Package ‘BiocSingular’

January 23, 2026
Version 1.27.1
Date 2025-10-23
Title Singular Value Decomposition for Bioconductor Packages

Imports BiocGenerics, S4 Vectors, Matrix, methods, utils, DelayedArray,
BiocParallel, ScaledMatrix, irlba, rsvd, Rcpp, beachmat (>=
2.25.1)

Suggests testthat, BiocStyle, knitr, rmarkdown, ResidualMatrix
biocViews Software, DimensionReduction, Principal Component

Description Implements exact and approximate methods for singular value
decomposition and principal components analysis, in a framework that
allows them to be easily switched within Bioconductor packages or
workflows. Where possible, parallelization is achieved using
the BiocParallel framework.

License GPL-3

LinkingTo Rcpp, beachmat, assorthead
VignetteBuilder knitr
SystemRequirements C++17
RoxygenNote 7.3.3

Encoding UTF-8

BugReports https://github.com/LTLA/BiocSingular/issues

URL https://github.com/LTLA/BiocSingular

git_url https://git.bioconductor.org/packages/BiocSingular
git_branch devel

git_last_commit 9c87cf6

git_last_commit_date 2025-11-16

Repository Bioconductor 3.23

Date/Publication 2026-01-23

Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1


https://github.com/LTLA/BiocSingular/issues
https://github.com/LTLA/BiocSingular

2 BiocSingular options

Contents
BiocSingularoptions . . . . . . .. L. e e e 2
BiocSingularParam . . . . . . ... oo 3
DeferredMatrix . . . . . . . . . . e e 5
LowRankMatrix . . . . . . . . . . . e e e e 6
ResidualMatrix . . . . . . . . . . . . e e e 7
runExactSVD . . . .. 8
runlrlbaSVD . . . L e 9
runPCA . . . e e e 10
runRandomSVD . . . . . L 12
runSVD . . e 13

Index 15

BiocSingular options  Global SVD options

Description

An overview of the available options when performing SVD with any algorithm.

Computing the cross-product

If the dimensions of the input matrix are very different, it may be faster to compute the cross-
product and perform the SVD on the resulting square matrix, rather than performing SVD directly
on a very fat or tall input matrix. The cross-product can often be computed very quickly due to good
data locality, yielding a small square matrix that is easily handled by any SVD algorithm. This is
especially true in cases where the input matrix is not held in memory. Calculation of the cross-
product only involves one read across the entire data set, while direct application of approximate
methods like irlba or rsvd would need to access the data multiple times.

The various BiocSingular SVD functions allow users to specify the minimum fold difference (via
the fold argument) at which a cross-product should be computed. Setting fold=1 will always
compute the cross-product for any matrix - this is probably unwise. By contrast, setting fold=Inf
means that the cross-product is never computed. This is currently the default in all functions, to
provide the most expected behaviour unless specifically instructed otherwise.

Centering and scaling

In general, each SVD function performs the SVD on t((t(x) - C)/S) where C and S are numeric
vectors of length equal to ncol (x). The values of C and S are defined according to the center and
scale options.

e If center=TRUE, C is defined as the column means of x. If center=NULL or FALSE, all elements
of C are set to zero. If center is a numeric vector with length equal to ncol(x), it is used to
directly define C.



BiocSingularParam 3

* If scale=TRUE, the ith element of S is defined as the square root of sum((x[,i] - C[i1)*2)/(ncol(x)-1),
for whatever C was defined above. This mimics the behaviour of scale. If scale=NULL or
FALSE, all elements of S are set to unity. If scale is a numeric vector with length equal to
ncol(x), it is used to directly define S.

Setting center or scale is more memory-efficient than modifiying the input x directly. This is
because the function will avoid constructing intermediate centered (possibly non-sparse) matrices.

Deferred centering and scaling

Many of the SVD algorithms (and computation of the cross-product) involve repeated matrix mul-
tiplications. We speed this up by using the ScaledMatrix class to defer centering (and to some
extent, scaling) during matrix multiplication. The matrix multiplication is performed on the origi-
nal matrix, and then the centering/scaling operations are applied to the matrix product. This allows
direct use of the %*% method for each matrix representation, to exploit features of the underlying
representation (e.g., sparsity) for greater speed.

Unfortunately, the speed-up with deferred centering comes at the cost of increasing the risk of
catastrophic cancellation. The procedure requires subtraction of one large intermediate number
from another to obtain the values of the final matrix product. This could result in a loss of numerical
precision that compromises the accuracy of the various SVD algorithms.

The default approach is to explicitly create a dense in-memory centred/scaled matrix, possibly via
block processing (see defaultAutoGrid from the DelayedArray package). This avoids problems
with numerical precision as large intermediate values are not formed. In doing so, we consistently
favour accuracy over speed unless the functions are specifically instructed to do otherwise, i.e., with
deferred=TRUE.

Author(s)

Aaron Lun

BiocSingularParam BiocSingularParam classes

Description

Classes for specifying the type of singular value decomposition (SVD) algorithm and associated
parameters.

Usage

ExactParam(deferred=FALSE, fold=Inf)
IrlbaParam(deferred=FALSE, fold=Inf, extra.work=7, ...)
RandomParam(deferred=FALSE, fold=Inf, ...)
FastAutoParam(deferred=FALSE, fold=Inf)

bsparam()



4 BiocSingularParam

Arguments
deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options”.
fold Numeric scalar specifying the minimum fold-difference for cross-product cal-
culation, see ?"BiocSingular-options”.
extra.work Integer scalar, additional dimensionality of the workspace in runIrlbaSVD.
Additional arguments to pass to runIrlbaSVD or runRandomSVD. This should
not include any named arguments in those functions.
Details

The BiocSingularParam class controls dispatch of the runSVD generic to specific algorithms for
SVD. The BiocSingularParam class itself is virtual, with several concrete subclasses available in
this package:

ExactParam: exact SVD with runExactSVD.

IrlbaParam: approximate SVD with irlba via runIrlbaSVD.

RandomParam: approximate SVD with rsvd via runRandomSVD.

FastAutoParam: fast approximate SVD, chosen based on the matrix representation.

These objects also hold parameters specifying how each algorithm should be run on an arbitrary
data set. See the associated documentation pages for each specific SVD method for more details.

Value

Each constructor returns a BiocSingularParam subclass of the same type, containing the specified
parameters.

Methods

In the following code snippets, x is a BiocSingularParam object.

show(object): Display the class of object and a summary of the set parameters.

bsfold(object): Return a numeric scalar specifying the fold-difference for cross-product calcu-
lation, see “Computing the cross-product” in ?”"BiocSingular-options”.

bsdeferred(object): Return a logical scalar indicating whether centering and scaling should be
deferred. see “Deferred centering and scaling” in ?”"BiocSingular-options”.

Automatically choosing a fast SVD algorithm

Running runSVD with a FastAutoParam object will dispatch to runIrlbaSVD for most matrices.
This is the default choice as IRLBA is fast and the approximation is highly similar to the exact
SVD result. The exception is that of instances of the DelayedMatrix class, or any subclass that
lacks its own specialized %*% method. In such cases, runSVD with a FastAutoParam will dispatch
to runRandomSVD, which minimizes the number of matrix multiplication steps and the associated
costly block processing. However, if a DelayedMatrix subclass has its own %*% method, it is as-
sumed to be efficient enough to afford repeated multiplications in runIrlbaSVD.



DeferredMatrix 5

Setting a session-wide default

bsparam() will return a session-wide value for the BiocSingularParam object, analogous to bpparam().
This defaults to a FastAutoParam object but can be modified by setting the "BiocSingularParam.default
global option to any BiocSingularParam object. Any code that uses bsparam() will automatically

use this new default without needing to explicitly pass the BiocSingularParam object to those func-

tions.

Author(s)

Aaron Lun

See Also

runSVD for generic dispatch.

runExactSVD, runIrlbaSVD and runRandomSVD for specific methods.

Examples
ExactParam()
IrlbaParam(tol=1e-8)
RandomParam(q=20)

# Modifying the default.

bsparam()
options(BiocSingularParam.default=IrlbaParam())
bsparam()
DeferredMatrix The DeferredMatrix class
Description

This has been deprecated in favor of the ScaledMatrix class from the ScaledMatrix package - use
those constructors instead.



6 LowRankMatrix

LowRankMatrix The LowRankMatrix class

Description

Definitions of the LowRankMatrixSeed and LowRankMatrix classes and their associated methods.
These classes are designed to provide a memory-efficient representation of a low-rank reconstruc-
tion, e.g., after a principal components analysis.

Usage

LowRankMatrixSeed(rotation, components)

LowRankMatrix(rotation, components)

Arguments
rotation A matrix-like object where each row corresponds to a row of the LowRankMa-
trix object.
This can alternatively be a LowRankMatrixSeed, in which case any value of
components is ignored.
components A matrix-like object where each row corresponds to a column of the LowRankMa-
trix object.
Value

The LowRankMatrixSeed constructor will return a LowRankMatrixSeed object.

The LowRankMatrix constructor will return a LowRankMatrix object equivalent to tcrossprod(rotation,
components).

Methods for LowRankMatrixSeed objects

LowRankMatrixSeed objects are implemented as DelayedMatrix backends. They support standard
operations like dim, dimnames and extract_array.

Passing a LowRankMatrixSeed object to the DelayedArray constructor will create a LowRankMa-
trix object.

Methods for LowRankMatrix objects

LowRankMatrix objects are derived from DelayedMatrix objects and support all of valid opera-
tions on the latter. Subsetting, transposition and replacement of row/column names are special-
ized for greater efficiency when operating on LowRankMatrix instances, and will return a new
LowRankMatrix rather than a DelayedMatrix.

All other operations applied to a LowRankMatrix will use the underlying DelayedArray machin-
ery. Unary or binary operations will generally create a new DelayedMatrix instance containing a
LowRankMatrixSeed.



ResidualMatrix 7

Author(s)

Aaron Lun

See Also

runPCA to generate the rotation and component matrices.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runPCA(a, rank=10)

1r <- LowRankMatrix(out$rotation, out$x)

ResidualMatrix The ResidualMatrix class

Description

This class is deprecated, see the exact same class in the ResidualMatrix package.

Usage

ResidualMatrixSeed(x, design=NULL)

ResidualMatrix(x, design=NULL)

Arguments
X A matrix-like object.
This can alternatively be a ResidualMatrixSeed, in which case design is ig-
nored.
design A numeric matrix containing the experimental design, to be used for linear
model fitting on each column of x.
Value

The ResidualMatrixSeed constructor will return a ResidualMatrixSeed object.

The ResidualMatrix constructor will return a ResidualMatrix object, containing values equivalent
to Im. fit(x=design, y=x)$residuals.

Author(s)

Aaron Lun



8 runExactSVD

runExactSVD Exact SVD

Description

Perform an exact singular value decomposition.

Usage

runExactSVD(x, k=min(dim(x)), nu=k, nv=k, center=FALSE, scale=FALSE,
deferred=FALSE, fold=Inf, BPPARAM=SerialParam())

Arguments
X A numeric matrix-like object to use in the SVD.
k Integer scalar specifying the number of singular values to return.
nu Integer scalar specifying the number of left singular vectors to return.
nv Integer scalar specifying the number of right singular vectors to return.
center A logical scalar indicating whether columns should be centered. Alternatively,
a numeric vector or NULL - see ?"BiocSingular-options”.
scale A logical scalar indicating whether columns should be scaled. Alternatively, a
numeric vector or NULL - see ?"BiocSingular-options”.
deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options”.
fold Numeric scalar specifying the minimum fold difference between dimensions of
x to compute the cross-product, see ?"BiocSingular-options”.
BPPARAM A BiocParallelParam object specifying how parallelization should be performed.
Details

If any of k, nu or nv exceeds min(dim(x)), they will be capped and a warning will be raised. The
exception is when they are explicitly set to Inf, in which case all singular values/vectors of x are
returned without any warning.

Note that parallelization via BPPARAM is only applied to the calculation of the cross-product. It has
no effect for near-square matrices where the SVD is computed directly.

Value
A list containing:

* d, a numeric vector of the first k singular values.

* u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

* u, anumeric matrix with ncol (x) rows and nv columns. Each column contains a right singular
vector.



runlrlbaSVD 9

Author(s)

Aaron Lun

See Also

svd for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runExactSVD(a)
str(out)

runIrlbaSvD Approximate SVD with irlba

Description

Perform an approximate singular value decomposition with the augmented implicitly restarted
Lanczos bidiagonalization algorithm.

Usage
runlrlbaSVD(x, k=5, nu=k, nv=k, center=FALSE, scale=FALSE, deferred=FALSE,
extra.work=7, ..., fold=Inf, BPPARAM=SerialParam())
Arguments
X A numeric matrix-like object to use in the SVD.
k Integer scalar specifying the number of singular values to return.
nu Integer scalar specifying the number of left singular vectors to return.
nv Integer scalar specifying the number of right singular vectors to return.
center A logical scalar indicating whether columns should be centered. Alternatively,
a numeric vector or NULL - see ?"BiocSingular-options”.
scale A logical scalar indicating whether columns should be scaled. Alternatively, a
numeric vector or NULL - see ?"BiocSingular-options”.
deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options”.
extra.work Integer scalar specifying the additional number of dimensions to use for the

working subspace.
Further arguments to pass to irlba.

fold Numeric scalar specifying the minimum fold difference between dimensions of
x to compute the cross-product, see ?”"BiocSingular-options”.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.



10 runPCA

Details

If BPPARAM has only 1 worker and a cross-product is not being computed, this function will use
irlba’s own center and scale arguments. This is effectively equivalent to deferred centering and
scaling, despite the setting of deferred=FALSE.

For multiple workers, this function will parallelize all multiplication operations involving x accord-
ing to the supplied BPPARAM.

The total dimensionality of the working subspace is defined as the maximum of k, nu and nv, plus
the extra.work.

Value
A list containing:

* d, a numeric vector of the first k singular values.

* U, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

* u, anumeric matrix with ncol (x) rows and nv columns. Each column contains a right singular
vector.

Author(s)

Aaron Lun

See Also

irlba for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runIrlbaSVD(a)
str(out)

runPCA Principal components analysis

Description

Perform a principal components analysis (PCA) on a target matrix with a specified SVD algorithm.

Usage
runPCA(x, ...)
## S4 method for signature 'ANY'

runPCA(x, rank, center=TRUE, scale=FALSE, get.rotation=TRUE,
get.pcs=TRUE, ...)



runPCA

Arguments

X
rank

center

scale

get.rotation

get.pcs

Details

11

A numeric matrix-like object with samples as rows and variables as columns.
Integer scalar specifying the number of principal components to retain.

A logical scalar indicating whether columns of x should be centered before the
PCA is performed. Alternatively, a numeric vector of length ncol (x) containing
the value to subtract from each column of x.

A logical scalar indicating whether columns of x should be scaled to unit vari-
ance before the PCA is performed. Alternatively, a numeric vector of length
ncol(x) containing the scaling factor for each column of x.

A logical scalar indicating whether rotation vectors should be returned.

A logical scalar indicating whether the principal component scores should be
returned.
For the generic, this contains arguments to pass to methods upon dispatch.

For the ANY method, this contains further arguments to pass to runSVD. This
includes BSPARAM to specify the algorithm that should be used, and BPPARAM to
control parallelization.

This function simply calls runSVD and converts the results into a format similar to that returned by

prcomp.

The generic is exported to allow other packages to implement their own runPCA methods for other
x objects, e.g., scater for SingleCellExperiment inputs.

Value

A list is returned containing:

* sdev, a numeric vector of length rank containing the standard deviations of the first rank
principal components.

* rotation, a numeric matrix with rank columns and nrow(x) rows, containing the first rank
rotation vectors. This is only returned if get.rotation=TRUE.

* X, a numeric matrix with rank columns and ncol (x) rows, containing the scores for the first
rank principal components. This is only returned if get.pcs=TRUE.

Author(s)

Aaron Lun

See Also

runSVD for the underlying SVD function.

?BiocSingularParam for details on the algorithm choices.



12 runRandomSVD

Examples

a <- matrix(rnorm(100000), ncol=20)
str(out <- runPCA(a, rank=10))

runRandomSVD Approximate SVD with rsvd

Description

Perform a randomized singular value decomposition.

Usage

runRandomSVD(x, k=5, nu=k, nv=k, center=FALSE, scale=FALSE, deferred=FALSE,
., fold=Inf, BPPARAM=SerialParam())

Arguments
X A numeric matrix-like object to use in the SVD.
k Integer scalar specifying the number of singular values to return.
nu Integer scalar specifying the number of left singular vectors to return.
nv Integer scalar specifying the number of right singular vectors to return.
center A logical scalar indicating whether columns should be centered. Alternatively,
a numeric vector or NULL - see ?"BiocSingular-options”.
scale A logical scalar indicating whether columns should be scaled. Alternatively, a
numeric vector or NULL - see ?"BiocSingular-options”.
deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options”.
Further arguments to pass to rsvd.
fold Numeric scalar specifying the minimum fold difference between dimensions of
x to compute the cross-product, see ?"BiocSingular-options”.
BPPARAM A BiocParallelParam object specifying how parallelization should be performed.
Details

All multiplication operations in rsvd involving x will be parallelized according to the supplied
BPPARAM.

The dimensionality of the working subspace is defined as the maximum of k, nu and nv, plus the q
specifiedin . . ..



runSVD

Value

A list containing:

13

* d, a numeric vector of the first k singular values.

* U, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular

vector.

* u, a numeric matrix with ncol (x) rows and nv columns. Each column contains a right singular

vector.

Author(s)

Aaron Lun

See Also

rsvd for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runRandomSVD(a)

str(out)

runSVD

Run SVD

Description

Perform a singular value decomposition on an input matrix with a specified algorithm.

Usage
runSVD(x, k, nu=k, nv=k, center=FALSE, scale=FALSE,
BPPARAM=SerialParam(), ..., BSPARAM=ExactParam())
Arguments
X A numeric matrix-like object to use in the SVD.
Integer scalar specifying the number of singular values to return.
nu Integer scalar specifying the number of left singular vectors to return.
nv Integer scalar specifying the number of right singular vectors to return.
center Numeric vector, logical scalar or NULL, specifying values to subtract from each
column of x - see ?"BiocSingular-options”.
scale Numeric vector, logical scalar or NULL, specifying values to divide each column
of x - see ?"BiocSingular-options”.
BPPARAM A BiocParallelParam object specifying how parallelization should be performed.
. Further arguments to pass to specific methods.
BSPARAM A BiocSingularParam object specifying the type of algorithm to run.



14 runSVD

Details
The class of BSPARAM will determine the algorithm that is used, see ?BiocSingularParam for more
details. The default is to use an exact SVD via runExactSVD.

Value
A list containing:

* d, a numeric vector of the first k singular values.

* u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

* v, anumeric matrix with ncol (x) rows and nv columns. Each column contains a right singular
vector.

Author(s)

Aaron Lun

See Also

runExactSVD, runIrlbaSVD and runRandomSVD for the specific functions.

Examples

a <- matrix(rnorm(100000), ncol=20)

out.exact® <- runSVD(a, k=4)
str(out.exact@)

out.exact <- runSVD(a, k=4, BSPARAM=ExactParam())
str(out.exact)

out.irlba <- runSVD(a, k=4, BSPARAM=IrlbaParam())
str(out.exact)

out.random <- runSVD(a, k=4, BSPARAM=RandomParam())
str(out.random)



Index

[,LowRankMatrix,ANY,ANY, ANY-method
(LowRankMatrix), 6

BiocParallelParam, 8, 9, 12, 13
BiocSingular options, 2
BiocSingular-options (BiocSingular
options), 2
BiocSingularParam, 3, 11, 13, 14
BiocSingularParam-class
(BiocSingularParam), 3
bpparam, 5
bsdeferred (BiocSingularParam), 3
bsfold (BiocSingularParam), 3
bsparam (BiocSingularParam), 3

defaultAutoGrid, 3

DeferredMatrix, 5

DeferredMatrixSeed (DeferredMatrix), 5

DelayedArray, 6

DelayedArray,LowRankMatrixSeed-method
(LowRankMatrix), 6

DelayedMatrix, 4, 6

dim,LowRankMatrixSeed-method
(LowRankMatrix), 6

dimnames,LowRankMatrixSeed-method
(LowRankMatrix), 6

dimnames<-,LowRankMatrix,ANY-method
(LowRankMatrix), 6

ExactParam (BiocSingularParam), 3

ExactParam-class (BiocSingularParam), 3

extract_array,LowRankMatrixSeed-method
(LowRankMatrix), 6

FastAutoParam (BiocSingularParam), 3
FastAutoParam-class
(BiocSingularParam), 3

irlba, 2,9, 10
IrlbaParam (BiocSingularParam), 3
IrlbaParam-class (BiocSingularParam), 3

15

LowRankMatrix, 6

LowRankMatrix-class (LowRankMatrix), 6

LowRankMatrixSeed (LowRankMatrix), 6

LowRankMatrixSeed-class
(LowRankMatrix), 6

prcomp, 11

RandomParam (BiocSingularParam), 3
RandomParam-class (BiocSingularParam), 3
ResidualMatrix, 7

ResidualMatrixSeed (ResidualMatrix), 7
rsvd, 2, 12, 13

runExactSVvD, 4, 5, 8, 14
runIrlbaSVvD, 4, 5,9, 14
runPCA, 7, 10

runPCA, ANY-method (runPCA), 10
runRandomSVD, 4, 5, 12, 14
runSvD, 4, 5,11, 13

runSVD, ExactParam-method (runSvD), 13
runSVD, FastAutoParam-method (runSvD), 13
runSVD, IrlbaParam-method (runSvD), 13
runSVD,missing-method (runSvD), 13
runSVD,RandomParam-method (runsSvD), 13

scale, 3
ScaledMatrix, 3,5
show,BiocSingularParam-method
(BiocSingularParam), 3
show, IrlbaParam-method
(BiocSingularParam), 3
show, LowRankMatrixSeed-method
(LowRankMatrix), 6
show,RandomParam-method
(BiocSingularParam), 3
svd, 9

t,LowRankMatrix-method (LowRankMatrix),
6



	BiocSingular options
	BiocSingularParam
	DeferredMatrix
	LowRankMatrix
	ResidualMatrix
	runExactSVD
	runIrlbaSVD
	runPCA
	runRandomSVD
	runSVD
	Index

