Package ‘BumpyMatrix’

January 23, 2026
Version 1.19.0
Date 2021-07-03
Title Bumpy Matrix of Non-Scalar Objects

Description Implements the BumpyMatrix class and several subclasses
for holding non-scalar objects in each entry of the matrix. This is akin to
aragged array but the raggedness is in the third dimension, much like
a bumpy surface - hence the name. Of particular interest is the
BumpyDataFrameMatrix, where each entry is a Bioconductor data frame.
This allows us to naturally represent multivariate data in a format
that is compatible with two-dimensional containers like the
SummarizedExperiment and MultiAssayExperiment objects.

License MIT + file LICENSE

Imports utils, methods, Matrix, S4Vectors, IRanges
Suggests BiocStyle, knitr, rmarkdown, testthat
biocViews Software, Infrastructure, DataRepresentation
VignetteBuilder knitr

RoxygenNote 7.1.1

URL https://bioconductor.org/packages/BumpyMatrix

BugReports https://github.com/LTLA/BumpyMatrix/issues
git_url https://git.bioconductor.org/packages/BumpyMatrix
git_branch devel

git_last commit 05bcf92

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Aaron Lun [aut, cre],
Genentech, Inc. [cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://bioconductor.org/packages/BumpyMatrix
https://github.com/LTLA/BumpyMatrix/issues

2 BumpyAtomicMatrix

Contents
BumpyAtomicMatrix e 2
BumpyDataFrameMatrix 3
BumpyMatrix e 5
SplitAsBumpyMatrix e e e e e e 7
unsplitAsDataFrame e 9

Index 11

BumpyAtomicMatrix The BumpyAtomicMatrix subclass
Description

A subclass of the BumpyMatrix where each entry is an atomic vector. One subclass is provided for
each of the most common types.

Details

In the following code snippets, x is a BumpyDFrameMatrix.

Binary and unary operations are implemented by specializing Ops, Math and related group generics,
and will usually return a new BumpyAtomicMatrix of the appropriate type. The exception is for
Summary methods like max and min; these return an ordinary matrix where each entry contains a
scalar value for the corresponding entry of x. Furthermore, range will return a 3-dimensional array
containing the minimum and maximum for each entry of x.

Common mathematical operations are implemented that apply to each entry of the BumpyAtomic-
Matrix:

* mean, sd, median, mad, var and IQR take a single BumpyAtomicMatrix and return an ordinary
double-precision matrix of the same dimensions containing the computed statistic for each
entry of the input. This is possible as all operations are guaranteed to produce a scalar.

* guantile takes a single BumpyAtomicMatrix as input and return a 3-dimensional array. The
first dimension contains the requested quantiles, the second dimension corresponds to the rows
of x and the third dimension corresponds to the columns of x.

* which.max and which.min take a single BumpyAtomicMatrix and return an ordinary integer
matrix of the same dimensions containing the index for the min/max value per entry. (This is
set to NA if the entry of the input has length zero.)

* pmin, pmax, pmin.int and pmax.int take multiple BumpyAtomicMatrix objects of the same
dimensions, and return a BumpyAtomicMatrix containing the result of running the same func-
tion across corresponding entries of the input objects.

* cor, cov and (optionally) var take two BumpyAtomicMatrix objects of the same dimensions,
and return an ordinary matrix containing the computed statistic for the corresponding entries
of the inputs. This is possible as all operations are guaranteed to produce a scalar.

BumpyDataFrameMatrix 3

Additionally, common operations are implemented that apply to each entry of the BumpyChar-
acterMatrix and return a BumpyAtomicMatrix of the same dimensions and an appropriate type.
This includes tolower, toupper, substr, substring, sub, gsub, grepl, grep, nchar, chartr,
startsWith and endsWith. We also implement unstrsplit, which returns an ordinary matrix of
the same dimensions containing the unsplit strings.

All methods implemented for the BumpyMatrix parent class are available here.

Examples

Mocking up a BumpyNumericlList:
library(IRanges)
X <- splitAsList(runif(1000), factor(sample(50, 1000, replace=TRUE), 1:50))

Creating a BumpyNumericMatrix:
mat <- BumpyMatrix(x, c(10, 5))
mat[,1]

Arithmetic operations:
(mat * 2)[,1]
(mat + mat * 5)[,1]

Logical operations:
(mat < 0.5)[,1]

(mat > 0.5 & mat < 1)[,1]
(mat == mat)[,1]

More statistics:
max(mat)

min(mat)

mean(mat)

sd(mat)
median(mat)

Handling character vectors:

x <- splitAsList(sample(LETTERS, 100, replace=TRUE),
factor(sample(20, 100, replace=TRUE), 1:20))

cmat <- BumpyMatrix(x, c(5, 4))

cmat[,1]

tolower (cmat[,1])
grepl ("A|E|I|O|U", cmat)[,1]
sub("A|E|I|O|U", "vowel”, cmat)[,1]

BumpyDataFrameMatrix The BumpyDataFrameMatrix class

4 BumpyDataFrameMatrix

Description

The BumpyDataFrameMatrix provides a two-dimensional object where each entry is a DataFrame.
This is useful for storing data that has a variable number of observations per sample/feature combi-
nation, e.g., for inclusion as another assay in a SummarizedExperiment object.

Details

In the following code snippets, x is a BumpyDataFrameMatrix.

commonColnames(x) will return a character vector with the names of the available commonCol-
names. This can be modified with commonColnames(x) <- value.

x[i, j, k, ..., .dropk=drop, drop=TRUE] will subset the BumpyDataFrameMatrix:

* Ifkis not specified, this will either produce another BumpyDataFrameMatrix corresponding to
the specified submatrix, or a CompressedSplitDataFrameList containing the entries of interest
if drop=TRUE.

» If k is specified, it should contain the names or indices of the columns of the underlying
DataFrame to retain. For multiple fields or with . dropk=FALSE, a new BumpyDataFrameMa-
trix is returned with the specified columns in the DataFrame.

* If k only specifies a single column and . dropk=TRUE, a BumpyMatrix (or CompressedList, if
drop=TRUE) corresponding to the type of the field is returned.

x[i, j, k, ...]<-value will modify x by replacing the specified values with those in the Bumpy-
Matrix value of the same dimensions. If k is not specified, value should be a BumpyDataFrameMa-
trix with the same fields as x. If k is specified, value should be a BumpyDataFrameMatrix with the
specified fields. If k contains a single field, value can also be a BumpyAtomicMatrix containing
the values to use in that field.

All methods described for the BumpyMatrix parent class are available.

Author(s)

Aaron Lun

Examples

library(S4Vectors)

df <- DataFrame(x=runif(100), y=runif(100))

f <- factor(sample(letters[1:20], nrow(df), replace=TRUE), letters[1:20])
out <- split(df, f)

Making our BumpyDataFrameMatrix.
mat <- BumpyMatrix(out, c(5, 4))
mat[,1]

mat[1,]

Subsetting capabilities.

xmat <- mat[,,"x"]

ymat <- mat[,,"y"]

filtered <- mat[xmat > 0.5 & ymat > 0.5]
filtered[,1]

BumpyMatrix 5

Subset replacement works as expected.
mat2 <- mat

mat2[,,"x"] <- mat2[,,"x"] x 2
mat2[,1]

BumpyMatrix The BumpyMatrix class

Description

The BumpyMatrix provides a two-dimensional object where each entry is a Vector object. This is
useful for storing data that has a variable number of observations per sample/feature combination,
e.g., for inclusion as another assay in a SummarizedExperiment object.

Constructor

BumpyMatrix(x, dims, dimnames=1ist(NULL, NULL), proxy=NULL, reorder=TRUE) will produce
a BumpyMatrix object, given:

* x, a CompressedList object containing one or more DFrames or atomic vectors.

» dim, an integer vector of length 2 specifying the dimensions of the returned object.

* dimnames, a list of length 2 containing the row and column names.

* proxy, an integer or numeric matrix-like object specifying the location of each entry of x in
the output matrix.

* reorder, a logical scalar indicating whether proxy (if specified) should be reordered.

The type of the returned BumpyMatrix object is determined from the type of x.

If proxy=NULL, x should have length equal to the product of dim. The entries of the returned
BumpyMatrix are filled with x in a column-major manner.

If proxy is specified, it should contain indices in 1:1length(x) with all other entries filled with
zeros. If reorder=FALSE, all non-zero values should be in increasing order when encountered in
column-major format; otherwise, the indices are resorted to enforce this expectation. Note that dims
and dimnames are ignored.

If x is missing, a BumpylIntegerMatrix is returned with zero rows and columns. If dim is also
specified, a BumpyIntegerMatrix with the specified number of rows and columns is returned, where
each entry is an empty integer vector.

Basic matrix methods

In the following code snippets, x is an instance of a BumpyMatrix subclass.

dim(x) will yield a length-2 integer vector containing the number of rows and columns in x.
length(x) will yield the product of the number of columns and rows.

dimnames(x) will yield a list of two character vectors with the row and column names of x. Either
or both elements of the list may be NULL if no names are present.

6 BumpyMatrix

x[i, j, ..., drop=TRUE] will yield the specified submatrix of the same type as x, given integer,
character or logical subsetting vectors in i and j. If the resulting submatrix has any dimension of
length 1 and drop=TRUE, a CompressedList of the appropriate type is instead returned.

x[1,j] <- value will replace the specified entries in x with the values in another BumpyMatrix
value. It is expected that value is of the same subclass as x. value can also be a CompressedList
of the same class as undim(x), in which case it is recycled to fill the specified entries.

t(x) will transpose the BumpyMatrix, returning an object of the same type.

rbind(..., deparse.level=1) and cbind(..., deparse.level=1) will combine all Bumpy-
Matrix objects in . . ., yielding a single BumpyMatrix object containing all the rows and columns,
respectively. All objects should have the same number of columns (for rbind) or rows (for cbind).

Subsetting by another BumpyMatrix

Given a BumpyMatrix x and an appropriate BumpyMatrix i, x[i] will return another BumpyMa-
trix where each entry of x is subsetted by the corresponding entry of i. This usually requires i to be
a BumpylIntegerMatrix or a BumpyLogicalMatrix, though it is also possible to use a BumpyChar-
acterMatrix if each entry of x is named.

Special CompressedList methods

undim(x) will return the underlying CompressedList object.

redim(flesh, skeleton) will create a BumpyMatrix object, given a CompressedList flesh and
an existing BumpyMatrix object skeleton. fleshis assumed to be of the same length as undim(skeleton)
where each entry in the former replaces the corresponding entry in the latter. The class of the output
is determined based on the class of flesh. This method is analogous to the relist function for

lists.
unlist(x, ...) will return the underlying Vector used to create the CompressedList object. This
is the same as unlist(undim(x), ...).

Other methods

lengths(x) will return a numeric matrix-like object with the same dimensions and dimnames as
x, where each entry contains the length of the corresponding entry in x. The output class can be
anything used in the proxy of the constructor, e.g., a sparse matrix from the Matrix package.

Author(s)

Aaron Lun

Examples

Mocking up a BumpyNumericlist:

library(IRanges)

X <= NumericList(split(runif(1000), factor(sample(5@, 1000, replace=TRUE), 1:50)))
length(x)

Creating a BumpyNumericMatrix:
mat <- BumpyMatrix(x, c(10, 5))
mat

splitAsBumpyMatrix 7

Standard subsetting works correctly:
mat[1:10,1:2]

mat[,1]

mat[1,]

Subsetting by another BumpyMatrix.
is.big <- x > 0.9

i <- BumpyMatrix(is.big, dim(mat))

out <- mat[i]

out # same dimensions as mat...

out[,1] # but the entries are subsetted.
outl[1,]

Subset replacement works correctly:
mat[,2]

alt <- mat

alt[,2] <- mat[,1,drop=FALSE]

alt[,2]

Combining works correctly:
rbind(mat, mat)
cbind(mat, mat)

Transposition works correctly:
mat[1,2]

tmat <- t(mat)

tmat

tmat[1,2]

Get the underlying objects:
undim(mat)
summary(unlist(mat))

splitAsBumpyMatrix Split to a BumpyMatrix

Description

Split a vector or Vector into a BumpyMatrix based on row/column factors. This facilitates the
construction of a BumpyMatrix from vector-like objects.

Usage

splitAsBumpyMatrix(x, row, column, sparse = FALSE)

8 splitAsBumpyMatrix

Arguments
X A vector or Vector object, most typically a DFrame.
row An object coercible into a factor, of length equal to x. This defines the row index
for each element of x.
column An object coercible into a factor, of length equal to x. This defines the column
index for each element of x.
sparse Logical scalar indicating whether a sparse representation should be used.
Value

A BumpyMatrix of the appropriate type, with number of rows and columns equal to the number of
levels in row and column respectively. Each entry of the matrix contains all elements of x with the
corresponding indices in row and column.

Author(s)

Aaron Lun

See Also
BumpyMatrix, if a CompressedList has already been constructed.
unsplitAsDataFrame, which reverses this operation to recover a long-format DataFrame.

splitAsList, which inspired this function.

Examples

mat <- splitAsBumpyMatrix(runif(1000),
row=sample(LETTERS, 1000, replace=TRUE),
column=sample(10, 1000, replace=TRUE)

)

mat
mat[,1]
mat[1,]

Or with a sparse representation.

mat <- splitAsBumpyMatrix(runif(10),
row=sample(LETTERS, 10, replace=TRUE),
column=sample(10, 10, replace=TRUE)

)

mat

mat[,1]

mat[1,]

unsplitAsDataFrame 9

unsplitAsDataFrame Unsplit a BumpyMatrix

Description

Unsplit a BumpyMatrix into a DataFrame, adding back the row and column names as separate
columns. This is equivalent to converting the BumpyMatrix into a “long” format.

Usage

unsplitAsDataFrame(
X,
row.names = TRUE,
column.names = TRUE,

row.field = "row”,
column.field = "column”,
value.field = "value”
)
Arguments
X A BumpyMatrix object.

row.names, column.names
Logical scalar indicating whether the row or column names of x should be re-
ported in the output.

row.field, column.field

String indicating the field in the output DataFrame to store the row or column
names.

value.field String specifying the field in the output DataFrame to store BumpyAtomicMa-
trix values.

Details

Denote the output of this function as y. Given a BumpyAtomicMatrix x, we would expect to be
able to recover x by calling splitAsBumpyMatrix(y$value, y$row, y$column).

The row. field, column.field and value. field arguments can be used to alter the column names
of the output DataFrame. This can be helpful to avoid, e.g., conflicts with columns of the same name
in a BumpyDataFrameMatrix x.

If no row/column names are present in x (or row.names or column.names is FALSE), the row and
column columns instead hold integer indices specifying the matrix row/column of each DataFrame
row.

10 unsplitAsDataFrame

Value

A DataFrame object containing the data in x. This has additional row and column columns contain-
ing the row/column names for each DataFrame row.

If x is a BumpyAtomicMatrix, the output DataFrame contains a value column that holds unlist(x).
Otherwise, if x is a BumpyDataFrameMatrix, the DataFrame contains the columns in unlist(x).
Author(s)

Aaron Lun

See Also

splitAsBumpyMatrix, to do the split in the first place.

Examples

mat <- splitAsBumpyMatrix(runif(1000),
row=sample(LETTERS, 1000, replace=TRUE),
column=sample(10, 1000, replace=TRUE)

)

unsplitAsDataFrame(mat)

Index

!,BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2

[,BumpyDataFrameMatrix, ANY,ANY, ANY-method

(BumpyDataFrameMatrix), 3

[,BumpyDataFrameMatrix, ANY-method

(BumpyDataFrameMatrix), 3

[,BumpyDataFrameMatrix,BumpyMatrix, ANY,ANY-method

(BumpyDataFrameMatrix), 3

[,BumpyDataFrameMatrix,BumpyMatrix-method

(BumpyDataFrameMatrix), 3
[,BumpyMatrix, ANY,ANY,ANY-method
(BumpyMatrix), 5

[,BumpyMatrix, ANY-method (BumpyMatrix),

5

[,BumpyMatrix,BumpyMatrix, ANY,ANY-method

(BumpyMatrix), 5
[,BumpyMatrix,BumpyMatrix-method
(BumpyMatrix), 5

[<-,BumpyDataFrameMatrix, ANY,ANY, BumpyMatrlx—%%E

(BumpyDataFrameMatrix), 3

[<-,BumpyMatrix,ANY,ANY,BumpyMatrix-method

(BumpyMatrix), 5

[<-,BumpyMatrix,ANY,ANY,CompressedList-method

(BumpyMatrix), 5

BumpyAtomicMatrix, 2, 10
BumpyAtomicMatrix-class
(BumpyAtomicMatrix), 2
BumpyCharacterMatrix-class
(BumpyAtomicMatrix), 2
BumpyDataFrameMatrix, 3, 10
BumpyDataFrameMatrix-class
(BumpyDataFrameMatrix), 3
BumpyIntegerMatrix, 5
BumpyIntegerMatrix-class
(BumpyAtomicMatrix), 2
BumpyLogicalMatrix-class
(BumpyAtomicMatrix), 2
BumpyMatrix, 2-4, 5, 8
BumpyMatrix-class (BumpyMatrix), 5

11

BumpyNumericMatrix-class
(BumpyAtomicMatrix), 2

cbind,BumpyMatrix-method (BumpyMatrix),

5
chartr,ANY,ANY,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2
commonColnames,BumpyDataFrameMatrix-method

(BumpyDataFrameMatrix), 3
commonColnames<-,BumpyDataFrameMatrix-method

(BumpyDataFrameMatrix), 3
CompressedList, 4-6, 8
CompressedSplitDataFramelList, 4
cor,BumpyAtomicMatrix,BumpyAtomicMatrix-method

(BumpyAtomicMatrix), 2
cov,BumpyAtomicMatrix,BumpyAtomicMatrix-method

(BumpyAtomicMatrix), 2

ﬂFrame 4,9, 10

Frame, 5, 8

d1m,BumpyMatrix-method(BumpyMatrix),S

dimnames,BumpyMatrix-method
(BumpyMatrix), 5

dimnames<-,BumpyMatrix, ANY-method

(BumpyMatrix), 5

endsWith,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

grep, ANY,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

grepl, ANY,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

gsub, ANY, ANY,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

IQR,BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2

length,BumpyMatrix-method
(BumpyMatrix), 5

12 INDEX

lengths,BumpyMatrix-method redim,CompressedList,BumpyMatrix-method
(BumpyMatrix), 5 (BumpyMatrix), 5
relist, 6
mad, BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2 sd,BumpyAtomicMatrix-method
Math, 2 (BumpyAtomicMatrix), 2
Math,BumpyAtomicMatrix-method show, BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2 (BumpyAtomicMatrix), 2
Math2,BumpyAtomicMatrix-method show,BumpyDataFrameMatrix-method
(BumpyAtomicMatrix), 2 (BumpyDataFrameMatrix), 3
mean , BumpyAtomicMatrix-method show, BumpyMatrix-method (BumpyMatrix), 5
(BumpyAtomicMatrix), 2 splitAsBumpyMatrix, 7,9, 10
median,BumpyAtomicMatrix-method splitAslList, 8
(BumpyAtomicMatrix), 2 startsWith,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2
nchar,BumpyCharacterMatrix-method sub, ANY, ANY ,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2 (BumpyAtomicMatrix), 2
substr,BumpyCharacterMatrix-method
Ops, 2 (BumpyAtomicMatrix), 2
Ops,atomic,BumpyAtomicMatrix-method substring,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2 (BumpyAtomicMatrix), 2
Ops,BumpyAtomicMatrix,atomic-method Summary, 2
(BumpyAtomicMatrix), 2 Summary ,BumpyAtomicMatrix-method
Ops,BumpyAtomicMatrix,BumpyAtomicMatrix-method (BumpyAtomicMatrix), 2

(BumpyAtomicMatrix), 2
Ops,BumpyAtomicMatrix,matrix-method
(BumpyAtomicMatrix), 2
Ops,BumpyAtomicMatrix,missing-method
(BumpyAtomicMatrix), 2
Ops,matrix,BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2

t,BumpyMatrix-method (BumpyMatrix), 5
tolower,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2
toupper,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

undim (BumpyMatrix), 5

. . undim,BumpyMatrix-method (BumpyMatrix),
pmax, BumpyAtomicMatrix-method 5

(BumpyAtomicMatrix), 2
pmax.int,BumpyAtomicMatrix-method

(BumpyAtomicMatrix), 2
pmin,BumpyAtomicMatrix-method

(BumpyAtomicMatrix), 2
pmin.int,BumpyAtomicMatrix-method

unlist,BumpyMatrix-method
(BumpyMatrix), 5

unsplitAsDataFrame, 8, 9

unstrsplit,BumpyCharacterMatrix-method
(BumpyAtomicMatrix), 2

(BumpyAtomicMatrix), 2 var,BumpyAtomicMatrix,BumpyAtomicMatrix-method
(BumpyAtomicMatrix), 2

quantile,BumpyAtomicMatrix-method var,BumpyAtomicMatrix,missing-method

(BumpyAtomicMatrix), 2 (BumpyAtomicMatrix), 2

Vector, 5-8

range,BumpyAtomicMatrix-method

(BumpyAtomicMatrix), 2 which.max,BumpyAtomicMatrix-method
rbind,BumpyMatrix-method (BumpyMatrix), (BumpyAtomicMatrix), 2

5 which.min,BumpyAtomicMatrix-method

redim (BumpyMatrix), 5 (BumpyAtomicMatrix), 2

	BumpyAtomicMatrix
	BumpyDataFrameMatrix
	BumpyMatrix
	splitAsBumpyMatrix
	unsplitAsDataFrame
	Index

