Package ‘segmentSeq’

January 20, 2026

Type Package

Title Methods for identifying small RNA loci from high-throughput
sequencing data

Version 2.44.0
Date 2025-07-23

Description
High-throughput sequencing technologies allow the production of large volumes of short se-
quences, which can be aligned to the genome to create a set of matches to the genome. By look-
ing for regions of the genome which to which there are high densities of matches, we can in-
fer a segmentation of the genome into regions of biological significance. The meth-
ods in this package allow the simultaneous segmentation of data from multiple samples, tak-
ing into account replicate data, in order to create a consensus segmentation. This has obvious ap-
plications in a number of classes of sequencing experiments, particularly in the discov-
ery of small RNA loci and novel mRNA transcriptome discovery.

License GPL-3
LazyLoad yes

Depends R (>=3.0.0), methods, baySeq (>= 2.9.0), S4Vectors, parallel,
GenomicRanges, ShortRead, stats

Suggests BiocStyle, BiocGenerics, knitr, rmarkdown

Imports Rsamtools, IRanges, Seqinfo, graphics, grDevices, utils, abind

biocViews MultipleComparison, Sequencing, Alignment,
DifferentialExpression, QualityControl, Datalmport

URL https://github.com/samgg/segmentSeq

BugReports https://github.com/samgg/segmentSeq/issues
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/segmentSeq
git_branch RELEASE_3_22

git_last_commit cab2d96

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Thomas J. Hardcastle [aut],
Samuel Granjeaud [cre] (ORCID: <https://orcid.org/0000-0001-9245-1535>)

Maintainer Samuel Granjeaud <samuel.granjeaud@inserm.fr>

1

https://github.com/samgg/segmentSeq
https://github.com/samgg/segmentSeq/issues
https://orcid.org/0000-0001-9245-1535

2 segmentSeq-package

Contents
segmentSeq-package e e 2
alignmentClass-class 4
alignmentData-class oL 5
alignmentMeth-class 6
averageProfiles 7
classifySeg e e 9
findChunks e 10
getCounts e 12
getOverlaps L e e 13
GIVeNEXPIession e e e 15
heuristicSeg e e e e 15
I 18
lociData-class e 18
lociLikelihoods 19
mergeMethSegs L 21
methData-class L 22
normaliseNC e 23
plotGenome L e e e e e 24
plotMeth e 25
plotMethDistribution L. 26
processAD 27
readMethods 29
readMeths 31
segClass-class L e 32
segData-class e 33
segMeth-class L 34
selectloci 35
SL e 36
summariseLoCi L. e e e 37
thresholdFinder L 37

Index 39

segmentSeq-package Segmentation of the genome based on multiple samples of high-
throughput sequencing data.
Description

The segmentSeq package is intended to take multiple samples of high-throughput data (together
with replicate information) and identify regions of the genome which have a (reproducibly) high
density of tags aligning to them. The package was developed for use in identifying small RNA
precursors from small RNA sequencing data, but may also be useful in some mRNA-Seq and chIP-
Seq applications.

segmentSeq-package 3

Details
Package: segmentSeq
Type: Package
Version: 0.0.2
Date: 2010-01-20

License: GPL-3
LazyLoad: yes
Depends: baySeq, ShortRead

To use the package, we construct an alignmentData object from sets of alignment files using either
the readGeneric function to read text files or the readBAM function to read from BAM format files.

We then use the processAD function to identify all potential subsegments of the data and the num-
ber of tags that align to these subsegments. We then use either a heuristic or empirical Bayesian
approach to segment the genome into ‘loci’ and ‘null’ regions. We can then acquire posterior like-
lihoods for each set of replicates which tell us whether a region is likely to be a locus or a null in
that replicate group.

The segmentation is designed to be usable by the baySeq package to allow differential expression
analyses to be carried out on the discovered loci.

The package (optionally) makes use of the snow’ package for parallelisation of computationally
intensive functions. This is highly recommended for large data sets.

See the vignette for more details.

Author(s)

Thomas J. Hardcastle

Maintainer: Thomas J. Hardcastle <tjh48 @cam.ac.uk>

References

Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

baySeq
Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c(”SL9.txt”, "SL10@.txt", "SL26.txt"”, "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

4 alignmentClass-class

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, gap = 100, cl = NULL)

alignmentClass-class Class "alignmentClass"

Description

The alignmentClass class records information about a set of alignments of high-throughput se-
quencing data to a genome.

Slots

alignments: Object of class "GRanges". Stores information about the alignments. See Details.

libnames: Object of class "character”. The names of the libraries for which alignment data
exists.

replicates: Object of class "factor”. Replicate information for each of the libraries. See De-
tails.

Details

The alignments slot is a GRanges object defining the location of aligned objects to a reference
genome.

The replicates slot is a vector of factors such that the ith sample is a replicate of the jth sample if
and only if @replicates[i] == @replicates[j].

The 1libnames slot is a vector defining the names of the libraries described by the object.

Methods

[signature(x = "alignmentClass"): ...
dim signature(x ="alignmentClass"): ...
initialize signature(.Object ="alignmentClass"): ...

show signature(object = "alignmentClass"”): ...

Author(s)

Thomas J. Hardcastle

See Also

alignmentData alignmentMeth

alignmentData-class 5

alignmentData-class Class "alignmentData"

Description

The alignmentData class inherits from the alignmentClass class and records information about
a set of alignments of high-throughput sequencing data to a genome. Details include the alignments
themselves, the chromosomes of the genome to which the data are aligned, and counts of the aligned
tags from each of the libraries from which the data come.

Objects from the class

Objects can be created by calls of the form new("alignmentData"”, ...), but more usually by
using one of readBAM or readGeneric functions to generate the object from a set of alignment
files.

Slots

alignments: Object of class "GRanges". Stores information about the alignments. See Details.

replicates: Object of class "factor”. Replicate information for each of the libraries. See De-
tails.

data: Object of class "matrix”. For each alignment described in the alignments slot, contains
the number of times the alignment is seen in each sample.

libnames: Object of class "character”. The names of the libraries for which alignment data
exists.

libsizes: Object of class "numeric”. The library sizes (see Details) for each of the libraries.

Details

The alignments slot is the key element of this class. This is a GRanges object that, in addition to
the usual elements defining the location of aligned objects to a reference genome, also describes
the values ‘tag’, giving the sequence of the tag aligning to the location, ‘matches’, indicating in
how many places that tag matches to the genome, ‘chunk’, an identifier for the sets of tags that
align close enough together to form a potential locus, and ‘chunkDup’, indicating whether that tag
matches to multiple places within the chunk.

The library sizes, defined in the 1ibsizes slot, provide some scaling factor for the observed number
of counts of a tag in different samples.

The replicates slot is a vector of factors such that the ith sample is a replicate of the jth sample if
and only if @replicates[i] == @replicates[j].
Methods

[signature(x = "alignmentData"): ...
dim signature(x = "alignmentData"): ...
initialize signature(.Object ="alignmentData"): ...

show signature(object = "alignmentData”): ...

Author(s)

Thomas J. Hardcastle

6 alignmentMeth-class

See Also

alignmentClass, the class from which 'alignmentData' inherits. readGeneric, which will
produce a 'alignmentData' object from appropriately formatted tab-delimited files. readBAM,
which will produce a 'alignmentData’ object from BAM files. processAD, which will convert an
'alignmentData' object into a ’segData’ object for segmentation.

Examples

Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames)

alignmentMeth-class Class "alignmentMeth"

Description

The alignmentMeth class inherits from the alignmentClass class and records information about
a set of alignments of high-throughput sequencing data to a genome. Details include the alignments
themselves, the chromosomes of the genome to which the data are aligned, and counts of the aligned
tags from each of the libraries from which the data come.

Objects from the Class

Objects can be created by calls of the form new("alignmentMeth”, ...), but more usually by
using one of readBAM or readGeneric functions to generate the object from a set of alignment
files.

Slots

alignments: Object of class "GRanges". Defines the location of sequenced cytosines, amongst
other data. See Details.

libnames: Object of class "character”. The names of the libraries for which alignment data
exists.

replicates: Object of class "factor”. Replicate information for each of the libraries. See De-
tails.

Cs: Object of class "matrix”. For each cytosine described in the alignments slot, contains the
number of times the cytosine is sequenced as a *’C’, and is thus methylated.

averageProfiles 7

Ts: Object of class "matrix"”. For each cytosine described in the alignments slot, contains the
number of times the cytosine is sequenced as a *T’, and is thus unmethylated.

nonconversion: Object of class "numeric”. The (estimated) nonconversion rate (see Details) for
each of the libraries.

Details

The nonconversion slot is an estimate of the rate (for each library) at which an unmethylated cyto-
sine has failed to be converted by sodium bisulphite treatment into thymine, and is thus recorded
(incorrectly) as methylated. In some cases, this can be estimated from considering observed methy-
lation rates on regions known to be unmethylated (e.g., chloroplasts) or by introducing unmethylated
control sequences.

The replicates slot is a vector of factors such that the ith sample is a replicate of the jth sample if
and only if @replicates[i] == @replicates[j].
Methods

[signature(x = "alignmentMeth"): ...
dim signature(x ="alignmentMeth"): ...
initialize signature(.Object ="alignmentMeth"): ...

show signature(object = "alignmentMeth"): ...

Author(s)

Thomas J. Hardcastle

See Also

alignmentClass, the class from which 'alignmentMeth' inherits. readMeths, which will pro-
duce a 'alignmentMeth' object from files generated by the YAMA aligner. processAD, which
will convert an 'alignmentMeth' object into a ’segData’ object for segmentation.

averageProfiles Computes and plots the average distribution of aligned reads (taken
from an alignmentData object) or methylation (taken from an align-
mentMeth object) over a set of coordinates (and optionally the sur-
rounding regions).

Description

Given an alignmentData or alignmentMeth object and a set of coordinates, plots the average dis-
tribution of coverage/methylation over those coordinates. The plotted distributions can be split up
into different sample groups by the user.

Usage
averageProfiles(mD, samples, coordinates, cuts, maxcuts = 200, bw =
5000, surrounding = @, add = FALSE, col, ylim, meanOnly = TRUE, plot =

TRUE, ...)
plotAverageProfile(position, profiles, col, surrounding, ylim, add =
FALSE, meanOnly = TRUE, legend = TRUE, titles, ...)

Arguments

mD

samples

coordinates

cuts

maxcuts

bw

surrounding

add

col

ylim

meanOnly

plot

position

profiles

legend

titles

Value

averageProfiles

The alignmentData or alignmentMeth object defining the coverage or methy-
lation on the genome.

A factor or list defining the different groups of samples for which to plot differ-
ent distributions. If a list, each member should consist of integer values defining
the column numbers of the 'mD’ object. If missing, will use the mD @replicates
value.

A GRanges object defining the coordinates of interest (e.g. genic regions).

Optionally, the number of subdivisions to cut the coordinates in when calculat-
ing the average coverage/methylation density.

The maximum number of subdivisions permitted when calculating the average
coverage/methylation density.

If "cuts’ is missing, this factor divides the product of the length of the ’coordi-
nates’ object and the median width of the coordinates to defines the number of
cuts (minimum twenty cuts).

If non-zero, the size of the region up- and down-stream of the given coordinates
for which average coverage/methylation should also be calculated.

If TRUE, the plotted distribution will be added to the current plot.

If given, a vector of colours for each of the groups defined in ’samples’. Defaults
to rainbow(length(samples))’.

See ‘ylim’ option for plot. If missing, will be calculated from data.

If TRUE, the mean methylation profile for each member of the ’samples’ pa-
rameter is plotted on a single graph. If FALSE, every 5th percentile is plotted
for each member of the sample parameters, each on a separate graph.

Should the profile be plotted? Defaults to TRUE.

A vector describing the position of each point to be plotted. Take from the
‘$position’ element in the list object returned by ‘averageProfiles’.

A matrix describing the profiles to be plotted. Take from the ‘$profiles element
in the list object returned by ‘averageProfiles’.

If TRUE, a legend describing the samples is included on the plot.
If given, and ‘meanOnly = FALSE’, a vector of titles for the quantile plots.

Additional arguments to be passed to the ’plotAverageProfile’ function, and
hence to the "plot’ or ’lines’ methods.

Invisibly, a list containing the coordinates of the lines plotted.

Author(s)

Thomas J. Hardcastle

classifySeg 9

classifySeg A method for defining a genome segment map by an empirical
Bayesian classification method

Description

This function acquires empirical distributions of sequence tag density from an already existing (or
heuristically defined) segment map. It uses these to classify potential segments as either segments
or nulls in order to define a new (and improved) segment map.

Usage

classifySeg(sD, cD, aD, lociCutoff = 0.9, nullCutoff = 0.9, subRegion =
NULL, getlLikes = TRUE, 1R = FALSE, samplesize = 1e5, largeness = 1e8,
tempDir = NULL, recoverFromTemp = FALSE, cl)

Arguments

sD A segData object derived from the ‘aD’ object.

cD A lociData object containing an already existing segmentation map, or NULL.

aD An alignmentData object.

lociCutoff The minimum posterior likelihood of being a locus for a region to be treated as
alocus.

nullCutoff The minimum posterior likelihood of being a null for a region to be treated as a
null.

subRegion A data.frame object defining the subregions of the genome to be segmented.
If NULL (default), the whole genome is segmented.

getlLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?

1R If TRUE, locus and null calls are made on the basis of likelihood ratios rather
than posterior likelihoods. Not recommended.

samplesize The sample size to be used when estimating the prior distribution of the data
with the getPriors.NB function.

largeness The maximum size for a split analysis.

tempDir A directory for storing temporary files produced during the segmentation.

recoverFromTemp
If TRUE, will attempt to recover the position saved in "tempDir’. Defaults to
FALSE. See Details.

cl A SNOW cluster object, or NULL. See Details.

Details

This function acquires empirical distributions of sequence tag density from the segmentation map
defined by the ‘cD’ argument (if ‘cD’ is NULL or missing, then the heuristicSeg function is used
to define a segmentation map. It uses these empirical distributions to acquire posterior likelihoods
on each potential segment being either a true segment or a null region. These posterior likelihoods
are then used to define the segment map.

If recoverFromTemp = TRUE, the function will attempt to recover a crashed position from the tem-
porary files in tempDir. At present, the function assumes you know what you are doing, and will
perform no checking that these files are suitable for the specified recovery. Use with caution.

10 findChunks

Value

A lociData object, containing the segmentation map discovered.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

heuristicSeg a fast heuristic alternative to this function. plotGenome, a function for plotting the
alignment of tags to the genome (together with the segments defined by this function). baySeq, a
package for discovering differential expression in lociData objects.

Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an “alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Process the alignmentData object to produce a “segData' object.
sD <- processAD(alignData, gap = 100, cl = NULL)
Use the classifySeg function on the segData object to produce a lociData object.

pS <- classifySeg(aD = alignData, sD = sD,
subRegion = data.frame(chr = ">Chr1"”, start = 1, end = 1e5), getLikes = TRUE, cl = NULL)

findChunks Identifies ‘chunks’ of data within a set of aligned reads.

Description

This function identifies chunks of data within a set of aligned reads by looking for gaps within the
alignments; regions where no reads align. If we assume that a locus should not contain a gap of
sufficient length, then we can separate the analysis of the data into chunks defined by these gaps,
reducing the complexity of the problem of segmentation.

findChunks 11

Usage
findChunks(alignments, gap, checkDuplication = TRUE, justChunks = FALSE)

Arguments
alignments A GRanges object defining a set of aligned reads.
gap The minimum length of a gap across which it is assumed that no locus can exist.
checkDuplication
Should we check whether or not reads are duplicated within a chunk? Defaults
to TRUE.
justChunks If TRUE, returns a vector of the chunks rather than the GRanges object with
chunks attached. Defaults to FALSE.
Details

This function is called by the readGeneric and readBAM functions but may usefully be called again
if filtering of an 1inkS4class{alignmentData} object has altered the data present, or to increase
the computational effort required for subsequent analysis. The lower the ‘gap’ parameter used to
define the chunks, the faster (though potentially less accurate) any subsequent analyses will be.

Value

A modified GRanges object, now containing columns ‘chunk’ and ‘chunkDup’ (if ’checkDuplica-
tion’ is TRUE), identifying the chunk to which the alignment belongs and whether the alignment of
the tag is duplicated within the chunk respectively.

Author(s)

Thomas J. Hardcastle
Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Read the files to produce an ~alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Filter the data on number of matches of each tag to the genome
alignData <- alignDatalvalues(alignData@alignments)$matches < 5,]
Redefine the chunking structure of the data.

alignData <- findChunks(alignData@alignments, gap = 100)

12 getCounts

getCounts Gets counts from alignment data from a set of genome segments.

Description

A function for extracting count data from an alignmentData object given a set of segments defined
on the genome.

Usage

getCounts(segments, aD, preFiltered = FALSE, adjustMultireads = TRUE,
useChunk = FALSE, cl)

Arguments
segments A GRanges object which defines a set of segments for which counts are required.
aD An alignmentData object.
prefFiltered The function internally cleans the data; however, this may not be needed and
omitting these steps may save computational time. See Details.
adjustMultireads
If working with methylation data, this option toggles an adjustment for reads
that align to multiple locations on the genome. Defaults to TRUE.
useChunk If all segments are within defined ‘chunks’ of the alignmentData object, speed
increases if this is set to TRUE. Otherwise, counts may be inaccurate. Defaults
to FALSE.
cl A SNOW cluster object, or NULL. See Details.
Details

The function extracts count data from alignmentData object aD’ given a set of segments. The
non-trivial aspect of this function is that at a segment which contains a tag that matches to multiple
places in that segment (and thus appears multiple times in the alignmentData object) should count
it only once.

If preFiltered = FALSE then the function allows for missing (NA) data in the segments, unordered
segments and duplicated segments. If the segment list has no missing data, is already ordered, and
contains no duplications, then computational time can be saved by setting preFiltered = TRUE.

A cluster object (package: snow) is recommended for parallelisation of this function when using
large data sets. Passing NULL to this variable will cause the function to run in non-parallel mode.

In general, this function will probably not be accessed by the user as the processAD function in-
cludes a call to getCounts as part of the standard processing of an alignmentData object into a
segData object.

Value

If ‘as.matrix’, a matrix, each column of which corresponds to a library in the alignmentData object
‘aD’ and each row to the segment defined by the corresponding row in ‘segments’. Otherwise an
equivalent DataFrame object.

getOverlaps 13

Author(s)

Thomas J. Hardcastle

See Also

processAD
Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c(”SL9.txt”, "SL10@.txt"”, "SL26.txt"”, "SL32.txt")

Establish the library names and replicate structure.

libnames <- c(”SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Get count data for three arbitrarily chosen segments on chromosome 1.
getCounts(segments = GRanges(segnames = c(">Chr1"),

IRanges(start = ¢(1,100,2000), end = c(40,3000,5000))),
aD = alignData, cl = NULL)

getOverlaps Identifies overlaps between two sets of genomic coordinates

Description

This function identifies which of a set of genomic segments overlaps with another set of coordi-
nates; either with partial overlap or with the segments completely contained within the coordinates.
The function is used within the ‘segmentSeq’ package for various methods of constructing a seg-
mentation map, but may also be useful in downstream analysis (e.g. annotation analyses).

Usage

getOverlaps(coordinates, segments, overlapType = "overlapping”,
whichOverlaps = TRUE, ignoreStrand = FALSE, cl)

Arguments
coordinates A GRanges object defining the set of coordinates with which the segments may
overlap.
segments A GRanges object defining the set of segments which may overlap within the

coordinates.

14 getOverlaps

overlapType Which kind of overlaps are being sought? Can be one of ‘overlapping’, ‘con-
tains’ or ‘within’. See Details.

whichOverlaps If TRUE, returns the ‘segments’ overlapping with the ‘coordinates’. If FALSE,
returns a boolean vector specifying which of the ‘coordinates’ overlap with the
‘segments’.

ignoreStrand If TRUE, a segment may overlap a set of coordinates regardless of the strand the
two are on. If FALSE, overlaps will only be identified if both are on the same
strand (or if either has no strand specified). Defaults to FALSE.

cl A SNOW cluster object, or NULL. See Details.

Details

If overlapType = "overlapping” then any overlap between the ‘coordinates’ and the ‘segments’
is sufficient. If overlapType = "contains” then a region defined in ‘coordinates’ must completely
contain at least one of the ‘segments’ to count as an overlap. If overlapType = "within"” then a
region defined in ‘coordinates’ must be completely contained by at least one of the ‘segments’ to
count as an overlap.

A 'cluster' object (package: snow) may usefully be used for parallelisation of this function when
examining large data sets. Passing NULL to this variable will cause the function to run in non-
parallel mode.

Value

If whichOverlaps = TRUE, then the function returns a list object with length equal to the number of
rows of the ‘coordinates’ argument. The ‘i’th member of the list will be a numeric vector giving the
row numbers of the ‘segments’ object which overlap with the ‘i’th row of the ‘coordinates’ object,
or NA if no segments overlap with this coordinate region.

If whichOverlaps = FALSE, then the function returns a boolean vector with length equal to the num-
ber of rows of the ‘coordinates’ argument, indicating which of the regions defined in coordinates
have the correct type of overlap with the ‘segments’.

Author(s)

Thomas J. Hardcastle
Examples
Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1e6)
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c(”SL9.txt”, "SL10@.txt", "SL26.txt"”, "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an ~alignmentData' object.

givenExpression 15

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Find which tags overlap with an arbitrary set of coordinates.

getOverlaps(coordinates = GRanges(segnames = c(">Chr1"),
IRanges(start = c(1,100,2000), end = c(40,3000,5000))),
segments = alignData@alignments, overlapType = "overlapping”,
whichOverlaps = TRUE, cl = NULL)

givenExpression Adjusts posterior likelihoods of differential expression by the likeli-
hood that a locus is expressed.

Description

For certain types of differential behaviour, the likelihood of difference can be high even for regions
for which the likelihood that the region represents a true locus is low in all replicate groups. This
function corrects the likelihood of differential behaviour by the likelihood that the locus is expressed
in at least one replicate group.

Usage

givenExpression(cD)
Arguments

cD A lociData object with computed posteriors and locLikelihoods.
Value

A lociData object with updated posteriors.

Author(s)

Thomas J. Hardcastle

heuristicSeg A (fast) heuristic method for creation of a genome segment map.

Description

This method identifies by heuristic methods a set of loci from a segData or segMeth object. It does
this by identifying within replicate groups regions of the genome that satisfy the criteria for being
a locus and have no region within them that satisfies the criteria for being a null. These criteria can
be defined by the user or inferred from the data.

Usage

heuristicSeg

heuristicSeg(sD, aD, gap = 50, RKPM = 1000, prop, coverage = 1, locCutoff =
0.9, nullCutoff = 0.9, subRegion = NULL, largeness = 1e8, getlLikes =

TRUE, verbose = TRUE, tempDir = NULL, cl = NULL, recoverFromTemp =

FALSE, trimMeth = FALSE)

Arguments

aD An alignmentData or methData object.

sD A segData or segMeth object derived from the ‘aD’ object.

gap What is the minimum length of a null region?

RKPM For analysis of a segData object, what RKPM (reads per kilobase per million
reads) distinguishes between a locus and a null region?

prop For analysis of a segMeth object, what proportion of methylated cytosines dis-
tinguishes between a locus and a null region? (see Details).

coverage For analysis of a segMeth object, what is the minimum coverage required to
make inferences on the presence/absense of a methylation locus?

locCutoff For analysis of a segMeth object, with what likelihood must the proportion of
methylated cytosines exceed the ‘prop’ option to define a locus? Defaults to 0.9.

nullCutoff For analysis of a segMeth object, with what likelihood must the proportion of
methylated cytosines be less than the ‘prop’ option to define a null region? De-
faults to 0.9.

subRegion A 'data.frame' object defining the subregions of the genome to be segmented.
If NULL (default), the whole genome is segmented.

largeness The maximum size for a split analysis.

getLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?

verbose Should the function be verbose? Defaults to TRUE.

tempDir A directory for storing temporary files produced during the segmentation.

cl A SNOW cluster object, or NULL. Defaults to NULL. See Details.

recoverFromTemp
If TRUE, will attempt to recover the position saved in ‘tempDir’. Defaults to
FALSE. See Details.

trimMeth Should putative methylation regions be trimmed? Defaults to FALSE; see De-
tails.

Details

A 'cluster' object (package: snow) may be used for parallelisation of parts of this function when
examining large data sets. Passing NULL to this variable will cause the function to run in non-
parallel mode.

If recoverFromTemp = TRUE, the function will attempt to recover a crashed position from the tem-
porary files in tempDir. At present, the function assumes you know what you are doing, and will
perform no checking that these files are suitable for the specified recovery. Use with caution.

The prop variable can be used to set the proportion of methylation required to identify a locus
by giving a numerical value between 0-1. It can also be determined automatically (see thresh-
oldFinder).

heuristicSeg 17

Due to the way that methylation loci are identified, it is possible that the cytosines at the edges
of methylation loci have limited evidence for methylation. The ’trimMeth’ option trims cytosines
at the edge of predicted methylation loci that have less than 50% likelihood of being above the
required threshold.

Value

A lociData object, containing count information on all the segments discovered.

Author(s)

Thomas J. Hardcastle

References
Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

classifySeg, an alternative approach to this problem using an empirical Bayes approach to clas-
sify segments. thresholdFinder, a function for determining a suitable threshold on methylation
by examining the data. plotGenome, a function for plotting the alignment of tags to the genome (to-
gether with the segments defined by this function). baySeq, a package for discovering differential
expression in lociData objects.

Examples

Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an ~alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Process the alignmentData object to produce a “segData' object.
sD <- processAD(alignData, gap = 100, cl = NULL)

Use the segData object to produce a segmentation of the genome.
segD <- heuristicSeg(sD = sD, aD = alignData, prop = 0.2,

subRegion = data.frame(chr = ">Chr1", start = 1, end = 1e5),
cl = NULL)

18 lociData-class

hsL Preprocessed ’lociData’ object containing likelihoods of methylation
at each locus.

Description
This is the preprocessed (to save computational time) "lociData’ object described in the vignette
’segmentSeq: methods for detecting methylation loci and differential methylation’.

Usage
data(hSL)

Format

A ’lociData’ object.

Source

See vignette.

lociData-class Class "lociData"

Description

The lociData class is based on the countData class defined in the ‘baySeq’ package, but includes
a ‘coordinates’ slot giving the coordinates of genomic loci and a ‘locLikelihoods’ slot which con-
tains the estimated likelihoods that each annotated region is a locus in each replicate group and a
coordinates structure giving the locations of the loci.

Slots
locLikelihoods: Object of class "matrix” describing estimated likelihoods that each region de-
fined in ‘coordinates’ is a locus in each replicate group.
coordinates: Object of class "GRanges" defining the coordinates of the genomic loci.
data: Object of class "matrix” defining count data for each locus defined in ‘coordinates’
replicates: Object of class "factor” defining the replicate structure of the data.

groups: Object of class "list"” defing the group (model) structure of the data (see the baySeq
package).

annotation: Object of class "data. frame” giving any additional annotation information for each
locus.

priorType: Object of class "character” describing the type of prior information available in slot
'priors’'.

priors: Object of class "1ist" defing the prior parameter information. Calculated by the baySeq
package.

posteriors: Objectof class "matrix” giving the estimated posterior likelihoods for each replicate
group. Calculated by the baySeq package.

lociLikelihoods 19

nullPosts: Object of class "numeric” which, if calculated, defines the posterior likelihoods for
the data having no true expression of any kind. Calculated by the baySeq package.

estProps: Object of class "numeric” giving the estimated proportion of tags belonnging to each
group. Calculated by the baySeq package.

cellObservables A list object containing arrays of identical dimension to that in the ‘@data’
slot. These arrays define some observed characteristic of the data (e.g., GC content of SRNAs)
which may be used in analysis.

rowObservables A list object containing arrays with first dimension identical to the number of
rows in the ‘@data’ slot. These arrays define some observed characteristic of the data (e.g.,
genomic length of the region) which may be used in analysis.

sampleObservables A list object containing arrays with first dimension identical to the number
of columns of the ‘@data’ slot. These arrays define some observed characteristic of the data
(e.g., library scaling factor) which may be used in analysis.

Extends

Class "countData”, directly.

Methods

Methods ‘new’, ‘dim’, ‘[’, ‘¢’ and ‘show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

locilLikelihoods Evaluates the posterior likelihoods of each region defined by a seg-
mentation map as a locus.

Description

An empirical Bayesian approach that takes a segmentation map and uses this to bootstrap posterior
likelihoods on each region being a locus for each replicate group.

Usage

locilLikelihoods(cD, aD, newCounts = FALSE, bootStraps = 3,
inferNulls = TRUE, nasZero = FALSE, usePosteriors =
TRUE, tail = 0.1, subset = NULL, cl)

Arguments
cD A lociData object that defines a segmentation map.
aD An alignmentData object.
newCounts Should new counts be evaluated for the segmentation map in ‘cD’ before calcu-
lating loci likelihoods? Defaults to FALSE
bootStraps What level of bootstrapping should be carried out on the inference of posterior

likelihoods? See the baySeq function getlLikelihoods.NB for a discussion of
bootstrapping.

20

inferNulls

nasZero

usePosteriors

tail

subset
cl

Details

lociLikelihoods

Should null regions be inferred from the gaps between segments defined by the
‘cD’ object?

If FALSE, any locus with a posterior likelihood ‘NA’ in the existing segmenta-
tion map is treated as a null region for the first bootstrap; If TRUE, it is ignored
for the first bootstrap.

If TRUE, the function uses the existing likelihoods to weight the prior estimation
of parameters. Defaults to TRUE.

The cutoff for the tail of the distribution to be used in pre-calculating data for
methylation analysis. See methObservables.

A subset of the data on which to calculate the likelihoods.
A SNOW cluster object, or NULL. See Details.

A 'cluster' object (package: snow) may be used for parallelisation of this function when exam-
ining large data sets. Passing NULL to this variable will cause the function to run in non-parallel

mode.

Value

A lociData object.

Author(s)

Thomas J. Hardcastle

Examples

Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an ~alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Process the alignmentData object to produce a “segData' object.

sD <- processAD(alignData, gap = 100, cl = NULL)

Use the segData object to produce a segmentation of the genome, but
without evaluating posterior likelihoods.

segD <- heuristicSeg(sD = sD, aD = alignData,

subRegion =

getlLikes =

data.frame(chr= ">Chr1”, start = 1, end = 1e5),
FALSE, cl = NULL)

mergeMethSegs 21

Use the lociData function to evaluate the posterior likelihoods directly.

lociData <- locilLikelihoods(segD, aD = alignData, bootStraps = 5,
inferNulls = TRUE, cl = NULL)

mergeMethSegs Merges neighbouring methylation loci with the same pattern of expres-
sion.

Description
Within a region of cytosine methylation, there may be some cytosines which show no evidence
of methylation. The presence of these cytosines may lead to the region being split into multiple

methylation loci. This function merges neighbouring loci if the pattern of expression is the same in
each locus, and if they are not separated by too great a genomic distance.

Usage

mergeMethSegs(segs, aD, gap, cl)

Arguments
segs A methData object defining the loci to be merged.
aD An alignmentMeth object from which the loci have been derived.
gap The maximum gap below which neighbouring loci may be merged.
cl A cluster object, or NULL.

Value

An object of type methData.

Author(s)

Thomas J. Hardcastle

See Also

methData

22

methData-class

methData-class Class "methData"

Description

The methData class is based on the countData class defined in the ‘baySeq’ package, but includes
a ‘coordinates’ slot giving the coordinates of genomic loci and a ‘locLikelihoods’ slot which con-
tains the estimated likelihoods that each annotated region is a locus in each replicate group and a
coordinates structure giving the locations of the loci.

Slots

locLikelihoods: Object of class "matrix” describing estimated likelihoods that each region de-
fined in ‘coordinates’ is a locus in each replicate group.

coordinates: Object of class "GRanges" defining the coordinates of the genomic loci.

data: Object of class "matrix” defining the number of methylated cytosines observed for each
locus defined in ‘coordinates’

data: Object of class "matrix” defining the number of un-methylated cytosines observed for each
locus defined in ‘coordinates’

replicates: Object of class "factor” defining the replicate structure of the data.

groups: Object of class "list"” defing the group (model) structure of the data (see the baySeq
package).

annotation: Object of class "data.frame"” giving any additional annotation information for each
locus.

priorType: Object of class "character” describing the type of prior information available in slot
'priors’'.

priors: Object of class "1ist"” defing the prior parameter information. Calculated by the baySeq
package.

posteriors: Objectof class "matrix” giving the estimated posterior likelihoods for each replicate
group. Calculated by the baySeq package.

nullPosts: Object of class "numeric” which, if calculated, defines the posterior likelihoods for
the data having no true expression of any kind. Calculated by the baySeq package.

estProps: Object of class "numeric” giving the estimated proportion of tags belonnging to each
group. Calculated by the baySeq package.

cellObservables A list object containing arrays of identical dimension to that in the ‘@data’
slot. These arrays define some observed characteristic of the data (e.g., GC content of SRNAs)
which may be used in analysis.

rowObservables A list object containing arrays with first dimension identical to the number of
rows in the ‘@data’ slot. These arrays define some observed characteristic of the data (e.g.,
genomic length of the region) which may be used in analysis.

sampleObservables A list object containing arrays with first dimension identical to the number
of columns of the ‘@data’ slot. These arrays define some observed characteristic of the data
(e.g., nonconversion rates) which may be used in analysis.

Extends

Class "countData”, directly.

normaliseNC 23

Methods

Methods ‘new’, ‘dim’, ‘[” and ‘show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

normaliseNC A function providing adjustment of cytosine methylated/unmethylated
counts based on a nonconversion rate.

Description

This function adjusts the observed cytosine methylated/unmethylated counts at each cytosine site
based on the reported nonconversion rates for each samples.

Usage

normaliseNC(mD, nonconversion)

Arguments

mD Either an alignmentMeth or segMeth object, or a lociData object (for which
nonconversion must be explicitly supplied).

nonconversion A vector defining nonconversion rates for each sample, required if a lociData
object is supplied in ‘mD’ and ignored otherwise.

Details

This function operates by estimating the expected number of unconverted cytosines at each site and
subtracting this from the reported methylated cytosines and adding to the reported unmethylated cy-
tosines. It should not be used on data that will be analysed in a way that accounts for nonconversion;
e.g., using the ‘bbNCDist’ densityFunction object.

Value

A modified version of the object supplied as ‘mD’.

Author(s)

Thomas J. Hardacastle

References

Hardcastle T.J. Discovery of methylation loci and analyses of differential methylation from repli-
cated high-throughput sequencing data. bioRxiv (http://dx.doi.org/10.1101/021436)

24 plotGenome

Examples

datadir <- system.file("extdata”, package = "segmentSeq")
files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls.gz",
"short_Sample_17A_trimmed.fastq_CG_methCalls.gz",
"short_13_C24_col_trim.fastq_CG_methCalls.gz",
"short_Sample_28_trimmed.fastq_CG_methCalls.gz")

mD <- readMeths(files = files, dir = datadir,
libnames = c("A1”, "A2", "B1”, "B2"), replicates = c(”A”,"A","B","B"),
nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))

mD <- normaliseNC(mD)

plotGenome Plots the alignment of sequence tags on the genome given an ‘alig-
mentData’ object and (optionally) a set of segments found.

Description
Plots the data from an alignmentData object for a given set of samples. Can optionally include in
the plot the annotation data from a lociData object containing segment information.

Usage

plotGenome(aD, loci, chr = 1, limits = c(@, 1e4), samples = NULL,
plotType = "pileup”, plotDuplicated = FALSE, density = @, showNumber =
TRUE, logScale = FALSE, cap = Inf, ...)

Arguments

aD An alignmentData object.

loci A lociData object (produced by the heuristicSeg or classifySeg function
and therefore) containing appropriate annotation information. Can be omitted if
this annotation is not known/required.

chr The name of the chromosome to be plotted. Should correspond to a chromosome
name in the alignmentData object.

limits The start and end point of the region to be plotted.

samples The sample numbers of the samples to be plotted. If NULL, plots all samples.

plotType The manner in which the plot is created. Currently only plotType = pileup is

recommended.

plotDuplicated If TRUE, then any duplicated sequence tags (i.e., sequence tags that match to
multiple places in the genome) in the ‘aD’ object will be plotted on a negative
scale for each sample. Defaults to FALSE (recommended).

density The density of the shading lines to be used in plotting each segment.
showNumber Should the row number of each segment be shown?

logScale Should a log scale be used for the number of sequence tags found at each base?
cap A numeric value defining a cap on the maximum number of reads to be plotted

at any one point. Useful if a large number of reads at one location prevent a
clear signal being seen elsewhere.

Any additional graphical parameters for passing to plot.

plotMeth 25

Value

Plotting function.

Author(s)

Thomas J. Hardcastle

See Also

alignmentData, heuristicSeg, classifySeg
Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL1@", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an “alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Plot the alignments to the genome on chromosome 1 between bases 1 and 10000

plotGenome(alignData, chr = ">Chr1”, limits = c(1, 1e5))

plotMeth Plots a map of cytosine methylation (and optionally, methylation loci).

Description

This function takes an alignmentMeth object and plots the observed levels of methylation within
some defined region on the genome. If a methData object is also supplied, loci of methylation will
also be shown.

Usage

plotMeth(aM, loci, chr, limits, samples, showNumber = TRUE, rgb = c(1, 0, 0),
angle = 45, cap, add = FALSE)

Arguments
aM An alignmentMeth.
loci A lociData object (produced by the heuristicSeg or classifySeg function

and therefore) containing appropriate annotation information. Can be omitted if
this annotation is not known/required.

26

chr

limits
samples
showNumber
rgh

angle

cap

add

Value

Plotting function.

Author(s)

plotMethDistribution

The name of the chromosome to be plotted. Should correspond to a chromosome
name in the alignmentMeth object.

The start and end point of the region to be plotted.

The sample numbers of the samples to be plotted. If NULL, plots all samples.
Should the row number of each segment be shown?

The rgb code (rgb) with which to colour the loci.

The angle at which loci are shaded (see rect).

Caps the maximum level of coverage shown on the plot; thus, if a base has been
sequenced at a level greater than the cap, the data for that base will be shown as
if it has a coverage of cap.

If TRUE, adds the plot of methylation level to the current plot. Defaults to
FALSE.

Thomas J. Hardcastle

See Also

alignmentMeth

plotMethDistribution Plots the distribution of methylation on the genome.

Description

Plots the distribution of methylation (as defined in an alignmentMeth object upon the genome.

Usage
plotMethDistribution(meth, samples, bw = 1e-3, subtract, chrs, centromeres,
add = FALSE, col, ylim = NULL, legend = TRUE, ...)
Arguments
meth An object of class alignmentMeth containing the methylation data.
samples A numeric vector defining the columns of data in the ‘meth’ object from which
to estimate proportions of methylation, or a list object containing numeric vec-
tors if multiple distributions are to be derived from the ‘meth’ object, or a factor
in which each level of the factor defines a set of columns for the ‘meth’ object.
If missing, derived from the ‘@replicates’ slot of the ‘meth’ object.
bw Gives the bandwidth of the density plots; analagous to the ‘bw’ parameter in
density.
subtract A numeric vector giving values to be subtracted from the density of methylation.

See Details.

processAD 27

chrs The names of the chromosomes for which a distribution should be plotted. If
mising, derived from the ‘@alignments’ slot of the ‘meth’ object.

centromeres If given, a numeric vector defining the position of the centromeres on the chro-
mosomes. These will be then be plotted.

add Should the distribution curve be added to an existing plot? Defaults to FALSE.

col A vector of colours to be used to plot the distributions. If missing, generated
from rainbow.

ylim Limits on the y-axis. Defaults to NULL, in which case limits are automatically
set.
legend Should a legend be added to the plot? Defaults to TRUE.

Any additional parameters to be passed to plot.

Details
The function returns the density of methylation calculated. This can be used in further plots as the
’subtract’ parameter, which allows one methylation profile to be subtracted from another.

Value

An object of class density describing the plotted distribution.

Author(s)

Thomas J. Hardcastle

See Also
alignmentMeth
processAD Processes an ‘alignmentData’ or ‘alignmentMeth’ object into a ‘seg-
Data’ or ‘segMeth’ object for segmentation.
Description

In order to discover segments of the genome with a high density of sequenced data, a ‘segData’
object must be produced. This is an object containing a set of potential segments, together with the
counts for each sample in each potential segment.

Usage

processAD(aD, gap = 300, squeeze = 2, filterProp = 0.05, strandSplit = FALSE,
verbose = TRUE, getCounts = FALSE, cl)

28 processAD

Arguments
aD An alignmentData or alignmentMeth object.
gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. Defaults to 300. See Details.
squeeze If greater than zero, the minimum gap between aligned tags that should be al-
lowed in constructing potential segments. See Details.
filterProp If ’aD’ is a alignmentMeth object and this is given, the minimum proportion of

methylation at a base below which the base will be filtered out before construct-
ing potential segments (but not during counting).

strandSplit If TRUE, the data will be split by strand and segments will be constructed sepa-
rately for each strand. Defaults to FALSE.

verbose Should processing information be displayed? Defaults to TRUE.

getCounts If TRUE, counts will be estimated for the constructed ‘segData’ object. If
FALSE, they will not, and must be estimated on the fly for further operations on
the ‘segData’ object, which is computationally wasteful but will substantially
reduce the memory requirements.

cl A SNOW cluster object, or NULL. See Details.

Details

This function takes an alignmentData or alignmentMeth object and constructs a segData or
segMeth object from it. The function creates a set of potential segments by looking for all lo-
cations on the genome where the start of a region of overlapping alignments (or, if ‘squeeze’ is
non-zero, those alignments separated by no more than ‘squeeze’.) exists in the alignmentData
object. A potential segment then exists from this start point to the end of all regions of overlapping
alignments such that there is no region in the segment of at least length ‘gap’ where no tag aligns.
The number of potential segments can therefore be increased by increasing this limit, or (usually
more usefully) decreased by decreasing this limit in order to save computational effort.

A 'cluster' object (package: snow) is recommended for parallelisation of this function when
using large data sets. Passing NULL to this variable will cause the function to run in non-parallel
mode.

Value

A segData object.

Author(s)

Thomas J. Hardcastle

See Also

getCounts, which produces the count data for each potential segment. heuristicSegand classifySeg,
which segment the genome based on the segData object produced by this function segData alignmentData

Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c(”SL9.txt", "SL1@.txt", "SL26.txt"”, "SL32.txt")

readMethods 29

Establish the library names and replicate structure.

libnames <- c(”SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ~alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, gap = 100)

Process the alignmentData object to produce a “segData' object.

sD <- processAD(alignData, gap = 100, cl = NULL)

readMethods Functions for processing files of various formats into an ‘alignment-
Data’ object.

Description

These functions take alignment files of various formats to produce an object (see Details) describ-
ing the alignment of sequencing tags from different libraries. At present, BAM and text files are
supported.

Usage

readGeneric(files, dir = replicates, libnames, chrs, chrlens, cols,
header = TRUE, minlen = 15, maxlen = 1000,
multireads = 1000, polylLength, estimationType = "quantile”,
discardTags = FALSE, verbose = TRUE, filterReport = NULL, ...)

non
L]

readBAM(files, dir = ".", replicates, libnames, chrs, chrlens, countID = NULL,
minlen = 15, maxlen = 1000, multireads = 1000,
polyLength, estimationType = "quantile”, discardTags = FALSE, verbose = TRUE,
filterReport = NULL)

Arguments

files Filenames of the files to be read in.

dir Directory (or directories) in which the files can be found.

replicates A vector defining the replicate structure if the group. If and only if the ith library
is a replicate of the jth library then @replicates[i] == @replicates[j]. This
argument may be given in any form but will be stored as a factor.

libnames Names of the libraries defined by the file names.

chrs A chracter vector defining (a selection of) the chromosome names used in the
alignment files; optional, will be inferred from data if not given.

chrlens Lengths of the chromosomes to which the alignments were made; optional, will

be inferred from data if not given.

30 readMethods

cols A named character vector which describes which column of the input files con-
tains which data. See Details.

countID A (two-character) string used by the BAM file to identify the ‘counts’ of in-
dividual sequenced reads; that is, how many times a given read appears in the
sequenced library. If NULL, it is assumed that the data are redundant (see De-

tails).
header Do the input files have a header line? Defaults to TRUE. See Details.
minlen Minimum length for reads.
maxlen Maximum length for reads.
multireads The functions will discard any read that aligns to the genome in more locations

than given by this value. Set to Inf to keep everything. Defaults to 1000.

polyLength If given, an integer value N defining the length of (approximate) homopolymers
which will be removed from the data. If a tag contains a sequence of N+1 reads
consisting of at least N identical bases, it will be removed. If not given, all data
is used.

estimationType The estimationType that will be used by the ‘baySeq’ function getLibsizes to
infer the library sizes of the samples.

discardTags If TRUE, information about the sequence of the aligned reads will be discarded.
Useful for very large data sets. Defaults to FALSE.

verbose Should processing information be displayed? Defaults to TRUE.

filterReport If not NULL, this should be a string defining a file to which will be written those
data filtered on the basis of chromsome choices, widths of sequences, multireads
or polyBase.

Additional parameters to be passed to read. table. In particular, the ‘sep’ and
‘skip’ arguments may be useful.

Details

readBAM: This function takes a set of BAM files and generates the 'alignmentData’ object from
these. If a character string for ‘countID’ is given, the function assumes the data are non-redundant
and that ‘countID’ identifies the count data (i.e., how many times each read appears in the sequenced
library) in each BAM file. If ‘countID’ is NULL, then it is assumed that the data are redundant, and
the count data are inferred from the file.

readGeneric: The purpose of this function is to take a set of plain text files and produce an 'alignmentData’
object. The function uses read. table to read in the columns of data in the files and so by default
columns are separated by any white space. Alternative separators can be used by passing the appro-

priate value for 'sep' to read. table.

The files may contain columns with column names 'chr', 'tag', 'count', 'start', 'end’,
"strand’' in which case the ‘cols’ argument can be ommitted and ‘header’ set to TRUE. If this
is the case, there is no requirement for all the files to have the same ordering of columns (although
all must have these column names).

Alternatively, the columns of data in the input files can be specified by the ‘cols’ argument in the
form of a named character vector (e.g; 'cols =c(chr =1, tag=2, count =3, start =4, end =
5, strand = 6) ' would cause the function to assume that the first column contains the chromosome
information, the second column contained the tag information, etc. If ‘cols’ is specified then infor-
mation in the header is ignored. If ‘cols’ is missing and ‘header’ is FALSE, then it is assumed that
the data takes the form described in the example above.

The 'tag', 'count' and 'strand' columns may optionally be omitted from either the file column
headers or the ‘cols’ argument. If the 'tag' column is omitted, then the data will not account

readMeths 31

for duplicated sequences when estimating the number of counts in loci. If the 'count' column is
omitted, the 'readGeneric' function will assume that the file contains the alignments of each copy
of each sequence tag, rather than an aggregated alignment of each unique sequence. The unique
alignments will be identified and the number of sequence tags aligning to each position will be
calculated. If 'strand' is omitted, the strand will simply be ignored.

Value

An alignmentData object.

Author(s)

Thomas J. Hardcastle

See Also

alignmentData

Examples

Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c("SL9.txt", "SL1@.txt", "SL26.txt"”, "SL32.txt")

Establish the library names and replicate structure.

libnames <- c(”SL9", "SL10", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an ~alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames)

readMeths A function for reading data from the YAMA methylation aligner (or
similarly parsed data) from which to identify methylation loci and/or
differentially methylated regions.

Description

This function takes as input a set of files that describe the number of times a set of cytosines are
observed to be methylated or unmethylated in some high-throughput sequencing data. It merges the
data from these files into an object of ‘alignmentMeth’ class which can then be further processed
to identify methylation loci.

Usage

readMeths(files, dir = ".", libnames, replicates, nonconversion, chrs)

32 segClass-class

Arguments
files A character vector defining the file names of the alignment files to be read in.
dir The directory in which the files are located.
libnames A character vector giving the names of the samples to be read in.
replicates A vector defining the replicate structure of the data. The ‘i’th and ‘j’th libraries

are treated as replicates if and only if replicates[i] == replicates[j].

nonconversion A numeric vector (all members should lie between O and 1) defining the non-
conversion rate of each library. See alignmentMeth-class for details.

chrs An (optional) character vector giving the names of the chromosomes to be read
from the files. If ommitted, all chromosomes will be read in.

Value

An object of class alignmentMeth.

Author(s)

Thomas J. Hardcastle

See Also

alignmentMeth-class.

Examples

datadir <- system.file("extdata”, package = "segmentSeq")
files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls.gz",
"short_Sample_17A_trimmed.fastq_CG_methCalls.gz",
"short_13_C24_col_trim.fastq_CG_methCalls.gz",
"short_Sample_28_trimmed.fastq_CG_methCalls.gz")

mD <- readMeths(files = files, dir = datadir,
libnames = c("A1”, "A2", "B1”, "B2"), replicates = c(”A","A","B","B"),
nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))

segClass-class Class "segClass"

Description

The segClass class contains data about potential segments on the genome.

Objects from the class

Objects can be created by calls of the form new("segClass”, ..., seglens). However, more
usually they will be created by calling the processAD function.

segData-class 33

Slots

coordinates: A GRanges object defining the coordinates of the segments.
replicates: Object of class "factor"”. The replicate structure for the samples.

locLikelihoods: Object of class "DataFrame"” describing estimated likelihoods that each region
defined in ‘coordinates’ is a locus in each replicate group.
Details

The @coordinates slot contains information on each of the potential segments; specifically, chro-
mosome, start and end of the segment, together. Each row of the @coordinates slot should corre-
spond to the same row of the @data slot.

In almost all cases objects of this class should be produced by the processAD function.

Methods

Methods 'new’, ’dim’, ’[* and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

See Also

processAD, the function that will most often be used to create objects of this class. segData, which
inherits from this class. segMeth, which inherits from this class.

segData-class Class "segData"

Description

The segData class inherits from the segClass class and contains data about potential segments on
the genome, together with counts for each of those segments.

Objects from the class

Objects can be created by calls of the form new("segData”, ..., seglens). However, more
usually they will be created by calling the processAD function.

Slots

coordinates: A GRanges object defining the coordinates of the segments.
replicates: Object of class "factor"”. The replicate structure for the samples.

locLikelihoods: Object of class "DataFrame"” describing estimated likelihoods that each region
defined in ‘coordinates’ is a locus in each replicate group.

data: Object of class matrix. Contains the number of counts observed for each sample in each
potential segment.

libsizes: Object of class "numeric”. The library sizes for each sample.

34 segMeth-class

Details

The @coordinates slot contains information on each of the potential segments; specifically, chro-
mosome, start and end of the segment, together. Each row of the @coordinates slot should corre-
spond to the same row of the @data slot.

In almost all cases objects of this class should be produced by the processAD function.

Methods

Methods 'new’, ’dim’, ’[* and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

See Also

processAD, the function that will most often be used to create objects of this class. classifySeg,
an empirical Bayesian method for defining a segmentation based on a segData object.

Examples
Define the files containing sample information.

datadir <- system.file("extdata”, package = "segmentSeq")
libfiles <- c(”SL9.txt", "SL10.txt", "SL26.txt"”, "SL32.txt")

Establish the library names and replicate structure.

libnames <- c(”SL9”, "SL10", "SL26", "SL32")
replicates <- ¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, gap = 100, cl = NULL)

segMeth-class Class "segMeth"

Description
The segMeth class inherits from the segClass class and contains data about potential segments on
the genome, together with counts for each of those segments.

Objects from the class

Objects can be created by calls of the form new("”segMeth”, ..., seglens). However, more
usually they will be created by calling the processAD function.

selectLoci 35

Slots

coordinates: A GRanges object defining the coordinates of the segments.
replicates: Object of class "factor”. The replicate structure for the samples.

locLikelihoods: Object of class "DataFrame” describing estimated likelihoods that each region
defined in ‘coordinates’ is a locus in each replicate group.

Cs: Object of class matrix. Contains the number of methylated cytosines (which are sequenced as
a ‘C’) observed for each sample in each potential segment.

Ts: Object of class matrix. Contains the number of unmethylated cytosines (which are sequenced
as a ‘T”) observed for each sample in each potential segment.

nonconversion: Object of class "numeric”. The (estimated) nonconversion rate (see Details) for
each of the libraries.

Details

The @coordinates slot contains information on each of the potential segments; specifically, chro-
mosome, start and end of the segment, together. Each row of the @coordinates slot should corre-
spond to the same row of the @C and @T slots.

The nonconversion slot is an estimate of the rate (for each library) at which an unmethylated cyto-
sine has failed to be converted by sodium bisulphite treatment into thymine, and is thus recorded
(incorrectly) as methylated. In some cases, this can be estimated from considering observed methy-
lation rates on regions known to be unmethylated (e.g., chloroplasts) or by introducing unmethylated
control sequences.

In almost all cases objects of this class should be produced by the processAD function.

Methods

Methods 'new’, ’dim’, ’[* and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

See Also

processAD, the function that will most often be used to create objects of this class. segClass, from
which this class inherits.

selectlLoci Filters a ‘lociData’ object based on given selection criteria.

Description

Selects loci from a ‘lociData’ object based on likelihood, false discovery rate or familywise error
rate for downstream processing.

Usage
selectlLoci(cD, likelihood, FDR, FWER, perReplicate = TRUE)

36 SL

Arguments
cD The lociData object to be filtered.
likelihood If provided, all loci with a likelihood greater than this criterion will be selected.
FDR If provided (and likelihood is not provided), the maximal set of loci which con-
trols the FDR at this level is selected.
FWER If provided (and likelihood and FDR are not provided), the maximal set of loci

which controls the FWER at this level is selected.

perReplicate If TRUE, selection of loci is done on a replicate by replicate basis. If FALSE,
selection will be done on the likelihood that the locus represents a true locus in
at least one replicate group.

Value

A lociData object.

Author(s)

Thomas J. Hardcastle

See Also

locilLikelihoods

SL Example data selected from a set of lllumina sequencing experiments.

Description

Each of the files *’SL9’, ’SL10’, °’SL26’ and "SL32’ represents a subset of the data from an [llumina
sequencing experiment. These data consist of alignment information; the tag sequence, and the
number of times that each sequence is observed.

Format

A set of tab-delimited files containing data from four sequencing experiments.

Source

In-house Illumina sequencing experiments

summariselLoci 37

summariseloci Summarise the expected number of loci in a ‘lociData’ object.

Description

Summarises the expected number of loci, either in toto or on a per replicate group basis.

Usage

summariseloci(cD, perReplicate = TRUE)

Arguments

cD A ‘lociData’ object with calculated values in the ‘@lociLikelihoods’ slot.

perReplicate Should the expectation be calculated on a per replicate group basis, or the total
number of loci identified in the dataset?

Value

A numeric vector summarising the expectated number of loci in the cD object.

Author(s)

Thomas J. Hardcastle

thresholdFinder Determines threshold for the proportion of methylation at which a
methylation locus may be identified.

Description

This function offers a variety of methods for the analysis of methylation data to determine a suitable
threshold for the proportion of methylation at which to distinguish a methylation locus from a non-
methylated locus.

Usage

thresholdFinder(method, aM, subset, minprop = 0.05, bootstrap = 100,
abstol = 1e-4, verbose = FALSE, cl = NULL, processAD.args = list(),
heuristicSeg.args = list())

Arguments
method Character string defining method to use for threshold estimation. Available op-
tions are ’varsum’, minden’, *beta’ and “abc’. See Details.
aM An alignmentMeth object containing observed methylation counts.
subset Numeric vector defining a subset on aM object for use in threshold estimation.

minprop For *minden’ method, a minimum proportion permitted for choice of threshold.

38

thresholdFinder
bootstrap The maximum number of bootstraps to be permitted in estimating a threshold.
Defaults to 100. See Details.
abstol Minimum tolerance fro threshold estimation.
verbose Verbose reporting. Defaults to FALSE.
cl A cluster object, or NULL. Defaults to NULL.

processAD.args Arguments to be passed to processAD function if bootstrapping.
heuristicSeg.args
Arguments to be passed to heuristicSeg function if bootstrapping.

Details

This function operates on the data observed within each replicate group, and then takes the mean of
the thresholds calculated for each group.

Methods currently available for threshold estimation are varsum’, minden’, *beta’ and "abc’. The
’varsum’ method attempts to split the vector of proportions of methylation observed at each cyto-
sine into two sets of minimal total variance. The *'minden’ method finds the minimum point on a
smoothed kernel density of the proportions of methylation. The *beta’ method estimates for each cy-
tosine a posterior distribution on proportions of methylation based on the beta-binomial conjugacy,
takes the average of these distributions and finds the minumum. The ’abc’ method performs like the
beta method, but estimates the posterior distribution through approximate Bayesian computation.

Bootstrapping uses the estimated threshold to define loci. Based on the defined loci, cytosines are
then only included in a re-estimation of the thresholds if they are identified as belonging to an ex-
pressed locus within the current replicate group, or if they are not expressed in any replicate group.
Thresholds are re-esimated until the maximum number of bootstraps is reached or the difference
between estimated thresholds drops below ’abstol’, whichever is the sooner.

Value

A numeric value defining a threshold on methylation.

Author(s)

Thomas J. Hardcastle

See Also

heuristicSeg

Examples

datadir <- system.file("extdata”, package = "segmentSeq")
files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls.gz",
"short_Sample_17A_trimmed.fastq_CG_methCalls.gz",
"short_13_C24_col_trim.fastq_CG_methCalls.gz",
"short_Sample_28_trimmed.fastq_CG_methCalls.gz")

mD <- readMeths(files = files, dir = datadir,
libnames = c("A1", "A2", "B1”, "B2"), replicates = c("A”,"A","B" "B"),
nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))

Not run: thresholdFinder("beta”, mD, cl = NULL)

Index

* classes
alignmentClass-class, 4
alignmentData-class, 5
alignmentMeth-class, 6
lociData-class, 18
methData-class, 22
segClass-class, 32
segData-class, 33
segMeth-class, 34

* classif
classifySeg, 9
heuristicSeg, 15

+ datasets
hsL, 18
SL, 36

« files
readMethods, 29
readMeths, 31

+ hplot
averageProfiles, 7
plotGenome, 24
plotMeth, 25
plotMethDistribution, 26

* mainip
givenExpression, 15
summariseloci, 37

* manip
classifySeg, 9
findChunks, 10
getCounts, 12
getOverlaps, 13
heuristicSeg, 15
locilLikelihoods, 19
mergeMethSegs, 21
normaliseNC, 23
processAD, 27
selectlLoci, 35
thresholdFinder, 37

* package
segmentSeq-package, 2

[,alignmentClass,ANY,ANY,ANY-method

(alignmentClass-class), 4

[,alignmentClass,ANY,ANY-method

(alignmentClass-class), 4
[,alignmentClass,ANY-method
(alignmentClass-class), 4
[,alignmentClass-method
(alignmentClass-class), 4
[,alignmentData, ANY,ANY,ANY-method
(alignmentData-class), 5
[,alignmentData, ANY,ANY-method
(alignmentData-class), 5
[,alignmentData, ANY-method
(alignmentData-class), 5
[,alignmentData-method
(alignmentData-class), 5
[,alignmentMeth, ANY,ANY,ANY-method
(alignmentMeth-class), 6
[,alignmentMeth, ANY,ANY-method
(alignmentMeth-class), 6
[,alignmentMeth, ANY-method
(alignmentMeth-class), 6
[,alignmentMeth-method
(alignmentMeth-class), 6
[,lociData, ANY,ANY,ANY-method
(lociData-class), 18
[,lociData,ANY,ANY-method
(lociData-class), 18
[,lociData,ANY-method (lociData-class),
18
[,lociData-method (lociData-class), 18
[,methData, ANY,ANY,ANY-method
(methData-class), 22
[,methData,ANY,ANY-method
(methData-class), 22
[,methData, ANY-method (methData-class),
22
[,methData-method (methData-class), 22
[,segClass,ANY,ANY-method
(segClass-class), 32
[,segClass-method (segClass-class), 32
[,segData, ANY, ANY-method
(segData-class), 33
[,segData,ANY-method (segData-class), 33
[,segData-method (segData-class), 33
[,segMeth,ANY, ANY-method

40

(segMeth-class), 34
[,segMeth,ANY-method (segMeth-class), 34
[,segMeth-method (segMeth-class), 34

alignmentClass, 6, 7
alignmentClass (alignmentClass-class), 4
alignmentClass-class, 4
alignmentData, 3, 4,8, 9, 12, 16, 19, 24, 25,
28, 31
alignmentData (alignmentData-class), 5
alignmentData-class, 5
alignmentMeth, 4, 8, 21, 23, 25-28, 31, 32, 37
alignmentMeth (alignmentMeth-class), 6
alignmentMeth-class, 6
averageProfiles, 7

baySeq, 3, 10, 17-19, 22

c,lociData-method (lociData-class), 18
cbind,alignmentClass-method
(alignmentClass-class), 4
cbind,alignmentData-method
(alignmentData-class), 5
cbind,alignmentMeth-method
(alignmentMeth-class), 6
classifySeg, 9, 17, 24, 25, 28, 34
countData, I8, 19, 22

density, 26, 27
dim,alignmentClass-method
(alignmentClass-class), 4
dim,alignmentData-method
(alignmentData-class), 5
dim,alignmentMeth-method
(alignmentMeth-class), 6
dim,lociData-method (lociData-class), 18
dim,methData-method (methData-class), 22
dim,segClass-method (segClass-class), 32
dim, segData-method (segData-class), 33
dim, segMeth-method (segMeth-class), 34

findChunks, 10

getCounts, 12, 28
getLibsizes, 30
getLikelihoods.NB, /9
getOverlaps, 13
getPriors.NB, 9
givenExpression, 15
GRanges, 8, 11, 33, 35

heuristicSeg, 9, 10, 15, 24, 25, 28, 38
hsL, 18

INDEX

initialize,alignmentClass-method
(alignmentClass-class), 4
initialize,alignmentData-method
(alignmentData-class), 5
initialize,alignmentMeth-method
(alignmentMeth-class), 6
initialize,segClass-method
(segClass-class), 32
initialize,segData-method
(segData-class), 33
initialize, segMeth-method
(segMeth-class), 34

lociData, 9, 10, 17, 19, 20, 23-25, 36
lociData (lociData-class), 18
lociData-class, 18
locilLikelihoods, 19, 36

mergeMethSegs, 21
methData, 16, 21,25

methData (methData-class), 22
methData-class, 22
methObservables, 20

normaliseNC, 23

plot, 27

plotAverageProfile (averageProfiles), 7
plotGenome, 10, 17, 24

plotMeth, 25

plotMethDistribution, 26
processAD, 3,6, 7,12, 13,27, 32-35

rainbow, 27

read. table, 30
readBAM, 3, 5, 6, 11

readBAM (readMethods), 29
readGeneric, 3, 5, 6, 11
readGeneric (readMethods), 29
readMethods, 29
readMeths, 7, 31

rect, 26

rgb, 26

segClass, 35

segClass (segClass-class), 32
segClass-class, 32
segData, 9, 16, 28, 33

segData (segData-class), 33
segData-class, 33

segmentSeq (segmentSeq-package), 2
segmentSeq-package, 2
segMeth, 16, 23, 28, 33

segMeth (segMeth-class), 34

INDEX

segMeth-class, 34

selectloci, 35

show,alignmentClass-method
(alignmentClass-class), 4

show,alignmentData-method
(alignmentData-class), 5

show, alignmentMeth-method
(alignmentMeth-class), 6

show, lociData-method (lociData-class),
18

show,methData-method (methData-class),
22

show, segClass-method (segClass-class),
32

show, segData-method (segData-class), 33

show, segMeth-method (segMeth-class), 34

SL, 36

SL10 (SL), 36

SL26 (SL), 36

SL32 (SL), 36

SL9 (SL), 36

summariseloci, 37

thresholdFinder, 17, 37

41

	segmentSeq-package
	alignmentClass-class
	alignmentData-class
	alignmentMeth-class
	averageProfiles
	classifySeg
	findChunks
	getCounts
	getOverlaps
	givenExpression
	heuristicSeg
	hSL
	lociData-class
	lociLikelihoods
	mergeMethSegs
	methData-class
	normaliseNC
	plotGenome
	plotMeth
	plotMethDistribution
	processAD
	readMethods
	readMeths
	segClass-class
	segData-class
	segMeth-class
	selectLoci
	SL
	summariseLoci
	thresholdFinder
	Index

