Package ‘ChIPanalyser’

January 23, 2026

Type Package

Title ChIPanalyser: Predicting Transcription Factor Binding Sites
Version 1.33.0

Date 2017-09-01

Author Patrick C.N.Martin & Nicolae Radu Zabet

Maintainer Patrick C.N. Martin <pcnmartin@gmail.com>

Citation Zabet NR, Adryan B (2015) Estimating binding properties of
transcription factors from genome-wide binding profiles.
Nucleic Acids Res., 43, 84-94.

Description ChIPanalyser is a package to predict and understand TF binding
by utilizing a statistical thermodynamic model. The model incorporates 4
main factors thought to drive TF binding: Chromatin State, Binding energy,
Number of bound molecules and a scaling factor modulating TF binding
affinity. Taken together, ChIPanalyser produces ChIP-like profiles that
closely mimic the patterns seens in real ChIP-seq data.

License GPL-3

Collate 2Al11S4Class_ProfileParameters.R 3AllGenerics.R 4AllMethods.R
Alllnitialize.R AllShowMethods.R computeChIPProfile.R
computeOccupancy.R computeOptimal.R computePWMScore.R
computeGenomeWide.R parallellnternalFunctionsDev.R
GenomicProfileGenericFunctions.R plotOccupancy.R
plotOptimalHeatMapDev.R DataPreprocessingDev.R
DataPreprocessingGenericFunctionsDev.R
profileAccuracyEstimateDev.R GA Analysis.R GAGeneric.R

Depends R (>= 3.5.0),GenomicRanges, Biostrings, BSgenome, RcppRoll,
parallel

Imports methods, IRanges,
S4Vectors,grDevices,graphics,stats,utils,rtracklayer, ROCR,
BiocManager,GenomelInfoDb,RColorBrewer

Suggests BSgenome.Dmelanogaster.UCSC.dm6,knitr, RUnit, BiocGenerics
Encoding UTF-8
LazyData true



Contents

biocViews Software, BiologicalQuestion, WorkflowStep, Transcription,

Sequencing, ChipOnChip, Coverage, Alignment, ChIPSeq,
SequenceMatching, Datalmport ,PeakDetection

VignetteBuilder knitr

RoxygenNote 7.2.1

git_url https://git.bioconductor.org/packages/ChIPanalyser
git_branch devel

git_last_commit 873269¢

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Contents

ChlIPanalyser-package . . . . . . . . . . . . . .
averageExpPWMScore . . . . . . ...
averageExpPWMScore-methods . . . . . . .. ... L oL
backgroundSignal . . . . . ... L
backgroundSignal-methods . . . . . . . .. ... L
backgroundSignal<- . . . . . ...
backgroundSignal<—methods . . . . . . ... .. oL oL
boundMolecules . . . . . . . ...
boundMolecules-methods . . . . . . . . ... L
boundMolecules<- . . . . . .. L e
boundMolecules<—methods . . . . . . . . . ... oL
BPFrequency . . . . . . . . e
BPFrequency-methods . . . . . . . . .. .
BPFrequency<- . . . . . . . . e e e e e
BPFrequency<—methods . . . . . . . . ... ...
ChlIPanalyserData . . . . . . . . . ... ... ...
chipMean . . . . . . . . . . e e
chipMean-methods . . . . . . . . . ... L
chipMean<- . . . . . . . . . .
chipMean<-methods . . . . . . . . . . . . . . ..
ChIPScore-class . . . . . . . . . . . . e
chipSd . . . . e
chipSd-methods . . . . . . . . . . e
chipSd<-. . . . . L e
chipSd<—methods . . . . . . . . . . ..
chipSmooth . . . . . . . .. e
chipSmooth-methods . . . . . . . . . . . . .. ..
chipSmooth<- . . . . . . . . .
chipSmooth<—methods . . . . . . ... ... ... L
computeChIPProfile . . . . . . . . . . . . . . . . .
computeGenomeWideScores . . . . . ... oL



Contents

3
computeOCCUPANCY . . . v v v v v e e e e e e e e e e e e e e e e 30
computeOptimal . . . . . . . ... 32
computetPWMScore . . . . . ..o 34
DNASequencelength . . . . . . . . . . . L 36
DNASequencelLength-methods . . . . . . . .. ... . ... .. ... . ... ... 37
drop . . .o e e 38
drop-methods . . . . . . . . . 39
eVOIVE . . . e 39
generateStartingPopulation . . . . ... ... o 0oL 41
genomicProfiles . . . . . . . ... 42
genomicProfiles-class . . . . . . . ... 43
genomicProfilesInternal-class . . . . . . . ... ... . 46
getHighestFitnessSolutions . . . . . . . . . .. ... ... 48
getTestingData . . . . . . . . ... 49
getTrainingData . . . . . . . . . . L 49
GRList-class . . . . . . . e e 50
initialize-methods . . . . . . . ... 51
lambdaPWM . . . . . . e 51
lambdaPWM-methods . . . . . . ... . ... 52
lambdaPWM<- . . . . . . e 52
lambdaPWM<—methods . . . . . . .. ... ... 53
loci . . . e 53
loci-class . . . . . . e e 54
loci-methods . . . . . . .. L 55
lociWidth . . . . . . . e 55
lociWidth-methods . . . . . . . . .. . . L 56
lociWidth<- . . . . . . . . e 57
lociWidth<—methods . . . . . . . . . . . L 58
maxPWMScore . . . . . . .. e 58
maxPWMScore-methods . . . . . . ... Lo 59
maxSignal . . . .. 59
maxSignal-methods . . . . . . . . ... 60
maxSignal<-. . . ... e 61
maxSignal<-methods . . . . . ... 62
minPWMScore . . . . . . e 62
minPWMScore-methods . . . . . ... o Lo 63
naturalLog . . . . . L 63
naturalLog-methods . . . . . . . . ..o 64
naturalLog<- . . . .. L e e 65
naturalLog<—methods . . . . . . . ... oL o 66
noiseFilter . . . . . . . . 66
noiseFilter-methods . . . . . . . . . .. L 67
noiseFilter<- . . . . . . . . L 67
noiseFilter<-methods . . . . . . . . . . .. 68
noOfSItes . . . . . . . 68
noOfSites-methods . . . . . . ... 69
noOfSites<- . . . . . . L e e 70

noOfSites<—methods . . . . . . . . . e 71



Contents

NOS-Class . . . . . . . 71
parameterOptions . . . . . . . . L. e e e e e e e 72
parameterOptions-class . . . . . . . . . ... 74
PFMFormat . . . . . . . . . e 77
PFMFormat-methods . . . . . . . . . . . . 78
PFMFormat<- . . . . . . . . e 78
PFMFormat<—methods . . . . . . . . . .. ... 79
ploidy . . . . e e e e 79
ploidy-methods . . . . . . . . ... 80
ploidy<- . . . .. 81
ploidy<—methods . . . . . . . . . . L 82
plotOccupancyProfile . . . . . . . . . . .. e 82
plotOptimalHeatMaps . . . . . . . . . . . . . . e 84
PositionFrequencyMatrix . . . . . . . . .o 86
PositionFrequencyMatrix-methods . . . . . . . ... . ... Lo 87
PositionFrequencyMatrix<- . . . . . . . .. ... Lo 87
PositionFrequencyMatrix<—methods . . . . . . . . .. ... oL 88
PositionWeightMatrix . . . . . . . . . . . . . e e 89
PositionWeightMatrix-methods . . . . . . . . . ... . ... ... .. .. 90
PositionWeightMatrix<- . . . . . . . . . . . . L 90
PositionWeightMatrix<—methods . . . . . . . . .. ... ... ... 91
processingChIP . . . . . . . . . e 91
profileAccuracyEstimate . . . . . ... ... 93
profiles-methods . . . . . .. ... 95
PWMpseudocount . . . . . . . . . . e e 95
PWMpseudocount-methods . . . . . . . . .. ... 96
PWMpseudocount<- . . . . .. ... 96
PWMpseudocount<—methods . . . . . . . ... oL 97
PWMThreshold . . . . . . . . . . .. e 98
PWMThreshold-methods . . . . . . . .. ... ... ... 99
PWMThreshold<- . . . . . . . . . .. e 99
PWMThreshold<—methods . . . . . . . ... ... ... .. 100
removeBackground . . . ... ..o 100
removeBackground-methods . . . . . . ... oL 101
removeBackground<- . . . . ... oL 101
removeBackground<-methods . . . . . ... ... .. L o oL 102
SCOTES « v v v v v e e e e e e e e e e e e e e e e e e e e e 103
scores-methods . . . . . ... 104
searchSItes . . . . . . . .. e 104
setChromatinStates . . . . . . . . . ... L e 106
show-methods . . . . . . . . .. L 107
singleRun . . . . . ..o 107
splitData . . . . . . . L e e e e e 108
SEPSIZE . . ... e e 109
stepSize-methods . . . . . . .. 110
SEEPSIZE<- . . . L e e e e e e 110
stepSize<—methods . . . . . ... L 111

strandRule . . . . . . . . e 111



ChIPanalyser-package 5

strandRule-methods . . . . . . . . . . . .. ... 112
strandRule<- . . . . . . .. e e e 113
strandRule<-methods . . . . . . . . . . . . . .. ... 114
whichstrand . . . . . . . .. e 114
whichstrand-methods . . . . . . . . . . .. ... 115
whichstrand<- . . . . . . . . .. e e e 115
whichstrand<—methods . . . . . . . . . . . ... ... 116
Index 117

ChIPanalyser-package ChlPanalyser: Predicting Transcription Factor Binding Sites

Description

ChIPanalyser is a package to predict and understand TF binding by utilizing a statistical thermody-
namic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State,
Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity.
Taken together, ChIPanalyser produces ChIP-like profiles that closely mimic the patterns seens in
real ChIP-seq data.

Details
The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Patrick C.N. Martin <pm16057 @essex.ac.uk>
And
Nicolae Radu Zabet <nzabet @essex.ac.uk>

Maintainer: Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome



6 averageExpPWMScore

if(!require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")

BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")

3

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)

chip<-processingChIP(chip, top)

# Computing Genome Wide

GenomeWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicsProfiles = GPP)

#Compute PWM Scores

PWMScores <- computePWMScore(genomicsProfiles = GenomeWide,
DNASequenceSet = DNASequenceSet,
loci = top, chromatinState = Access)

#Compute Occupnacy

Occupancy <- computeOccupancy(genomicsProfiles = PWMScores,
parameterOptions = OPP)

#Compute ChIP profiles
chipProfile <- computeChIPProfile(genomicProfiles = Occupancy,

loci = top,

parameterOptions = OPP)
#Estimating accuracy estimate
AccuracyEstimate <- profileAccuracyEstimate(genomicProfiles = chipProfile,

ChIPScore = chip,

parameterOptions = OPP)

averageExpPWMScore Accessor for averageExpPWMScore slot in a genomicProfiles ob-
ject.

Description

Extract or Access averageExpPWMScore slot in a genomicProfiles

Usage

averageExpPWMScore(object)

Arguments

object object is a genomicProfiles



averageExpPWMScore-methods 7

Details

As a general rule, averageExpPWMScore is computed and updated internally by computeGenomeWideScores.
Idealy, this slot should not be updated by user. The averageExpPWMScore is the sum of the expo-

nential of every PWM score for a given DNA sequence and divided by the length of the said DNA
sequence (DNASequencelLength). This can either be the full length sequence or only the accessible
sequence (see computeGenomeWideScores).

Value

Returns the averageExpPWMScore of a genomicProfiles when computed.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Accessing Data

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")
# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Extracting AllSitesAboveThreshold slot

averageExpPWMScore (GPP)

## Note this slot is now empty as nothing has yet been computed

averageExpPWMScore-methods
~~ Methods for Function averageExpPWMScore ~~

Description

~~ Methods for function averageExpPWMScore ~~
Methods:

signature(object = "genomicProfilesInternal”)



8 backgroundSignal

backgroundSignal Accessor method for the backgroundSignal slot in a
parameterOptions object.

Description

Extract or access the backgroundSignal slot in a parameterOptions object.

Usage

backgroundSignal (object)

Arguments

object object is an parameterOptions

Details

Default Value: 0

When computing computeOccupancy, a ChIP-seq background signal is used to scale Occupancy
by considering both a backgroundSignal and a maxSignal. The backgroundSignal is also used
to nomalise occupancies against maxOccupancy. The backgroundSignal usually comes from ex-
perimental data and is provided by user. As a general rule, if ChIP-seq data is available and will
be used in computeChIPProfile , profileAccuracyEstimate or plotOccupancyProfile, it is
advised to use the backgroundSignal from this data. We strongly encourage to set values when
building a parameterOptions object.

Value

Returns a backgroundSignal of a parameterOptions object.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.



backgroundSignal-methods 9

Examples

# Building occupancyProfileParameters object
OPP <- parameterOptions()

#Viewing single value in object
backgroundSignal (OPP)

backgroundSignal-methods
~~ Methods for Function backgroundSignal ~~

Description
~~ Methods for function backgroundSignal ~~
Methods:

signature(object = "parameterOptions”)

backgroundSignal<- Setter method for backgroundSignal slot in a parameterOptions

Description

Setter method for backgroundSignal slot in a parameterOptions

Usage

backgroundSignal (object)<-value

Arguments
object object is an parameterOptions object.
value value is the value to be assigned to the backgroundSignal slotin parameterOptions.
backgroundSignal should be a positive value. Defualt value is 0.
Details

Defualt value: 0. When computing computeOccupancy, a ChIP-seq background signal is used to
scale Occupancy by considering both a backgroundSignal and a maxSignal. The backgroundSignal
is also used to nomalise occupancies to maxOccupancy. The backgroundSignal usually comes
from experimental data and is provided by user. As a general rule, if ChIP-seq data is available and
will be used in computeChIPProfile, profileAccuracyEstimate or plotOccupancyProfile, it

is advised to use the backgroundSignal from this data. We strongly encourage to set values when
building a parameterOptions object.



10 backgroundSignal<—methods

Value

Returns a parameterOptions object with a new value assigned to the backgroundSignal slot.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building occupancyProfileParameters object
OPP <- parameterOptions()

# Setting new value for backgroundSignal
backgroundSignal (OPP) <- 0.2

# Viewing whole object with new updated value
OPP

#Viewing single value in object
backgroundSignal (OPP)

backgroundSignal<-methods
~~ Methods for Function backgroundSignal<- ~~

Description

~~ Methods for function backgroundSignal<- ~~

Methods:

backgroundSignal (object)<-value



boundMolecules 11

boundMolecules Accessor methods for boundMolecules slot in parameterOptions
object.

Description

Extract or Access boundMolecules slot in parameterOptions object.

Usage

boundMolecules(object)

Arguments

object object is a parameterOptions object.

Details
Defaut value: 1000

When computing occupancy (computeOccupancy), a value for the number of bound Molecules to
DNA is needed. This value can be updated and set in a parameterOptions object. If the num-
ber of molecules is unknown,it is possible to infer this value with computeOptimal. We strongly
encourage to set values when building a parameterOptions object.

Value

Returns boundMolecules slot in parameterOptions object.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Building parameterOptions object

OPP <- parameterOptions()

#Checking single value by slot accessor
boundMolecules (OPP)



12 boundMolecules<-

boundMolecules-methods
~~ Methods for Function boundMolecules ~~

Description

~~ Methods for function boundMolecules ~~

Methods:

signature(object = "parameterOptions")

boundMolecules<- Setter method for the boundMolecules slot in a parameterOptions
object.

Description

Setter method for the boundMolecules slot in a parameterOptions object.

Usage

boundMolecules(object)<-value

Arguments
object object is a parameterOptions object.
value value is a positive integer or vector of positive integers describing the number
ofmolecules bound to DNA. Defaut value is 1000.
Details

Default value: 1000 When computing occupancy (computeOccupancy), a value for the number of
bound Molecules to DNA is needed. This value can be updated and set in a parameterOptions ob-
ject. If the number of molecules is unknown, it is possible to infer this value with computeOptimal.
We strongly encourage to set values when building a parameterOptions object.

Value

Returns a parameterOptions object with an updated value for boundMolecules.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>



boundMolecules<—methods 13

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building parameterOptions object

OPP <- parameterOptions()

# Setting new boundMolecules value in OPP
boundMolecules(OPP) <- 5000

#Checking value in whole object

OPP

#Checking single value by slot accessor
boundMolecules (OPP)

boundMolecules<-methods
~~ Methods for Function boundMolecules<- ~~

Description

~~ Methods for function boundMolecules<- ~~
Methods:

signature(object = "parameterOptions"”, value = "vector")

BPFrequency Accessor method for BPFrequency slot in a genomicProfiles object.

Description

Extract or Access BPFrequency slot in a genomicProfiles object.

Usage

BPFrequency(object)

Arguments

object object is a genomicProfiles



14 BPFrequency-methods

Details

Default value is ¢(0.25,0.25,0.25,0.25) When generating a Postion Weight Matrix from a Position
Frequency Matrix, the probability of occurrence of each base pair (Base Pair Frequency) is neces-
sary (as originally described by Gary Stormo). It is possible to set custom values for BPFrequency
with a vector of length 4 containing the probability of occurrence of each base pair (A,C,G,T) in
order. If Base pair frequency is unknown, BPFrequency will compute base pair frequency from a
DNA sequence. The nature of this sequence can be a BSgenome or a DNAStringSet. In order to
decrease run time, it is advised to use DNAStringSet

Value

Returns BPFrequency slot in genomicProfiles object.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")
# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

#Extracting BPFrequency slot

BPFrequency (GPP)

BPFrequency-methods ~~ Methods for Function BPFrequency ~~

Description

~~ Methods for function BPFrequency ~~

Methods:

signature(object = "genomicProfilesInternal”)



BPFrequency<- 15

BPFrequency<- Setter method for BPFrequency slot in a genomicProfiles object.

Description
Setter method for BPFrequency slot in a genomicProfiles object. If base pair frequency is un-
known, BPFrequency will compute base pair frequency from a DNA sequence.

Usage

BPFrequency(object)<-value

Arguments
object object is a genomicProfiles object.
value value can three different objects:
A vector of length 4 containing the probability of occurrence of each base pair
(A,C,G,T) in order. Default value is ¢(0.25,0.25,0.25,0.25).
A BSgenome of the organism of interest. The base pair frequency will automati-
cally be computed and updated in genomicProfiles.
A DNAStringSet of the organisme of interest. The base pair frequency will au-
tomatically be computed and updated in genomicProfiles (Prefered method).
Details

Default value is ¢(0.25,0.25,0.25,0.25) When generating a Postion Weight Matrix from a Position
Frequency Matrix, the probability of occurrence of each base pair (Base Pair Frequency) is neces-
sary (as originally described by Gary Stormo). It is possible to set custom values for BPFrequency
with a vector of length 4 containing the probability of occurrence of each base pair (A,C,G,T)
in order. If Base pair frequency is unknown, BPFrequency will compute base pair frequency
from a DNA sequence when building a genomicProfiles object. The nature of this sequence
can be aBSgenome object or a DNAStringSet. In order to decrease run time, it is advised to use
DNAStringSet.

Value

Returns a genomicProfiles object with an updated value for BPFrequency.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.



16 ChIPanalyserData

Examples

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages(”"BiocManager")

BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
}

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat = "JASPAR", BPFrequency=DNASequenceSet)

# Updating BPFrequency

## 1! Note!! BPFrequency is used to compute PWM from PFM

## IF updated after building GPP, then it will not influence PWM

## Advised to build with BPFrequency directly

BPFrequency (GPP) <- DNASequenceSet

BPFrequency (GPP) <- c(0.25,0.25,0.25,0.25)

BPFrequency<-methods  ~~ Methods for Function BPFrequency<- ~~

Description
~~ Methods for function BPFrequency<- ~~
Methods:

signature(object = "genomicProfilesInternal”, value = "DNAStringSet")

signature(object = "genomicProfilesInternal”, value = "vector”)

ChIPanalyserData ChlPanalyserData

Description

ChIPanalyserData is derived from real biological data. The source organism is Drosophila melanogaster.
The data can be described as genomic data as it contains DNA sequences, loci, genetic information,
DNA accessibility data and ChIP-seq data.

Usage
data(ChIPanalyserData)



chipMean 17

Format

1. Accessis GRanges containing DNA Accesibility data for the sequences described above.
2. csis GRanges containing Chromatin State data for the sequences described above.

3. topis GRanges containing a locus of interest. In this case eve strip Locus on chromosome 2R
in Drosophila melanogaster

4. chipis a GRanges containing ChIP score of the eve strip locus in Drosophila melanogaster.

5. geneRefis a GRanges containing UCSC gene reference information

Value

Returns a set of Rdata objects as described above.

Source

Transcription Factor PFM: Berkeley Drosophila Transcription Network Project (bdtnp.1bl.gov)

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

data(ChIPanalyserData)

chipMean Accessor method for chipMean slot in a parameterOptions object.

Description

Accessor method for chipMean slot in a parameterOptions object.

Usage

chipMean(object)

Arguments

object object is a parameterOptions



18 chipMean-methods

Details

Default vlaue : 150 When computing ChIP-seq like profiles (computeChIPProfile, the occupancy
values given by computeOccupancy are transformed into ChIP-seq like profiles. The average size
of a ChIP-seq peak was described by Kaplan (Kaplan et al. , 2011). It is advised to use the average
width of ChIP peaks from actual ChIP-seq data. We strongly encourage to set values when building
a parameterOptions object.

Value

Returns chipMean slot from a parameterOptions object.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Kaplan T.,Li X.-Y.,Sabo P.J.,Thomas S.,Stamatoyannopoulos J.A., Biggin M.D., EisenM.B. Quan-
titative models of the mechanisms that control genome-wide patterns of transcription factor binding
during early Drosophila development, PLoS Genet.,2011, vol. 7 pg. €1001290

Examples

# Building parameterOptions object
OPP <- parameterOptions()
#Accessing chipMean slot in OPP
chipMean (OPP)

chipMean-methods ~~ Methods for Function chipMean ~~

Description

~~ Methods for function chipMean ~~
Methods:

chipMean(object)



chipMean<- 19

chipMean<- Access methods for chipMean slot in parameterOptions object.

Description

Access methods for chipMean slot in parameterOptions object.

Usage

chipMean(object)<-value

Arguments
object object is a parameterOptions object.
value value is a positive numeric value that will be assigned to the chipMean slot.
chipMean describes the average size of a ChIP-seq peak in base pairs.
Details

Default vlaue : 150 When computing ChIP-seq like profiles (computeChIPProfile, the occupancy
values given by computeOccupancy are transformed into ChIP-seq like profiles. The average size
of a ChIP-seq peak was described by Kaplan (Kaplan et al. , 2011). It is advised to use the average
width of ChIP peaks from actual ChIP-seq data. We strongly encourage to set values when building
a parameterOptions object.

Value

Returns a parameterOptions object with an updated value for chipMean slot.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Kaplan T.,Li X.-Y.,Sabo P.J.,Thomas S.,Stamatoyannopoulos J.A., Biggin M.D.,EisenM.B. Quanti-
tative models of the mechanisms that control genome-wide patterns of transcription factor binding
during early Drosophila development, PLoS Genet.,2011, vol. 7 pg. €1001290

Examples

# Building parameterOptions object
OPP <- parameterOptions()

# Setting new value for slot
chipMean(OPP) <- 250



20 ChIPScore-class

chipMean<-methods ~~ Methods for Function chipMean<- ~~

Description

~~ Methods for function chipMean<- ~~

Methods:

chipMean(object)<-value

ChIPScore-class Class "ChIPScore”

Description

ChIPScore is the result of the processingChIP function. This object contains the extracted ChIP
Score from ChIP data, the loci of interest and optional paramters associated to ChIPanalyser. The
loci of interest will either be user provided or the top n regions as defined by the reduce argument
im processingChIP. This object has the sole purpose of aiding the storage and parsing of data and
parameters.

Objects from the Class

Object of this class are created internaly and will be parsed to other objects as is.

Slots

scores: Object of class "1ist" List of extracted ChIP scores

loci: Object of class "loci” GRanges containing loci of interest

ploidy: Object of class "numeric” Ploidy level of the organism

boundMolecules: Object of class "vector” Number of Bound molecules to the DNA
backgroundSignal: Object of class "numeric” ChIP background signal (average ChIP score)
maxSignal: Object of class "numeric” max ChIP signal

lociWidth: Object of class "numeric” Width of loci if reduce is used and no loci are provided
chipMean: Object of class "numeric” Average ChIP peak width

chipSd: Object of class "numeric” Standard Deviation of ChIP peak width

chipSmooth: Object of class "vector"” Smoothing window width for ChIP score

stepSize: Object of class "numeric” Defining resolution size of ChIP like profiles (10bp = signal
will be only considered every 10bp)

removeBackground: Object of class "numeric” Signal Threshold to be removed. Default removes
all negative scores



ChIPScore-class 21

noiseFilter: Object of class "character” Type of noise filter to be used on ChIP data.
PWMThreshold: Object of class "numeric” Threshold of PWM scores that will be selected
strandRule: Object of class "character” Rule to compute strand score (max, mean or sum)
whichstrand: Objectof class "character” Which strand should be used to compute PWM scores.
lambdaPWM: Object of class "vector"” Lambda value - Scaling factor to the PWM

naturallLog: Object of class "logical” PFM to PWM conversion log transform ( natural log or

log2)

noOfSites: Object of class "nos” Number of Sites in the PWM that should be used to compute
PWM scores.

PWMpseudocount: Object of class "numeric” PWM pseudocount value for PFM to PWM conver-
sion.

paramTag: Object of class "character” Internal Tag - Code progression

Extends

Class "parameterOptions”, directly.

Methods

Joci<- signature(object = "ChIPScore”, value = "loci"): ...
.scores<- signature(object = "ChIPScore"”, value ="list"): ...
initialize signature(.Object = "ChIPScore"): ...

loci signature(object = "ChIPScore"): ...

scores signature(object = "ChIPScore"): ...

show signature(object = "ChIPScore"): ...

Author(s)
Patrick C.N. Martin

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

processingChIP

Examples

showClass("ChIPScore™)



22 chipSd

chipSd Accessor method for chipSd slot in a parameterOptions object.

Description

Access or Extract chipSd slot in a parameterOptions object.

Usage
chipSd(object)

Arguments

object object is a parameterOptions

Details

When computing ChIP-seq like profiles (computeChIPProfile, the occupancy values given by
computeOccupancy are transformed into ChIP-seq like profiles. The average size of a ChIP-seq
peak was described by Kaplan (Kaplan et al. , 2011). The average peak size is subject to varia-
tion. This variation is accounted for with chipSd. It is advised to use the standard deviation of
ChIP peak width from actual ChIP-seq data. We strongly encourage to set values when building a
parameterOptions object.

Value

Returns a parameterOptions object with an updated value for chipSd.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Kaplan T.,Li X.-Y.,Sabo P.J.,Thomas S.,Stamatoyannopoulos J.A., Biggin M.D., Eisen M.B. Quan-
titative models of the mechanisms that control genome-wide patterns of transcription factor binding
during early Drosophila development, PLoS Genet.,2011, vol. 7 pg. €1001290

Examples

# Building parameterOptions object
OPP <- parameterOptions()

# Accessing chipSd slot
chipSd(OPP)



chipSd-methods 23

chipSd-methods ~~ Methods for Function chipSd ~~

Description

~~ Methods for function chipSd ~~
Methods:

chipSd(object)

chipSd<- Setter methods for chipSd slot in a parameterOptions object.

Description

Setter methods for chipSd slot in a parameterOptions object.

Usage

chipSd(object)<-value

Arguments
object object is parameterOptions object.
value value is a positive nurmeric value that will be assigned to chipSd slot. Default
value is 150.
Details

When computing ChlIP-seq like profiles (computeChIPProfile, the occupancy values given by
computeOccupancy are transformed into ChIP-seq like profiles. The average size of a ChIP-seq
peak was described by Kaplan (Kaplan et al. , 2011). The average peak size is subject to varia-
tion. This variation is accounted for with chipSd. It is advised to use the standard deviation of
ChIP peak width from actual ChIP-seq data. We strongly encourage to set values when building a
parameterOptions object.

Value

Returns a parameterOptions object with an updated value for chipSd.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>



24 chipSmooth

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Kaplan T.,Li X.-Y.,Sabo P.J.,Thomas S.,Stamatoyannopoulos J.A., Biggin M.D., Eisen M.B. Quan-
titative models of the mechanisms that control genome-wide patterns of transcription factor binding
during early Drosophila development, PLoS Genet.,2011, vol. 7 pg. e1001290

Examples

# Building parameterOptions object
OPP <- parameterOptions()

# Setting new value for chipSd slot
chipSd(OPP) <- 250

chipSd<-methods ~~ Methods for Function chipSd<- ~~

Description
~~ Methods for function chipSd<- ~~
Methods:

chipSd(object)<-value

chipSmooth Accessor methods for chipSmooth slot in a parameterOptions ob-
Jject.

Description

Access or Extract chipSmooth slot in a parameterOptions object.

Usage

chipSmooth(object)
Arguments

object object is a parameterOptions object.
Details

When computing ChIP-seq like (computeChIPProfile) profile from occupancy data (see computeOccupancy),
the profiles are smoothed using a window of a given size. The default value is set at 250 base pairs.

If chipSmooth is set to O then the profile will not be smoothed. We strongly encourage to set values

when building a parameterOptions object.



chipSmooth-methods 25

Value

Returns the chipSmooth slot in an parameterOptions object.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

# Accessing chipSd slot
chipSmooth(OPP)

chipSmooth-methods ~~ Methods for Function chipSmooth ~~

Description
~~ Methods for function chipSmooth ~~
Methods:

signature(object = "parameterOptions”)

chipSmooth<- Setter method for chipSmooth slot in parameterOptions object.

Description

Setter method for chipSmooth slot in parameterOptions object.

Usage

chipSmooth(object) <- value

Arguments
object object is a parameterOptions object.
value value is the positive numeric value to be assigned to the chipSmooth slot in

parameterOptions Default value is 250 base pairs.



26 chipSmooth<-methods

Details

When computing ChIP-seq like (computeChIPProfile) profile from occupancy data (see computeOccupancy),
the profiles are smoothed using a window of a given size. The default value is set at 250 base pairs.If
chipSmooth is set to O then the profile will not be smoothed. We strongly encourage to set values

when building a parameterOptions object.

Value

Returns a parameterOptions object with an updated value for chipSmooth slot.

Author(s)

Patrick C.N Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

# Setting new value for chipSd slot
chipSmooth(OPP) <- 250

chipSmooth<-methods ~~ Methods for Function chipSmooth<- ~~

Description

~~ Methods for function chipSmooth<- ~~

Methods:

signature(object = "parameterOptions"”, value = "vector")



computeChIPProfile 27

computeChIPProfile Computing ChIP-seq like profiles from Occupancy data.

Description

computeChIPProfile compute ChIP-seq like profile from occupancy data. Occupancy data is
computed using computeOccupancy.

Usage

computeChIPProfile(genomicProfiles, loci, parameterOptions = NULL,
norm = TRUE, method = c("moving_kernel”,"truncated_kernel”,"exact"),
peakSignificantThreshold= NULL,cores=1, verbose = TRUE)

Arguments
genomicProfiles
genomicProfiles is the result of computeOccupancy. This object should be a
genomicProfiles object.
loci loci is either a GRanges or ChIPScore object. ChIPScore-class will be the re-

sult of processingChIP. This object represents the set of Loci you are interested
in analysing. If you have followed the full ChIPanalyser pipe line, you would
have used the processingChIP function that would return a ChIPScore-class ob-
ject containing your loci of interest. GRanges are also supported if you are only
using part of the pipeline.
parameterOptions

parameterOptions is a parameterOptions object. This object is used to store
the numerous paramters offered by ChIPanalyser. This argument is optional
as all arguments are also parse in both ChIPScore-class and genomicProfiles
objects. If you wanted to make some last minute changes, parameterOptions
is the way to go. We recomend that you set your desired options before hand.

norm norm is a logical value. If TRUE, the ChIP-seq like profile will be normalised
towards maximum Occupancy. If FALSE, the profile will be left as is.

method method is a character string of one of the following: c¢("moving_kernel","truncated_kernel","exact").
If set to moving_kernel, the peaks will be approximated using Rcpp (Default).
If set to truncated_kernel, the peaks will be approximated however this method
does not require Rcpp. If set to exact, the peaks will not be approximated.

peakSignificantThreshold
peakSignificantThreshold is a threshold at which peaks will be selected.
IMPORTANT: if you select "moving_kernel" as described in method then this
threshold is a numeric value describing the peak tail hight cutoff value (Default
=0.001). In the case of "truncated_kernel" and "exact", the threhsold represents
a distance in base pair from the peak summit at which the peak should be cut
(Default = 1250). The default is set to NULL in this function. This just means
that either the value is provided bu user with the appropriate method. If not, the
default will be selected depending on the method selected.



28 computeChIPProfile

cores cores is the number of cores that will be used to compute ChIP profiles.

verbose verbose is a logical value. If TRUE, progress messages will be displayed in
console. If FALSE, no progress messages will be dispalyed in console.

Details

computeChIPProfile converts Transcription Factor occuapncy to a profile resembling the one of
a ChIP-seq profile. Internally a few paramters are required to build a ChIP like profile. These pa-
rameters are either defined and stored in a ChIPScore object (Paramters are updated based on your
ChIP data ), a genomicProfiles (user defined at the start of the analysis) or a parameterOptions
(if you want to update values as you go along)

Value

Returns a genomicProfiles objec containing all ChIP-seq like profile for every combination of
lambdaPWM and boundMolecules provided by the user.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Extracting Data

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")
BiocManager: :install("BSgenome.Dmelanogaster.UCSC.dm6")
3
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)
# Building genomicProfiles object
GPP <- genomicProfiles(PFM=PFM, PFMFormat="JASPAR",6BPFrequency=DNASequenceSet)

# Computing Genome Wide
GenomeWide <- computeGenomeWideScores(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet)



computeGenomeWideScores 29

#Compute PWM Scores
PWMScores <- computePWMScore(genomicProfiles = GenomeWide,
DNASequenceSet = DNASequenceSet, loci = top, chromatinState = Access)
#Compute Occupnacy
Occupancy <- computeOccupancy(genomicProfiles = PWMScores)

#Compute ChIP profiles
chipProfile <- computeChIPProfile(genomicProfiles=0ccupancy,loci=top)
chipProfile

computeGenomeWideScores
Computing Genome Wide scores

Description

computeGenomeWideScores compute the max and min PWM score over the entire genome.

Usage

computeGenomeWideScores(genomicProfiles, DNASequenceSet, chromatinState = NULL, parameterOptions = NUl

Arguments

genomicProfiles
genomicProfiles is a genomicProfiles object containing the PFM, PWM of
interest.

DNASequenceSet DNASequenceSet is a BSgenome or DNAStringSet containing the sequence of
the organism of interest.

chromatinState chromatinState is a GRanges object containing the chromatin States. This can
either represent regions of accessible DNA or Chromatin state affinities.

parameterOptions
parameterOptions is a parameterOptions object containing parameters that
you wish to change. The genomicProfiles object will be updated using the values
assigned to parameterOptions

cores cores is the number or cores that will be used (Numeric value - Default = 1)
verbose verbose is a logical value that will determine if internal progress message will
be printed.
Details

computeGenomeWideScores function computes PWM scores over the entire genome (or accessible
Genome if chromatin State are provided ). Genome wide scores are used to determine the maximum
and minimum PWM score as well as the average exponential score. These scores will in turn be
used to determine which score are above the PWM theshold. The average exponential score is an
integrale part of the equation used to compute Occupancy. Using defualt settings, ChIPanalyser
will only compute occupancy on the top 70% of PWM scores. This threshold can be changed. See
PWMThreshold



30 computeOccupancy

Value

Returns a genomicsProfiles object with updated values for max score, min score and average-
ExpPWMScore.

Author(s)
Patrick C.N Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

if(!require(”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")

BiocManager::install(”"BSgenome.Dmelanogaster.UCSC.dm6")
3

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet)

# Computing Genome Wide
GenomeWide <- computeGenomeWideScores(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet)

computeOccupancy Compute Occupancy values from PWM Scores based on model.

Description

computeOccupancy will compute the Occupancy from PWM Scores. As described in detail in
the vignette, ChIPanalyser uses PWM Scores, DNA Accessibility data, the number of bound
molecules and a sclaing factor of Transcription Factor specificty. This function will compute occu-
pancy using the values assigned to each variable.

Usage

computeOccupancy(genomicProfiles,parameterOptions = NULL,
norm = TRUE, verbose = TRUE)



computeOccupancy 31

Arguments
genomicProfiles
genomicProfilesisaagenomicProfiles object resulting from computePWMScore.
IT is important to use this resulting object as the occuapancy will only be com-
puted for sites above a threshold.
parameterOptions
parameterOptionsis a parameterOptions object containing the adequate val-
ues assigned to each Parameter. If not Supplied (parameterOptions = NULL),
a new object will be created internally using default values.
norm norm a logical value which determines if the occupancy should be normalised or
not.
verbose verbose a logical value which determines if progress messages are printed or
not.
Details

computeOccupancy will compute the Occupancy from PWM Scores. As described in detail in
the vignette, ChIPanalyser uses PWM Scores, DNA Accessibility data, the number of bound
molecules and a sclaing factor of Transcription Factor specificty. This function will compute occu-
pancy using the values assigned to each variable. It should also be noted that the parameterOptions
object contains a set of parameters used to compute Occupancy (not only restricted to this ). These
parameters are often dependant on real ChIP-Seq data and will influence the goodness of fit between
the predicted model an real ChIP-seq data. We strongly advise that the values assigned to each pa-
rameter should be customiszed in order to increase the model ageement with real world biological
data.

Value

computeOccupancy will return a genomicProfiles. The main difference will reside in the profiles
slot. This slot is generally a list or GRangesList. Within these list type structures are enclosed
GRanges containing the positions of site above threshold, PWMScores and Occupancy for each
site. The series of GRanges will depend on the number of loci that are tested and the number of
element in the list will depend on the various combinations of 1ambdaPWM and boundMolecules.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")



32 computeOptimal

#As an example of genome, this example will run on the Drosophila genome

if(!'require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
}
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects
GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)
OPP <- parameterOptions()
# Computing Genome Wide
GenomeWide <- computeGenomeWideScores(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet)

#Compute PWM Scores

PWMScores <- computePWMScore(genomicProfiles = GenomeWide,
DNASequenceSet = DNASequenceSet,
loci = top,
chromatinState = Access)

#Compute Occupnacy

Occupancy <- computeOccupancy(genomicProfiles = PWMScores,
parameterOptions = OPP)

Occupancy

computeOptimal compute Optimal Parameters

Description

ChIPanalyser contains a set of functions some of which require two parameters known as 1ambdaPWM
and as boundMolecules. These two paramters are not always known. computeOptimal will com-
pute these values by maximising the correlation and minimising the Mean Squared Error between
a predicted ChIP-seq-like profile and a real ChIP-seq profile for a given loci.

Usage

computeOptimal (genomicProfiles,DNASequenceSet, ChIPScore,chromatinState = NULL,
parameterOptions = NULL, optimalMethod = "all", rank=FALSE,returnAl11=TRUE,
peakMethod="moving_kernel” cores=1)

Arguments

genomicProfiles
genomicProfiles is a genomicProfiles object containing at least a Postion
Frequency Matrix or a Position Weight Matrix. It is strongly advised to cus-



computeOptimal 33

tomize this object to increase goodness of fit of the model when compared to
real ChIP-seq data.

DNASequenceSet DNASequenceSet is a DNAStringSet or a BSgenome of the full sequence of the
organism of interest.

ChIPScore ChIPScore is a named list containing ChIP-seq enrichements for each Loci of
interest. This Profile should be normalised to a base pair level. In other words,
there should be an enrichement score for each base pair of a given Locus.

chromatinState chromatinState is a GRanges object containing either accesible sites or DNA
affinity scores.

parameterOptions
parameterOptions is a parameterOptions object. If this object is not pro-
vided (parameterOptions = NULL), a new object will be created internally.
However, it is strongly advised to tailor this object to maximise the goodness
of fit of the model when compared to ChIP-seq data.

optimalMethod optimalMethod is a character string which determines which method for opti-
mal parameter selection should be selected. optimalMethod can be one of the
following: pearson, spearman, kendall, ks, fscore, geometric, MSE, or all. De-
fault is set to all.

rank rank is a logical value indicating if optimal parameters should be based on rank
(parameter combination occuring the most over all regions) or avaerage score
(best perfomring combination of paramters on average over all regions selected).
DEFAULT = FALSE

returnAll returnAll is a logical value indicating if all internal objects should be returned.
DEFAULT = TRUE. Internal objects are the following: Occupancy Scores, ChIP
like profiles, goodness of fit metrics and optimal paramters. If set to FALSE,
computeOptimal will only return the optimal parameters.

peakMethod peakMethod is a character string of one of the following: c("moving_kernel","truncated_kernel","exact").
If set to moving_kernel, the peaks will be approximated using Rcpp (Default).
If set to truncated_kernel, the peaks will be approximated however this method
does not require Repp. If set to exact, the peaks will not be approximated.

cores cores is the number cores that will be used to compute optimal set of parame-
ters.

Details

In order to backward infer the values of lambdaPWM and boundMolecules, it is possible to use the
computeOptimal to find these parameters. It should be noted that this functions requires a ChIP-seq
data input. ChIPScore (ChIP-seq data). This should be the output of the processingChIP function.

Value

computeOptimal returns a list respectivly described as the optimal set of Parameters (lambda -
lambdaPWM and boundMolecules), the optimal matrix (a matrix containing accuracy estimates de-
pendant on the parameter chosen), and finally the chosen parameter. If the parameter that was
chosen was "all", then each element of this list will contain the optimal set of parameters, optimal
matricies for all of the aforementioned paramters (see optimalMethod).



34 computePWMScore

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata”,package="ChIPanalyser”),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require(”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages(”"BiocManager")
BiocManager::install("”"BSgenome.Dmelanogaster.UCSC.dm6")
3
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)
chip<-processingChIP(chip, top)
#Building data objects
GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)
OPP <- parameterOptions()
#Computing Optimal set of Parameters
optimalParam <- computeOptimal (genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet,
ChIPScore = chip,
chromatinState = Access,
parameterOptions = OPP,
parameter = "all”,
peakMethod="moving_kernel")

computePWMScore Compute PWM Scores of sites above threshold.

Description

computePWMScore will compute and extract all sites that exhibit a PWM Score higher than a thresh-
old. This threshold (see PWMThreshold) will determine the percentage of total sites that should NOT
be considered.

Usage

computePWMScore(genomicProfiles,DNASequenceSet,
loci = NULL, chromatinState = NULL,parameterOptions=NULL,cores=1, verbose = TRUE)



computePWMScore 35

Arguments

DNASequenceSet DNASequenceSet isaDNAStringSet or aBSgenome containing the full sequence
of the organism of interest.

genomicProfiles

genomicProfilesisagenomicProfiles object resulting from the computeGenomeWideScores

function.

loci loci is a GRanges object containing the Loci of interest or a ChIPScore object
result of processingChIP function.

parameterOptions
parameterOptions is a parameterOptions object containing parameters that
you wish to parse/change when computing PWMScores.

chromatinState chromatinState is a GRanges object sites of accessible DNA or DNA affinity

scores.

cores cores is the number of cores used to compute PWM Scores.

verbose verbose is a logical value indicating if progress messages should be printed or
not.

Details

After determining genome wide scores, it is possible to only compute and extract high affinity sites
(in the sense that they have a high PWM Score). If a PWMThreshold is not set by user, the default
value is set at 0.7. This means that 70 % of sites will NOT be selected. Only the top 30 % will
be computed and extracted. If one is interested in all PWM Scores at a genome wide scale ( or
accessible DNA ), this is possible by setting PWAMThreshold to zero.

Value

computePWMScore will return a genomicProfiles object. The profiles slot will have been up-
dated. This slot will now contain a GRangesList with each element being a GRanges. This GRanges
will contain postion of each sites (start, end and strand) and the PWMScore associated to that site.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome



36 DNASequenceLength

if(!require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
3
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)
chip<-processingChIP(chip, top)
#Building data objects
GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)

# Computing Genome Wide
GenomeWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicProfiles = GPP)

#Compute PWM Scores
PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfiles = GenomeWide,

loci = chip, chromatinState = Access)
PWMScores
DNASequencelLength Accessor method for DNASequencelLength slot in a genomicProfiles
Description

Accessor method for DNASequencelLength slot in a genomicProfiles

Usage

DNASequencelLength(object)

Arguments

object object is a genomicProfiles

Details

The model on which is based ChIPanalyser requires the length of the DNA sequence used to
compute scores. In this circustance, this DNA Length is the total length of the DNA of the organism
of interest or the the Accessible DNA at a genome wide scale.

Value

Returns DNASequencelLength slot in a genomicProfiles object.



DNASequenceLength-methods 37

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser”),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if('require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!'requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
3
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)

# Computing Genome Wide

GenomceWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicProfiles = GPP)

DNASequencelLength(GenomceWide)

DNASequencelLength-methods
~~ Methods for Function DNASequencelLength ~~

Description

~~ Methods for function DNASequencelLength ~~
Methods:

signature(object = "genomicProfilesInternal”)



38 drop

drop Accessor Method for the drop slot in a genomicProfiles object.

Description

Accessor Method for the drop slot in a genomicProfiles object.

Usage
drop(object)

Arguments

object object is a genomicProfiles object.

Details

During certain computations, it is possible that the Loci of interest do no show any overlap with
accesible DNA. If this were to be the case, a warning message will appear in the console but these
inaccessible Loci will be stored in this slot. It is also for these reasons that it is imperative for Loci
of interest to be named (in this case, a named GRanges).

Value

Returns a character string with loci containing no accesible DNA.

Author(s)

Patrick C.N. Martin <p.martin@essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data

data(ChIPanalyserData)

#lLoading PFM files

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser"”),"BEAF-32.pfm")
#Building data objects

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Loci with no acces - a warning message will be issued
#if loci do no contain accesible DNA

# Otherwise this slot will remain empty

drop (GPP)



drop-methods 39

drop-methods ~~ Methods for Function drop ~~

Description
~~ Methods for function drop ~~
Methods:

signature(object = "genomicProfilesInternal”)

evolve Running the ChlPanalyser implementation of a Genetic algorithm.

Description

evolve pushes a starting population to evolve in a genetic algorithm.

Usage

evolve(population,DNASequenceSet,ChIPScore,
genomicProfiles,parameters=NULL,generations=100,mutationProbability=0.3,
of fsprings=5,chromatinState=NULL,
method="geometric"”, lambda=TRUE,
checkpoint=TRUE,
filename=NULL, cores=1)

Arguments

population numeric value describing the number of individuals in the starting population.
Alternatively - a starting population list as returned by generateStartingPopulation.
NOTE: if numeric - the parameter argument is also required.

DNASequenceSet DNAStringSet object containing DNA sequences of interest (Extracted from
BSgenome)
ChIPScore ChIPScore object as returned by the processingChIPfunction
genomicProfiles
genomicProfiles object containing minimal information (such as the PWM)

parameters vector or list containing each parameter that should be added to the chromosome.
See generateStartingPopulation

generations numeric describing the number of generation before the Genetic algorithm should
halt.

mutationProbability

numeric descrbining the rate of mutations for each surviving individual

offsprings numeric descrbining the number of individuals surviving to the next generation



40

chromatinState

method

lambda

checkpoint
filename

cores

Details

evolve

GRanges object containing chromatin state information. Each state should be
labled in a meta data column named "name". It is advised to use numeric values
for each state name.

character string describing the scoring metric that should be used. ChIPanal-
yser offers twelve different metrics: correlation coefficients (Pearson, Spearman
and Kendall), Mean Squared Error (MSE), Kolmogorov—Smirnov Distance, pre-
cision, recall, accuracy, F-score, Matthew’s correlation coefficient (MCC) and
Area Under Curve Receiver Operator Characteristic (AUC ROC or just AUC)

logical describing if lambda value should be pre-computed. Setting to TRUE
increases the speed of the algorithm.

logical describing if population parameters at each generations should be saved.
character string that will serve as a prefix to the saved intermediate files.

numeric describing the number of cores used to run the GA.

ChIPanalyser offers a way of finding optimal solution by using a genetic algorithm. Instead of
running the stadard analysis, TF binding affinities to chromatin states can be extracted via this more
complex method. It should be noted that this method is better suited for the analysis of chromatin
states. While the algorithm still works with simple DNA Accessibility, it would potentially take
more time for accuracy minor gains.

Value

Returns a named list with three elements.

* database saves the data frame containing all scores for each individual since generation 1

* population saves the last population with chromosome values

* fitestsaves the fittest individual for a given generation

Author(s)

Patrick C.N. Martin <pcnmartin@ gmail.com

Examples

library(ChIPanalyser)
data(ChIPanalyserData)
# See GA vignette for usage



generateStartingPopulation 41

generateStartingPopulation
Generate Starting population for ChlPanalyser Genetic algortihm

Description

generateStartingPopulation generates a starting population with random traits for each indi-
vidual

Usage

generateStartingPopulation(population,parameters,names=NULL)

Arguments
population numeric value describing the number of individuals in the starting population.
parameters vector or list containing each parameter that should be added to the chromosome.
names character describing names that should be added to each individual.

Details

generateStartingPopulation generates a starting poppulation to be used in the genetic algortihm
implemented in ChIPanalyser. There are two main ways a starting population can be generated:

1. by name Using names of each parameter that should be parse to each "chromosome". The
possible paramters are N, lambda, PWMThreshold, CS ( DNAAffinity or DNA Accessibility
also works). CS values should also contain a numeric value associated to each chromatin state
you wish to parse. e.g CS1 ... CS14 This will generate a value by sampling from a set of
predefined value for each paramters.

2. by value range Using a named list (names for each parameters). Each element of the list should
contain three numeric values : length of range, min value, max value. (Internally - values are
parse to runif)

Value

Returns a list of individuals with a random traits

Author(s)

Patrick C.N. Martin



42 genomicProfiles

Examples

## by name
param <- c("N","lambda"”, "PWMThreshold","CS1","CS2","CS3")

pop <- generateStartingPopulation(20,param, names = NULL)

# by range
paramValue <- list(c(10,1,1000),c(10,0,5),c(10,0,0.9),c(10,0,1),c(10,0,1),c(10,0,1))

pop <- generateStartingPopulation(20,paramValue,names= param)

genomicProfiles Genomic Profile object

Description

genomicProfiles is an S4 object serving two purposes: (i) storing internal computed data and (ii)
storing paramter options. This object is parsed through the different steps of the pipeline to facilitate
that parsing and changing of paramters.

Usage
genomicProfiles(..., parameterOptions = NULL, genomicProfiles = NULL, ChIPScore = NULL)

Arguments
Any of the user available slots in genomicProfiles.
parameterOptions
If some parameters were already previously computed or stored in a parame-
terOptions, parsing this object will use those values instead of the default ones.
genomicProfiles
If some parameters were already previously computed or stored in a genomicPro-
files, parsing this object will use those values instead of the default ones.
ChIPScore If some parameters were already previously computed or stored in a ChIPScore,
parsing this object will use those values instead of the default ones.
Details

The genomicProfiles object serves the purpose of storing, and parsing paramters and computed
data between the different steps of the pipeline. When creating a genomicProfiles object it is
possible to use previously computed values by simply parsing the object to the constructor function.

Value

Returns a genomicsProfiles object with updated slots for all paramters parsed.



genomicProfiles-class 43

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

genomicProfiles

parameterOptions

Examples

PFM <- file.path(system.file("extdata”,package="ChIPanalyser”),"BEAF-32.pfm")
genomicProfiles()
genomicProfiles(PFM=PFM, PFMFormat="JASPAR")

genomicProfiles-class Class "genomicProfiles”

Description

genomicProfiles is an S4 object serving two purposes: (i) storing internal computed data and (ii)
storing paramter options. This object is parsed through the different steps of the pipeline to facilitate
that parsing and changing of paramters.

Objects from the Class

Objects can be created by calls of the form genomicProfiles(ploidy, boundMolecules, backgroundSignal,
maxSignal, lociWidth, chipMean, chipSd, chipSmooth, stepSize, noiseFilter, removeBackground,
lambdaPWM, PWMpseudocount, naturallog, noOfSites, PWMThreshold, strandRule, whichstrand,

PFM, PWM, PFMFormat, BPFrequency, minPWMScore, maxPWMScore, profiles, DNASequencelLength,
averageExpPWMScore).

Slots
PWM: Object of class "matrix": A Position Weight Matrix (either supplied or internally computed
if PFM is provided)
PFM: Object of class "matrix”: A Position Frequency Matrix (may also be a path to file containing
PFM)

PFMFormat: Object of class "character”: A character string of one of the following: raw, trans-
fac,JASPAR or sequences



44

genomicProfiles-class

BPFrequency: Object of class "vector”: Base Pair Frequency in the genome (if a DNA sequence
is provided (as a DNAStringSet or BSgenome), will be automatically computed internally).
Default:c(0.25,0.25,0.25,0.25)

minPWMScore: Object of class "vector”: Lowest PWM score accros the genome (computed and
updated internally)

maxPWMScore: Object of class "vector”: Highest PWM score across the genome (computed and
updated internally)

profiles: Object of class "GRList": Containins GRanges with sites above threshold and associ-
ated metrics (PWMscore and Occupancy) - Computed Internally

DNASequenceLength: Object of class "vector”: Length of the Genome (or accesible genome) -
computed internally

averageExpPWMScore: Object of class "vector”: Average exponential PWM score across the
genome (or accesible genome) - computed internally
ZeroBackground: Object of class "vector”: Internal background value (computed internally)

drop: Object of class "vector”: Stores Loci that do contain accesible DNA if it were to be the
case (computed and updated internally)

tags: Object of class "character” ~Internal Tags~

ploidy: Object of class "numeric”: A numeric Value descibing the ploidy of the organism. De-
fault: 2

boundMolecules: Object of class "vector”: A vector (or single value) containing the number of
bound Molecules (bound Transcription Factors): Default: 1000

backgroundSignal: Object of class "numeric”: A numeric value descibing the ChIP-seq back-
ground Signal (average signal from real ChIP seq data). Default: 0

maxSignal: Object of class "numeric”: A numeric value describing the highest ChIP-seq signal
(from real ChIP-seq data). Default: 1

lociWidth: Object of class "numeric” ~~

chipMean: Object of class "numeric"”: A numeric value describing the mean width of a ChIP- seq
peak. Default:150

chipSd: Object of class "numeric”: A numeric value describing the standard deviation of ChIP-
seq peaks. Default: 150

chipSmooth: Object of class "vector"”: A numeric value describing the width of the window used
to smooth Occupancy profiles into ChIP profiles. Default:250

stepSize: Object of class "numeric”: A numeric value describing the step Size (in base pairs)
between each ChIP-seq score. Default:10 (Scored every 10 base pairs)

removeBackground: Object of class "numeric”: A numeric value describing the value at which
score should be removed. Defualt:0 (If negative scores then remove)

noiseFilter: Object of class "character"” ~Describes the noiseFilter method that will be applied
to ChIP data (Zero, mean, median, sigmoid)~

PWMThreshold: Object of class "numeric”: Threshold at which PWM Score should be selected
(only sites above threshold will be selected - between 0 and 1)

n, n non

strandRule: Object of class "character"”: "mean", "max" or "sum" will dertermine how strand
should be handle for computing PWM Scores. Default : "max"



genomicProfiles-class 45

whichstrand: Object of class "character”: "+","-" or "+-" on which strand should PWM Score
be computed. Default: "+-"

lambdaPWM: Object of class "vector” A vector (or single value) contaning values for lambdaPWM
Default:1

naturallLog: Object of class "logical”: A logical value describing if natural Log will be used to
compute the PWM (if FALSE then log2 will be used). Default: TRUE

noOfSites: Object of class "nos” A Positive integer descibing number of sites (in base pair)
should be used from the PFM to compute PWM. Default =0 (Full width of binding site will
be used when set to 0)

PWMpseudocount: Object of class "numeric”: A numeric value describing a PWMpseudocount
for PWM computation. Default:1

paramTag: Object of class "character” ~Internal~

Extends

Class "genomicProfilesInternal”, directly. Class "parameterOptions”, directly.

Methods

initialize signature(.Object = "genomicProfiles"): ...

show signature(object = "genomicProfiles”): ...

Author(s)

Partick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

genomicProfiles parameterOptions

Examples

showClass("genomicProfiles”)



46 genomicProfilesInternal-class

genomicProfilesInternal-class
Class "genomicProfilesInternal”

Description

Non exported class. Represents the stripped down version of genomicProfiles.

Objects from the Class

Created Internally.

Slots

PWM: Object of class "matrix” ~~

PFM: Object of class "matrix” ~~

PFMFormat: Object of class "character” ~~
BPFrequency: Object of class "vector"” ~~
minPWMScore: Object of class "vector"” ~~
maxPWMScore: Object of class "vector"” ~~
profiles: Object of class "GRList"” ~~
DNASequencelLength: Object of class "vector” ~~
averageExpPWMScore: Object of class "vector” ~~
ZeroBackground: Object of class "vector” ~~
drop: Object of class "vector” ~~

tags: Object of class "character” ~~

Methods

.averageExpPWMScore<- signature(object = "genomicProfilesInternal”, value = "numeric"):
.DNASequenceLength<- signature(object = "genomicProfilesInternal”, value = "vector”):

.drop<- signature(object = "genomicProfilesInternal”, value = "vector"”): ...
.generatePWM signature(object = "genomicProfilesInternal”): ...

.maxPWMScore<- signature(object = "genomicProfilesInternal”, value = "vector"): ...
.minPWMScore<- signature(object = "genomicProfilesInternal”, value = "vector”): ...
.profiles<- signature(object = "genomicProfilesInternal”, value = "GRList"): ...

stags signature(object = "genomicProfilesInternal”): ...

stags<- signature(object = "genomicProfilesInternal”, value = "character”): ...

averageExpPWMScore signature(object = "genomicProfilesInternal”): ...



genomicProfilesInternal-class 47

BPFrequency signature(object = "genomicProfilesInternal”): ...

BPFrequency<- signature(object = "genomicProfilesInternal”, value = "DNAStringSet"):

BPFrequency<- signature(object = "genomicProfilesInternal”, value = "vector”): ...
DNASequenceLength signature(object = "genomicProfilesInternal”): ...

drop signature(object = "genomicProfilesInternal”): ...

maxPWMScore signature(object = "genomicProfilesInternal”): ...

minPWMScore signature(object = "genomicProfilesInternal”): ...

PFMFormat signature(object = "genomicProfilesInternal”): ...

PFMFormat<- signature(object = "genomicProfilesInternal”, value = "character”): ...
PositionFrequencyMatrix signature(object = "genomicProfilesInternal”): ...

PositionFrequencyMatrix<- signature(object = "genomicProfilesInternal”, value = "character”):

PositionFrequencyMatrix<- signature(object = "genomicProfilesInternal”, value = "matrix"):

PositionWeightMatrix signature(object = "genomicProfilesInternal”): ...

PositionWeightMatrix<- signature(object = "genomicProfilesInternal”, value = "matrix"):

profiles signature(object = "genomicProfilesInternal”): ...

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

genomicProfiles

parameterOptions

Examples

showClass("genomicProfilesInternal”)



48 getHighestFitnessSolutions

getHighestFitnessSolutions
Get Highest Fitness Solutions

Description

getHighestFitnessSolutions extract best solution from a ChIPanalyser GA/evolve Run.

Usage

getHighestFitnessSolutions(population,child=2,method="geometric")

Arguments
population Population list as output by the evolve function.
child numeric describing the number of solution to be extracted from Population list.
method character string describing which scoring method should be used and selected
from "geometric","ks","MSE","pearson","spearman","kendall", "recall","precesion","fscore","MCC"," A
or "AUC".
Details

This function only serves as a way of extracting data from the poppulation list. Ultimately - it is
just a wrapper for some indexing.

Value

Return the index of the top "child" solutions.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

Examples

library(ChIPanalyser)
data(ChIPanalyserData)
# See GA vignette for usage



getTestingData 49

getTestingData Extract testing data from ChlPscore object

Description

getTestingData extracts selected regions from ChIPscore object to be used as testing set.

Usage

getTestingData(ChIPscore,loci = 1)

Arguments

ChIPscore ChlIPscore object as returned by processingChIP

loci numeric describing index of loci to be used as testing data.
Value

Returns ChIPscore object with the selected testing loci.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com

Examples

library(ChIPanalyser)
data(ChIPanalyserData)

# See GA vignette for usage

test <- processingChIP(chip,top)
test <- getTestingData(test, 1:2)

getTrainingData Extract training data from ChlPscore object

Description

getTrainingData extracts selected regions from ChIPScore object to be used as training set.

Usage

getTrainingData(ChIPscore,loci = 1)



50

Arguments

ChIPscore ChlIPscore object as returned by processingChIP

loci numeric describing index of loci to be used as training data.
Value

Returns ChIPscore object with the selected training loci.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com

Examples

library(ChIPanalyser)
data(ChIPanalyserData)

# See GA vignette for usage

test <- processingChIP(chip,top)
test <- getTrainingData(test, 1:2)

GRList-class

GRList-class Class "GRList"

Description

Virutal Class to handle multiple data types for one slot ( profiles)

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

GRList-class The purpose of this virtual classe is to store data of two different formats in one

slot: GRangesList and Lists

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-

wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

showClass("GRList")



initialize-methods 51

initialize-methods ~~ Methods for Function initialize ~~

Description
~~ Methods for function initialize ~~
Methods:

signature(.0Object = "ChIPScore”) Initialize ChIPScore
signature(.Object = "genomicProfiles"”) Initialize genomicProfiles

signature(.Object = "parameterOptions"”) Initialize parameterOptions

lambdaPWM Accessor Method for the 1ambdaPWM slot in a parameterOptions ob-
Jject

Description

Accessor Method for the 1ambdaPWM slot in a parameterOptions object

Usage

lambdaPWM(object)
Arguments

object object is parameterOptions object
Details

The model underlying ChIPanalyser internally infers two paramters: number of bound molecules
and lambda. Lambda represents a scaling factor for the Position weight matrix (PWM). This can be
described as how well does a TF discriminate between high affinity and very high affinity sites.

Value

Returns the value assigned to the 1ambdaPWM slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.



52 lambdaPWM<-

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(lambdaPWM=1)
#Setting new Value for lambdaPWM
lambdaPWM(GPP)

lambdaPWM-methods ~~ Methods for Function lambdaPWM ~~

Description

~~ Methods for function 1ambdaPWM ~~

Methods:

lambdaPWM(object)

lambdaPWM<- Setter Method for the 1ambdaPWM slot in a parameterOptions object

Description

Setter Method for the 1ambdaPWM slot in a parameterOptions object

Usage

lambdaPWM(object)<-value

Arguments
object object is parameterOptions object
value value is the numeric value to be assigned to the lambdaPWM slot. Default set
at 1.
Details

The model underlying ChIPanalyser internally infers two paramters: number of bound molecules
and lambda. Lambda represents a scaling factor for the Position weight matrix (PWM). This can be
described as how well does a TF discriminate between high affinity and very high affinity sites.



lambdaPWM<—methods 53

Value

Returns the value assigned to the 1ambdaPWM slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(lambdaPWM=1)
#Setting new Value for lambdaPWM
lambdaPWM(GPP) <- 2

lambdaPWM<-methods ~~ Methods for Function lambdaPWM<- ~~

Description
Setter method for the 1ambdaPWM slot in the parameterOptions
Methods:

lambdaPWM(object)<-value

loci Accessor Method for the loci slot in a ChIPScore object

Description

Setter Method for the loci slot in a ChIPScore object

Usage

loci(object)



54 loci-class

Arguments

object object is ChIPScore object

Details

When using the processingChIP, this functions will return a name GRanges with the loci of
interest. These loci will either result from user input or extracted from the ChIP profiles (see
processingChIP and lociWidth). This functions enalbles you to extract those loci from the
ChIPScore object.

Value

Returns the value assigned to the loci slot in a ChIPScore object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

chip<-processingChIP(chip, top)
loci(chip)

loci-class Class "loci”

Description

Setter for Loci of interest parsed to or extracted from the ChIPScore object

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

Joci<- signature(object = "ChIPScore”, value = "loci"): ...



loci-methods 55

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

ChIPScore

Examples

showClass("loci")

loci-methods ~~ Methods for Function loci ~~

Description

Accessor method for the loci slot in ChIPScore

Methods:

loci{Object} Loci of interest parsed to or extracted from the ChIPScore object

lociWidth Accessor Method for the lociWidth slot in a parameterOptions ob-
ject

Description

Setter Method for the lociWidth slot in a parameterOptions object

Usage

lociWidth(object)

Arguments

object object is parameterOptions object



56 lociWidth-methods

Details

When using the processingChIP function, the provided ChIP scores will be split into bins of a
given size. lociWidth determines the Size of that bin. Default is set at 20 000 bp. This means that
the ChIP profiles provided will be split into bins of 20 000 bp over the entire profile provided if no
loci of interest is provided.

Value

Returns the value assigned to the lociWidth slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(lociWidth=20000)
#Accessing new Value for lociWidth
lociWidth(GPP)

lociWidth-methods ~~ Methods for Function lociWidth ~~

Description
Accessor method for the loci slot in ChIPScore

Methods:

lociWidth(object) Setting width of regions when using the reduce argument and NOT providing
your own loci when using the processingChIP function.



lociWidth<- 57

lociWidth<- Setter Method for the lociWidth slot in a parameterOptions object

Description

Setter Method for the lociWidth slot in a parameterOptions object

Usage

lociWidth(object)<-value

Arguments

object object is parameterOptions object

value value is the numeric value to be assigned to the lociWidth slot. Default set at 1.
Details

When using the processingChIP function, the provided ChIP scores will be split into bins of a
given size. lociWidth determines the Size of that bin. Default is set at 20 000 bp. This mean that
the ChIP profiles provided will be split into bins of 20 000 bp over the entire profile provided if no
loci of interest is provided.

Value

Returns the value assigned to the lociWidth slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(lociWidth=20000)
#Setting new Value for lociWidth
lociWidth(GPP) <- 30000



58 maxPWMScore

lociWidth<-methods ~~ Methods for Function lociWidth<- ~~

Description

Setter method for the loci slot in ChIPScore

Methods:

lociWidth(Object)<-value

maxPWMScore Accessor function for maxPWMScore slot in a genomicProfiles ob-
Jject.

Description

Accessor function for maxPWMScore slot in a genomicProfiles object.

Usage

maxPWMScore(object)
Arguments

object object is a genomicProfiles object.
Details

maxPWMScore is a numerical value that can be described as the highest PWM score computed at a
genome wide scale. This value is computed and updated in the genomicProfiles object after using
the computeGenomeWideScores.

Value

Returns the value of assigned to the maxPWMScore slot in a genomicProfiles object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.



maxPWMScore-methods 59

Examples

# Loading data

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!'require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager")

BiocManager: :install("BSgenome.Dmelanogaster.UCSC.dm6")

}

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Computing Genome Wide

GenomeWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicProfiles = GPP)

maxPWMScore (GenomeWide)

## If used before computeGenomeWidePWMScore, will return NULL

maxPWMScore-methods ~~ Methods for Function maxPWMScore ~~

Description

Accessor method for maxPWMScore

Methods:
maxPWMScore (object)
maxSignal Accessor method for the maxSignal slot in a parameterOptions ob-
ject.
Description

Accessor method for the maxSignal slot in a parameterOptions object.

Usage

maxSignal (object)



60 maxSignal-methods

Arguments

object object is a parameterOptions object.

Details

In the context of ChIPanalyser, maxSignal represents the maximum normalised ChIP-Seq signal
of a given Transcription factor (or DNA binding protein). Although, A default value of 1 has been
assigned to this slot, we strongly recommend to tailor this value accordingly. We strongly encourage
to set values when building a parameterOptions object.

Value

Returns the value assigned to the maxSignal slot in a parameterOptions object.

Author(s)

Patrick C.N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building parameterOptions object
OPP <- parameterOptions()
#Setting new Value for maxSignal
maxSignal (OPP)

maxSignal-methods ~~ Methods for Function maxSignal ~~

Description

Accessor method for maxSignal

Methods:

maxSignal(object) Maximum ChIP signal extracted from ChIP data (see processingChIP)



maxSignal<- 61

maxSignal<- Setter method for maxSignal slot in a parameterOptions object.

Description

Setter method for maxSignal slot in a parameterOptions object.

Usage

maxSignal (object) <- value

Arguments

object object is a parameterOptions object.

value value is a numerical value to be assigned to the maxSignal slot.
Details

In the context of ChIPanalyser, maxSignal represents the maximum normalised ChIP-Seq signal
of a given Transcription factor (or DNA binding protein). Although, A default value of 1 has been
assigned to this slot, we strongly recommend to tailor this value accordingly. We strongly encourage
to set values when building a parameterOptions object.

Value

Returns a parameterOptions with an updated value for maxSignal.

Author(s)

Patrick C.N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

#Setting new Value for maxSignal
maxSignal (OPP) <- 1.8



62 minPWMScore

maxSignal<-methods ~~ Methods for Function maxSignal<- ~~

Description

Setter method for maxSignal

Methods:

maxSignal(Object)<-value Maximum ChIP signal extracted from ChIP data (see processingChIP)

minPWMScore Accessor method the minPWMScore slot in a genomicProfiles object

Description

Accessor method the minPWMScore slot in a genomicProfiles object

Usage

minPWMScore(object)
Arguments

object object is a genomicProfiles object.
Details

minPWMScore can be described as the lowest PWM score computed at a genome wide scale. Al-
though it is possible to assigne a value to minPWMScore, we strongly advise to use the value com-
puted and assigned internally. This value is computed in the computeGenomeWideScores function.

Value

Returns the value assigned to the minPWMScore slot in a genomicProfiles object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.



minPWMScore-methods 63

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require(”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace(”"BiocManager”, quietly=TRUE))
install.packages("BiocManager")

BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")

3

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Computing Genome Wide

GenomceWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicProfiles = GPP)

minPWMScore (GenomceWide)

## If used before computeGenomeWidePWMScore, will return NULL

minPWMScore-methods ~~ Methods for Function minPWMScore ~~

Description

Accessor for minPWMScore

Methods:

minPWMScore(object) Minimum PWM score computed during the computeGenomeWideScores step.

naturallog Accessor method the naturallog slot in a parameterOptions object.

Description

Accessor method the naturallog slot in a parameterOptions object.

Usage

naturallLog(object)



64 naturalLog-methods

Arguments

object object is parameterOptions object.

Details

During the computation of a Postion Weight Matrix, the Position Probability Matrix (derived from
a Position Frequency Matrix) is log transformed. This parameter provides whcih "log transform"
will be used. If TRUE, the Natural Log will bu used (In). If FALSE, log2 will be used. We strongly
encourage to set values when building a parameterOptions object.

Value

Returns the value assigned to the naturallog slot in a parameterOptions object.

Author(s)

Patrick C.N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(naturallLog=TRUE)
#Setting new Value for naturallog
naturallLog(GPP)

naturallLog-methods ~~ Methods for Function naturallLog ~~

Description

Accessor method for the naturallog slot in a parameterOptions object.
Methods:

naturallLog(object)



naturalLog<- 65

naturallog<- Setter method for the naturallog slot in a parameterOptions object.

Description

Setter method for the naturallog slot in a parameterOptions object.

Usage

naturalLog(object)<- value

Arguments
object object is a parameterOptions object.
value value is a logical value that will determine if the natural log or log2 should be
used for the computation of the Position Weight Matrix.
Details

During the computation of a Postion Weight Matrix, the Position Probability Matrix (derived from
a Position Frequency Matrix) is log transformed. This parameter provides whcih "log transform"
will be used. If TRUE, the Natural Log will bu used (In). If FALSE, log2 will be used. We strongly
encourage to set values when building a parameterOptions object.

Value

Returns parameterOptions object with an updated value for the naturallLog slot.

Author(s)

Patrick C.N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

OPP <- parameterOptions(naturallLog=TRUE)
#Setting new Value for naturallog
naturallLog(OPP) <- FALSE



66 noiseFilter

naturallLog<-methods ~~ Methods for Function naturallLog<- ~~

Description

Setter method for the naturallog slot in a parameterOptions object.

Methods:

naturalLog(object)<-value

noiseFilter Accessor Method for the noiseFilter slot in a parameterOptions
object

Description

Accessor Method for the noiseFilter slot in a parameterOptions object

Usage

noiseFilter(object)
Arguments

object object is parameterOptions object
Details

Noise filtering method that should be used on ChIP-seq data. Four methods are available: Zero,
Mean, Median and Sigmoid. Zero removes all ChIP-seq scores bellow zero, mean under the mean
score, median under median score and sigmoid assignes a weight to each score based on a logistic
regression curve. Mid point is set at 95 95 quantile of ChIP-seq scores. Below midpoint will receive
a score between 0 and 1 , everything above will receive a score between 1 and 2

Value

Returns the value assigned to the noiseFilter slotin a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.



noiseFilter-methods 67

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(noiseFilter="sigmoid")
#Setting new Value for noiseFilter
noiseFilter (GPP)

noiseFilter-methods ~~ Methods for Function noiseFilter ~~

Description
Accessor method for noiseFilter
Methods:

noiseFilter(object) Noise Filter that will be applied to ChIP scores

noisefFilter<- Setter Method for the noiseFilter slot in a parameterOptions ob-
ject

Description

Setter Method for the noiseFilter slot in a parameterOptions object

Usage

noiseFilter(object) <- value

Arguments
object object is parameterOptions object
value value is the value to be assigned to the noiseFilter slot (zero - mean - median
-sigmoid)
Details

Noise filtering method that should be used on ChIP-seq data. Four methods are available: Zero,
Mean, Median and Sigmoid. Zero removes all ChIP-seq scores bellow zero, mean under the mean
score, median under median score and sigmoid assignes a weight to each score based on a logistic
regression curve. Mid point is set at 95 95 quantile of ChIP-seq scores. Below midpoint will receive
a score between 0 and 1 , everything above will receive a score between 1 and 2



68 noOfSites

Value

Returns the value assigned to the noiseFilter slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(noiseFilter="sigmoid")
#Setting new Value for noiseFilter
noiseFilter (GPP) <-"zero"

noiseFilter<-methods  ~~ Methods for Function noiseFilter<- ~~

Description

Setter method for noiseFilter

Methods:

noiseFilter(object)<-value Noise Filter that will be applied to ChIP scores

noOfSites Accessor Method for the noOfSites slot in a parameterOptions ob-
Jject

Description

Accessor Method for the noOfSites slot in a parameterOptions object

Usage

noOfSites(object)



noOfSites-methods 69

Arguments

object object is parameterOptions object

Details

While computing Position Weight Matricies (PWM) from Position Frequency Matricies (PFM), it
is possible to restrict the number of sites that will be used to compute the PWM. The default is set
at "all". In this case, all sites will be used to compute the PWM.

Value

Returns the value assigned to the noOfSites slot in a parameterOptions object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(noOfSites="all")
#Setting new Value for naturallog
noOfSites(GPP)

noOfSites-methods ~~ Methods for Function noOfSites ~~

Description

~~ Methods for function noOfSites ~~

Methods:

signature(object = "parameterOptions"”)



70 noOfSites<-

noOfSites<- Setter Method for the noOfSites slot in a parameterOptions object.

Description

Setter Method for the noOfSites slot in a parameterOptions object.

Usage

noOfSites(object) <- value

Arguments

object object is a parameterOptions object.

value value is a positive integer that will be assigned to the noOfSites slot.
Details

While computing Position Weight Matricies (PWM) from Position Frequency Matricies (PFM), it
is possible to restrict the number of sites that will be used to compute the PWM. The default is set
at "all". In this case, all sites will be used to compute the PWM.

Value

Returns a parameterOptions object with an updated value for the noOfSites slot.

Author(s)

Patrick C.N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(noOfSites=0)
#Setting new Value for naturallog
noOfSites(GPP) <- 8



noOfSites<—methods 71

noOfSites<-methods ~~ Methods for Function noOfSites<- ~~

Description

Setter method for noOfSites

Methods:

noOfSites(object)<-"all"

noOfSites(object)<-value

nos-class Class "nos"

Description

Virtual class to handle Number of Sites

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "nos" in the signature.

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

showClass("nos")



72 parameterOptions

parameterOptions parameter Options object

Description

parameterOptions is an object used to store and parse the various parameters needed throughout
this analysis pipeline.

Usage
parameterOptions(ploidy = 2, boundMolecules = 1000, backgroundSignal = @, maxSignal = 1, lociWidth = 20¢@

Arguments

ploidy ploidy: A numeric Value descibing the ploidy of the organism. Default: 2

boundMolecules boundMolecules: A vector (or single value) containing the number of bound
Molecules (bound Transcription Factors): Default: 1000

backgroundSignal

backgroundSignal: A numeric value descibing the ChIP-seq background Sig-
nal (average signal from real ChIP seq data). Default: 0

maxSignal maxSignal: A numeric value describing the highest ChIP-seq signal (from real
ChIP-seq data). Default: 1

lociWidth lociWidth: A numeric value describing the width of the bins used to split ChIP
profiles parsed to processingChIP. Default = 20000

chipMean chipMean: A numeric value describing the mean width of a ChIP- seq peak:
Default:200

chipSd chipSd: A numeric value describing the standard deviation of ChIP-seq peaks.
Default: 200

chipSmooth chipSmooth: A numeric value describing the width of the window used to

smooth Occupancy profiles into ChIP profiles. Default:250

stepSize stepSize: A numeric value describing the step Size (in base pairs) between
each ChIP-seq score. Default:10 (Scored every 10 base pairs)
removeBackground
removeBackground: A numeric value describing the value at which score should
be removed. Defualt:0 (If negative scores then remove)

noiseFilter noiseFilter: A character string of one of the following: Zero, Mean, Me-
dian, or Sigmoid. Noise filter that will be applied to the ChIP Score during the
processingChIP step.

naturallog naturallog: A logical value describing if natural Log will be used to compute
the PWM (if FALSE then log2 will be used). Default: TRUE
noOfSites noOfSites: A Positive integer descibing number of sites (in base pair) should

be used from the PFM to compute PWM. Default =0 (Full width of binding site
will be used when set to 0)



parameterOptions

PWMThreshold

strandRule

whichstrand

PWMpseudocount

lambdaPWM

Details

73

PWMThreshold: Threshold at which PWM Score should be selected (only sites
above threshold will be selected - between 0 and 1)

strandRule: ‘mean’, ‘max’ or ‘sum’ will dertermine how strand should be
handle for computing PWM Scores. Default : ‘max’

LR

whichstrand: ‘“+’,°-’ or ‘+-” on which strand should PWM Score be computed.
Default: ‘+-’

PWMpseudocount: A numeric value describing a PWMpseudocount for PWM
computation. Default:1

A vector (or single value) contaning values for the ScalingFactorPWM (Also
known as lambda).Default: 1

ChIPanalyser requires a lot of parameters. parameterOptions was created with the intent of storing
and parsing these numerous arguments to the different functions. All parameters in this object are
optional although strongly recommend. Some parameters are extracted and updated from function
along the pipeline e.g. maxSignal and backgroundSignal are extracted during the processingChIP
step. These paramters will be automatically parsed. If you do not which to use them ( or any other
parameter) simply parse a new parameterOptions object with your desired paramters.

Value

Returns a parameterOptions with updated values.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

See Also

genomicProfiles

Examples

#

parameterOptions(ploidy = 2, boundMolecules = 1000, backgroundSignal = @,

maxSignal = 1
chipSmooth =
naturallLog =
strandRule =
lambdaPWM = 1

, lociWidth = 20000, chipMean = 200, chipSd = 200,

250, stepSize = 10, removeBackground = @, noiseFilter = "zero”,
TRUE, noOfSites = "all"”, PWMThreshold = 0.7,
"max", whichstrand = "+-", PWMpseudocount = 1,

)



74 parameterOptions-class

parameterOptions-class
Class "parameterQOptions”

Description

parameterOptions is an object used to store and parse the various parameters needed throughout
this analysis pipeline.

Objects from the Class

Objects can be created by calls of the form parameterOptions(ploidy, boundMolecules, backgroundSignal,
maxSignal, lociWidth, chipMean, chipSd, chipSmooth, stepSize, noiseFilter, removeBackground,
lambdaPWM, PWMpseudocount, naturallLog, noOfSites, PWMThreshold, strandRule, whichstrand).

Slots

ploidy: Object of class "numeric”: A numeric Value descibing the ploidy of the organism. De-
fault: 2

boundMolecules: Object of class "vector”: A vector (or single value) containing the number of
bound Molecules (bound Transcription Factors): Default: 1000

backgroundSignal: Object of class "numeric”: A numeric value descibing the ChIP-seq back-
ground Signal (average signal from real ChIP seq data). Default: 0

maxSignal: Object of class "numeric”: A numeric value describing the highest ChIP-seq signal
(from real ChIP-seq data). Default: 1

lociWidth: Object of class "numeric”: A numeric value describing bin size when splitting ChIP
seq scores). Default: 20 000

chipMean: Object of class "numeric”: A numeric value describing the mean width of a ChIP- seq
peak. Default:150

chipSd: Object of class "numeric”: A numeric value describing the standard deviation of ChIP-
seq peaks. Default: 150

chipSmooth: Object of class "vector"”: A numeric value describing the width of the window used
to smooth Occupancy profiles into ChIP profiles. Default:250

stepSize: Object of class "numeric”: A numeric value describing the step Size (in base pairs)
between each ChIP-seq score. Default:10 (Scored every 10 base pairs)

removeBackground: Object of class "numeric”: A numeric value describing the value at which
score should be removed. Defualt:0 (If negative scores then remove)

noiseFilter: Object of class "character” Describes noiseFilter method applied to ChIP scores

PWMThreshold: Object of class "numeric”: Threshold at which PWM Score should be selected
(only sites above threshold will be selected - between 0 and 1)

n, n non

strandRule: Object of class "character"”: "mean", "max" or "sum" will dertermine how strand
should be handle for computing PWM Scores. Default : "max"



parameterOptions-class 75

whichstrand: Object of class "character”: "+","-" or "+-" on which strand should PWM Score
be computed. Default: "+-"

lambdaPWM: Object of class "vector” A vector (or single value) contaning values for lambdaPWM
Default:1

naturallLog: Object of class "logical”: A logical value describing if natural Log will be used to
compute the PWM (if FALSE then log2 will be used). Default: TRUE

noOfSites: Object of class "nos” A Positive integer descibing number of sites (in base pair)
should be used from the PFM to compute PWM. Default =0 (Full width of binding site will
be used when set to 0)

PWMpseudocount: Object of class "numeric”: A numeric value describing a PWMpseudocount
for PWM computation. Default:1

paramTag: Object of class "character” ~Internal~

Methods

.paramTag signature(object = "parameterOptions”): ...

.paramTag<- signature(object = "parameterOptions”, value = "character”): ...
.ZeroBackground signature(object = "parameterOptions”): ...
.ZeroBackground<- signature(object = "parameterOptions”, value = "vector”): ...
backgroundSignal signature(object = "parameterOptions”): ...
backgroundSignal<- signature(object = "parameterOptions”, value = "numeric"): ...
boundMolecules signature(object = "parameterOptions”): ...

boundMolecules<- signature(object = "parameterOptions”, value = "vector”): ...
chipMean signature(object = "parameterOptions”): ...

chipMean<- signature(object = "parameterOptions”, value = "numeric"): ...
chipSd signature(object = "parameterOptions”): ...

chipSd<- signature(object = "parameterOptions”, value = "numeric”): ...
chipSmooth signature(object = "parameterOptions”): ...

chipSmooth<- signature(object = "parameterOptions”, value = "vector"): ...
initialize signature(.Object = "parameterOptions"”): ...

lambdaPWM signature(object = "parameterOptions”): ...

lambdaPWM<- signature(object = "parameterOptions”, value = "vector"): ...
lociWidth signature(object = "parameterOptions”): ...

lociWidth<- signature(object = "parameterOptions”, value = "numeric”): ...
maxSignal signature(object = "parameterOptions”): ...

maxSignal<- signature(object = "parameterOptions”, value = "numeric"): ...
naturallLog signature(object = "parameterOptions”): ...

naturalLLog<- signature(object = "parameterOptions”, value = "logical”): ...
noiseFilter signature(object = "parameterOptions”): ...

noiseFilter<- signature(object = "parameterOptions”, value = "character”): ...



76

parameterOptions-class

noOfSites signature(object = "parameterOptions”): ...

noOfSites<- signature(object = "parameterOptions”, value = "character”): ...
noOfSites<- signature(object = "parameterOptions”, value = "numeric”): ...

ploidy signature(object = "parameterOptions”): ...

ploidy<- signature(object = "parameterOptions”, value = "numeric”): ...
PWMpseudocount signature(object = "parameterOptions”): ...

PWMpseudocount<- signature(object = "parameterOptions”, value = "numeric”): ...
PWMThreshold signature(object = "parameterOptions”): ...

PWMThreshold<- signature(object = "parameterOptions”, value = "numeric”): ...
removeBackground signature(object = "parameterOptions”): ...
removeBackground<- signature(object = "parameterOptions”, value = "vector"): ...
show signature(object = "parameterOptions”): ...

stepSize signature(object = "parameterOptions”): ...

stepSize<- signature(object = "parameterOptions”, value = "numeric”): ...
strandRule signature(object = "parameterOptions"”): ...

strandRule<- signature(object = "parameterOptions”, value = "character”): ...
whichstrand signature(object = "parameterOptions”): ...

whichstrand<- signature(object = "parameterOptions”, value = "character”): ...

Author(s)

Partick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

See Also

genomicProfiles

Examples

showClass("parameterOptions”)



PFMFormat 77

PFMFormat Accesor method for the PFMFormat slot in a genomicProfiles object

Description

Accesor method for the PFMFormat slot in a genomicProfiles object

Usage

PFMFormat (object)
Arguments

object object is a genomicProfiles object
Details

If loading a PositionFrequencyMatrix from a file, the format of the file should be specified. De-
fault is raw. Please keep in mind that this argument is used when parsing the PositionFrequencyMatrix
file. IF this argument is changed after building the genomicProfiles with a PositionFrequency-
Matrix file, this will not influence the parsing of the file. PFMFormat can be one of the following:
"raw","transfac","JASPAR" or "sequences"

Value

Returns the value assigned to the PFMFormat slot a genomicProfiles

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data

data(ChIPanalyserData)

#lLoading PFM files

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")
#Building data objects

#### THIS IS THE PREFFERED METHOD FOR SETTING PFMFormat

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")



78 PFMFormat<-

#Setting New value for PFMFormat
PFMFormat (GPP)

PFMFormat-methods ~~ Methods for Function PFMFormat ~~

Description
Accesor method for the PFMFormat slot in a genomicProfiles object
Methods:

PFMFormat (object)

PFMFormat<- Setter method for the PEMFormat slot in a genomicProfiles object

Description

Setter method for the PFMFormat slot in a genomicProfiles object

Usage

PFMFormat (object) <- value

Arguments
object object is a genomicProfiles object
value value is character string of one of the following: "raw","transfac","JASPAR" or
"sequences". If loading a PositionFrequencyMatrix from a file, the format of
the file should specified. Default is JASPAR.
Details

If loading a PositionFrequencyMatrix from a file, the format of the file should be specified. De-

fault is JASPAR. Please keep in mind that this argument is used when parsing the PositionFrequencyMatrix
file. IF this argument is changed after building the genomicProfiles with a PositionFrequency-

Matrix file, this will not influence the parsing of the file.

Value

Returns a genomicProfiles object with an updated value for the PFMFormat slot.



PFMFormat<—methods 79

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data

data(ChIPanalyserData)

#Loading PFM files

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#Building data objects

#### THIS IS THE PREFFERED METHOD FOR SETTING PFMFormat

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

#Setting New value for PFMFormat

PFMFormat (GPP) <- "JASPAR"

PFMFormat<-methods ~~ Methods for Function PFMFormat<- ~~

Description
Setter method for the PFMFormat slot in a genomicProfiles object
Methods:

PFMFormat (object)<-value

ploidy Accessor method for the ploidy slot in a parameterOptions object

Description

Accessor method for the ploidy slot in a parameterOptions object

Usage
ploidy(object)

Arguments

object object is a parameterOptions object



80 ploidy-methods

Details

Default value for ploidy is set a 2. It should be mentioned that ChIPanalyser is based on a model
that also considers the ploidy of the organism of interest however this only considers simple poly-
ploidy (or haploidy). The model does not consider hybrids such as wheat.

Value

Returns the value assigned to the ploidy slot in a parameterOptions object

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

#Setting new Value for maxSignal
ploidy(OPP)

ploidy-methods ~~ Methods for Function ploidy ~~

Description

Accessor method for the ploidy slot in a parameterOptions object
Methods:

ploidy(object)



ploidy<- 81

ploidy<- Setter Method for the ploidy slot in an parameterOptions object

Description

Setter Method for the ploidy slot in an parameterOptions object

Usage

ploidy(object)<- value

Arguments

object object is a parameterOptions object

value value is a positive integer that describes the ploidy of the organism of interest.
Details

Default value for ploidy is set a 2. It should be mentioned that ChIPanalyser is based on a model
that also considers the ploidy of the organism however this only considers simple polyploidy (or
haploidy). T he model does not consider hybrids such as wheat.

Value

Returns a parameterOptions object with an updated value for the ploidy slot.

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

#Setting new Value for maxSignal
ploidy(OPP) <- 2



82 plotOccupancyProfile

ploidy<-methods ~~ Methods for Function ploidy<- ~~

Description

Setter Method for the ploidy slot in an parameterOptions object

Methods:

ploidy(object)<-value

plotOccupancyProfile  Plot Occupancy Profiles

Description

plotOccupancyProfile plots the predicted profiles. If provided, this functions will also plot ChIP-
seq profiles, PWMScores (or Occupancy), chromatin States, Goodness of Fit estimates and gene
information.

Usage

plotOccupancyProfile(predictedProfile, ChIPScore = NULL,chromatinState = NULL,
occupancy = NULL,goodnessOfFit = NULL,PWM=FALSE,
geneRef = NULL,addLegend = TRUE,...)

Arguments
predictedProfile
predictedProfile is a either GRanges containing the predicted profiles for
one loci, all loci selected for one paramter, or all loci selected for all parameter
combinations selected. (see searchSites)
ChIPScore ChIPScore is a ChIPscore object containing ChIPscore (or a list of numeric

values representing ChIP scores (Experimental ChIP))

chromatinState chromatinState is a GRanges containing accesible DNA sites or chromatin
States.

occupancy occupancy is a GRanges or a genomicProfiles object contaning PWM scores
and Occupancy ( see computeOccupancy)

goodnessOfFit goodnessOfFit results of the profileAccuracyEstimate function.

PWM PWM is a logical value that in the case occupancy is provided which of occupancy
scores of PWM scores hsould be plotted. Default set at FALSE
geneRef geneRef is a GRanges containing gene information on exons,introns, UTR’s,

enhancers or any other genetic element to be plotted.



plotOccupancyProfile 83

addLegend addLegend is a logical value defining if the legend should be added. The legend
will add all elements provided. See details.

Any other graphical Parameter of the following : cex, cex.lab, cex.main, densi-
tyCS , densityGR , ylab, xlab, main, colPred, colChIP, colOccup, colCS, colGR,
n_axis_ticks. See details.

Details

Once the predicted ChIP-seq like profiles have been computed, it is possible to plot these profiles.
This functions allows to control graphical parameters. In short:

* col = color values - exact number of colors or colors that will be used in a colorRampPalettte.

* cex = font sizes - for text, axis labels and main

* Density = fill density for chromatin state and/or geneRef blocks

Pred = predictedProfile ChIP = ChIP score (Experimental ChIP data) CS = Chromatin States GR =
Gene reference Occup = Occupnacy locations

Value

Returns a profile plot with "Occupancy" on the y axis and DNA position on the the X- axis.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!'require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages(”"BiocManager")

BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
3

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet)



84 plotOptimalHeatMaps

# Computing Genome Wide
GenomeWide <- computeGenomeWideScores(DNASequenceSet = DNASequenceSet,
genomicProfiles = GPP)

#Compute PWM Scores

PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfiles = GenomeWide,
loci = top, chromatinState = Access)

#Compute Occupnacy

Occupancy <- computeOccupancy(genomicProfiles = PWMScores)

#Compute ChIP profiles
chipProfile <- computeChipProfile(loci = top,
genomicProfiles = Occupancy)

#Plotting Profile
plotOccupancyProfile(predictedProfile=chipProfile,
ChIPScore = chip,
chromatinState = Access,
occupancy = Occupancy,
geneRef =geneRef)

plotOccupancyProfile(predictedProfile=chipProfile,
ChIPScore = chip,
chromatinState = Access,
occupancy = Occupancy,
geneRef = geneRef,
colCS = c("red”,"blue"),
densityGR = 60)

plotOptimalHeatMaps Heat Map of optimal Parameters

Description

plotOptimalHeatMaps will plot heat maps of optimal Parameters and highlight the optimal com-
bination of 1lambdaPWM and boundMolecules

Usage

plotOptimalHeatMaps(optimalParam, contour=TRUE, col=NULL,main=NULL,layout=TRUE,overlay=FALSE)



plotOptimalHeatMaps

Arguments

optimalParam

contour

col

main

layout

overlay

Details

85

optimalParam is a list containing containing optimal matricies (or only one if

only one paramter was selected). These matricies are the result of the computeOptimal

function
parameter is logical. Should contour lines be plotted?

col vector of colours to be used for each heat map. If none are specified, rain-
bow colours will be used. NOTE: colour vector will be recyled if not enough
colours are provided.

main title.

layout is either TRUE or FALSE specifying if stadard layout should be used or
not. If TRUE, each heat map will be plotted on an individual page with a heat
map scale of the right side.

overlay is either TRUE or FALSE specifying if an overlay plot should be pro-
duced. The overlay plot takes the top 10 percent of best performing parameters
per scoring metric and overlays them in a single plot. The resulting plots shows
the optimal set of paramters for all metrics combined.

Once the optimal set of Parameters ( lambdaPWM and boundMolecules ), it is possible to plot the
results in the form of a heat map. Each heat map will be plotted in a seperate page if layout = TRUE,
If layout= FALSE, it is up to the user to define how they wish to layout there heat maps.

Value

Returns a heat map of optimal combinations of lambdaPWM and boundMolecules. The x axis rep-
resents the different value assigned to lambda ( 1ambdaPWM ) and the y axis represents the different
values to boundMolecules ( boundMolecules ).

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require(”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){
if (!requireNamespace(”BiocManager”, quietly=TRUE))



86 PositionFrequencyMatrix

install.packages("BiocManager")
BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6")
3
library(BSgenome.Dmelanogaster.UCSC.dm6)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

#Building data objects
GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR" ,BPFrequency=DNASequenceSet)

#Computing Optimal set of Parameters
optimalParam <- computeOptimal(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet,
ChIPScore = chip,
chromatinState = Access,
parameterOptions = OPP,
parameter = "all”,
peakMethod="moving_kernel")
plotOptimalHeatMaps(optimalParam)

PositionFrequencyMatrix
Accessor method for the PFM slot in a genomicProfiles object

Description

Accessor method for the PFM slot in a genomicProfiles object

Usage

PositionFrequencyMatrix(object)

Arguments

object object is a genomicProfiles object

Details
After creating a genomicProfiles object, it is possible to access the Position Frequency Matrix
slot. However this slot will be empty if the genomicProfiles object was built using directly a
Position Weight Matrix. See genomicProfiles

Value
Returns the Position Frequency Matrix (PFM slot) used to compute the PositionWeightMatrix in
a genomicProfiles object

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>



PositionFrequencyMatrix-methods 87

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Loading data

data(ChIPanalyserData)

#lLoading PFM files

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser"”),"BEAF-32.pfm")
#Building genomicProfiles object
GPP<-genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Accessing Slot

PositionFrequencyMatrix(GPP)

PositionFrequencyMatrix-methods
~~ Methods for Function PositionFrequencyMatrix ~~

Description

Accessor method for the PFM slot in a genomicProfiles object
Methods:

PositionFrequencyMatrix(object)

PositionFrequencyMatrix<-
Setter method for the PFM slot in a genomicProfiles object

Description

Setter method for the PFM slot in a genomicProfiles object

Usage

PositionFrequencyMatrix(object)<- value

Arguments
object object is a genomicProfiles object
value value can be of two forms. Either a matrix in the form of a Position Frequency

Matrix or a path/to/file character string.



88 PositionFrequencyMatrix<—methods

Details

The Position Frequency Matrix is one of the fundamental object that needs to be supplied to a
genomicProfiles. If after building a genomicProfiles, only the Position Frequency Matrix needs
to be modified then it is possible to manually update the value of this matrix using the function
above. There are two options for the type of data that may be supplied to the PFM slot: a matrix in
the form of a Position Frequency Matrix (matrix with four rows - one for each base pair (ACTG)
and a number of columns equal to the number of sites in the binding site), or it is possible (also
recommended) to provide a path to the file containing the Position Frequency Matrix. This Position
Frequency Matrix file may come in multiple form such as RAW, Transfac or JASPAR. WARNING:
if a genomicProfiles object has already been created and only the PFM is supplied/updated , then
the Positon Weight Matrix will automatically updated as well.

Value

Returns a genomicProfiles with an updated PFM slot (as described above this will lead to an
updated PositionWeightMatrix).

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

#lLoading data

data(ChIPanalyserData)

#lLoading PFM files

PFM <- file.path(system.file("extdata",package="ChIPanalyser”),"BEAF-32.pfm")
#Building genomicProfiles object

# NOT ADVISED!!!! PLEASE PARSE PFM AND PFMFormat together
GPP<-genomicProfiles(PFMFormat = "JASPAR")

#Setting PFM

PositionFrequencyMatrix(GPP) <- PFM

PositionFrequencyMatrix<-methods
~~ Methods for Function PositionFrequencyMatrix<- ~~

Description

Setter method for the PFM slot in a genomicProfiles object

Methods:

PositionFrequencyMatrix(object)<-"path/to/file/"
PositionFrequencyMatrix(object)<-value



PositionWeightMatrix 89

PositionWeightMatrix Accessor Method for the PWM slot in a genomicProfiles object

Description

Accessor Method for the PWM slot in a genomicProfiles object

Usage

PositionWeightMatrix(object)

Arguments

object object is a genomicProfiles

Details

After creating a genomicProfiles object, it is possible to access the Position Weight Matrix stored
in this slot. This slot should always contain something. This slot is either supplied by user or
directly computed from a Position Frequency Matrix when supplied.

Value

Returns a matrix in the form of a Position Weight Matrix

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#lLoading data

data(ChIPanalyserData)

#lLoading PFM files

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser"”),"BEAF-32.pfm")
#Building genomicProfiles object
GPP<-genomicProfiles(PFM=PFM,PFMFormat="JASPAR")

# Accessing Slot

PositionWeightMatrix (GPP)



90

PositionWeightMatrix<-

PositionWeightMatrix-methods

~~ Methods for Function PositionWeightMatrix ~~

Description

Accessor Method for the PWM slot in a genomicProfiles object

Methods:

PositionWeightMatrix(object)

PositionWeightMatrix<-

Setter Method for the PositionWeightMatrix slot in a
genomicProfiles object

Description

Setter Method for the PositionWeightMatrix slot in a genomicProfiles object

Usage

PositionWeightMatrix(object) <- value

Arguments

object object is a genomicProfiles object

value value is a matrix in the form of a Position Weight Matrix.
Details

If a Position Weight Matrix is readily available, it is possible to directly assign this matrix to the
PWM slot. However, this is only possible if a genomicProfiles object has already been created. In
that case, we advise to first create a genomicProfiles object. It should be noted that this Position
Weight Matrix will be automatically computed from a Position Frequency Matrix. If no Position
Frequency Matrix are available, then a Position Weight Matrix can be directly assigned to this slot.

Value

Returns a genomicProfiles object with an updated value for the PWM slot

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>



PositionWeightMatrix<—methods 91

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Building genomicProfiles object

GPP <- genomicProfiles()

#Setting PWM to PositionWeightMatrix slot
PWM <- matrix(runif(32,-10,20), ncol=8)
rownames(PWM) <- c("A","C","T","G")
PositionWeightMatrix (GPP) <- PWM

PositionWeightMatrix<-methods
~~ Methods for Function PositionWeightMatrix<- ~~

Description

Setter Method for the PositionWeightMatrix slotin a genomicProfiles object
Methods:

PositionWeightMatrix(object)<-value

processingChIP Pre-processing ChIP-seq data

Description

processingChIP will process and extract ChIP scores at a set of loci of interest.

Usage

processingChIP(profile,loci=NULL,reduce=NULL,
peaks=NULL,chromatinState=NULL,parameterOptions=NULL,
cores=1)



92 processingChIP
Arguments
profile profile is a path to a UCSC format file, a GRanges or data frame. The input
data should contain 4 columns:chromosome, start , end and score.
loci loci is GRanges describing the loci at which ChIP scores should be extracted. If
NULL, a set of Loci will extracted from profile. The data provided will then
be split into bins of width equal to lociWidth (Default 20kbp) Default=NULL
reduce reduce is a the top regions to select based on the mean ChIP score. If peaks
are provided, regions overlappling with known peaks will be selected based on
highest ChIP score. If NULL, all regions will be considered. Default=NULL
parameterOptions
parameterOptions is an parameterOptions object containing chip Parame-
ters to be parsed for ChIP score extraction. If NULL, parameterOptions will
be built internally with default ChIP extraction parameters (see chipSmooth,
chipSd and chipMean) Default=NULL
peaks peaks is a path to UCSC format file or a GRanges object containing location of
ChIP peaks. Default=NULL
chromatinState chromatinState is a GRanges containing Accessible DNA or chromatin States
If provided, regions will be selected only if they contain accessible DNA. De-
fault=NULL
cores cores is the number of cores used to extract ChIP scores. Default = 1
Details
When using computeOptimal, it is required to supply real ChIP data in order to have a point of
comparison. The corralation and MSE Scores are computed based of how well the model fits
biological data. processingChIP will extract this data from ChIP data at loci of interest. When
using the reduce option, this function will only select the top regions based on peak height or mean
ChIP score. processingChIP will also extract maxSignal and backgroundSignal from ChIP data
and parse it to an parameterOptions object.
Value
Returns a ChIPScore object containing extracted (and normalised) ChIP scores, the loci of interest
and newly extracted Parameters(e.g. maxSignal)
Author(s)
Patrick C.N. Martin <pcnmartin @ gmail.com>
References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.



profileAccuracyEstimate 93

Examples

#Data extraction
data(ChIPanalyserData)

## Extracting ChIP scores at loci of interest

ChIP<-processingChIP(profile=chip, loci=top)

profileAccuracyEstimate
Estimating Accuracy of predicted Profiles

Description
profileAccuracyEstimate will compare the predicted ChIP-seq-like profile to real ChIP-seq data
and return a set of metrics describing how accurate the predicted model is compared to real data.
Usage

profileAccuracyEstimate(genomicProfiles,ChIPScore,
parameterOptions=NULL,method="all", cores=1)

Arguments
genomicProfiles
genomicProfiles is the result of computeChIPProfile
ChIPScore ChIPScore is the result of processingChIP. Extracted/Normalised experimen-
tal ChIP scores.
parameterOptions
parameterOptions is a parameterOptions object for paramter specification.
method method is the method that will be used to assess model quality agianst ChIP-
seq data. Method can be one of the following: pearson, spearman, kendall,
ks, geometric,fscore, MSE,or all.Fscore contains f-score, precision,recall, MCC,
Accuracy and AUC ROC.
cores cores is the number of cores used to extract ChIP scores. Default = 1
Details

In order to assess the quality of the model against experimental ChIP-seq data, ChIPanalyser offers
a wide range of method to choose from. These methods are also used when computing optimal
paramters.

Value

Returns list of goodness of fit metrics for each loci and each parameter selected.



94 profileAccuracyEstimate

Author(s)

Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata”,package="ChIPanalyser"),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require("”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace(”"BiocManager”, quietly=TRUE))
install.packages("BiocManager")

BiocManager::install(”"BSgenome.Dmelanogaster.UCSC.dm6")
}

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet)

# Computing Genome Wide
GenomeWide <- computeGenomeWideScore(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet)

#Compute PWM Scores
PWMScores <- computePWMScore(genomicProfiles = GenomeWide,
DNASequenceSet = DNASequenceSet, loci = top, chromatinState = Access)
#Compute Occupnacy
Occupancy <- computeOccupancy(genomicProfiles = PWMScores)

#Compute ChIP profiles
chipProfile <- computeChIPProfile(genomicProfiles=0ccupancy,loci=top)
#Estimating accuracy estimate
AccuracyEstimate <- profileAccuracyEstimate(genomicProfiles = chipProfile,
ChIPScore = chip,
occupancyProfileParameters = OPP)



profiles-methods 95

profiles-methods ~~ Methods for Function profiles ~~

Description

Accessor method for profiles in a genomicProfiles object

Methods:

profiles(oject) Computed PWM scores, Occupancy or ChIP-seq like profiles for loci of interest
and paramter combination of interest.

PWMpseudocount Accessor Method for a PAMpseudocount slot in a parameterOptions

Description

Accessor Method for a PWMpseudocount slot in a parameterOptions

Usage

PWMpseudocount (object)

Arguments

object object is a parameterOptions object.

Details

In the context of Position Weight Matricies, the pseudocount is used to avoid 0 probabilities during
the transformation of Position Frequency Matrix to a Position Probability Matrix and finally to a
Postion Weight Matrix. It is essentially a sample correction that is added in the case of small sample
size. The effect of the base pair to which a pseudocount was assigned will not influence the model
nor will create mathematical issues such as infinities or zero division. Default is set at 1.

Value

Returns the value assigned to a PWMpseudocount slot in a parameterOptions object

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>



96 PWMpseudocount<-

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(PWMpseudocount=0)
#Accessing slot value
PWMpseudocount (GPP)

PWMpseudocount-methods
~~ Methods for Function PAMpseudocount ~~

Description

Accessor Method for a PWAMpseudocount slot in a parameterOptions

Methods:

PWMpseudocount (object)

PWMpseudocount<- Setter Method for the pseudocount slot in a parameterOptions ob-
ject

Description

Setter Method for the pseudocount slot in a parameterOptions object

Usage

PWMpseudocount (object) <- value

Arguments
object object is a parameterOptions object
value value is a numeric value that will be assigned to the pseudocount slot. Defualt

is set at 1



PWMpseudocount<—methods 97

Details

In the context of Position Weight Matricies, the pseudocount is used to avoid 0 probabilities during
the transformation of Position Frequency Matrix to a Position Probability Matrix and finally to a
Postion Weight Matrix. It is essentially a sample correction that is added in the case of small sample
size. The effect of the base pair to which a pseudocount was assigned will not influence the model
nor will create mathematical issues such as infinities or zero division.

Value

Returns a parameterOptions object with an updated value for the pseudocount slot.

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions( PWMpseudocount=0)
#Setting Value for new PWMpseudocount
PWMpseudocount (GPP) <- 1

PWMpseudocount<-methods
~~ Methods for Function PAMpseudocount<- ~~

Description

Setter Method for the pseudocount slot in a parameterOptions object

Methods:

PWMpseudocount (object)<-value



98 PWMThreshold

PWMThreshold Accessor method for the PAMThreshold slot in a parameterOptions
object

Description

Accessor method for the PWMThreshold slot in a parameterOptions object

Usage

PWMThreshold(object)
Arguments

object object is a parameterOptions object
Details

The computePWMScore function requires a so-called PWM Threshold. This threshold represents
the Threshold at which PWM Score should be selected. The PWMThreshold is a positive numeric
value (between 0 and 1. If set at 0, all sites will be selected. If set at 0.7 (Default value), then 70 %
of PWM Score (and by extension binding sites) will be IGNORED. The top 30 % will be selected.

Value

Returns the value assinged to the PWAMThreshold slot in a parameterOptions object

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(PWMThreshold=0.7)
#Accessing Value for PWMThreshold
PWMThreshold(GPP)



PWMThreshold-methods 99

PWMThreshold-methods  ~~ Methods for Function PAMThreshold ~~

Description

Accessor method for the PWMThreshold slot in a parameterOptions object

Methods:
PWMThreshold(object)
PWMThreshold<- Setter Method for the PAMThreshold slot in a parameterOptions ob-
ject
Description

Setter Method for the PWAMThreshold slot in a parameterOptions object

Usage

PWMThreshold(object) <- value

Arguments
object object is a parameterOptions object
value value is a numeric value (between 0 and 1) to be assigned to the PWMThreshold
slot in parameterOptions object. Default is set at 0.7
Details

The computePWMScore function requires a so-called PWM Threshold. This threshold represents
the Threshold at which PWM Score should be selected. The PWMThreshold is a positive numeric
value (between 0 and 1. If set at 0, all sites will be selected. If set at 0.7 (Default value), then 70 %
of PWM Score (and by extension binding sites) will be IGNORED. The top 30 % will be selected.

Value

Returns parameterOptions objetc with an updated value for the PWAMThreshold slot

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>



100 removeBackground

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(PWMThreshold=0.7)
#Setting Value for new PWMThreshold
PWMThreshold(GPP) <- 0.8

PWMThreshold<-methods ~~ Methods for Function PAMThreshold<- ~~

Description
Setter Method for the PWMThreshold slot in a parameterOptions object
Methods:

PWMThreshold(object)<-value

removeBackground Accessor Method for the removeBackground slot in a
parameterOptions object

Description

Accessor Method for the removeBackground slot in a parameterOptions object

Usage

removeBackground(object)

Arguments

object object is a parameterOptions object

Details

A numeric value describing a threshold at which Occupancy signals must be removed (Default is
set at 0). The removal of Occupancy signals will occur when computing computeOccupancy (see
computeOccupancy function)



removeBackground-methods 101

Value

Returns the value assigned to the removeBackground slot in a parameterOptions object

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Building parameterOptions object

OPP <- parameterOptions()

#Accessing Value for removeBackground
removeBackground(OPP)

removeBackground-methods
~~ Methods for Function removeBackground ~~

Description

Accessor Method for the removeBackground slot in a parameterOptions object
Methods:

removeBackground(object)

removeBackground<- Setter  Method for the removeBackground slot in a
parameterOptions object

Description

Setter Method for the removeBackground slot in a parameterOptions object

Usage

removeBackground(object) <-value



102 removeBackground<—methods

Arguments
object object is an parameterOptions object
value value is positive numerical value to be assigned to the removeBackground slot
in a parameterOptions object. Default is set a 0.
Details

A numeric value describing a threshold at which Occupancy signals must be removed (Default is
set at 0). The removal of Occupancy signals will occur when computing computeOccupancy (see
computeOccupancy function)

Value

Returns an parameterOptions object with an updated value for the removeBackground slot

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Building parameterOptions object

OPP <- parameterOptions()

#Setting new Value for removeBackground
removeBackground(OPP) <- 0.1

removeBackground<-methods
~~ Methods for Function removeBackground<- ~~

Description

Setter Method for the removeBackground slot in a parameterOptions object

Methods:

removeBackground(object)<-value



scores 103

scores Accessor Method for the scores slot in a ChIPScore object

Description

Setter Method for the scores slot in a ChIPScore object

Usage

scores(object)

Arguments

object object is ChIPScore object

Details

When using the processingChIP, this functions will return a name list of normalised ChIP scores
at loci of interest. This functions enalbles you to extract those scores from the ChIPScore object.

Value

Returns the value assigned to the scores slot in a ChIPScore object.

Author(s)

Patrick C. N. Martin <p.martin @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94.

Examples

# Loading data
data(ChIPanalyserData)

chip<-processingChIP(chip, top)
str(scores(chip))



104 searchSites

scores-methods ~~ Methods for Function scores ~~

Description

Accessor method for scores slot in a ChIPScore object.
Methods:

scores(object) Extracted and normalised ChIP scores at loci of interest.

searchSites Searching function for Sites above threshold and predicted ChIP-seq
Profiles

Description
searchSites is function enabling quick extraction and search for parameter combinations and/or
loci in any genomicProfiles object from computeOccupancy onwards.

Usage

searchSites(Sites,lambdaPWM="all" ,BoundMolecules="all"”, Locus="all")

Arguments
Sites Sites is either a genomicProfiles or the result of computeOptimal
lambdaPWM lambdaPWM is a numeric vector describing the ScalingFactors that should be

searched within Sites.

BoundMolecules BoundMolecules is a numeric vector describing the BoundMolecules that should
be searched within Sites.

Locus Locus is a character vector describing the Loci that should be searched within
Sites.

Details

When testing numerous combinations of lambdaPWM and boundMolecules on top of many loci,
it can become challenging to navigate the large data output searchSites will make searching in
this slot a lot easier. If all arguments are left at their default value of "all", then all Parameters will
be searched thus returning the full list of Sites above threshold. If a value for lambdaPWM is user
provided then only this lambdaPWM will be selected (all boundMolecules and loci will also be
selected). searchSites also works on the result of computeOptimal.

Value

Returns object of same time as parsed to this function with only the parameters and/or loci selected.



searchSites 105

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

#Data extraction

data(ChIPanalyserData)

# path to Position Frequency Matrix

PFM <- file.path(system.file("extdata"”,package="ChIPanalyser”),"BEAF-32.pfm")
#As an example of genome, this example will run on the Drosophila genome

if(!require("”"BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){

if (!requireNamespace("BiocManager”, quietly=TRUE))
install.packages("BiocManager™)

BiocManager::install(”"BSgenome.Dmelanogaster.UCSC.dm6")
}

library(BSgenome.Dmelanogaster.UCSC.dm6)

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6)

# Building genomicProfiles object

GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet)

# Computing Genome Wide
GenomeWide <- computeGenomeWideScore(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet)

#Compute PWM Scores
PWMScores <- computePWMScore(genomicProfiles = GenomeWide,
DNASequenceSet = DNASequenceSet, loci = top, chromatinState = Access)
#Compute Occupnacy
Occupancy <- computeOccupancy(genomicProfiles = PWMScores)
searchSites(Occupancy,ScalingFactor=c(1,4), BoundMolecules = c(1,100),
Locus="eve")

#Compute ChIP profiles

chipProfile <- computeChIPProfile(genomicProfiles=0ccupancy,loci=top)

searchSites(chipProfile,ScalingFactor=c(1,4), BoundMolecules = c(1,100),
Locus="eve")

optimalParam <- computeOptimal(genomicProfiles = GPP,
DNASequenceSet = DNASequenceSet,
ChIPScore = chip,
chromatinState = Access,
parameterOptions = OPP,
parameter = "all”,



106 setChromatinStates

peakMethod="moving_kernel")

searchSites(optimalParam,ScalingFactor=c(1,4), BoundMolecules = c(1,100),
Locus="eve")

setChromatinStates setChromatinStates

Description

setChromatinStates sets chromatin state affinity values to a GRanges object.

Usage

setChromatinStates(population,chromatinStates)

Arguments
population Population list containing all individuals and associated parameter. Must contain
chromatin state affinity values. See generateStartingPopulation.
chromatinStates
GRanges object containing chromatin state locations.
Details

Chromatin states can be loaded into R as a GRanges object. Each range represents the extent of
a certain chromatin state and the chromatin state type should be assigned to a meta data column
called "name". The affinity values names should be set accordingly.

Value

Returns a GRange object with affinity scores for each chromatin state range. Affinity scores are
placed in the DNAAffinity meta data column.

Author(s)
Patrick C.N. Martin

Examples

library(ChIPanalyser)
# Input data
data(ChIPanalyserData)

pop <- 10
params <- c("N"”,"lambda"”,"PWMThreshold”, paste@("CS",seq(1:11)))
start_pop <- generateStartingPopulation(pop, params)



show-methods 107

cs <- setChromatinStates(start_pop,cs)

show-methods ~~ Methods for Function show ~~

Description

Show methods for various objects
Methods:

signature(object = "ChIPScore")
signature(object = "genomicProfiles”)

signature(object = "parameterOptions”)

singleRun singleRun

Description

singleRun runs ChIPanalyser after optimal paramters have been found by the evolve function.

Usage

singleRun(indiv,DNAAffinity,
genomicProfiles,DNASequenceSet,
ChIPScore,fitness="all")

Arguments

indiv Population list containing the top scoring individual. Note that this should be a
list of length 1 containing another list with all parameter values.

DNAAffinity GRanges object as outputed by the setchromatinStates.

genomicProfiles
genomicProfiles object containing PWM scores and other desired metrics. Note
that PWMThreshold, lambda and N will be overwritten using values from indiv.

DNASequenceSet DNA string set object containing DNA sequence of interest.

ChIPScore ChIPScore object as outputed by the processingChIP function.

fitness character string describing which metric should be used to assess fitness and

should be one of the following:"geometric","ks","MSE","pearson","spearman","kendall",
"recall","precesion"”,"fscore","MCC"," Accuracy" or "AUC".



108 splitData

Details

Once the genetic algorithm has been optimised, the top individual may be run on its own to get
predicted ChIP profiles. The use of this function requires a few extract steps in order to predict
ChlIP profiles.

First, the index of the top individual should be extracted (see getHighestFitnessSolutions).
Second, using this index, subset top individual from GA population. Note this should be done using
"[1" single bracket notation as, a list of length 1 containing another list with all parameter values
is required for the next steps. Yes, this is might seem annoying but the functions were design for
list structures... Third, setchromatinStates using the top individual list. This will add chromatin
affinity values to your chromatinState GRanges. Use this new chromatinState object as your new
chromatinState object. Fourth, parse your indiv list object to singleRun.

Value

Return a list with three elements. First element contains a genomicProfiles object with occupancy
scores. Second element contains a genomicProfiles objecy with ChIP profile scores. Third element
contains a goodness of fit metrics.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com

Examples

library(ChIPanalyser)
data(ChIPanalyserData)
# See GA vignette for usage

splitData Get Training and Testing data from ChlIPscore objects

Description

splitData splits processed ChIP data into training and testing sets.

Usage
splitData(ChIPscore,dist = c(80,20), as.proportion = TRUE)

Arguments
ChIPscore ChlIPscore object as returned by processingChIP
dist If as.proportion is to TRUE, split the data into desired proportions. Default

sets 80% training and 20% testing. If as.proportion is to FALSE.a vector of
4 numeric values describing start and end of training and testing respectively.

as.proportion Logical describing if values provided to dist should be treated as % of training
and testing or if dist should be considered as start and end of loci selected for
training and testing respectively.



stepSize 109

Value

Returns a named list of ChIPScore objects

* trainingSet = ChIPscore containing training set * testingSet = ChIPscore containing testing set.

Author(s)

Patrick C.N. Martin <pcnmartin @ gmail.com

Examples

library(ChIPanalyser)

data(ChIPanalyserData)

# See GA vignette for usage

test <- processingChIP(chip,top)

usingDist <- splitData(test, dist = c(50,50),as.proportion = TRUE )
usingIndex <- splitData(test, dist = c(1,2,3,4),as.proportion = FALSE )

stepSize Accessor method of the stepSize slot in parameterOptions object

Description

Accessor method of the stepSize slot in parameterOptions object

Usage

stepSize(object)
Arguments

object object is a parameterOptions object.
Details

It possible to restrict the size of the ChIP-seq-like profile produced by computeChIPProfile. In-
stead of returning ChIP-seq like score for each base pair, it is possible to skip base pairs and only

return the predicted enrichement score for every "n" base pair (n is the value assigned to stepSize).
This will reduce the size of the output data (unless step size is very large, this will not affect the
accuracy of the model). Default is set at 10 base pairs.

Value

Returns the value assigned to the stepSize slot in a parameterOptions

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>



110 stepSize<-

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

#Setting new Value for maxSignal
stepSize (OPP)

stepSize-methods ~~ Methods for Function stepSize ~~

Description
Accessor method of the stepSize slot in parameterOptions object
Methods:

stepSize(object)

stepSize<- Setter Method for the stepSize slot in a parameterOptions

Description

Setter Method for the stepSize slot in a parameterOptions

Usage

stepSize(object) <- value

Arguments
object object is a parameterOptions object
value value is a positive numeric value that will be assigned to the stepSize slotin a
parameterOptions object. Default is set at 10 base pairs.
Details

It possible to restrict the size of the ChIP-seq-like profile produced by computeChIPProfile. In-
stead of returning ChIP-seq like score for each base pair, it is possible to skip base pairs and only
return the predicted enrichement score for every "n" base pair (n is the value assigned to stepSize).
This will reduce the size of the output data (unless step size is very large, this will not affect the

accuracy of the model). Default is set at 10 base pairs.



stepSize<—methods 111

Value

Returns a parameterOptions object with an updated value for the stepSize slot.

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Building parameterOptions object
OPP <- parameterOptions()

#Setting new Value for maxSignal
stepSize(OPP) <- 20

stepSize<-methods ~~ Methods for Function stepSize<- ~~

Description

Setter Method for the stepSize slot in a parameterOptions

Methods:

stepSize(object)<-value

strandRule Accessor Method for the strandRule slot in a parameterOptions
object

Description

Accessor Method for the strandRule slot in a parameterOptions object

Usage

strandRule(object)



112 strandRule-methods

Arguments

object object is a parameterOptions object

Details

When computing the PWM Scores and if whichstrand is set to "+-", strandRule will determine
how to handle both strands ( one of three options : "mean", "max", "sum"). If set to "mean", the
average PWM Score of both strand will be computed. If set to "max", the highest PWM score
between each strand will be selected and finally "sum" will sum both score together. Default set at

" "

max

Value

"non non

Returns the value assigned to strandRule slot (one of three options : "mean", "max", "sum") in a
parameterOptions object

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions( strandRule="max")
#Accesssing Value for strandRule
strandRule (GPP)

strandRule-methods ~~ Methods for Function strandRule ~~

Description
Accessor Method for the strandRule slot in a parameterOptions object
Methods:

strandRule(object)



strandRule<- 113

strandRule<- Setter method for the strandRule slot in a parameterOptions object.

Description

Setter method for the strandRule slot in a parameterOptions object.

Usage

strandRule(object) <- value

Arguments
object object is a parameterOptions object
value value is a character string and can be one of the following ‘mean’, ‘max’, ‘sum’.
This will only apply if whichstrand is ‘+-’. Default set at “‘max’
Details

When computing the PWM Scores and if whichstrand is set to ‘+-°, strandRule will determine
how to handle both strands ( one of three options : ‘mean’, ‘max’, ‘sum’). If set to ‘mean’, the
average PWM Score of both strand will be computed. If set to ‘max’, the highest PWM score
between each strand will be selected and finally ‘sum’ will sum both score together. Default set at

3 s

max

Value

Returns a parameterOptions object with an updated value for the strandRule slot

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions(strandRule="max")
#Setting New Value for strandRule
strandRule(GPP) <- "mean”



114 whichstrand

strandRule<-methods ~~ Methods for Function strandRule<- ~~

Description

Setter method for the strandRule slot in a parameterOptions object.
Methods:

strandRule(object)<-value

whichstrand Accessor method for the whichstrand slot in a parameterOptions
object

Description

Accessor method for the whichstrand slot in a parameterOptions object

Usage

whichstrand(object)
Arguments

object object is a parameterOptions object
Details

non

PWM Score may be computed on either the positive strand ("+"), the negative strand (
both strands ("+-").

) or on

Value
Returns on which strand PWM Scores should be computed ( whichstrand in a parameterOptions
object)

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.



whichstrand-methods 115

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions( whichstrand="+-")
#Setting New Value for whichstrand
whichstrand(GPP)

whichstrand-methods ~~ Methods for Function whichstrand ~~

Description

Accessor method for the whichstrand slot in a parameterOptions object

Methods:
whichstrand(object)
whichstrand<- Setter method for the whichstrand slot in a parameterOptions ob-
Jject
Description

Setter method for the whichstrand slot in a parameterOptions object

Usage

whichstrand(object) <- value

Arguments
object object is a parameterOptions object
value value is a character string specifying which strand should be used to compute
PWM Scores. The three available options are the following: "+","-" or "+-".
Default is "+-"
Details

non

PWM Score may be computed on either the positive strand ("+"), the negative strand (
both strands ("+-").

) or on

Value

Returns a parameterOptions object with an updated value for the whichstrand slot



116 whichstrand<—methods

Author(s)
Patrick C. N. Martin <pm16057 @essex.ac.uk>

References

Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-
wide binding profiles. Nucleic Acids Res., 43, 84-94. Patrick C.N. Martin and Nicolae Radu
Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical
thermodynamics framework. CSBJ, 18, 3590-3605.

Examples

# Loading data
data(ChIPanalyserData)

#Building data objects

GPP <- parameterOptions( whichstrand="+-")
#Setting New Value for whichstrand
whichstrand(GPP) <- "+"

whichstrand<-methods  ~~ Methods for Function whichstrand<- ~~

Description

Setter method for the whichstrand slot in a parameterOptions object

Methods:

whichstrand(object)<-value



Index

* classes
ChIPScore-class, 20
genomicProfiles-class, 43
genomicProfilesInternal-class, 46
GRList-class, 50
loci-class, 54
nos-class, 71
parameterOptions-class, 74

+ methods
averageExpPWMScore-methods, 7
backgroundSignal-methods, 9
backgroundSignal<-methods, 10
boundMolecules-methods, 12
boundMolecules<-methods, 13
BPFrequency-methods, 14
BPFrequency<-methods, 16
chipMean-methods, 18
chipMean<-methods, 20
chipSd-methods, 23
chipSd<-methods, 24
chipSmooth-methods, 25
chipSmooth<-methods, 26
DNASequencelLength-methods, 37
drop-methods, 39
initialize-methods, 51
lambdaPWM-methods, 52
lambdaPWM<-methods, 53
loci-methods, 55
lociWidth-methods, 56
lociWidth<-methods, 58
maxPWMScore-methods, 59
maxSignal-methods, 60
maxSignal<-methods, 62
minPWMScore-methods, 63
naturalLog-methods, 64
naturallLog<-methods, 66
noiseFilter-methods, 67
noiseFilter<-methods, 68
noOfSites-methods, 69

117

noOfSites<-methods, 71
PFMFormat-methods, 78
PFMFormat<-methods, 79
ploidy-methods, 80
ploidy<-methods, 82
PositionFrequencyMatrix-methods,
87
PositionFrequencyMatrix<-methods,
88
PositionWeightMatrix-methods, 90
PositionWeightMatrix<-methods, 91
profiles-methods, 95
PWMpseudocount-methods, 96
PWMpseudocount<-methods, 97
PWMThreshold-methods, 99
PWMThreshold<-methods, 100
removeBackground-methods, 101
removeBackground<-methods, 102
scores-methods, 104
show-methods, 107
stepSize-methods, 110
stepSize<-methods, 111
strandRule-methods, 112
strandRule<-methods, 114
whichstrand-methods, 115
whichstrand<-methods, 116
* package
ChIPanalyser-package, 5
.DNASequencelLength<-,genomicProfilesInternal, vector-method
(genomicProfilesInternal-class),
46
.ZeroBackground, parameterOptions-method
(parameterOptions-class), 74
.ZeroBackground<-,parameterOptions, vector-method
(parameterOptions-class), 74
.averageExpPWMScore<-,genomicProfilesInternal,numeric-meth
(genomicProfilesInternal-class),
46
.drop<-,genomicProfilesInternal,vector-method



118 INDEX

(genomicProfilesInternal-class), BPFrequency, genomicProfilesInternal-method

46 (genomicProfilesInternal-class),
.generatePWM, genomicProfilesInternal-method 46

(genomicProfilesInternal-class), BPFrequency-methods, 14

46 BPFrequency<-, 15
.maxPWMScore<-, genomicProfilesInternal, vectorBRietbgdency<-methods, 16

(genomicProfilesInternal-class), BPFrequency<-,genomicProfilesInternal,DNAStringSet-method

46 (genomicProfilesInternal-class),
.minPWMScore<-,genomicProfilesInternal,vector-method 46

(genomicProfilesInternal-class), BPFrequency<-,genomicProfilesInternal,vector-method

46 (genomicProfilesInternal-class),
.paramTag,parameterOptions-method 46

(parameterOptions-class), 74
.paramTag<-,parameterOptions,character-methodchip (ChIPanalyserData), 16

(parameterOptions-class), 74 ChIPanalyser (ChIPanalyser-package), 5
.profiles<-,genomicProfilesInternal,GRList-me¢hbganalyser-package, 5
(genomicProfilesInternal-class), ChIPanalyserData, 16
46 chipMean, 17,17, 72, 92
.tags, genomicProfilesInternal-method chipMean, parameterOptions-method
(genomicProfilesInternal-class), (parameterOptions-class), 74
46 chipMean-methods, 18
.tags<-,genomicProfilesInternal,character-met@éPMean<-, 19
(genomicProfilesInternal-class), chipMean<-methods, 20
46 chipMean<-,parameterOptions, numeric-method
(parameterOptions-class), 74
Access (ChIPanalyserData), 16 ChIPScore, 27, 28, 35, 53-56, 58, 103
averageExpPWMScore, 6 ChIPScore-class, 20
averageExpPWMScore, genomicProfilesInternal-me¢hdpSd, 22, 72, 92
(genomicProfilesInternal-class), chipSd, parameterOptions-method
46 (parameterOptions-class), 74
averageExpPWMScore-methods, 7 chipSd-methods, 23
chipSd<-, 23
backgroundSignal, 8, 72 chipSd<-methods, 24
backgroundSignal, parameterOptions-method chipSd<-,parameterOptions,numeric-method
(parameterOptions-class), 74 (parameterOptions-class), 74
backgroundSignal-methods, 9 chipSmooth, 24, 72, 92
backgroundSignal<-, 9 chipSmooth,parameterOptions-method
backgroundSignal<-methods, 10 (parameterOptions-class), 74
backgroundSignal<-,parameterOptions, numeric-metthp8mooth-methods, 25
(parameterOptions-class), 74 chipSmooth<-, 25
boundMolecules, 11, 28, 32, 33, 72, 84, 85 chipSmooth<-methods, 26
boundMolecules,parameterOptions-method chipSmooth<-,parameterOptions,vector-method
(parameterOptions-class), 74 (parameterOptions-class), 74
boundMolecules-methods, 12 computeChIPProfile, 8, 9, 18, 19, 22-24, 26,
boundMolecules<-, 12 27,93, 109, 110
boundMolecules<-methods, 13 computeGenomeWideScores, 7, 29, 35, 58, 62
boundMolecules<-,parameterOptions, vector-methodmputeOccupancy, 8, 9, 11, 12, 24, 26, 27,
(parameterOptions-class), 74 30, 100, 102

BPFrequency, 13 computeOptimal, 711, 12,32, 92



INDEX

computePWMScore, 31, 34, 35
cs (ChIPanalyserData), 16

DNASequencelLength, 7, 36

119

loci,ChIPScore-method
(ChIPScore-class), 20

loci-class, 54

loci-methods, 55

DNASequenceLength, genomicProfilesInternal-methodiWidth, 55, 72

(genomicProfilesInternal-class),
46

DNASequencelLength-methods, 37

DNAStringSet, 14, 15, 33, 35, 44

drop, 38

drop, genomicProfilesInternal-method
(genomicProfilesInternal-class),
46

drop-methods, 39

evolve, 39

generateStartingPopulation, 41

geneRef (ChIPanalyserData), 16

genomicProfiles, 6, 7, 13-15, 27, 28, 31, 32,
35, 36, 38,42, 43,45,47, 58, 62, 73,
7679, 86-91, 95, 104

genomicProfiles-class, 43

genomicProfilesInternal, 45

genomicProfilesInternal-class, 46

getHighestFitnessSolutions, 48

getTestingData, 49

getTrainingData, 49

GRanges, 17,27, 31, 33, 35, 38, 82, 92

GRangeslList, 31, 35

GRList-class, 50, 50

initialize,ChIPScore-method
(initialize-methods), 51
initialize,genomicProfiles-method
(initialize-methods), 51
initialize,parameterOptions-method
(initialize-methods), 51
initialize-methods, 51

lambdaPWM, 28, 32, 33, 51, 84, 85

lambdaPWM, parameterOptions-method
(parameterOptions-class), 74

lambdaPWM-methods, 52

lambdaPWM<-, 52

lambdaPWM<-methods, 53

lambdaPWM<-, parameterOptions,vector-method
(parameterOptions-class), 74

loci, 53

lociWidth, parameterOptions-method
(parameterOptions-class), 74

lociWidth-methods, 56

lociWidth<-, 57

lociWidth<-methods, 58

lociWidth<-,parameterOptions,numeric-method
(parameterOptions-class), 74

maxPWMScore, 58

maxPWMScore, genomicProfilesInternal-method
(genomicProfilesInternal-class),
46

maxPWMScore-methods, 59

maxSignal, 8§, 9, 59, 72

maxSignal,parameterOptions-method
(parameterOptions-class), 74

maxSignal-methods, 60

maxSignal<-, 61

maxSignal<-methods, 62

maxSignal<-,parameterOptions,numeric-method
(parameterOptions-class), 74

minPWMScore, 62

minPWMScore, genomicProfilesInternal-method
(genomicProfilesInternal-class),
46

minPWMScore-methods, 63

naturallog, 63, 72
naturallog,parameterOptions-method
(parameterOptions-class), 74
naturallLog-methods, 64
naturallog<-, 65
naturallLog<-methods, 66
naturallog<-,parameterOptions,logical-method
(parameterOptions-class), 74
noiseFilter, 66, 72
noiseFilter,parameterOptions-method
(parameterOptions-class), 74
noiseFilter-methods, 67
noiseFilter<-, 67
noiseFilter<-methods, 68

noiseFilter<-,parameterOptions,character-method

(parameterOptions-class), 74
noOfSites, 68, 72



120 INDEX

noOfSites, parameterOptions-method PositionWeightMatrix, 86, 89
(parameterOptions-class), 74 PositionWeightMatrix,genomicProfilesInternal-method
noOfSites-methods, 69 (genomicProfilesInternal-class),
noOfSites<-, 70 46
noOfSites<—-methods, 71 PositionWeightMatrix-methods, 90
noOfSites<-,parameterOptions,character-methodPositionWeightMatrix<-, 90
(parameterOptions-class), 74 PositionWeightMatrix<-methods, 91
noOfSites<-,parameterOptions,numeric-method PositionWeightMatrix<-,genomicProfilesInternal,matrix-meth
(parameterOptions-class), 74 (genomicProfilesInternal-class),
nos-class, 71 46
processingChIP, 20, 21, 27, 33, 35, 54, 56,
parameterOptions, 812, 17-19, 21-28, 31, 57,72,91, 103
33,35,43,45,47,51-53, 55-57, profileAccuracyEstimate, 8, 9, 82, 93
59-61, 63-70, 72, 79-82, 92, 93, profiles, 31, 35, 50
95-102, 109-116 profiles (profiles-methods), 95
parameterOptions-class, 74 profiles,genomicProfilesInternal-method
PFMFormat, 77 (genomicProfilesInternal-class),
PFMFormat,genomicProfilesInternal-method 46
(genomicProfilesInternal-class), profiles-methods, 95
46 PWMpseudocount, 73, 95
PFMFormat-methods, 78 PWMpseudocount , parameterOptions-method
PFMFormat<-, 78 (parameterOptions-class), 74
PFMFormat<-methods, 79 PWMpseudocount-methods, 96
PFMFormat<-,genomicProfilesInternal,characterpwﬁggggdocount<_’96
(genomicProfilesInternal-class), PWMpseudocount<-methods, 97
46 PWMpseudocount<-, parameterOptions,numeric-method
ploidy, 72,79 (parameterOptions-class), 74
ploidy, parameterOptions-method PWMThreshold, 29, 34, 35, 73, 98
(parameterOptions-class), 74 PWMThreshold, parameterOptions-method
ploidy-methods, 80 (parameterOptions-class), 74
ploidy<-, 81 PWMThreshold-methods, 99
ploidy<-methods, 82 PWMThreshold<-, 99
ploidy<-,parameterOptions,numeric-method PWMThreshold<-methods, 100
(parameterOptions-class), 74 PWMThreshold<-,parameterOptions,numeric-method
plotOccupancyProfile, &, 9, 82 (parameterOptions-class), 74
plotOptimalHeatMaps, 84
PositionFrequencyMatrix, 77, 78, 86 removeBackground, 72, 100
PositionFrequencyMatrix,genomicProfilesInternadmewéBackground, parameterOptions-method
(genomicProfilesInternal-class), (parameterOptions-class), 74
46 removeBackground-methods, 101
PositionFrequencyMatrix-methods, 87 removeBackground<-, 101
PositionFrequencyMatrix<-, 87 removeBackground<-methods, 102
PositionFrequencyMatrix<-methods, 88 removeBackground<-,parameterOptions,vector-method

PositionFrequencyMatrix<-,genomicProfilesInternal, chafiagtarete@dpdions-class), 74
(genomicProfilesInternal-class),

46 scores, 103
PositionFrequencyMatrix<-,genomicProfilesIntescatematitiRSoertbodethod
(genomicProfilesInternal-class), (ChIPScore-class), 20

46 scores-methods, 104



INDEX

searchSites, 82, 104

setChromatinStates, 106

show, ChIPScore-method (show-methods),
107

show, genomicProfiles-method
(show-methods), 107

show, parameterOptions-method
(show-methods), 107

show-methods, 107

singleRun, 107

splitData, 108

stepSize, 72, 109

stepSize,parameterOptions-method
(parameterOptions-class), 74

stepSize-methods, 110

stepSize<-, 110

stepSize<-methods, 111

stepSize<-,parameterOptions,numeric-method
(parameterOptions-class), 74

strandRule, 73, 111

strandRule, parameterOptions-method
(parameterOptions-class), 74

strandRule-methods, 112

strandRule<-, 113

strandRule<-methods, 114

strandRule<-,parameterOptions,character-method
(parameterOptions-class), 74

top (ChIPanalyserData), 16

whichstrand, 73, 112, 113,114

whichstrand,parameterOptions-method
(parameterOptions-class), 74

whichstrand-methods, 115

whichstrand<-, 115

whichstrand<-methods, 116

whichstrand<-,parameterOptions,character-method
(parameterOptions-class), 74

121



	ChIPanalyser-package
	averageExpPWMScore
	averageExpPWMScore-methods
	backgroundSignal
	backgroundSignal-methods
	backgroundSignal<-
	backgroundSignal<–methods
	boundMolecules
	boundMolecules-methods
	boundMolecules<-
	boundMolecules<–methods
	BPFrequency
	BPFrequency-methods
	BPFrequency<-
	BPFrequency<–methods
	ChIPanalyserData
	chipMean
	chipMean-methods
	chipMean<-
	chipMean<–methods
	ChIPScore-class
	chipSd
	chipSd-methods
	chipSd<-
	chipSd<–methods
	chipSmooth
	chipSmooth-methods
	chipSmooth<-
	chipSmooth<–methods
	computeChIPProfile
	computeGenomeWideScores
	computeOccupancy
	computeOptimal
	computePWMScore
	DNASequenceLength
	DNASequenceLength-methods
	drop
	drop-methods
	evolve
	generateStartingPopulation
	genomicProfiles
	genomicProfiles-class
	genomicProfilesInternal-class
	getHighestFitnessSolutions
	getTestingData
	getTrainingData
	GRList-class
	initialize-methods
	lambdaPWM
	lambdaPWM-methods
	lambdaPWM<-
	lambdaPWM<–methods
	loci
	loci-class
	loci-methods
	lociWidth
	lociWidth-methods
	lociWidth<-
	lociWidth<–methods
	maxPWMScore
	maxPWMScore-methods
	maxSignal
	maxSignal-methods
	maxSignal<-
	maxSignal<–methods
	minPWMScore
	minPWMScore-methods
	naturalLog
	naturalLog-methods
	naturalLog<-
	naturalLog<–methods
	noiseFilter
	noiseFilter-methods
	noiseFilter<-
	noiseFilter<–methods
	noOfSites
	noOfSites-methods
	noOfSites<-
	noOfSites<–methods
	nos-class
	parameterOptions
	parameterOptions-class
	PFMFormat
	PFMFormat-methods
	PFMFormat<-
	PFMFormat<–methods
	ploidy
	ploidy-methods
	ploidy<-
	ploidy<–methods
	plotOccupancyProfile
	plotOptimalHeatMaps
	PositionFrequencyMatrix
	PositionFrequencyMatrix-methods
	PositionFrequencyMatrix<-
	PositionFrequencyMatrix<–methods
	PositionWeightMatrix
	PositionWeightMatrix-methods
	PositionWeightMatrix<-
	PositionWeightMatrix<–methods
	processingChIP
	profileAccuracyEstimate
	profiles-methods
	PWMpseudocount
	PWMpseudocount-methods
	PWMpseudocount<-
	PWMpseudocount<–methods
	PWMThreshold
	PWMThreshold-methods
	PWMThreshold<-
	PWMThreshold<–methods
	removeBackground
	removeBackground-methods
	removeBackground<-
	removeBackground<–methods
	scores
	scores-methods
	searchSites
	setChromatinStates
	show-methods
	singleRun
	splitData
	stepSize
	stepSize-methods
	stepSize<-
	stepSize<–methods
	strandRule
	strandRule-methods
	strandRule<-
	strandRule<–methods
	whichstrand
	whichstrand-methods
	whichstrand<-
	whichstrand<–methods
	Index

