Package ‘spatialFDA’

January 20, 2026
Title A Tool for Spatial Multi-sample Comparisons
Version 1.2.0

URL https://github.com/mjemons/spatialFDA

BugReports https://github.com/mjemons/spatialFDA/issues

Description spatialFDA is a package to calculate spatial statistics metrics.
The package takes a SpatialExperiment object and calculates spatial statistics metrics us-
ing the package spatstat.
Then it compares the resulting functions across samples/conditions using functional addi-
tive models as implemented in the package refund.
Furthermore, it provides exploratory visualisations using functional principal component analy-
sis, as well implemented in refund.

License GPL (>= 3) + file LICENSE
Encoding UTF-8

Depends R (>=4.3.0)

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

Imports dplyr, ggplot2, parallel, patchwork, purrr, refund,
SpatialExperiment, spatstat.explore, spatstat.geom,
SummarizedExperiment, methods, stats, fda, tidyr, graphics,
ExperimentHub, scales, S4Vectors

biocViews Software, Spatial, Transcriptomics
VignetteBuilder knitr

Suggests stringr, knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0),
mgcv

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/spatialFDA
git_branch RELEASE_3_22

git_last_commit 6860169

git_last commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://github.com/mjemons/spatialFDA
https://github.com/mjemons/spatialFDA/issues

.dfToppp

Author Martin Emons [aut, cre] (ORCID:

<https://orcid.org/0009-0000-5219-5311>),

Samuel Gunz [aut] (ORCID: <https://orcid.org/0000-0002-8909-0932>),
Fabian Scheipl [aut] (ORCID: <https://orcid.org/0000-0001-8172-3603>),
Mark D. Robinson [aut, fnd] (ORCID:

<https://orcid.org/0000-0002-3048-5518>)

Maintainer Martin Emons <martin.emons@uzh.ch>

Contents
dfToppp - - -« o o e e 2
extractMetriC L e e e 3
JoadExample e 4
speToDf . . o o L e 5
calcCrossMetricPerFov L 5
calcMetricPerFov 6
crossSpatiallnference 8
extractCrossInferenceData L 9
functionalGam L e 10
functionalPCA e e e 12
plotCrossFOV e 13
plotCrossHeatmap e 14
plotCrossMetricPerFov 15
plotFbPlot e 16
plotFpca L e e 17
plotMdl L e 18
plotMetricPerFov L 19
prepData. e e e 21
print.fpca . ..o e e e 22
rMaxHeuristic 23
spatiallnference L 23

Index 26

.dfToppp Convert SpatialExperiment object to ppp object
Description

Convert SpatialExperiment object to ppp object

Usage

.dfToppp(df, marks = NULL, continuous = FALSE, window = NULL)

https://orcid.org/0009-0000-5219-5311
https://orcid.org/0000-0002-8909-0932
https://orcid.org/0000-0001-8172-3603
https://orcid.org/0000-0002-3048-5518

.extractMetric 3

Arguments
df A dataframe with the x and y coordinates from the corresponding SpatialExper-
iment and the ColData
marks A vector of marks to be associated with the points, has to be either named
“cell_type’ if you want to compare discrete celltypes or else continous gene
expression measurements are assumed as marks.
continuous A boolean indicating whether the marks are continuous defaults to FALSE
window An observation window of the point pattern of class owin.
Value

A ppp object for use with spatstat functions

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf (speSub)

pp <- .dfToppp(dfSub, marks = "cell_type")

.extractMetric Compute a spatial metric on a SpatialExperiment object

Description

A function that takes a SpatialExperiment object and computes a spatial statistics function as
implemented in spatstat. The output is a spatstat object.

Usage

.extractMetric(
df,
selection,
fun,
marks = NULL,
rSeq = NULL,
by = NULL,

continuous = FALSE,
window = NULL,

)
Arguments
df A dataframe with the x and y coordinates from the corresponding SpatialExperiment
and the colData
selection the mark(s) you want to compare

fun the spatstat function to compute on the point pattern object

4 .JoadExample

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

by the spe colData variable(s) to add to the meta data

continuous A boolean indicating whether the marks are continuous defaults to FALSE
window a observation window for the point pattern of class owin.

Other parameters passed to spatstat.explore functions

Value

a spatstat metric object with the fov number, the number of points and the centroid of the image

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf (speSub)

metricRes <- .extractMetric(dfSub, c("alpha”, "Tc"),

fun = "Gcross”,
marks = "cell_type"”, rSeq = seq(@, 50, length.out = 50),
by = c("patient_stage”, "patient_id"”, "image_number")
)
.loadExample load Example dataset from Damond et al. (2019)
Description

load Example dataset from Damond et al. (2019)

Usage
.loadExample(full = FALSE)

Arguments
full a boolean indicating whether to load the entire Damond et al. (2019) or only a
subset
Value

A SpatialExperiment object as uploaded to ExperimentHub ()

Examples

retrieve the Damond et al. (2019) dataset
spe <- .loadExample()

.speToDf 5

.speToDf Transform a SpatialExperiment into a dataframe

Description

Transform a SpatialExperiment into a dataframe

Usage

.speToDf (spe)

Arguments

spe A SpatialExperiment object subset to a single image

Value

A dataframe with the x and y coordinates from the corresponding SpatialExperiment and the col-
Data

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf (speSub)

calcCrossMetricPerFov Calculate cross spatial metrics for all combinations per FOV

Description

A function that takes a SpatialExperiment object as input and calculates a cross spatial metric as
implemented by spatstat per field of view for all combinations provided by the user.

Usage

calcCrossMetricPerFov(
spe,
selection,
subsetby = NULL,
fun,
marks = NULL,
rSeq = NULL,
by = NULL,
ncores = 1,
continuous = FALSE,
assay = "exprs”,

6 calcMetricPerFov

Arguments
spe a SpatialExperiment object
selection the mark(s) you want to compare
subsetby the spe colData variable to subset the data by
fun the spatstat function to compute on the point pattern object
marks the marks to consider e.g. cell types
rSeq the range of r values to compute the function over
by the spe colData variable(s) to add to the meta data
ncores the number of cores to use for parallel processing, default = 1
continuous A boolean indicating whether the marks are continuous defaults to FALSE
assay the assay which is used if continuous = TRUE
Other parameters passed to spatstat.explore functions
Value

a dataframe of the spatstat metric objects with the radius r, the theoretical value of a Poisson
process, the different border corrections the fov number, the number of points and the centroid of
the image

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcCrossMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"

) ’
ncores = 1
)
calcMetricPerFov Calculate a spatial metric on a SpatialExperiment object per field
of view
Description

A function that takes a SpatialExperiment object as input and calculates a spatial metric as im-
plemented by spatstat per field of view.

calcMetricPerFov

Usage

calcMetricPerFov/(

spe,
selection,
subsetby,
fun,

marks = NULL,
rSeq = NULL,
by = NULL,
continuous =

FALSE,

assay = "exprs”,

ncores = 1,

verbose = TRUE,

Arguments

spe
selection

subsetby

fun

marks

rSeq

by
continuous
assay
ncores

verbose

Value

a SpatialExperiment object

the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as ¢(B,A).

the spe colData variable to subset the data by. This variable has to be provided,
even if there is only one sample.

the spatstat function to compute on the point pattern object

the marks to consider e.g. cell types

the range of r values to compute the function over

the spe colData variable(s) to add to the meta data

A boolean indicating whether the marks are continuous defaults to FALSE
the assay which is used if continuous = TRUE

the number of cores to use for parallel processing, default = 1

logical indicating whether to print all information or not

Other parameters passed to spatstat.explore functions

a dataframe of the spatstat metric objects with the radius r, the theoretical value of a Poisson
process, the different border corrections the fov number, the number of points and the centroid of

the image

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(

"patient_stage”, "patient_id",
"image_number"”

)

ncores = 1

8 crossSpatiallnference

crossSpatialInference Function for Cross Spatial Inference

Description

This function is a wrappere function around spatialInference. It calculates spatialInference
results either for all cell types in marks (if selection == NULL) or for a custom subset defined in
selection.

Usage

crossSpatialInference(
spe,
selection = NULL,
fun,
marks = NULL,
rSeq = NULL,
correction,
sample_id,
image_id,
condition,
continuous = FALSE,
assay = "exprs”,
transformation = NULL,
eps = NULL,
delta = 0,
family = stats::gaussian(link = "log"),
verbose = TRUE,

ncores = 1,
)
Arguments

spe a SpatialExperiment object

selection the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as ¢(B,A).

fun the spatstat function to compute on the point pattern object

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

correction the edge correction to be applied

sample_id the spe colData variable to mark the sample, if not NULL this will result in a
mixed model estimation

image_id the spe colData variable to mark the image

condition the spe colData variable to mark the condition

continuous A boolean indicating whether the marks are continuous defaults to FALSE

assay the assay which is used if continuous = TRUE

transformation the transformation to be applied as exponential e.g. 1/2 for sqrt

extractCrossInferenceData 9

eps some distributional families fail if the response is zero, therefore, zeros can be
replaced with a very small value eps

delta the delta value to remove from the beginning of the spatial statistics functions.
Can be reasonable if e.g. cells are always spaced by 10 um. If set to "minNnDist"
it will take the mean of the minimum nearest neighbour distance across all im-
ages for this cell type pair.

family the distributional family for the functional GAM
verbose logical indicating whether to print all information or not
ncores the number of cores to use for parallel processing, default = 1

Other parameters passed to spatstat.explore functions for parameters con-
cerning the spatial function calculation and to refund: : pffr for the functional
additive mixed model inference

Value

a list of objects created by the function spatialInference with three objects: i) the dataframe with
the spatial statistics results, ii) the designmatrix of the inference and iii) the fitted pffr object

Examples

spe <- .loadExample()

#make the condition a factor variable

colData(spe)[["patient_stage"]] <- factor(colData(spe)[["patient_stage”]])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage”]] <- relevel(colData(spe)[["patient_stage”]],
"Non-diabetic")

selection <- c("acinar”, "ductal”)
resLs <- crossSpatiallnference(spe, selection, fun = "Gcross”,
marks = "cell_type”, rSeq = seq(@, 50, length.out = 50),
correction = "rs"”, sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage",
algorithm = "bam",
ncores = 1
)

extractCrossInferenceData
Reshaping the Result of a Cross Spatial Inference to a Dataframe

Description

Reshaping the Result of a Cross Spatial Inference to a Dataframe

Usage
extractCrossInferenceData(
resLs,
QCMetric = "medianMinlIntensity”,

QCThreshold = 0.1

10 functionalGam

Arguments

resLs a list with four objects: i) the dataframe with the spatial statistics results trans-
formed and filtered as used for fitting, ii) the raw spatial statistics results, iii) the
designmatrix of the inference and iv) the fitted pffr object v) the residual stan-
dard error per condition defined as the residual sum of squares divided by the
number of datapoints - sum of the estimated degrees of freedom for the model
parameters as well as other QC metrics

QCMetric the metric to relate the quality of the fit too.
QCThreshold the threshold on the QC metric. Depends on the function used.

Value

a dataframe for plotting with ggplot2

Examples

spe <- .loadExample()

#make the condition a factor variable

colData(spe)[["patient_stage”]] <- factor(colData(spe)[["patient_stage"1])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage”]] <- relevel(colData(spe)[["patient_stage"]1],
"Non-diabetic")

selection <- c("acinar”, "ductal")
resLs <- crossSpatiallnference(spe, selection,
fun = "Gcross”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage”,
algorithm = "bam”,
ncores = 1
)

df <- extractCrossInferenceData(resLs)

functionalGam General additive model with functional response

Description

A function that takes the output of a metric calculation as done by calcMetricPerFov. The data
has to be prepared into the correct format for the functional analysis by the prepData function. The
output is a pffr object as implemented by refund.

Usage

functionalGam(
data,
X,
designmat,
weights,
formula,
family = stats::gaussian(link = "log"),

functionalGam 11

)
Arguments
data a dataframe with the following columns: Y = functional response; sample_id =
sample ID; image_id = image ID;
X the x-axis values of the functional response
designmat a design matrix as defined by model.matrix()
weights weights as the number of points per image. These weights are normalised by the
mean of the weights in the fitting process
formula the formula for the model. The colnames of the designmatrix have to correspond
to the variables in the formula.
family the distributional family as implemented in family.mgcv. For fast computation
the default is set to gaussian with a log link. other interesting options can be
betar and scat
¢ for more information see family.mgcv.
Other parameters passed to pffr
Value

a fitted pffr object which inherits from gam

Examples

load the pancreas dataset

library("tidyr")

library("dplyr")

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

calculate the Gcross metric for alpha and Tc cells

metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross”,
marks = "cell_type"”, rSeq = seq(@, 50, length.out = 50),
c("patient_stage”, "patient_id", "image_number”), ncores = 1
)

metricRes$ID <- paste@(
metricRes$patient_stage,
"|", metricRes$image_number
)
dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage")

uln

, metricRes$patient_id,

#' # drop rows with NA
dat <- dat |> drop_na()

create a designmatrix

condition <- dat$patient_stage

relevel the condition - can set explicit contrasts here
condition <- relevel(condition, "Non-diabetic")
designmat <- model.matrix(~condition)

colnames don't work with the '-' sign
colnames(designmat) <- c(

12 functionalPCA

"(Intercept)"”, "conditionLong_duration”,
"conditionOnset”

)

fit the model

mdl <- functionalGam(
data = dat, x = metricRes$r |> unique(),
designmat = designmat, weights = dat$npoints,
formula = formula(Y ~ conditionLong_duration +

conditionOnset + s(patient_id, bs = "re")),
algorithm = "bam”
)
summary (mdl)
functionalPCA Functional Principal Component Analysis
Description

A function that takes as input the output of calcMetricPerFov which has to be converted into the

correct format by prepData. The output is a list with the fpca. face output from refund.

Usage
functionalPCA(data, r, ...)
Arguments
data a data object for functional data analysis containing at least the functional re-
sponse Y.
r the functional domain
Other parameters passed to fpca. sc functions
Value

a list with components of fpca.sc

Examples

load the pancreas dataset

library("tidyr")

library("stringr")

library("dplyr")

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

calculate the Gcross metric for alpha and Tc cells

metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross”,
marks = "cell_type"”, rSeq = seq(@, 50, length.out = 50),
c("patient_stage"”, "patient_id"”, "image_number"), ncores = 1
)

metricRes$ID <- pasted(
metricRes$patient_stage,
"|", metricRes$image_number

nln

, metricRes$patient_id,

plotCrossFOV 13

)
prepare data for FDA

dat <- prepData(metricRes, "r", "rs")
drop rows with NA
dat <- dat |> drop_na()
create meta info of the IDs
splitData <- str_split(dat$ID, "x")
dat$condition <- factor(sapply(splitData, function(x) x[11))
dat$patient_id <- factor(sapply(splitData, function(x) x[21))
dat$image_id <- factor(sapply(splitData, function(x) x[31))
calculate fPCA
mdl <- functionalPCA(
data = dat, r = metricRes$r |> unique()

)

plotCrossFov Creates a nXn plot of the cross metrics per sample

Description

Helper function for plotCrossMetricPerFov. It applies plotMetricPerFov to all n marks defined
in the variable selection. This gives an nxn plot of all marks.

Usage
plotCrossFOV(
subFov,
theo,
correction,
X,
imageld,
ID = NULL,
ncol = NULL,
nrow = NULL,
legend.position = "none”,
)
Arguments
subFov a subset of the dataframe to the respective fov
theo logical; if the theoretical line should be plotted
correction the border correction to plot
X the x-axis variable to plot
imageld the ID of the image/fov
1D the (optional) ID for plotting combinations
ncol the number of columns for the facet wrap
nrow the number of rows for the facet wrap

legend.position
the position of the legend of the plot
Other parameters passed to ggplot2 functions

14 plotCrossHeatmap

Value

a ggplot object

plotCrossHeatmap Plotting the Result of a Cross Spatial Inference

Description

Plotting the Result of a Cross Spatial Inference

Usage

plotCrossHeatmap(
resLs,
adj.pvalue = "BH",
coefficientsToPlot = NULL,
QCThreshold = 1e-05,

QCMetric = "medianMinIntensity”,
)
Arguments

resLs a list with four objects: i) the dataframe with the spatial statistics results trans-
formed and filtered as used for fitting, ii) the raw spatial statistics results, iii) the
designmatrix of the inference and iv) the fitted pffr object v) the residual stan-
dard error per condition defined as the residual sum of squares divided by the
number of datapoints - sum of the estimated degrees of freedom for the model
parameters as well as other QC metrics

adj.pvalue a pvalue adjustment method as passed to stats::p.adjust defaults to Benjamini-
Hochberg correction of the false discovery rate.

coefficientsToPlot

list of which coefficients to plot in the heatmap defaults to NULL in which case
all coefficients are plotted

QCThreshold the threshold on the Quality control metric. Depends on the function used.
QCMetric the metric to relate the quality of the fit too.

other parameters passed to ggplot2 functions

Value

a ggplot2 object

Examples

spe <- .loadExample()

#make the condition a factor variable

colData(spe)[["patient_stage"”]] <- factor(colData(spe)[["patient_stage”]])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage”]] <- relevel(colData(spe)[["patient_stage”]],
"Non-diabetic")

plotCrossMetricPerFov 15

selection <- c("acinar”, "ductal")
resLs <- crossSpatiallnference(spe, selection,
fun = "Gcross”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage”,
algorithm = "bam”,
ncores = 1
)

p <- plotCrossHeatmap(resLs, adj.pvalue = "BH")

plotCrossMetricPerFov Plot a cross type spatial metric per field of view

Description

This function plots the cross function between two marks output from calcMetricPerFov. It wraps
around helper function and applies this function to all samples.

Usage
plotCrossMetricPerFov(
metricDf,
theo = NULL,
correction = NULL,
x = NULL,
imageId = NULL,
ID = NULL,
nrow = NULL,
ncol = NULL,
legend.position = "none”,
)
Arguments
metricDf the metric dataframe as calculated by calcMetricPerFov
theo logical; if the theoretical line should be plotted
correction the border correction to plot
X the x-axis variable to plot
imagelId the ID of the image/fov
i) the (optional) ID for plotting combinations
nrow the number of rows for the facet wrap
ncol the number of columns for the facet wrap

legend.position
the position of the legend of the plot

Other parameters passed to ggplot2 functions

16

Value

a ggplot object

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()

metricRes <- calcCrossMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross”, marks = "cell_type”,

rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"

)!

ncores = 1

metricRes$ID <- paste@(

metricRes$patient_stage,

)

metricRes <- subset(metricRes, image_number %in% c(138, 139, 140))

lrln

, metricRes$patient_id

p <- plotCrossMetricPerFov(metricRes,

plotFbPlot

theo = TRUE, correction = "rs”,
x = "r", imageIld = "image_number"”, ID = "ID"
)
print(p)
plotFbPlot Functional boxplot of spatstat curves
Description

This function creates a functional boxplot of the spatial statistics curves. It creates one functional
boxplot per aggregation category, e.g. condition.

Usage

plotFbPlot(metricDf, x, y, aggregateBy)

Arguments

metricDf

X

y
aggregateBy

Value

the metric dataframe as calculated by calcMetricPerFov

the name of the x-axis of the spatial metric

the name of the y-axis of the spatial metric

the criterion by which to aggregate the curves into a functional boxplot. Can be

e.g. the condition of the different samples.

a list of base R plots

plotFpca 17

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"
),
ncores = 1
)
create a unique ID for the data preparation
metricRes$ID <- pasted(
metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)

plotFbPlot(metricRes, 'r', 'rs', 'patient_stage')

’ ’

plotFpca Plot a biplot from an fPCA analysis

Description

A function that takes the output from the functionalPCA function and returns a ggplot object of
the first two dimensions of the PCA as biplot.

Usage

plotFpca(data, res, colourby = NULL, labelby = NULL)

Arguments
data a data object for functional data analysis containing at least the functional re-
sponse Y.
res the output from the fPCA calculation
colourby the variable by which to colour the PCA plot by
labelby the variable by which to label the PCA plot by
Value

a list with components of fpca.face

Examples

load the pancreas dataset

library("tidyr")

library("stringr")

library("dplyr")

retrieve example data from Damond et al. (2019)

spe <- .loadExample()

calculate the Gcross metric for alpha and beta cells

18 plotMdI

metricRes <- calcMetricPerFov(spe, c("alpha”, "beta"),
subsetby = "image_number”, fun = "Gcross”,
marks = "cell_type”, rSeq = seq(@, 50, length.out = 50),
c("patient_stage"”, "patient_id"”, "image_number"), ncores = 1
)
metricRes$ID <- paste@(
metricRes$patient_stage, "|", metricRes$patient_id,

uln

)

, metricRes$image_number

prepare data for FDA
dat <- prepData(metricRes, "r", "rs")
drop rows with NA
dat <- dat |> drop_na()
create meta info of the IDs
splitData <- str_split(dat$IiD, "|")
dat$condition <- factor(sapply(splitData, function(x) x[11))
dat$patient_id <- factor(sapply(splitData, function(x) x[2]1))
dat$image_id <- factor(sapply(splitData, function(x) x[31))
calculate fPCA
mdl <- functionalPCA(
data = dat, r = metricRes$r |> unique()

)

p <- plotFpca(
data = dat, res = mdl, colourby = "condition”,
labelby = "patient_id"

)

print(p)

plotMdl Plot a pffr model object
Description

A function that takes a pffr object as calculated in functionalGam and plots the functional coef-
ficients. The functions are centered such that their expected value is zero. Therefore, the scalar
intercept has to be added to the output with the argument shift in order to plot the coefficients in
their original range.

Usage
plotMdl(mdl, predictor, shift = NULL)

Arguments
md1l a pffr model object
predictor predictor to plot
shift the value by which to shift the centered functional intercept. this will most often
be the constant intercept
Value

ggplot object of the functional estimate

plotMetricPerFov 19

Examples

library("tidyr")
library("stringr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number"”, fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"
),
ncores = 1
)
create a unique ID for each row
metricRes$ID <- paste@(
metricRes$patient_stage, "x", metricRes$patient_id,

nyn

x", metricRes$image_number

", n

dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage")

#' # drop rows with NA
dat <- dat |> drop_na()

create a designmatrix

condition <- dat$patient_stage

relevel the condition - can set explicit contrasts here
condition <- relevel(condition, "Non-diabetic")

designmat <- model.matrix(~condition)

colnames don't work with the '-' sign
colnames(designmat) <- c(
"(Intercept)"”, "conditionLong_duration”,
"conditionOnset"
)

fit the model
mdl <- functionalGam(
data = dat, x = metricRes$r |> unique(),
designmat = designmat, weights = dat$npoints,
formula = formula(Y ~ conditionLong_duration +
conditionOnset + s(patient_id, bs = "re")),
algorithm = "bam”
)
summary (mdl)
plotLs <- lapply(colnames(designmat), plotMdl,
mdl = mdl,
shift = mdl$coefficients[["(Intercept)”]1]

plotMetricPerFov Plot a spatial metric per field of view

20 plotMetricPerFov

Description

A function that plots the output of the function calcMetricPerFov. The plot contains one curve
per FOV and makes subplots by samples.

Usage
plotMetricPerFov(
metricDf,
theo = FALSE,
correction = NULL,
x = NULL,
imageId = NULL,
ID = NULL,
nrow = NULL,
ncol = NULL,
legend.position = "none”,
)
Arguments
metricDf the metric dataframe as calculated by calcMetricPerFov
theo logical; if the theoretical line should be plotted
correction the border correction to plot
X the x-axis variable to plot
imageld the ID of the image/fov
ID the (optional) ID for plotting combinations
nrow the number of rows for the facet wrap
ncol the number of columns for the facet wrap

legend.position
the position of the legend of the plot

Other parameters passed to ggplot2 functions

Value

a ggplot object

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"”
),
ncores = 1
)
ceate a unique plotting ID
metricRes$ID <- pasted(

prepData 21

metricRes$patient_stage, "|"”, metricRes$patient_id
)
p <- plotMetricPerFov(metricRes,
correction = "rs", x = "r",
imageld = "image_number”, ID = "ID"
)
print(p)
prepData Prepare data from calcMetricRes to be in the right format for FDA
Description

Prepare data from calcMetricRes to be in the right format for FDA

Usage

prepData(metricRes, x, y, sample_id = NULL, image_id = NULL, condition = NULL)

Arguments
metricRes a dataframe as calculated by calcMetricRes - requires the columns ID (unique
identifier of each row)
X the name of the x-axis of the spatial metric
y the name of the y-axis of the spatial metric
sample_id the spe colData variable to mark the sample
image_id the spe colData variable to mark the image
condition the spe colData variable to mark the condition
Value

returns a list with three entries, the unique ID, the functional response Y and the weights

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha”, "Tc"),
subsetby = "image_number”, fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), by = c(
"patient_stage”, "patient_id",
"image_number"”
),
ncores = 1

)

create a unique ID for each row

metricRes$ID <- paste@(
metricRes$patient_stage,
"|", metricRes$image_number

nln

, metricRes$patient_id,

)
dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",
image_id = "image_number”, condition = "patient_stage")

22 print.fpca

print.fpca print the fPCA results

Description

this is a function that prints a summary of the fPCA result of class fpca

Usage
S3 method for class 'fpca'
print(x, ...)
Arguments
X the result of function functionalPCA
other parameters passed to base generic function print
Value

a formatted overview of the fPCA result

Examples

load the pancreas dataset

library("tidyr")

library("stringr")

library("dplyr")

retrieve example data from Damond et al. (2019)

spe <- .loadExample()

calculate the Gcross metric for alpha and beta cells

metricRes <- calcMetricPerFov(spe, c("alpha”, "beta"),
subsetby = "image_number"”, fun = "Gcross",
marks = "cell_type"”, rSeq = seq(@, 50, length.out = 50),
c("patient_stage"”, "patient_id", "image_number"), ncores = 1
)

metricRes$ID <- paste@(
metricRes$patient_stage,
"|", metricRes$image_number

uln

, metricRes$patient_id,

)
prepare data for FDA
dat <- prepData(metricRes, "r"”, "rs")

drop rows with NA
dat <- dat |> drop_na()

create meta info of the IDs
splitData <- strsplit(dat$ID, "|", fixed = TRUE)
dat$condition <- factor(sapply(splitData, function(x) x[1]))
dat$patient_id <- factor(sapply(splitData, function(x) x[2]))
dat$image_id <- factor(sapply(splitData, function(x) x[31))
calculate fPCA
mdl <- functionalPCA(

data = dat, r = metricRes$r |> unique()

rMaxHeuristic 23

mdl

rMaxHeuristic Heuristic for the choice of rMax

Description

Heuristic for the choice of rtMax

Usage

rMaxHeuristic(spe, subsetby, marks)

Arguments
spe a SpatialExperiment object
subsetby the spe colData variable to subset the data by. This variable has to be provided,
even if there is only one sample.
marks the marks to consider e.g. cell types
Value

a ggplot histogram of the bounding radius of all the

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
p <- rMaxHeuristic(spe,

subsetby = "image_number”, marks = "cell_type”
)
spatialInference Statistical Inference on Spatial Statistics Functions
Description

A function to perform spatial statistical inference on spatial omics data. This function works so far

n.n

only on functions of radius "r".

24 spatiallnference
Usage
spatialInference(
spe,
selection,
fun,
marks = NULL,
rSeq = NULL,
correction,
sample_id,
image_id,
condition,
continuous = FALSE,
assay = "exprs”,
transformation = NULL,
weights = "total”,
eps = NULL,
delta = 0,
family = stats::gaussian(link = "log"),
verbose = TRUE,
ncores = 1,
)
Arguments
spe a SpatialExperiment object
selection the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as c(B,A).
fun the spatstat function to compute on the point pattern object
marks the marks to consider e.g. cell types
rSeq the range of r values to compute the function over
correction the edge correction to be applied
sample_id the spe colData variable to mark the sample, if not NULL this will result in a
mixed model estimation
image_id the spe colData variable to mark the image
condition the spe colData variable to mark the condition
continuous A boolean indicating whether the marks are continuous defaults to FALSE
assay the assay which is used if continuous = TRUE
transformation the transformation to be applied as exponential e.g. 1/2 for sqrt or Fisher’s
variance-stabilising transformation if "Fisher"
weights the weighting to be applied to the functional GAM. Either NULL (equal weights),
total (npoints of total pattern), min (npoints of the smaller subpattern) or max
(npoints of the larger subpattern) or a user defined value of same length as the
number of curves to be estimated
eps some distributional families fail if the response is zero, therefore, zeros can be

replaced with a very small value eps

spatiallnference 25

delta the delta value to remove from the beginning of the spatial statistics functions.
Can be reasonable if e.g. cells are always spaced by 10 um. If set to "minNnDist"
it will take the mean of the minimum nearest neighbour distance across all im-
ages for this cell type pair.

family the distributional family for the functional GAM
verbose logical indicating whether to print all information or not
ncores the number of cores to use for parallel processing, default = 1

Other parameters passed to spatstat.explore functions for parameters con-
cerning the spatial function calculation and to refund: : pffr for the functional
additive mixed model inference

Value

a list with four objects: i) the dataframe with the spatial statistics results transformed and filtered
as used for fitting, ii) the raw spatial statistics results, iii) the designmatrix of the inference and
iv) the fitted pffr object v) the residual standard error per condition defined as the residual sum
of squares divided by the number of datapoints - sum of the estimated degrees of freedom for the
model parameters as well as other QC metrics

Examples

spe <- .loadExample()

#make the condition a factor variable

colData(spe)[["patient_stage”]] <- factor(colData(spe)[["patient_stage"]1])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage”]] <- relevel(colData(spe)[["patient_stage"]1],
"Non-diabetic")

res <- spatiallnference(spe, c("alpha”, "Tc"),
fun = "Gcross"”, marks = "cell_type”,
rSeq = seq(@, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number"”, condition = "patient_stage”,
ncores = 1,
algorithm = "bam”

Index

.dfToppp, 2
.extractMetric, 3
.loadExample, 4
.speToDf, 5

calcCrossMetricPerFov, 5
calcMetricPerFov, 6
crossSpatialInference, 8

extractCrossInferenceData, 9

functionalGam, 10
functionalPCA, 12

plotCrossFOv, 13
plotCrossHeatmap, 14
plotCrossMetricPerFov, 15
plotFbPlot, 16
plotFpca, 17

plotMdl, 18
plotMetricPerFov, 19
prepData, 21
print.fpca, 22

rMaxHeuristic, 23

spatialInference, 23

26

	.dfToppp
	.extractMetric
	.loadExample
	.speToDf
	calcCrossMetricPerFov
	calcMetricPerFov
	crossSpatialInference
	extractCrossInferenceData
	functionalGam
	functionalPCA
	plotCrossFOV
	plotCrossHeatmap
	plotCrossMetricPerFov
	plotFbPlot
	plotFpca
	plotMdl
	plotMetricPerFov
	prepData
	print.fpca
	rMaxHeuristic
	spatialInference
	Index

