNames(TSS.zebrafish.Zv9)

TxDb2GR TxDb object to GRanges

Description

convert TxDb object to GRanges

Usage

TxDb2GR(ranges, feature, OrganismDb)

Arguments
ranges an Txdb object
feature feature type, could be geneModel, gene, exon, transcript, CDS, fiveUTR, three-
UTR, microRNA, and tRNA
OrganismDb org db object
wgEncodeTfbsV3 transcription factor binding site clusters (V3) from ENCODE
Description

possible binding pool for human (hg19) from transcription factor binding site clusters (V3) from
ENCODE data and removed the HOT spots

Usage

wgEncodeTfbsV3

Format

An object of GRanges.

112 wgEncodeTtbsV3

Details

How to generate the data:

temp <- tempfile()
download.file(file.path("http://hgdownload.cse.ucsc.edu”, "goldenPath",
"hg19", "encodeDCC",

"wgEncodeRegTfbsClustered",

"wgEncodeRegTfbsClusteredV3.bed.gz"), temp)

data <- read.delim(gzfile(temp, "r"), header=FALSE)

unlink(temp)

colnames(data)[1:4] <- c("seqnames", "start", "end", "TF")
wgEncodeRegTfbsClusteredV3 <- GRanges(as.character(data$seqnames),
IRanges(data$start, data$end),

TF=data$TF)

data(HOT.spots)

hot <- reduce(unlist(HOT.spots))

ol <- findOverlaps(wgEncodeRegTfbsClusteredV3, hot)
wgEncodeTfbsV3 <- wgEncodeRegTfbsClusteredV3[-unique(queryHits(ol))]
wgEncodeTfbsV3 <- reduce(wgEncodeTtbsV3)
save(list="wgEncodeTfbsV3",

file="data/wgEncodeTfbsV3.rda",

compress="xz", compression_level=9)

Source

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/ wgEncodeRegTtbsClustered/wgEncodeRegTfbsClustered V2

Examples

data(wgEncodeTfbsV3)
head(wgEncodeTfbsV3)

write2FASTA 113

write2FASTA Write sequences to a file in fasta format

Description

Write the sequences obtained from getAllPeakSequence to a file in fasta format leveraging write-
FASTA in Biostrings package. FASTA is a simple file format for biological sequence data. A
FASTA format file contains one or more sequences and there is a header line which begins with a >
proceeding each sequence.

Usage
write2FASTA(mySeq, file = "", width = 80)
Arguments
mySeq GRanges with varibles name and sequence ,e.g., results obtained from getAll-
PeakSequence
file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for write2FASTA), then the function writes to the standard
output connection (the console) unless redirected by sink
width The maximum number of letters per line of sequence
Value

Output as FASTA file format to the naming file or the console.

Author(s)

Lihua Julie Zhu

Examples

peaksWithSequences = GRanges(segnames=c("1", "2"),
IRanges(start=c(1000, 2000),

end=c(1010, 2010),

names=c("id1", "id2")),

sequence= c("CCCCCCCCGGGGG", "TTTTTTTAAAAAA"))

write2FASTA(peaksWithSequences, file="testseq.fasta”, width=50)

114

xget

xget Return the value from a Bimap objects

Description

Search by name for an Bimap object.

Usage

xget(
X,
envir,
mode,
ifnotfound = NA,
inherits,
output = c("all”, "first”, "last")

Arguments

X, envir, mode, ifnotfound, inherits
see mget

output return the all or first item for each query

Value

a character vector

Author(s)

Jianhong Ou

See Also

See Also as mget, mget

Examples

library(org.Hs.eg.db)
xget(as.character(1:10), org.Hs.egSYMBOL)

Index

* classes bdp, 24
annoGR-class, 10 binOverFeature, 25
bindist-class, 25 condenseMatrixByColnames, 31
permPool-class, 90 convert2EntrezID, 31

* datasets countPatternInSegs, 32
annotatedPeak, 13 egOrgMap, 35
enrichedGo, 36 estFragmentLength, 39
ExonPlusUtr.human.GRCh37, 41 estLibSize, 40
HOT . spots, 72 featureAlignedDistribution, 42
myPeakList, 81 featureAlignedExtendSignal, 43
Peaks.Ste12.Replicatel, 85 featureAlignedHeatmap, 45
Peaks.Ste12.Replicate2, 86 featureAlignedSignal, 46

Peaks.Ste12.Replicate3, 86

peaks1, 87
peaks2, 88
peaks3, 88
TSS.human.GRCh37, 105
TSS.human.GRCh38, 105
TSS.human.NCBI36, 106
TSS.mouse.GRCm38, 107
TSS.mouse .NCBIM37, 107
TSS.rat.RGSC3.4, 108
TSS.rat.Rnor_5.0, 109
TSS.zebrafish.zZvs, 109
TSS.zebrafish.zv9, 110
wgEncodeTfbsV3, 111

+ graph
makeVennDiagram, 76

* internal
getGeneSeq, 67
getUniqueGOidCount, 69
hyperGtest, 73

* misc
addAncestors, 6
addGenelDs, 7
addMetadata, 9
annoPeaks, 11
annotatePeakInBatch, 14

assignChromosomeRegion, 21

115

findEnhancers, 47
findOverlappingPeaks, 52
findOverlapsOfPeaks, 54
getAllPeakSequence, 59
getAnnotation, 61
getEnrichedGoO, 62
getEnrichedPATH, 65
getGeneSeq, 67

getGo, 68
getVennCounts, 70
IDRfilter, 74
mergePlusMinusPeaks, 78
oligoFrequency, 81
oligoSummary, 82
peakPermTest, 83
peaksNearBDP, 89

piel, 91

preparePool, 94
reCenterPeaks, 95
summarizeOverlapsByBins, 96
summarizePatternInPeaks, 97
tileCount, 99
tileGRanges, 100
toGRanges, 101
translatePattern, 104
write2FASTA, 113

xget, 114

116

x package

ChIPpeakAnno-package, 4
$,bindist-method (bindist-class), 25
$,permPool-method (permPool-class), 90
$<-,bindist-method (bindist-class), 25
$<-,permPool-method (permPool-class), 90

acf, 39

addAncestors, 6

addGenelDs, 7, 17

addMetadata, 9

annoGR, 15, 17, 24, 26, 95

annoGR (annoGR-class), 10

annoGR, EnsDb-method (annoGR-class), 10
annoGR, GRanges-method (annoGR-class), 10
annoGR, TxDb-method (annoGR-class), 10
annoGR-class, 10
annoPeaks, 11, 15-17, 24
annotatedPeak, 13
annotatePeakInBatch, /3, 14, 49, 56
assignChromosomeRegion, 21

BamFilelList, 96, 100

bdp, 24

bindist, 84, 85, 94

bindist (bindist-class), 25
bindist-class, 25

bindist-method (bindist-class), 25
binOverFeature, 23, 25
binOverGene, 23, 27, 29, 93
binOverRegions, 23, 27, 28, 93

ChIPpeakAnno (ChIPpeakAnno-package), 4
ChIPpeakAnno-deprecated, 29
ChIPpeakAnno-package, 4
cntOverlaps, 30
coerce (annoGR-class), 10
coerce, annoGR, GRanges-method
(annoGR-class), 10
coerce,GRanges, annoGR-method
(annoGR-class), 10
condenseMatrixByColnames, 31
convert2EntrezID, 31
countPatternInSegs, 32
cumulativePercentage, 33

Date, 10, 11
Deprecated, 30
downstreams, 34

INDEX

egOrgMap, 35

enrichedGo, 36
enrichmentPlot, 37
EnsDb, 10, 11,22, 102
EnsDb2GR, 38
estFragmentLength, 39, 44
estLibSize, 40, 44
ExonPlusUtr.human.GRCh37, 41

featureAlignedDistribution, 42, 46, 47
featureAlignedExtendSignal, 43
featureAlignedHeatmap, 42, 45, 47
featureAlignedSignal, 42, 4446, 46
findEnhancers, 47
findMotifsInPromoterSegs, 49
findOverlappingPeaks, 17, 52, 56, 71
findOverlappingPeaks-deprecated
(findOverlappingPeaks), 52
findOverlaps, 30, 52, 54,71, 75, 76, 84
findOverlapsOfPeaks, 9, 30, 53, 54, 77
format, 92
frequency, 82, 83

GAlignmentPairs, 96, 100

GAlignments, 96, 100

GAlignmentsList, 96, 100

genomicElementDistribution, 23, 56

genomicElementUpSetR, 23, 58

getAllPeakSequence, 59, 81, 82

getAnnotation, 17, 61

getBM, 8

getEnrichedGo, 37, 62

getEnrichedPATH, 37, 65

getGeneSeq, 67

getGO, 68

getUniqueGOidCount, 69

getVennCounts, 56, 70

GInteractions, 48

GRanges, 10-12, 15, 17, 24, 26, 30, 33, 42, 43,
45,47, 48, 53-55, 57, 59-61, 71, 75,
76, 80, 84, 89, 94-96, 98, 100, 101,
103

GRangeslList, 57, 59, 80, 96, 100

HOT. spots, 72
hyperGtest, 73

IDRfilter, 74
import, 48

INDEX

importGInteractions, 48
info (annoGR-class), 10
info, annoGR-method (annoGR-class), 10

legend, 92
listAttributes(mart), 8
listFilters(mart), 8

makeVennDiagram, 17, 56, 71, 76
matplot, 42, 93
mergePlusMinusPeaks, 78
metagenePlot, 80

mget, 114

myPeakList, 81

numOverlaps, 30, 84

oligoFrequency, 81

oligoSummary, 82, 82

OrganismDb, 103

overlappingPeaks, 9

overlappingPeaks (findOverlapsOfPeaks),
54

overlappingPeaks-class
(findOverlapsOfPeaks), 54

peakPermTest, 25, 77, 83, 91, 94
Peaks.Ste12.Replicatel, 85
Peaks.Stel12.Replicate2, 86
Peaks.Ste12.Replicate3, 86
peaks1, 87

peaks2, 88

peaks3, 88
peaksNearBDP, /7, 89
permPool, 84

permPool (permPool-class), 90
permPool-class, 90
permPool-method (permPool-class), 90
permTest, 84

pie, 92

piel, 91
plotBinOverRegions, 27, 29, 93
preparePool, 25, 85, 91, 94

RangedSummarizedExperiment, 96, 100
read. table, 102

reCenterPeaks, 95
RlelList, 27, 28, 42,45, 47

shuffle_sequences, 98

117

SimpleRlelist, 27, 28, 42, 45,47
summarizeOverlaps, 33, 96, 99, 100
summarizeOverlapsByBins, 96
summarizePatternInPeaks, 17,97

tileCount, 99

tileGRanges, 100

toGRanges, 30, 101

toGRanges, character-method (toGRanges),
101

toGRanges, connection-method
(toGRanges), 101

toGRanges,data. frame-method
(toGRanges), 101

toGRanges,EnsDb-method (toGRanges), 101

toGRanges, TxDb-method (toGRanges), 101

translatePattern, 104

TSS.human.GRCh37, 105

TSS.human.GRCh38, 105

TSS.human.NCBI36, 106

TSS.mouse.GRCm38, 107

TSS.mouse.NCBIM37, 107

TSS.rat.RGSC3.4, 108

TSS.rat.Rnor_5.0, 109

TSS.zebrafish.zv8, 109

TSS.zebrafish.zv9, 110

TxDb, 10, 11,21, 22,27, 28, 57, 59, 77, 80, 84,
94,102, 103

TxDb2GR, 111

useMart, 7
venn.diagram, 77

wgEncodeTfbsV3, 111
write2FASTA, 113

xget, 114

	ChIPpeakAnno-package
	addAncestors
	addGeneIDs
	addMetadata
	annoGR-class
	annoPeaks
	annotatedPeak
	annotatePeakInBatch
	assignChromosomeRegion
	bdp
	bindist-class
	binOverFeature
	binOverGene
	binOverRegions
	ChIPpeakAnno-deprecated
	cntOverlaps
	condenseMatrixByColnames
	convert2EntrezID
	countPatternInSeqs
	cumulativePercentage
	downstreams
	egOrgMap
	enrichedGO
	enrichmentPlot
	EnsDb2GR
	estFragmentLength
	estLibSize
	ExonPlusUtr.human.GRCh37
	featureAlignedDistribution
	featureAlignedExtendSignal
	featureAlignedHeatmap
	featureAlignedSignal
	findEnhancers
	findMotifsInPromoterSeqs
	findOverlappingPeaks
	findOverlapsOfPeaks
	genomicElementDistribution
	genomicElementUpSetR
	getAllPeakSequence
	getAnnotation
	getEnrichedGO
	getEnrichedPATH
	getGeneSeq
	getGO
	getUniqueGOidCount
	getVennCounts
	HOT.spots
	hyperGtest
	IDRfilter
	makeVennDiagram
	mergePlusMinusPeaks
	metagenePlot
	myPeakList
	oligoFrequency
	oligoSummary
	peakPermTest
	Peaks.Ste12.Replicate1
	Peaks.Ste12.Replicate2
	Peaks.Ste12.Replicate3
	peaks1
	peaks2
	peaks3
	peaksNearBDP
	permPool-class
	pie1
	plotBinOverRegions
	preparePool
	reCenterPeaks
	summarizeOverlapsByBins
	summarizePatternInPeaks
	tileCount
	tileGRanges
	toGRanges
	translatePattern
	TSS.human.GRCh37
	TSS.human.GRCh38
	TSS.human.NCBI36
	TSS.mouse.GRCm38
	TSS.mouse.NCBIM37
	TSS.rat.RGSC3.4
	TSS.rat.Rnor_5.0
	TSS.zebrafish.Zv8
	TSS.zebrafish.Zv9
	TxDb2GR
	wgEncodeTfbsV3
	write2FASTA
	xget
	Index

