Package ‘scater’

January 20, 2026

Type Package
Version 1.38.0

Date 2025-03-07
License GPL-3
Title Single-Cell Analysis Toolkit for Gene Expression Data in R

Description A collection of tools for doing various analyses of
single-cell RNA-seq gene expression data, with a focus on
quality control and visualization.

Depends SingleCellExperiment, scuttle, ggplot2

Imports stats, utils, methods, Matrix, BiocGenerics, S4Vectors,
SummarizedExperiment, MatrixGenerics, SparseArray,
DelayedArray, beachmat, BiocNeighbors, BiocSingular,
BiocParallel, rlang, ggbeeswarm, viridis, Rtsne, RColorBrewer,
RcppML, uwot, pheatmap, ggrepel, ggrastr

Suggests BiocStyle, DelayedMatrixStats, snifter, densvis, cowplot,
biomaRt, knitr, sScRNAseq, robustbase, rmarkdown, testthat,
Biobase, scattermore

VignetteBuilder knitr

biocViews ImmunoOncology, SingleCell, RNASeq, QualityControl,
Preprocessing, Normalization, Visualization,
DimensionReduction, Transcriptomics, GeneExpression,
Sequencing, Software, Datalmport, DataRepresentation,
Infrastructure, Coverage

Encoding UTF-8
RoxygenNote 7.3.2

URL http://bioconductor.org/packages/scater/

BugReports https://support.bioconductor.org/
git_url https://git.bioconductor.org/packages/scater
git_branch RELEASE_3_22

git_last_commit 64e2b5e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

http://bioconductor.org/packages/scater/
https://support.bioconductor.org/

2 Contents

Author Davis McCarthy [aut],
Kieran Campbell [aut],
Aaron Lun [aut, ctb],
Quin Wills [aut],
Vladimir Kiselev [ctb],
Felix G.M. Ernst [ctb],
Alan O'Callaghan [ctb, cre],
Yun Peng [ctb],
Leo Lahti [ctb] (ORCID: <https://orcid.org/0000-0001-5537-637X>),
Tuomas Borman [ctb] (ORCID: <https://orcid.org/0000-0002-8563-8884>)

Maintainer Alan O'Callaghan <alan.ocallaghan@outlook.com>

Contents
annotateBMFeatures L L 3
DOOLSIIAPS v o o e e e 4
calculateMDS 5
calculateNMF e 8
calculatePCA e 11
calculateTSNE o 14
calculateUMAP o . 18
defunct L e 21
getExplanatoryPCs 23
getVarianceExplained L 24
ggeells . . . L e e e 25
NEXPIS & v v v v e 27
NOTIN_EXPIS .« ¢ v v e 28
plotColData e 30
PlOtDOLS e e e e e 32
plotExplanatoryPCs 34
plotExplanatoryVariables 35
plotExpression 36
plotGroupedHeatmap e 40
plotHeatmap e e e e 42
plotHighestExprs L 45
plotPlatePosition 46
plotReducedDim 48
PIORLE e e e e 51
plotRowData 53
plotScater 54
projectReducedDim 56
Reduced dimension plots 57
TEEXPOILS L e e e 59
retrieveCelllnfo L 59
retrieveFeatureInfo oL 61
runColDataPCA e 62
runMuliUMAP e 64
scater-pkg e e 66
SCAter-plOt-args e e e e 67
SCESet o e 68

updateSCESet e 69

https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0002-8563-8884

annotateBMFeatures 3

Index 70

annotateBMFeatures Get feature annotation information from Biomart

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage
annotateBMFeatures(
ids,
biomart = "ENSEMBL_MART_ENSEMBL",

dataset = "mmusculus_gene_ensembl”,

id.type = "ensembl_gene_id",

symbol. type,

attributes = c(id.type, symbol.type, "chromosome_name"”, "gene_biotype"”,
"start_position”, "end_position”),

filters = id.type,

)
getBMFeatureAnnos(x, ids = rownames(x), ...)
Arguments
ids A character vector containing feature identifiers.
biomart String defining the biomaRt to be used, to be passed to useMart.
dataset String defining the dataset to use, to be passed to useMart.
id.type String specifying the type of identifier in ids.
symbol. type String specifying the type of symbol to retrieve. If missing, this is set to "mgi_symbol”
if dataset="mmusculus_gene_ensembl”, or to "hgnc_symbol" if dataset="hsapiens_gene_ense
attributes Character vector defining the attributes to pass to getBM.
filters String defining the type of identifier in ids, to be used as a filter in getBM.
For annotateBMFeatures, further named arguments to pass to biomaRt: :useMart.
For getBMFeatureAnnos, further arguments to pass to annotateBMFeatures.
X A SingleCellExperiment object.
Details

These functions provide convenient wrappers around biomaRt to quickly obtain annotation in the
required format.

Value
For annotateBMFeatures, a DataFrame containing feature annotation, with one row per value in
ids.
For getBMFeatureAnnos, x is returned containing the output of annotateBMFeatures appended to
its rowData.

4 bootstraps

Author(s)
Aaron Lun, based on code by Davis McCarthy

Examples

Not run:

Making up Ensembl IDs for demonstration purposes.

mock_id <- paste@(”"ENSMUSG", sprintf("%011d"”, seq_len(1000)))
anno <- annotateBMFeatures(ids=mock_id)

End(Not run)

bootstraps Accessor and replacement for bootstrap results in a
SingleCellExperiment object

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated

by the kallisto software for quantifying feature abundance). These functions conveniently access
and replace the "bootstrap’ elements in the assays slot with the value supplied, which must be an
matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment
object as a whole.

Usage
bootstraps(object)
bootstraps(object) <- value

S4 method for signature 'SingleCellExperiment'’
bootstraps(object)

S4 replacement method for signature 'SingleCellExperiment,array’
bootstraps(object) <- value

Arguments

object a SingleCellExperiment object.

value an array of class "numeric” containing bootstrap expression values
Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values,
otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)
Davis McCarthy

calculateMDS 5

Examples

example_sce <- mockSCE()
bootstraps(example_sce)

calculateMDS Perform MDS on cell-level data

Description

Perform multi-dimensional scaling (MDS) on cells, based on the data in a SingleCellExperiment
object.

Usage
calculateMDS(x, ...)

S4 method for signature 'ANY'
calculateMDS(

X,

FUN = dist,

ncomponents = 2,

ntop = 500,

subset_row = NULL,

scale = FALSE,

transposed = FALSE,

keep_dist = FALSE,

)

S4 method for signature 'SummarizedExperiment'
calculateMDS(x, ..., exprs_values = "logcounts”, assay.type = exprs_values)

S4 method for signature 'SingleCellExperiment'’
calculateMDS(

X,

exprs_values = "logcounts”,

dimred = NULL,

n_dimred = NULL,

assay.type = exprs_values

)
runMDS(x, ..., altexp = NULL, name = "MDS")
Arguments
X For calculateMDS, a numeric matrix of log-expression values where rows are

features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.

For runMDS, a SingleCellExperiment object.

FUN

ncomponents

ntop

subset_row

scale

transposed

keep_dist

exprs_values

assay. type

dimred

n_dimred

altexp

name

Details

calculateMDS

For the calculateMDS generic, additional arguments to pass to specific meth-
ods. For the SummarizedExperiment and SingleCellExperiment methods, addi-
tional arguments to pass to the ANY method.

For runMDS, additional arguments to pass to calculateMDS.

A function that accepts a numeric matrix as its first argument, where rows are
samples and columns are features; and returns a distance structure such as that
returned by dist or a full symmetric matrix containing the dissimilarities.

Numeric scalar indicating the number of MDS?g dimensions to obtain.

Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

Logical scalar, should the expression values be standardized?
Logical scalar, is x transposed with cells in rows?

Logical scalar indicating whether the dist object calculated by FUN should
be stored as ‘dist’ attribute of the matrix returned/stored by calculateMDS or
runMDS.

Alias to assay. type.

Integer scalar or string indicating which assay of x contains the expression val-
ues.

String or integer scalar specifying the existing dimensionality reduction results
to use.

Integer scalar or vector specifying the dimensions to use if dimred is specified.

String or integer scalar specifying an alternative experiment containing the input
data.

String specifying the name to be used to store the result in the reducedDims of
the output.

The function cmdscale is used internally to compute the MDS components with eig = TRUE. The
eig and GOF fields of the object returned by cmdscale are stored as attributes “eig” and “GOF” of
the MDS matrix calculated.

Value

For calculateMDS, a matrix is returned containing the MDS coordinates for each cell (row) and
dimension (column).

For runMDS, a modified x is returned that contains the MDS coordinates in reducedDim(x, name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by assay. type.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

calculateMDS 7

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below le-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody
tags.

Setting altexp with assay.type will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

cmdscale, to perform the underlying calculations.
dist for the function used as default to calculate the dist object.

plotMDS, to quickly visualize the results.

8 calculateNMF

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runMDS(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

calculateNMF Perform NMF on cell-level data

Description

Perform non-negative matrix factorization (NMF) for the cells, based on the data in a SingleCell-
Experiment object.

Usage

calculateNMF(x, ...)

S4 method for signature 'ANY'
calculateNMF (

X,

ncomponents = 2,

ntop = 500,

subset_row = NULL,

scale = FALSE,

transposed = FALSE,

S4 method for signature 'SummarizedExperiment'’
calculateNMF(x, ..., exprs_values = "logcounts”, assay.type = exprs_values)

S4 method for signature 'SingleCellExperiment'
calculateNMF(

X,

exprs_values = "logcounts”,

dimred = NULL,

n_dimred = NULL,

assay.type = exprs_values

)
runNMF (x, ..., altexp = NULL, name = "NMF")
Arguments
X For calculateNMF, a numeric matrix of log-expression values where rows are

features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.

For runNMF, a SingleCellExperiment object.

calculateNMF 9

For the calculateNMF generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to nmf. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.

For runNMF, additional arguments to pass to calculateNMF.
ncomponents Numeric scalar indicating the number of NMF dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?
transposed Logical scalar, is x transposed with cells in rows?

exprs_values Alias to assay. type.

assay.type Integer scalar or string indicating which assay of x contains the expression val-
ues.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function nmf is used internally to compute the NMF. Note that the algorithm is not deterministic,
so different runs of the function will produce differing results. Users are advised to test multiple
random seeds, and then use set. seed to set a random seed for replicable results.

Value

For calculateNMF, a numeric matrix is returned containing the NMF coordinates for each cell
(row) and dimension (column).

For runNMF, a modified x is returned that contains the NMF coordinates in reducedDim(x, name).

In both cases, the matrix will have the attribute "basis” containing the gene-by-factor basis matrix.

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by assay. type.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

10 calculateNMF

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below le-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody
tags.

Setting altexp with assay.type will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun

See Also

nmf, for the underlying calculations.

plotNMF, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runNMF(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

calculatePCA 11

calculatePCA Perform PCA on expression data

Description

Perform a principal components analysis (PCA) on cells, based on the expression data in a Single-
CellExperiment object.

Usage

calculatePCA(x, ...)

S4 method for signature 'ANY'
calculatePCA(

X,

ncomponents = 50,

ntop = 500,

subset_row = NULL,

scale = FALSE,

transposed = FALSE,

BSPARAM = bsparam(),

BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment’
calculatePCA(x, ..., exprs_values = "logcounts”, assay.type = exprs_values)

S4 method for signature 'SingleCellExperiment'’
calculatePCA(

X,

exprs_values = "logcounts”,

dimred = NULL,

n_dimred = NULL,

assay.type = exprs_values

)
S4 method for signature 'SingleCellExperiment'’
runPCA(x, ..., altexp = NULL, name = "PCA")
Arguments
X For calculatePCA, a numeric matrix of log-expression values where rows are

features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.

For runPCA, a SingleCellExperiment object containing such a matrix.
For the calculatePCA generic, additional arguments to pass to specific meth-

ods. For the SummarizedExperiment and SingleCellExperiment methods, addi-
tional arguments to pass to the ANY method.

For runPCA, additional arguments to pass to calculatePCA.

12

ncomponents

ntop

subset_row

scale

transposed

BSPARAM

BPPARAM
exprs_values

assay.type

dimred

n_dimred

altexp

name

Details

calculatePCA

Numeric scalar indicating the number of principal components to obtain.

Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

Logical scalar, should the expression values be standardized?
Logical scalar, is x transposed with cells in rows?

A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA.

A BiocParallelParam object specifying whether the PCA should be parallelized.
Alias to assay. type.

Integer scalar or string indicating which assay of x contains the expression val-
ues.

String or integer scalar specifying the existing dimensionality reduction results
to use.

Integer scalar or vector specifying the dimensions to use if dimred is specified.

String or integer scalar specifying an alternative experiment containing the input
data.

String specifying the name to be used to store the result in the reducedDims of
the output.

Fast approximate SVD algorithms like BSPARAM=IrlbaParam() or RandomParam() use a random
initialization, after which they converge towards the exact PCs. This means that the result will
change slightly across different runs. For full reproducibility, users should call set. seed prior to
running runPCA with such algorithms. (Note that this includes BSPARAM=bsparam(), which uses
approximate algorithms by default.)

Value

For calculatePCA, a numeric matrix of coordinates for each cell (row) in each of ncomponents

PCs (column).

For runPCA, a SingleCellExperiment object is returned containing this matrix in reducedDims(. . .,

name).

In both cases, the attributes of the PC coordinate matrix contain the following elements:

* "percentVar”, the percentage of variance explained by each PC. This may not sum to 100 if
not all PCs are reported.

* "varkExplained”, the actual variance explained by each PC.

* "rotation”, the rotation matrix containing loadings for all genes used in the analysis and for

each PC.

calculatePCA 13

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by assay. type.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below le-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody
tags.

Setting altexp with assay.type will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

14

See Also

runPCA, for the underlying calculations.

plotPCA, to conveniently visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runPCA(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

calculateTSNE

calculateTSNE Perform t-SNE on cell-level data

Description

Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCell-

Experiment object.

Usage
calculateTSNE(x, ...)

S4 method for signature 'ANY'
calculateTSNE(
X)
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
perplexity = NULL,
normalize = TRUE,
theta = 0.5,
num_threads = NULL,
external_neighbors = FALSE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam(),
use_fitsne = FALSE,

use_densvis = FALSE,

dens_frac = 0.3,

dens_lambda = 0.1
)
S4 method for signature 'SummarizedExperiment'’
calculateTSNE(x, ..., exprs_values = "logcounts"”, assay

S4 method for signature 'SingleCellExperiment'

.type

exprs_values)

calculateTSNE

calculateTSNE(

X’

’

15

pca = is.null(dimred),
exprs_values = "logcounts”,
dimred = NULL,

n_dimred = NULL,

assay.type = exprs_values

)

runTSNE (x,

Arguments

X

ncomponents

ntop
subset_row
scale
transposed

perplexity
normalize

theta

num_threads

., altexp = NULL, name = "TSNE")

For calculateTSNE, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.

For runTSNE, a SingleCellExperiment object.

For the calculateTSNE generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to Rtsne. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.

For runTSNE, additional arguments to pass to calculateTSNE.
Numeric scalar indicating the number of t-SNE dimensions to obtain.

Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

Logical scalar, should the expression values be standardized?
Logical scalar, is x transposed with cells in rows?
Numeric scalar defining the perplexity parameter, see ?Rtsne for more details.

Logical scalar indicating if input values should be scaled for numerical preci-
sion, see normalize_input.

Numeric scalar specifying the approximation accuracy of the Barnes-Hut algo-
rithm, see Rtsne for details.

Integer scalar specifying the number of threads to use in Rtsne. If NULL and
BPPARAM is a MulticoreParam, it is set to the number of workers in BPPARAM;
otherwise, the Rtsne defaults are used.

external_neighbors

BNPARAM

BPPARAM

use_fitsne

use_densvis

Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.

A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

A BiocParallelParam object specifying how the neighbor search should be par-
allelized when external_neighbors=TRUE.

Logical scalar indicating whether fitsne should be used to perform t-SNE.

Logical scalar indicating whether densne should be used to perform density-
preserving t-SNE.

16 calculateTSNE

dens_frac, dens_lambda
See densne

exprs_values Alias to assay. type.

assay. type Integer scalar or string indicating which assay of x contains the expression val-
ues.

pca Logical scalar indicating whether a PCA step should be performed inside Rtsne.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function Rtsne is used internally to compute the t-SNE. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set. seed to set a random seed for replicable results.

The value of the perplexity parameter can have a large effect on the results. By default, the
function will set a “reasonable” perplexity that scales with the number of cells in x. (Specifically, it
is the number of cells divided by 5, capped at a maximum of 50.) However, it is often worthwhile
to manually try multiple values to ensure that the conclusions are robust.

If external_neighbors=TRUE, the nearest neighbor search step will use a different algorithm to
that in the Rtsne function. This can be parallelized or approximate to achieve greater speed for
large data sets. The neighbor search results are then used for t-SNE via the Rtsne_neighbors
function.

If dimred is specified, the PCA step of the Rtsne function is automatically turned off by default.
This presumes that the existing dimensionality reduction is sufficient such that an additional PCA
is not required.

Value

For calculateTSNE, a numeric matrix is returned containing the t-SNE coordinates for each cell
(row) and dimension (column).

For runTSNE, a modified x is returned that contains the t-SNE coordinates in reducedDim(x,
name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by assay. type.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

calculateTSNE 17

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below le-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody
tags.

Setting altexp with assay.type will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References
van der Maaten LJP, Hinton GE (2008). Visualizing High-Dimensional Data Using t-SNE. J. Mach.
Learn. Res. 9, 2579-2605.

See Also

Rtsne, for the underlying calculations.

plotTSNE, to quickly visualize the results.

18 calculateUMAP

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runTSNE(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

calculateUMAP Perform UMAP on cell-level data

Description

Perform uniform manifold approximation and projection (UMAP) for the cells, based on the data
in a SingleCellExperiment object.

Usage
calculateUMAP(x, ...)

S4 method for signature 'ANY'
calculateUMAP(
X,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
pca = if (transposed) NULL else 50,
n_neighbors = 15,
n_threads = bpnworkers(BPPARAM),
external_neighbors = FALSE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam(),

use_densvis = FALSE,
dens_frac = 0.3,
dens_lambda = 0.1

)

S4 method for signature 'SummarizedExperiment'’
calculateUMAP(x, ..., exprs_values = "logcounts"”, assay.type = exprs_values)

S4 method for signature 'SingleCellExperiment’
calculateUMAP(
X,
pca = if (!is.null(dimred)) NULL else 50,
exprs_values = "logcounts”,
dimred = NULL,
n_dimred = NULL,

calculateUMAP 19

assay.type = exprs_values

)
runUMAP(x, ..., altexp = NULL, name = "UMAP")
Arguments

X For calculateUMAP, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runTSNE, a SingleCellExperiment object containing such a matrix.
For the calculateUMAP generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to umap. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.
For runUMAP, additional arguments to pass to calculateUMAP.

ncomponents Numeric scalar indicating the number of UMAP dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

pca Integer scalar specifying how many PCs should be used as input into the UMAP
algorithm. By default, no PCA is performed if the input is a dimensionality
reduction result.

n_neighbors Integer scalar, number of nearest neighbors to identify when constructing the
initial graph.

n_threads Integer scalar specifying the number of threads to use in umap. If NULL and

BPPARAM is a MulticoreParam, it is set to the number of workers in BPPARAM,;
otherwise, the umap defaults are used.

external_neighbors
Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.

BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.

use_densvis Logical scalar indicating whether densne should be used to perform density-

preserving t-SNE.
dens_frac, dens_lambda
See densne

exprs_values Alias to assay. type.

assay.type Integer scalar or string indicating which assay of x contains the expression val-
ues.
dimred String or integer scalar specifying the existing dimensionality reduction results

to use.

20

calculateUMAP
n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.
altexp String or integer scalar specifying an alternative experiment containing the input
data.
name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function umap is used internally to compute the UMAP. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set. seed to set a random seed for replicable results.

If external_neighbors=TRUE, the nearest neighbor search is conducted using a different algorithm
to that in the umap function. This can be parallelized or approximate to achieve greater speed for
large data sets. The neighbor search results are then used directly to create the UMAP embedding.

Value

For calculateUMAP, a matrix is returned containing the UMAP coordinates for each cell (row) and
dimension (column).

For runUMAP, a modified x is returned that contains the UMAP coordinates in reducedDim(x,
name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by assay. type.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below le-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

defunct 21

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody
tags.

Setting altexp with assay.type will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun

References

Mclnnes L, Healy J, Melville J (2018). UMAP: uniform manifold approximation and projection for
dimension reduction. arXiv.

See Also

umap, for the underlying calculations.

plotUMAP, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runUMAP(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

22 defunct

Usage
calculateQCMetrics(...)

S4 method for signature 'SingleCellExperiment'’
normalize(object, ...)

centreSizeFactors(...)
calculateDiffusionMap(x, ...)

S4 method for signature 'ANY'
calculateDiffusionMap(x, ...)

runDiffusionMap(...)

multiplot(...)

Arguments

object, x, ... Ignored arguments.

Details

calculateQCMetrics is succeeded by perCellQCMetrics and perFeatureQCMetrics.
normalize is succeeded by logNormCounts.

centreSizeFactors has no replacement - the SingleCellExperiment is removing support for mul-
tiple size factors, so this function is now trivial.

runDiffusionMap and calculateDiffusionMap have no replacement. destiny is no longer on
Bioconductor. You can calculate a diffusion map yourself, and add it to a reducedDim field, if you
so wish.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Author(s)

Aaron Lun

Examples

try(calculateQCMetrics())

getExplanatoryPCs 23

getExplanatoryPCs Per-PC variance explained by a variable

Description

Compute, for each principal component, the percentage of variance that is explained by one or more
variables of interest.

Usage
getExplanatoryPCs(x, dimred = "PCA”, n_dimred = 10, ...)
Arguments
X A SingleCellExperiment object containing dimensionality reduction results.
dimred String or integer scalar specifying the field in reducedDims (x) that contains the
PCA results.
n_dimred Integer scalar specifying the number of the top principal components to use.
Additional arguments passed to getVarianceExplained.
Details

This function computes the percentage of variance in PC scores that is explained by variables in the
sample-level metadata. It allows identification of important PCs that are driven by known experi-
mental conditions, e.g., treatment, disease. PCs correlated with technical factors (e.g., batch effects,
library size) can also be detected and removed prior to further analysis.

By default, the function will attempt to use pre-computed PCA results in object. This is done by
taking the top n_dimred PCs from the matrix specified by dimred. If these are not available or if
rerun=TRUE, the function will rerun the PCA using runPCA; however, this mode is deprecated and
users are advised to explicitly call runPCA themselves.

Value
A matrix containing the percentage of variance explained by each factor (column) and for each PC
(row).

Author(s)

Aaron Lun

See Also

plotExplanatoryPCs, to plot the results.

getVarianceExplained, to compute the variance explained.

24 getVarianceExplained

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

r2mat <- getExplanatoryPCs(example_sce)

getVarianceExplained Per-gene variance explained by a variable

Description

Compute, for each gene, the percentage of variance that is explained by one or more variables of
interest.

Usage

getVarianceExplained(x, ...)

S4 method for signature 'ANY'
getVarianceExplained(x, variables, subset_row = NULL, BPPARAM = SerialParam())

S4 method for signature 'SummarizedExperiment'’
getVarianceExplained(

X,

variables = NULL,

°

exprs_values = "logcounts”,
assay.type = exprs_values
)
Arguments
X A numeric matrix of expression values, usually log-transformed and normalized.

Alternatively, a SummarizedExperiment containing such a matrix.

For the generic, arguments to be passed to specific methods. For the Summa-
rizedExperiment method, arguments to be passed to the ANY method.

variables A DataFrame or data.frame containing one or more variables of interest. This
should have number of rows equal to the number of columns in x.

For the SummarizedExperiment method, this can also be a character vector spec-

ifying column names of colData(x) to use; or NULL, in which case all columns
in colData(x) are used.

subset_row A vector specifying the subset of rows of x for which to return a result.
BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized.

exprs_values Alias for assay. type.

assay.type String or integer scalar specifying the expression values for which to compute
the variance (also an alias exprs_value is accepted).

ggcells 25

Details
This function computes the percentage of variance in gene expression that is explained by variables
in the sample-level metadata. It allows problematic factors to be quickly identified, as well as the
genes that are most affected.

Value
A numeric matrix containing the percentage of variance explained by each factor (column) and for
each gene (row).

Author(s)

Aaron Lun

See Also

getExplanatoryPCs, which calls this function.
plotExplanatoryVariables, to plot the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

r2mat <- getVarianceExplained(example_sce)

ggcells Create a ggplot from a SingleCellExperiment

Description

Create a base ggplot object from a SingleCellExperiment, the contents of which can be directly
referenced in subsequent layers without prior specification.

Usage

ggcells(
X,
mapping = aes(),
features = NULL,
exprs_values = "logcounts”,
use_dimred = TRUE,
use_altexps = FALSE,
prefix_altexps = FALSE,
check_names = TRUE,
extract_mapping = TRUE,
assay.type = exprs_values,

)

ggfeatures(

26 ggcells
X,
mapping = aes(),
cells = NULL,
exprs_values = "logcounts”,
check_names = TRUE,
extract_mapping = TRUE,
assay.type = exprs_values,
)
Arguments
X A SingleCellExperiment object. This is expected to have row names for ggcells
and column names for ggfeatures.
mapping A list containing aesthetic mappings, usually the output of aes or related func-
tions.
features Character vector specifying the features for which to extract expression profiles

across cells. May also include features in alternative Experiments if permitted
by use.altexps.
exprs_values, use_dimred, use_altexps, prefix_altexps, check_names
Soft-deprecated equivalents of the arguments described above.
extract_mapping
Logical scalar indicating whether features or cells should be automatically
expanded to include variables referenced in mapping.

assay. type String or integer scalar specifying the expression values for which to compute
the variance (also an alias exprs_value is accepted).

Further arguments to pass to ggplot.

cells Character vector specifying the features for which to extract expression profiles
across cells.

Details

These functions generate a data.frame from the contents of a SingleCellExperiment and pass it to
ggplot. Rows, columns or metadata fields in the x can then be referenced in subsequent ggplot2
commands.

ggcells treats cells as the data values so users can reference row names of x (if provided in
features), column metadata variables and dimensionality reduction results. They can also ref-
erence row names and metadata variables for alternative Experiments.

ggfeatures treats features as the data values so users can reference column names of x (if provided
in cells) and row metadata variables.

If mapping is supplied, the function will automatically expand features or cells for any features
or cells requested in the mapping. This is convenient as features/cells do not have to specified twice
(once in data.frame construction and again in later geom or stat layers). Developers may wish to
turn this off with extract_mapping=FALSE for greater control.

Value

A ggplot object containing the specified contents of x.

nexprs 27

Author(s)

Aaron Lun

See Also

makePerCellDF and makePerFeatureDF, for the construction of the data.frame.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

ggcells(example_sce, aes(x=PCA.1, y=PCA.2, colour=Gene_0001)) +
geom_point()

ggcells(example_sce, aes(x=Mutation_Status, y=Gene_0001)) +
geom_violin() +
facet_wrap(~Cell_Cycle)

rowData(example_sce)$GC <- runif(nrow(example_sce))
ggfeatures(example_sce, aes(x=GC, y=Cell_001)) +
geom_point() +
stat_smooth()

nexprs Count the number of non-zero counts per cell or feature

Description

Counting the number of non-zero counts in each row (per feature) or column (per cell).

Usage

nexprs(x, ...)

S4 method for signature 'ANY'
nexprs(

X,

byrow = FALSE,

detection_limit = 0,

subset_row = NULL,

subset_col = NULL,

BPPARAM = SerialParam()

S4 method for signature 'SummarizedExperiment'
nexprs(x, ..., exprs_values = "counts"”, assay.type = exprs_values)

28

Arguments

X

byrow

detection_limit

subset_row
subset_col

BPPARAM

exprs_values

assay. type

Value

norm_exprs

A numeric matrix of counts where features are rows and cells are columns.

Alternatively, a SummarizedExperiment containing such counts.

For the generic, further arguments to pass to specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

Logical scalar indicating whether to count the number of detected cells per fea-
ture. If FALSE, the function will count the number of detected features per cell.

Numeric scalar providing the value above which observations are deemed to be
expressed.

Logical, integer or character vector indicating which rows (i.e. features) to use.
Logical, integer or character vector indicating which columns (i.e., cells) to use.

A BiocParallelParam object specifying whether the calculations should be par-
allelized. Only relevant when x is a DelayedMatrix.

Alias for assay. type.

String or integer specifying the assay of x to obtain the count matrix from (also
the alias exprs_values is accepted for this argument).

An integer vector containing counts per gene or cell, depending on the provided arguments.

Author(s)

Aaron Lun

See Also

numDetectedAcrossFeatures and numDetectedAcrossCells, to do this calculation for each group
of features or cells, respectively.

Examples

example_sce <- mockSCE()

nexprs(example_sce)[1:10]
nexprs(example_sce, byrow = TRUE)[1:10]

norm_exprs

Additional accessors for the typical elements of a SingleCellExperi-
ment object.

Description

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

norm_exprs 29
Usage

norm_exprs(object)

norm_exprs(object) <- value

stand_exprs(object)

stand_exprs(object) <- value

fpkm(object)

fpkm(object) <- value

Arguments
object SingleCellExperiment class object from which to access or to which to as-
sign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The
following are imported from SingleCellExperiment: "counts”, "normcounts",
"logcounts”, "cpm", "tpm".
value a numeric matrix (e.g. for exprs)
Value

a matrix of normalised expression data
a matrix of standardised expressiond data
a matrix of FPKM values

A matrix of numeric, integer or logical values.

Author(s)

Davis McCarthy

Examples

example_sce <- mockSCE()

example_sce <- logNormCounts(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) # identical to logcounts()
norm_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)
stand_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)
tpm(example_sce) <- calculateTPM(example_sce, lengths = 5e4)

cpm(example_sce) <- calculateCPM(example_sce)

fpkm(example_sce)

30

plotColData

plotColData

Plot column metadata

Description

Plot column-level (i.e., cell) metadata in an SingleCellExperiment object.

Usage

plotColData(
object,
Y,
x = NULL,

colour_by = color_by,
shape_by = NULL,

size_by = NULL,

order_by = NULL,
by_exprs_values = "logcounts”,

other_fields
swap_rownames

= 1ist(),

= NULL,

color_by = NULL,
point_fun = NULL,

scattermore =
bins = NULL,
summary_fun =
hex = FALSE,
by.assay. type

Arguments

object

colour_by

shape_by

size_by

order_by

by_exprs_values

FALSE,

n n

sum”,

= by_exprs_values,

A SingleCellExperiment object containing expression values and experimental
information.

String specifying the column-level metadata field to show on the y-axis. Alter-
natively, an Asls vector or data.frame, see ?retrieveCellInfo.

String specifying the column-level metadata to show on the x-axis. Alterna-
tively, an Asls vector or data.frame, see ?retrieveCellInfo. If NULL, nothing
is shown on the x-axis.

Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

Specification of a column metadata field or a feature to order points by, see the
by argument in ?retrieveCellInfo for possible values.

Alias for by . assay. type.

plotColData 31

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args”
for details.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

color_by Alias to colour_by.

point_fun Function used to create a geom that shows individual cells. Should take . ..
args and return a ggplot2 geom. For example, point_fun=function(...)
geom_quasirandom(...).

scattermore Logical, whether to use the scattermore package to greatly speed up plotting
a large number of cells. Use point_size = @ for the most performance gain.

bins Number of bins, can be different in x and y, to bin and summarize the points and
their values, to avoid overplotting. If NULL (default), then the points are plotted
without binning. Only used when both x and y are numeric.

summary_fun Function to summarize the feature value of each point (e.g. gene expression of
each cell) when the points binned, defaults to sum. Can be either the name of the
function or the function itself.

hex Logical, whether to use geom_hex.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?retrieveCellInfo for details (also alias
by_exprs_values is accepted for this argument).

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Value

A ggplot object.

Note

Arguments shape_by and size_by are ignored when scattermore = TRUE. Using scattermore
is only recommended for very large datasets to speed up plotting. Small point size is also recom-
mended. For larger point size, the point shape may be distorted. Also, when scattermore = TRUE,
the point_size argument works differently.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

32 plotDots

Examples

example_sce <- mockSCE()

example_sce <- logNormCounts(example_sce)

colData(example_sce) <- cbind(colData(example_sce),
perCellQCMetrics(example_sce))

” n

plotColData(example_sce, y = "detected”, x = "sum”,
colour_by = "Mutation_Status"”) + scale_x_log10()

plotColData(example_sce, y = "detected”, x = "sum”,
colour_by = "Mutation_Status”, size_by = "Gene_0001",
shape_by = "Treatment”) + scale_x_log10()

n "

plotColData(example_sce, y = "Treatment”, x = "sum"”,
colour_by = "Mutation_Status"”) + scale_y_logl@() # flipped violin.

plotColData(example_sce, y = "detected”,
x = "Cell_Cycle"”, colour_by = "Mutation_Status")
With scattermore
plotColData(example_sce, x = "sum
point_size = 2)
Bin to show point density
plotColData(example_sce, x = "sum”, y = "detected”, bins = 10)
Bin to summarize value (default is sum)

n

, Y "detected”, scattermore = TRUE,

plotColData(example_sce, x = "sum”, y = "detected”, bins = 10, colour_by = "total")
plotDots Create a dot plot of expression values
Description

Create a dot plot of expression values for a grouping of cells, where the size and colour of each dot
represents the proportion of detected expression values and the average expression, respectively, for
each feature in each group of cells.

Usage

plotDots(
object,
features,
group = NULL,
block = NULL,
exprs_values = "logcounts”,
detection_limit = 0,
zlim = NULL,
colour = color,
color = NULL,
max_detected = NULL,
other_fields = list(),
by_exprs_values = exprs_values,
swap_rownames = NULL,
center = FALSE,

plotDots 33

scale = FALSE,
assay.type = exprs_values,
by.assay.type = by_exprs_values

)
Arguments

object A SingleCellExperiment object.

features A character (or factor) vector of row names, a logical vector, or integer vector of
indices specifying rows of object to visualize. When using character or integer
vectors, the ordering specified by the user is retained. When using factor vectors,
ordering is controlled by the factor levels.

group String specifying the field of colData(object) containing the grouping factor,
e.g., cell types or clusters. Alternatively, any value that can be used in the by
argument to retrieveCellInfo.

block String specifying the field of colData(object) containing a blocking factor

(e.g., batch of origin). Alternatively, any value that can be used in the by argu-
ment to retrieveCellInfo.

exprs_values Alias to assay. type.

detection_limit
Numeric scalar providing the value above which observations are deemed to be
expressed.

zlim A numeric vector of length 2, specifying the upper and lower bounds for colour
mapping of expression values. Values outside this range are set to the most
extreme colour. If NULL, it defaults to the range of the expression matrix. If
center=TRUE, this defaults to the range of the centered expression matrix, made
symmetric around zero.

colour A vector of colours specifying the palette to use for increasing expression. This
defaults to viridis if center=FALSE, and the the "RdY1Bu" colour palette from
brewer.pal otherwise.

color Alias to colour.

max_detected Numeric value specifying the cap on the proportion of detected expression val-
ues.

other_fields Additional feature-based fields to include in the data.frame, see ?"scater-plot-args”
for details. Note that any Asls vectors or data.frames must be of length equal to
nrow(object), not features.

by_exprs_values
Alias for by . assay. type.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

center A logical scalar indicating whether each feature should have its mean expression
(specifically, the mean of averages across all groups) centered at zero prior to
plotting.

scale A logical scalar specifying whether each row should have its average expression

values scaled to unit variance prior to plotting.

assay. type A string or integer scalar indicating which assay of object should be used as
expression values.

by.assay.type A string or integer scalar specifying which assay to obtain expression values

from, for entries of other_fields. Also alias by_exprs_values is accepted as
argument name.

34 plotExplanatoryPCs

Details

This implements a Seurat-style “dot plot” that creates a dot for each feature (row) in each group of
cells (column). The proportion of detected expression values and the average expression for each
feature in each group of cells is visualized efficiently using the size and colour, respectively, of each
dot. If block is specified, batch-corrected averages and proportions for each group are computed
with correctGroupSummary.

Some caution is required during interpretation due to the difficulty of simultaneously interpreting
both size and colour. For example, if we coloured by z-score on a conventional blue-white-red
colour axis, a gene that is downregulated in a group of cells would show up as a small blue dot. If the
background colour was also white, this could be easily mistaken for a gene that is not downregulated
at all. We suggest choosing a colour scale that remains distinguishable from the background colour
at all points. Admittedly, that is easier said than done as many colour scales will approach a lighter
colour at some stage, so some magnifying glasses may be required.

We can also cap the colour and size scales using z1im and max_detected, respectively. This aims
to preserve resolution for low-abundance genes by preventing domination of the scales by high-
abundance features.

Value

A ggplot object containing a dot plot.

Author(s)

Aaron Lun

See Also

plotExpression and plotHeatmap, for alternatives to visualizing group-level expression values.

Examples

sce <- mockSCE()
sce <- logNormCounts(sce)

plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle")

plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle”, center=TRUE)
plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle"”, scale=TRUE)
plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle"”, center=TRUE, scale=TRUE)

plotDots(sce, features=rownames(sce)[1:10], group="Treatment"”, block="Cell_Cycle")

plotExplanatoryPCs Plot the explanatory PCs for each variable

Description

Plot the explanatory PCs for each variable

plotExplanatory Variables 35

Usage

plotExplanatoryPCs(
object,
nvars_to_plot = 10,
npcs_to_plot = 50,
theme_size = 10,

Arguments
object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getExplanatoryPCs.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

npcs_to_plot Integer scalar specifying the number of PCs to plot.
theme_size numeric scalar providing base font size for ggplot theme.

Parameters to be passed to getExplanatoryPCs.

Details

A density plot is created for each variable, showing the R-squared for each successive PC (up to
npcs_to_plot PCs). Only the nvars_to_plot variables with the largest maximum R-squared
across PCs are shown.

If object is a SingleCellExperiment object, getExplanatoryPCs will be called to compute the
variance in expression explained by each variable in each gene. Users may prefer to run getExplanatoryPCs
manually and pass the resulting matrix as object, in which case the R-squared values are used di-

rectly.

Value

A ggplot object.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

plotExplanatoryPCs(example_sce)

plotExplanatoryVariables
Plot explanatory variables ordered by percentage of variance ex-
plained

Description

Plot explanatory variables ordered by percentage of variance explained

36 plotExpression

Usage

plotExplanatoryVariables(
object,
nvars_to_plot
min_marginal_r

=10
2 =
theme_size = 10,

o,

Arguments

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getVarianceExplained.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

min_marginal_r2
Numeric scalar specifying the minimal value required for median marginal R-

squared for a variable to be plotted. Only variables with a median marginal
R-squared strictly larger than this value will be plotted.

theme_size Numeric scalar specifying the font size to use for the plotting theme

Parameters to be passed to getVarianceExplained.

Details

A density plot is created for each variable, showing the distribution of R-squared across all genes.
Only the nvars_to_plot variables with the largest median R-squared across genes are shown.
Variables are also only shown if they have median R-squared values above min_marginal_r2.

If object is a SingleCellExperiment object, getVarianceExplained will be called to compute
the variance in expression explained by each variable in each gene. Users may prefer to run
getVarianceExplained manually and pass the resulting matrix as object, in which case the R-
squared values are used directly.

Value

A ggplot object.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
plotExplanatoryVariables(example_sce)

plotExpression Plot expression values for all cells

Description

Plot expression values for a set of features (e.g. genes or transcripts) in a SingleExperiment object,
against a continuous or categorical covariate for all cells.

plotExpression

Usage

plotExpression(

object,
features,
x = NULL,

37

exprs_values = "logcounts”,

log2_values

FALSE,

colour_by = color_by,

shape_by = NULL,

size_by = NULL,

order_by = NULL,
by_exprs_values = exprs_values,

xlab = NULL,

feature_colours = feature_colors,
one_facet = TRUE,

ncol = 2,

scales = "fixed",

other_fields

= list(),

swap_rownames = NULL,
color_by = NULL,
feature_colors = TRUE,

point_fun =

assay.type =

scattermore
bins = NULL,
summary_fun
hex = FALSE,

by.assay.type

Arguments

object

features

exprs_values

log2_values

colour_by

shape_by

size_by

NULL,
exprs_values,

FALSE,

n n

sum”,

= by_exprs_values,

A SingleCellExperiment object containing expression values and other meta-
data.

A character vector or a list specifying the features to plot. If a list is supplied,
each entry of the list can be a string, an Asls-wrapped vector or a data.frame -
see ?retrieveCellInfo.

Specification of a column metadata field or a feature to show on the x-axis, see
the by argument in ?retrieveCellInfo for possible values.

Alias to assay. type

Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

38

order_by

by_exprs_values

x1lab

feature_colours

one_facet

ncol

scales

other_fields

swap_rownames

color_by
feature_colors

point_fun

assay. type

scattermore

bins

summary_fun

hex

by.assay. type

Details

plotExpression

Specification of a column metadata field or a feature to order points by, see the
by argument in ?retrieveCellInfo for possible values.

Alias to by . assay. type.

String specifying the label for x-axis. If NULL (default), x will be used as the
x-axis label.

Logical scalar indicating whether violins should be coloured by feature when x
and colour_by are not specified and one_facet=TRUE.

Logical scalar indicating whether grouped violin plots for multiple features should
be put onto one facet. Only relevant when x=NULL.

Integer scalar, specifying the number of columns to be used for the panels of a
multi-facet plot.

String indicating whether should multi-facet scales be fixed ("fixed"), free
("free"), or free in one dimension ("free_x", "free_y"). Passed to the scales
argument in the facet_wrap when multiple facets are generated.

Additional cell-based fields to include in the data.frame, see ?"scater-plot-args”
for details.

Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

Alias to colour_by.
Alias to feature_colours.

Function used to create a geom that shows individual cells. Should take . ..
args and return a ggplot2 geom. For example, point_fun=function(...)
geom_quasirandom(...).

A string or integer scalar specifying which assay in assays(object) to obtain
expression values from. Also the alias assay. type is accepted.

Logical, whether to use the scattermore package to greatly speed up plotting
a large number of cells. Use point_size = @ for the most performance gain.

Number of bins, can be different in x and y, to bin and summarize the points and
their values, to avoid overplotting. If NULL (default), then the points are plotted
without binning. Only used when both x and y are numeric.

Function to summarize the feature value of each point (e.g. gene expression of
each cell) when the points binned, defaults to sum. Can be either the name of the
function or the function itself.

Logical, whether to use geom_hex.

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the assay . type argumentin ?retrieveCellInfo.
Also the alias by .assay . type is accepted.

Additional arguments for visualization, see ?"scater-plot-args” for details.

This function plots expression values for one or more features. If x is not specified, a violin plot
will be generated of expression values. If x is categorical, a grouped violin plot will be generated,
with one violin for each level of x. If x is continuous, a scatter plot will be generated.

If multiple features are requested and x is not specified and one_facet=TRUE, a grouped violin plot
will be generated with one violin per feature. This will be coloured by feature if colour_by=NULL

plotExpression 39

and feature_colours=TRUE, to yield a more aesthetically pleasing plot. Otherwise, if x is speci-
fied or one_facet=FALSE, a multi-panel plot will be generated where each panel corresponds to a
feature. Each panel will be a scatter plot or (grouped) violin plot, depending on the nature of x.

Note that this assumes that the expression values are numeric. If not, and x is continuous, horizontal
violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where
the area of a rectangle is proportional to the number of points for a combination of factors.

Value

A ggplot object.

Note

Arguments shape_by and size_by are ignored when scattermore = TRUE. Using scattermore
is only recommended for very large datasets to speed up plotting. Small point size is also recom-
mended. For larger point size, the point shape may be distorted. Also, when scattermore = TRUE,
the point_size argument works differently.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

default plot
plotExpression(example_sce, rownames(example_sce)[1:15])

plot expression against an x-axis value

plotExpression(example_sce, c("Gene_0001", "Gene_0004"),
x="Mutation_Status")

plotExpression(example_sce, c("Gene_0001", "Gene_0004"),
x="Gene_0002")

add visual options

plotExpression(example_sce, rownames(example_sce)[1:6],
colour_by = "Mutation_Status")

plotExpression(example_sce, rownames(example_sce)[1:6],
colour_by = "Mutation_Status”, shape_by = "Treatment”,
size_by = "Gene_0010")

use boxplot as well as violin plot
plotExpression(example_sce, rownames(example_sce)[1:6],
show_boxplot = TRUE, show_violin = FALSE)

plot expression against expression values for Gene_0004
plotExpression(example_sce, rownames(example_sce)[1:4],
"Gene_0004", show_smooth = TRUE)

Use scattermore

plotExpression(example_sce, "Gene_0001", x = "Gene_0100", scattermore = TRUE,
point_size = 2)

Bin to show point density

plotExpression(example_sce, "Gene_0001", x = "Gene_0100", bins = 10)

40 plotGroupedHeatmap

Bin to summarize values (default is sum but can be changed with summary_fun)
plotExpression(example_sce, "Gene_0001", x = "Gene_0100", bins = 10,

colour_by = "Gene_0002", summary_fun = "mean")
plotGroupedHeatmap Plot heatmap of group-level expression averages
Description

Create a heatmap of average expression values for each group of cells and specified features in a
SingleCellExperiment object.

Usage
plotGroupedHeatmap(
object,
features,
group,
block = NULL,
columns = NULL,
exprs_values = "logcounts”,

center = FALSE,

scale = FALSE,

zlim = NULL,

colour = color,
swap_rownames = NULL,
color = NULL,

assay.type = exprs_values,

)
Arguments

object A SingleCellExperiment object.

features A character (or factor) vector of row names, a logical vector, or integer vector of
indices specifying rows of object to visualize. When using character or integer
vectors, the ordering specified by the user is retained. When using factor vectors,
ordering is controlled by the factor levels.

group String specifying the field of colData(object) containing the grouping factor,
e.g., cell types or clusters. Alternatively, any value that can be used in the by
argument to retrieveCellInfo.

block String specifying the field of colData(object) containing a blocking factor
(e.g., batch of origin). Alternatively, any value that can be used in the by argu-
ment to retrieveCellInfo.

columns A vector specifying the subset of columns in object to use when computing

averages.

exprs_values Alias to assay. type.

plotGroupedHeatmap

center

scale

zlim

colour

swap_rownames

color

assay.type

Details

41

A logical scalar indicating whether each feature should have its mean expression
(specifically, the mean of averages across all groups) centered at zero prior to
plotting.

A logical scalar specifying whether each row should have its average expression
values scaled to unit variance prior to plotting.

A numeric vector of length 2, specifying the upper and lower bounds for colour
mapping of expression values. Values outside this range are set to the most
extreme colour. If NULL, it defaults to the range of the expression matrix. If
center=TRUE, this defaults to the range of the centered expression matrix, made
symmetric around zero.

A vector of colours specifying the palette to use for increasing expression. This
defaults to viridis if center=FALSE, and the the "RdY1Bu" colour palette from
brewer.pal otherwise.

Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

Alias to colour.

A string or integer scalar indicating which assay of object should be used as
expression values.

Additional arguments to pass to pheatmap.

This function shows the average expression values for each group of cells on a heatmap, as defined
using the group factor. A per-group visualization can be preferable to a per-cell visualization when
dealing with large number of cells or groups with different size. If block is also specified, the block
effect is regressed out of the averages with correctGroupSummary prior to visualization.

Setting center=TRUE is useful for examining log-fold changes of each group’s expression profile
from the average across all groups. This avoids issues with the entire row appearing a certain colour
because the gene is highly/lowly expressed across all cells.

Setting z1im preserves the dynamic range of colours in the presence of outliers. Otherwise, the
plot may be dominated by a few genes, which will “flatten” the observed colours for the rest of the

heatmap.

Value

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

Author(s)

Aaron Lun

See Also

pheatmap, for the underlying function.

plotHeatmap, for a per-cell heatmap.

42

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotHeatmap

example_sce$Group <- paste@d(example_sce$Treatment, "+", example_sce$Mutation_Status)

plotGroupedHeatmap (example_sce, features=rownames(example_sce)[1:10],

group="Group")

plotGroupedHeatmap (example_sce, features=rownames(example_sce)[1:10],

group="Group"”, center=TRUE)

plotGroupedHeatmap (example_sce, features=rownames(example_sce)[1:10],

group="Group”, block="Cell_Cycle"”, center=TRUE)

plotHeatmap Plot heatmap of gene expression values

Description

Create a heatmap of expression values for each cell and specified features in a SingleCellExperiment

object.

Usage

plotHeatmap(
object,
features,
columns = NULL,
exprs_values = "logcounts”,
center = FALSE,
scale = FALSE,

zlim = NULL,
colour = color,
color = NULL,

colour_columns_by = color_columns_by,
color_columns_by = NULL,

column_annotation_colours = column_annotation_colors,

column_annotation_colors = list(),
row_annotation_colours = row_annotation_colors,
row_annotation_colors = list(),
colour_rows_by = color_rows_by,
color_rows_by = NULL,

order_columns_by = NULL,

by_exprs_values = exprs_values,
show_colnames = FALSE,

cluster_cols = is.null(order_columns_by),
swap_rownames = NULL,

assay.type = exprs_values,

by.assay.type = by_exprs_values,

plotHeatmap 43

Arguments
object A SingleCellExperiment object.
features A character (or factor) vector of row names, a logical vector, or integer vector of
indices specifying rows of object to visualize. When using character or integer
vectors, the ordering specified by the user is retained. When using factor vectors,
ordering is controlled by the factor levels.
columns A vector specifying the subset of columns in object to show as columns in

the heatmap. Also specifies the column order if cluster_cols=FALSE and
order_columns_by=NULL. By default, all columns are used.

exprs_values Alias to assay. type.

center A logical scalar indicating whether each feature should have its mean expression
centered at zero prior to plotting.

scale A logical scalar specifying whether each feature should have its expression val-
ues scaled to have unit variance prior to plotting.

zlim A numeric vector of length 2, specifying the upper and lower bounds for colour
mapping of expression values. Values outside this range are set to the most
extreme colour. If NULL, it defaults to the range of the expression matrix. If
center=TRUE, this defaults to the range of the centered expression matrix, made
symmetric around zero.

colour A vector of colours specifying the palette to use for increasing expression. This
defaults to viridis if center=FALSE, and the the "RdY1Bu" colour palette from
brewer.pal otherwise.
color, color_columns_by, column_annotation_colors, color_rows_by,
row_annotation_colors
Aliases to color, color_columns_by, column_annotation_colors, color_rows_by,
row_annotation_colors.
colour_columns_by
A list of values specifying how the columns should be annotated with colours.
Each entry of the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.
column_annotation_colours
A named list of colour scales to be used for the column annotations specified in
colour_columns_by. Names should be character values present in colour_columns_by,
If a colour scale is not specified for a particular annotation, a default colour
scale is chosen. The full list of colour maps is passed to pheatmap as the
annotation_colours argument.
row_annotation_colours
Similar to column_annotation_colours but relating to row annotation rather
than column annotation.

colour_rows_by Similar to colour_columns_by but for rows rather than columns. Each entry of
the list can be any acceptable input to the by argument in ?retrieveFeatureInfo.
order_columns_by
A list of values specifying how the columns should be ordered. Each entry of
the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.
This argument is automatically appended to colour_columns_by.
by_exprs_values
Alias to by .assay. type.

44 plotHeatmap

show_colnames, cluster_cols, ...
Additional arguments to pass to pheatmap.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

assay. type A string or integer scalar indicating which assay of object should be used as
expression values.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for colouring of column-level data - see the assay.type argument in
?retrieveCelllnfo.

Details

Setting center=TRUE is useful for examining log-fold changes of each cell’s expression profile
from the average across all cells. This avoids issues with the entire row appearing a certain colour
because the gene is highly/lowly expressed across all cells.

Setting z1im preserves the dynamic range of colours in the presence of outliers. Otherwise, the
plot may be dominated by a few genes, which will “flatten” the observed colours for the rest of the
heatmap.

Setting order_columns_by is useful for automatically ordering the heatmap by one or more factors
of interest, e.g., cluster identity. This avoids the need to set colour_columns_by, cluster_cols
and columns to achieve the same effect.

Value

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

Author(s)

Aaron Lun

See Also

pheatmap

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10])

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
center=TRUE)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
colour_columns_by=c("Mutation_Status”, "Cell_Cycle"))

plotHighestExprs 45

plotHighestExprs Plot the highest expressing features

Description

Plot the features with the highest average expression across all cells, along with their expression in
each individual cell.

Usage

plotHighestExprs(
object,
n = 50,
colour_cells_by = color_cells_by,
drop_features = NULL,
exprs_values = "counts”,
by_exprs_values = exprs_values,
feature_names_to_plot = NULL,
as_percentage = TRUE,
swap_rownames = NULL,
color_cells_by = NULL,
assay.type = exprs_values,
by.assay.type = by_exprs_values

)
Arguments
object A SingleCellExperiment object.
n A numeric scalar specifying the number of the most expressed features to show.

colour_cells_by
Specification of a column metadata field or a feature to colour by, see ?retrieveCellInfo
for possible values.

drop_features A character, logical or numeric vector indicating which features (e.g. genes,
transcripts) to drop when producing the plot. For example, spike-in transcripts
might be dropped to examine the contribution from endogenous genes.

exprs_values Alias to assay. type.

by_exprs_values
Alias to by .assay. type.

feature_names_to_plot
String specifying which row-level metadata column contains the feature names.
Alternatively, an Asls-wrapped vector or a data.frame, see ?retrieveFeatureInfo
for possible values. Default is NULL, in which case rownames (object) are used.

as_percentage logical scalar indicating whether percentages should be plotted. If FALSE, the
raw assay . type are shown instead.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

color_cells_by Aliasto colour_cells_by.

assay.type A integer scalar or string specifying the assay to obtain expression values from.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in colouring - see ?retrieveCellInfo for details.

46 plotPlatePosition

Details

This function will plot the percentage of counts accounted for by the top n most highly expressed
features across the dataset. Each row on the plot corresponds to a feature and is sorted by average
expression (denoted by the point). The distribution of expression across all cells is shown as tick
marks for each feature. These ticks can be coloured according to cell-level metadata, as specified
by colour_cells_by.

Value

A ggplot object.

Examples

example_sce <- mockSCE()
colData(example_sce) <- cbind(colData(example_sce),
perCellQCMetrics(example_sce))

plotHighestExprs(example_sce, colour_cells_by="detected")
plotHighestExprs(example_sce, colour_cells_by="Mutation_Status")

plotPlatePosition Plot cells in plate positions

Description

Plots cells in their position on a plate, coloured by metadata variables or feature expression values
from a SingleCellExperiment object.

Usage

plotPlatePosition(
object,
plate_position = NULL,
colour_by = color_by,
size_by = NULL,

shape_by = NULL,
order_by = NULL,
by_exprs_values = "logcounts”,

add_legend = TRUE,

theme_size = 24,

point_alpha = 0.6,

point_size = 24,

point_shape = 19,

other_fields = list(),
swap_rownames = NULL,

color_by = NULL,

by.assay.type = by_exprs_values

plotPlatePosition 47

Arguments

object A SingleCellExperiment object.

plate_position A character vector specifying the plate position for each cell (e.g., AOl, B12,
and so on, where letter indicates row and number indicates column). If NULL,
the function will attempt to extract this from object$plate_position. Alter-
natively, a list of two factors ("row” and "column”) can be supplied, specifying
the row (capital letters) and column (integer) for each cell in object.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

order_by Specification of a column metadata field or a feature to order points by, see the
by argument in ?retrieveCellInfo for possible values.

by_exprs_values
Alias for by . assay. type.

add_legend Logical scalar specifying whether a legend should be shown.

theme_size Numeric scalar, see ?"scater-plot-args” for details.

point_alpha Numeric scalar specifying the transparency of the points, see ?"scater-plot-args”
for details.

point_size Numeric scalar specifying the size of the points, see ?"scater-plot-args” for
details.

point_shape An integer, or a string specifying the shape of the points. See ?"scater-plot-args”

for details.

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args”
for details.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

color_by Alias to colour_by.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the assay . type argument in ?retrieveCellInfo.
Details

This function expects plate positions to be given in a charcter format where a letter indicates the
row on the plate and a numeric value indicates the column. Each cell has a plate position such
as "A01", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter,
and the column as the numeric part. Alternatively, the row and column identities can be directly
supplied by setting plate_position as a list of two factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

48 plotReducedDim

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

define plate positions

example_sce$plate_position <- paste@(
rep(LETTERS[1:5], each = 8),
rep(formatC(1:8, width = 2, flag = "@"), 5)

)

plot plate positions

plotPlatePosition(example_sce, colour_by = "Mutation_Status")
plotPlatePosition(example_sce, shape_by = "Treatment”,

colour_by = "Gene_0004")

plotPlatePosition(example_sce, shape_by = "Treatment”, size_by = "Gene_0001",
colour_by = "Cell_Cycle")

plotReducedDim Plot reduced dimensions

Description

Plot cell-level reduced dimension results stored in a SingleCellExperiment object.

Usage

plotReducedDim(
object,
dimred,
ncomponents = 2,
percentVar = NULL,
colour_by = color_by,
shape_by = NULL,
size_by = NULL,
order_by = NULL,
by_exprs_values = "logcounts”,
text_by = NULL,
text_size = 5,
text_colour = text_color,

label_format = c("%s %i", " (%i%%)"),
other_fields = 1list(),
text_color = "black”,

color_by = NULL,
swap_rownames = NULL,
point.padding = NA,
force = 1,

rasterise = FALSE,
scattermore = FALSE,
bins = NULL,

plotReducedDim

summary_fun

49

n n

sum”,

hex = FALSE,
by.assay.type = by_exprs_values,
min.value = NULL,
max.value = NULL,
)
Arguments
object A SingleCellExperiment object.
dimred A string or integer scalar indicating the reduced dimension result in reducedDims (object)
to plot.
ncomponents A numeric scalar indicating the number of dimensions to plot, starting from the
first dimension. Alternatively, a numeric vector specifying the dimensions to be
plotted.
percentVar A numeric vector giving the proportion of variance in expression explained by
each reduced dimension. Only expected to be used in PCA settings, e.g., in the
plotPCA function.
colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.
shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.
size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.
order_by Specification of a column metadata field or a feature to order points by, see the

by_exprs_values

text_by

text_size
text_colour

label_format

other_fields

text_color
color_by

swap_rownames

by argument in ?retrieveCellInfo for possible values.

Alias for by . assay. type.

String specifying the column metadata field with which to add text labels on the
plot. This must refer to a categorical field, i.e., coercible into a factor. Alterna-
tively, an Asls vector or data.frame, see ?retrieveCellInfo.

Numeric scalar specifying the size of added text.
String specifying the colour of the added text.

Character vector of length 2 containing format strings to use for the axis labels.
The first string expects a string containing the result type (e.g., "PCA") and an
integer containing the component number, while the second string shows the
rounded percentage of variance explained and is only relevant when this infor-
mation is provided in object.

Additional cell-based fields to include in the data.frame, see ?"scater-plot-args”
for details.

Alias to text_colour.
Alias to colour_by.

Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

point.padding, force

See ?ggrepel: :geom_text_repel.

50 plotReducedDim

rasterise Whether to rasterise the points in the plot with rasterise. To control the dpi,
setoptions(ggrastr.default.dpi), for example options(ggrastr.default.dpi=300).

scattermore Logical, whether to use the scattermore package to greatly speed up plotting
a large number of cells. Use point_size = @ for the most performance gain.

bins Number of bins, can be different in x and y, to bin and summarize the points and
their values, to avoid overplotting. If NULL (default), then the points are plotted
without binning. Only used when both x and y are numeric.

summary_fun Function to summarize the feature value of each point (e.g. gene expression of
each cell) when the points binned, defaults to sum. Can be either the name of the
function or the function itself.

hex Logical, whether to use geom_hex.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the assay . type argument in ?retrieveCellInfo.
min.value, max.value
Minimum and maximum values, beyond which colour_by values (if numeric)
are truncated. Can be set to a numeric value to prevent outlying values from
skewing the colour scale, or set to quantiles of the colour_by variable by setting
to (e.g.) "q10@" for the 10th quantile.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If ncomponents is a scalar equal to 2, a scatterplot of the first two dimensions is produced. If
ncomponents is greater than 2, a pairs plots for the top dimensions is produced.

Alternatively, if ncomponents is a vector of length 2, a scatterplot of the two specified dimensions
is produced. If it is of length greater than 2, a pairs plot is produced containing all pairwise plots
between the specified dimensions.

The text_by option will add factor levels as labels onto the plot, placed at the median coordinate
across all points in that level. This is useful for annotating position-related metadata (e.g., clusters)
when there are too many levels to distinguish by colour. It is only available for scatterplots.

Value

A ggplot object

Note

Arguments shape_by and size_by are ignored when scattermore = TRUE. Using scattermore
is only recommended for very large datasets to speed up plotting. Small point size is also recom-
mended. For larger point size, the point shape may be distorted. Also, when scattermore = TRUE,
the point_size argument works differently.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotRLE

51

example_sce <- runPCA(example_sce, ncomponents=5)
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")

plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle”,
shape_by="Treatment")

Use scattermore
plotPCA(example_sce, ncomponents = 4, scattermore = TRUE, point_size = 3)

Bin to show point density

plotPCA(example_sce, bins = 10)

Bin to summarize values (default is sum)
plotPCA(example_sce, bins = 10, colour_by = "Gene_0001")

plotRLE

Plot relative log expression

Description

Produce a relative log expression (RLE) plot of one or more transformations of cell expression

values.

Usage

plotRLE(
object,
exprs_values
exprs_logged

= "logcounts"”,
TRUE,

style = "minimal”,

legend = TRUE,

ordering = NULL,

colour_by = color_by,
by_exprs_values = exprs_values,
BPPARAM = BiocParallel: :bpparam(),
color_by = NULL,

assay.type =

exprs_values,

by.assay.type = by_exprs_values,

assay_logged

Arguments

object
exprs_values

exprs_logged

= exprs_logged,

A SingleCellExperiment object.
Alias to assay. type.

A logical scalar indicating whether the expression matrix is already log-transformed.
If not, a log2-transformation (+1) will be performed prior to plotting.

52 plotRLE

style String defining the boxplot style to use, either "minimal” (default) or "full"”;
see Details.

legend Logical scalar specifying whether a legend should be shown.

ordering A vector specifying the ordering of cells in the RLE plot. This can be useful for

arranging cells by experimental conditions or batches.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

by_exprs_values
Alias to by .assay. type.

BPPARAM A BiocParallelParam object to be used to parallelise operations using DelayedArray.
color_by Alias to colour_by.
assay.type A string or integer scalar specifying the expression matrix in object to use.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the assay . type argument in ?retrieveCellInfo.

assay_logged Alias to exprs_logged.

further arguments passed to geom_boxplot when style="full".

Details

Relative log expression (RLE) plots are a powerful tool for visualising unwanted variation in high
dimensional data. These plots were originally devised for gene expression data from microarrays
but can also be used on single-cell expression data. RLE plots are particularly useful for assessing
whether a procedure aimed at removing unwanted variation (e.g., scaling normalisation) has been
successful.

If style is “full”, the usual ggplot2 boxplot is created for each cell. Here, the box shows the inter-
quartile range and whiskers extend no more than 1.5 times the IQR from the hinge (the 25th or 75th
percentile). Data beyond the whiskers are called outliers and are plotted individually. The median
(50th percentile) is shown with a white bar. This approach is detailed and flexible, but can take a
long time to plot for large datasets.

If style is “minimal”, a Tufte-style boxplot is created for each cell. Here, the median is shown with
a circle, the IQR in a grey line, and “whiskers” (as defined above) for the plots are shown with
coloured lines. No outliers are shown for this plot style. This approach is more succinct and faster
for large numbers of cells.

Value

A ggplot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

References

Gandolfo LC, Speed TP (2017). RLE plots: visualising unwanted variation in high dimensional
data. arXiv.

plotRowData 53

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotRLE (example_sce, colour_by = "Mutation_Status”, style = "minimal")

plotRLE (example_sce, colour_by = "Mutation_Status”, style = "full"”,
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = 0)

plotRowData Plot row metadata

Description

Plot row-level (i.e., gene) metadata from a SingleCellExperiment object.

Usage

plotRowData(
object,
Y,
x = NULL,
colour_by = color_by,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts”,
other_fields = list(),
color_by = NULL,
by.assay.type = by_exprs_values,

)
Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y String specifying the column-level metadata field to show on the y-axis. Alter-
natively, an Asls vector or data.frame, see ?retrieveFeatureInfo.

X String specifying the column-level metadata to show on the x-axis. Alterna-
tively, an Asls vector or data.frame, see ?retrieveFeatureInfo. If NULL, noth-
ing is shown on the x-axis.

colour_by Specification of a row metadata field or a cell to colour by, see ?retrieveFeatureInfo
for possible values.

shape_by Specification of a row metadata field or a cell to shape by, see ?retrieveFeaturelInfo
for possible values.

size_by Specification of a row metadata field or a cell to size by, see ?retrieveFeatureInfo

for possible values.
by_exprs_values
Alias to by .assay. type.

54 plotScater

other_fields Additional feature-based fields to include in the data.frame, see ?"scater-plot-args”
for details.

color_by Alias to colour_by.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?retrieveFeatureInfo for details.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Value

A ggplot object.

Examples

example_sce <- mockSCE()

example_sce <- logNormCounts(example_sce)

rowData(example_sce) <- cbind(rowData(example_sce),
perFeatureQCMetrics(example_sce))

plotRowData(example_sce, y="detected”, x="mean") +
scale_x_log10()

plotScater Plot an overview of expression for each cell

Description

Plot the relative proportion of the library size that is accounted for by the most highly expressed
features for each cell in a SingleCellExperiment object.

Usage

plotScater(
X,
nfeatures = 500,
exprs_values = "counts”,
colour_by = color_by,
by_exprs_values = exprs_values,
blockl = NULL,
block2 = NULL,
ncol = 3,
line_width = 1.5,

plotScater 55

theme_size = 10,

color_by = NULL,

assay.type = exprs_values,
by.assay.type = by_exprs_values

)
Arguments
X A SingleCellExperiment object.
nfeatures Numeric scalar indicating the number of top-expressed features to show n the

plot.
exprs_values Alias to assay. type.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values. The curve for each cell
will be coloured according to this specification.

by_exprs_values
Alias to by .assay. type.
block String specifying the column-level metadata field by which to separate the cells

into separate panels in the plot. Alternatively, an Asls vector or data.frame, see
?retrieveCellInfo. Default is NULL, in which case there is no blocking.

block2 Same as block1, providing another level of blocking.

ncol Number of columns to use for facet_wrap if only one block is defined.
line_width Numeric scalar specifying the line width.

theme_size Numeric scalar specifying the font size to use for the plotting theme.

color_by Alias to colour_by.

assay.type String or integer scalar indicating which assay of object should be used to

obtain the expression values for this plot.

by.assay.type A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the assay . type argumentin ?retrieveCellInfo.

Details

For each cell, the features are ordered from most-expressed to least-expressed. The cumulative
proportion of the total expression for the cell is computed across the top nfeatures features. These
plots can flag cells with a very high proportion of the library coming from a small number of
features; such cells are likely to be problematic for downstream analyses.

Using the colour and blocking arguments can flag overall differences in cells under different ex-
perimental conditions or affected by different batch and other variables. If only one of block1 and
block? are specified, each panel corresponds to a separate level of the specified blocking factor. If
both are specified, each panel corresponds to a combination of levels.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

56 projectReducedDim

Examples

example_sce <- mockSCE()
plotScater(example_sce)
plotScater(example_sce, assay.type = "counts”, colour_by = "Cell_Cycle")
plotScater(example_sce, blockl = "Treatment”, colour_by = "Cell_Cycle")

projectReducedDim Project cells into an arbitrary dimensionality reduction space.

Description

Projects observations into arbitrary dimensionality reduction space (e.g., t-SNE, UMAP) using a
tricube weighted average of the k nearest neighbours.

Usage

projectReducedDim(x, ...)

S4 method for signature 'matrix'
projectReducedDim(x, old.embedding, ...)

S4 method for signature 'SummarizedExperiment'’
projectReducedDim(

X,

old.sce,

dimred.embed = "TSNE",

dimred.knn = "PCA",

dimred.name = dimred.embed,

k=25

Arguments

X A numeric matrix of a dimensionality reduction containing the cells that should
be projected into the existing embedding defined in either old.embedding or
old.sce. Alternatively, a SummarizedExperiment or SingleCellExperiment con-
taining such a matrix.

Passed to methods.

old.embedding If x is a matrix and old is given, then old. embedding is the existing dimension-
ality reduction embedding that x should be projected into.

old.sce The object containing the original dimensionality points. If x is a matrix, then
old.points must be supplied as a matrix of

dimred.embed The name of the target dimensionality reduction that points should be embedded
into, if .

dimred.knn The name of the dimensionality reduction to use to identify the K-nearest neigh-
bours from x in the dimensionality reduction slot of the same name defined in
either old or old. sce.

dimred.name The name of the dimensionality reduction that the projected embedding will be
saved as, for the SummarizedExperiment method.

k The number of nearest neighours to use to project points into the embedding.

Reduced dimension plots 57

Value

When x is a matrix, a matrix is returned. When x is a SummarizedExperiment (or SingleCellExperiment),
the return value is of the same class as the input, but the projected dimensionality reduction is added
as a reducedDim field.

Examples

example_sce <- mockSCE()

example_sce <- logNormCounts(example_sce)
example_sce <- runUMAP(example_sce)
example_sce <- runPCA(example_sce)

example_sce_new <- mockSCE()
example_sce_new <- logNormCounts(example_sce_new)
example_sce_new <- runPCA(example_sce_new)

sce method

projectReducedDim(
example_sce_new,
old.sce = example_sce,
dimred.embed="UMAP",
dimred.knn="PCA"

)

matrix method

projectReducedDim(
reducedDim(example_sce, "PCA"),
new.points = reducedDim(example_sce_new, "PCA"),
old.embedding = reducedDim(example_sce, "UMAP")

Reduced dimension plots
Plot specific reduced dimensions

Description

Wrapper functions to create plots for specific types of reduced dimension results in a SingleCellEx-
periment object.

Usage
plotPCASCE(object, ..., ncomponents = 2, dimred = "PCA")
plotTSNE (object, ..., ncomponents = 2, dimred = "TSNE")
plotUMAP(object, ..., ncomponents = 2, dimred = "UMAP")
plotDiffusionMap(object, ..., ncomponents = 2, dimred = "DiffusionMap")

plotMDS(object, ..., ncomponents = 2, dimred = "MDS")

58 Reduced dimension plots

plotNMF (object, ..., ncomponents = 2, dimred = "NMF")

S4 method for signature 'SingleCellExperiment'’

plotPCA(object, ..., ncomponents = 2, dimred = "PCA")
Arguments
object A SingleCellExperiment object.
Additional arguments to pass to plotReducedDim.
ncomponents Numeric scalar indicating the number of dimensions components to (calculate
and) plot. This can also be a numeric vector, see ?plotReducedDim for details.
dimred A string or integer scalar indicating the reduced dimension result in reducedDims (object)
to plot.
Details

Each function is a convenient wrapper around plotReducedDim that searches the reducedDims slot
for an appropriately named dimensionality reduction result:

e "PCA" for plotPCA

e "TSNE" for plotTSNE

e "DiffusionMap” for plotDiffusionMap
e "MDS" for "plotMDS"

e "NMF" for "plotNMF"

e "UMAP" for "plotUMAP"

Its only purpose is to streamline workflows to avoid the need to specify the dimred argument.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

See Also

runPCA, runDiffusionMap, runTSNE, runMDS, runNMF, and runUMAP, for the functions that actually
perform the calculations.

plotReducedDim, for the underlying plotting function.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

Examples plotting PC1 and PC2

plotPCA(example_sce)

plotPCA(example_sce, colour_by = "Cell_Cycle")

plotPCA(example_sce, colour_by = "Cell_Cycle”, shape_by = "Treatment")

reexports 59

Examples plotting more than 2 PCs
plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment”,
shape_by = "Mutation_Status")

Same for TSNE:
example_sce <- runTSNE(example_sce)
plotTSNE (example_sce, colour_by="Mutation_Status")

Not run:

Same for DiffusionMaps:

example_sce <- runDiffusionMap(example_sce)
plotDiffusionMap(example_sce)

End(Not run)
Same for MDS plots:

example_sce <- runMDS(example_sce)
plotMDS (example_sce)

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

scuttle addPerCellQC, addPerFeatureQC, aggregateAcrossCells, aggregateAcrossFeatures,
calculateAverage, calculateCPM, calculateFPKM, calculateTPM, computelLibraryFactors,
computeMedianFactors, isOutlier, librarySizeFactors, logNormCounts, makePerCellDF,
makePerFeatureDF, medianSizeFactors, mockSCE, normalizeCounts, numDetectedAcrossCells,
numDetectedAcrossFeatures, perCellQCMetrics, perFeatureQCMetrics, quickPerCellQC,
readSparseCounts, sumCountsAcrossCells, sumCountsAcrossFeatures, uniquifyFeatureNames

retrieveCellInfo Cell-based data retrieval

Description

Retrieves a per-cell (meta)data field from a SingleCellExperiment based on a single keyword, typi-
cally for use in visualization functions.

Usage
retrieveCellInfo(
X’
by,
search = c("colData"”, "assays”, "altExps"),
exprs_values = "logcounts"”,

swap_rownames = NULL,
assay.type = exprs_values

60 retrieveCelllnfo

Arguments
X A SingleCellExperiment object.
by A string specifying the field to extract (see Details). Alternatively, a data.frame,
DataFrame or an Asls vector.
search Character vector specifying the types of data or metadata to use.

exprs_values Alias to assay. type.

swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames (object) when labelling plot elements.

assay.type String or integer scalar specifying the assay from which expression values should
be extracted.

Details

Given an Asls-wrapped vector in by, this function will directly return the vector values as value,
while name is set to an empty string. For data.frame or DataFrame instances with a single column,
this function will return the vector from that column as value and the column name as name. This
allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.

Given a character string in by, this function will:
1. Search colData for a column named by, and return the corresponding field as the output
value. We do not consider nested elements within the colData.

2. Search assay(x, assay.type) for a row named by, and return the expression vector for this
feature as the output value.

3. Search each alternative experiment in altExps(x) for a row names by, and return the expres-
sion vector for this feature at assay . type as the output value.
Any match will cause the function to return without considering later possibilities. The search can
be modified by changing the presence and ordering of elements in search.

If there is a name clash that results in retrieval of an unintended field, users should explicitly set by
to a data.frame, DataFrame or Asls-wrapped vector containing the desired values. Developers can
also consider setting search to control the fields that are returned.

Value

A list containing name, a string with the name of the extracted field (usually identically to by); and
value, a vector of length equal to ncol (x) containing per-cell (meta)data values. If by=NULL, both
name and value are set to NULL.

Author(s)

Aaron Lun

See Also

makePerCellDF, which provides a more user-friendly interface to this function.

plotColData, plotReducedDim, plotExpression, plotPlatePosition, and most other cell-based
plotting functions.

retrieveFeaturelnfo 61

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

retrieveCellInfo(example_sce, "Cell_Cycle")
retrieveCellInfo(example_sce, "Gene_0001")

arbitrary.field <- rnorm(ncol(example_sce))
retrieveCellInfo(example_sce, I(arbitrary.field))
retrieveCellInfo(example_sce, data.frame(stuff=arbitrary.field))

retrieveFeatureInfo Feature-based data retrieval

Description

Retrieves a per-feature (meta)data field from a SingleCellExperiment based on a single keyword,
typically for use in visualization functions.

Usage
retrieveFeatureInfo(
X ’
by,
search = c("rowData”, "assays"),
exprs_values = "logcounts”,
assay.type = exprs_values
)
Arguments
X A SingleCellExperiment object.
by A string specifying the field to extract (see Details). Alternatively, a data.frame,
DataFrame or an Asls vector.
search Character vector specifying the types of data or metadata to use.

exprs_values Alias to assay. type.

assay.type String or integer scalar specifying the assay from which expression values should
be extracted.

Details

Given a Asls-wrapped vector in by, this function will directly return the vector values as value,
while name is set to an empty string. For data.frame or DataFrame instances with a single column,
this function will return the vector from that column as value and the column name as name. This
allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.

Given a character string in by, this function will:

1. Search rowData for a column named by, and return the corresponding field as the output
value. We do not consider nested elements within the rowData.

62 runColDataPCA

2. Search assay(x, assay.type) for a column named by, and return the expression vector for
this feature as the output value.

Any match will cause the function to return without considering later possibilities. The search can
be modified by changing the presence and ordering of elements in search.

If there is a name clash that results in retrieval of an unintended field, users should explicitly set by
to a data.frame, DataFrame or Asls-wrapped vector containing the desired values. Developers can
also consider setting search to control the fields that are returned.

Value

A list containing name, a string with the name of the extracted field (usually identically to by); and
value, a vector of length equal to ncol(x) containing per-feature (meta)data values. If by=NULL,
both name and value are set to NULL.

Author(s)

Aaron Lun

See Also

makePerFeatureDF, which provides a more user-friendly interface to this function.

plotRowData and other feature-based plotting functions.

Examples

example_sce <- mockSCE()

example_sce <- logNormCounts(example_sce)

rowData(example_sce)$blah <- sample(LETTERS,
nrow(example_sce), replace=TRUE)

str(retrieveFeatureInfo(example_sce, "blah"))
str(retrieveFeatureInfo(example_sce, "Cell_001"))

arbitrary.field <- rnorm(nrow(example_sce))
str(retrieveFeatureInfo(example_sce, I(arbitrary.field)))
str(retrieveFeatureInfo(example_sce, data.frame(stuff=arbitrary.field)))

runColDataPCA Perform PCA on column metadata

Description

Perform a principal components analysis (PCA) on cells, based on the column metadata in a Sin-
gleCellExperiment object.

runColDataPCA 63

Usage

runColDataPCA(
X,
ncomponents = 2,
variables = NULL,
scale = TRUE,
outliers = FALSE,
BSPARAM = ExactParam(),
BPPARAM = SerialParam(),
name = "PCA_coldata”

)
Arguments
X A SingleCellExperiment object.
ncomponents Numeric scalar indicating the number of principal components to obtain.
variables List of strings or a character vector indicating which variables in colData(x) to
use. If a list, each entry can also be an Asls vector or a data.frame, as described
in ?retrieveCellInfo.
scale Logical scalar, should the expression values be standardised so that each feature
has unit variance? This will also remove features with standard deviations below
le-8.
outliers Logical indicating whether outliers should be detected based on PCA coordi-
nates.
BSPARAM A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA.
BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.
name String specifying the name to be used to store the result in the reducedDims of
the output.
Details

This function performs PCA on variables from the column-level metadata instead of the gene ex-
pression matrix. Doing so can be occasionally useful when other forms of experimental data are
stored in the colData, e.g., protein intensities from FACs or other cell-specific phenotypic informa-
tion.

This function is particularly useful for identifying low-quality cells based on QC metrics with
outliers=TRUE. This uses an “outlyingness” measure computed by adjOutlyingness in the ro-
bustbase package. Outliers are defined those cells with outlyingness values more than 5 MADs
above the median, using isOutlier.

Value

A SingleCellExperiment object containing the first ncomponent principal coordinates for each cell.
By default, these are stored in the "PCA_coldata” entry of the reducedDims slot. The proportion
of variance explained by each PC is stored as a numeric vector in the "percentVar" attribute.

If outliers=TRUE, the output colData will also contain a logical outlier field. This specifies the
cells that correspond to the identified outliers.

64 runMultiUMAP

Author(s)
Aaron Lun, based on code by Davis McCarthy

See Also

runPCA, for the corresponding method operating on expression data.

Examples

example_sce <- mockSCE()
gc.df <- perCellQCMetrics(example_sce, subset=list(Mito=1:10))
colData(example_sce) <- cbind(colData(example_sce), qgc.df)

Can supply names of colData variables to 'variables',
as well as AsIs-wrapped vectors of interest.
example_sce <- runColDataPCA(example_sce, variables=list(
"sum”, "detected”, "subsets_Mito_percent”, "altexps_Spikes_percent”
)

reducedDimNames (example_sce)
head(reducedDim(example_sce))

runMul tiUMAP Multi-modal UMAP

Description

Perform UMAP with multiple input matrices by intersecting their simplicial sets. Typically used to
combine results from multiple data modalities into a single embedding.

Usage

calculateMultiUMAP(x, ...)

S4 method for signature 'ANY'
calculateMultiUMAP(x, ..., metric = "euclidean”)

S4 method for signature 'SummarizedExperiment'’
calculateMultiUMAP(

X,

exprs_values,

metric = "euclidean”,

assay.type = exprs_values,

S4 method for signature 'SingleCellExperiment'
calculateMultiUMAP(

X,

exprs_values,

dimred,

altexp,

runMultiUMAP

altexp_exprs_

assay.type =
altexp.assay.

runMultiUMAP(x,

Arguments

X

metric

exprs_values

assay. type

dimred

altexp

65

values = "logcounts”,
exprs_values,
type = altexp_exprs_values,

., name = "MultiUMAP")

For calculateMultiUMAP, a list of numeric matrices where each row is a cell
and each column is some dimension/variable. For gene expression data, this is
usually the matrix of PC coordinates.

Alternatively, a SummarizedExperiment containing relevant matrices in its as-
says.

Alternatively, a SingleCellExperiment containing relevant matrices in its as-
says, reducedDims or altExps. This is also the only permissible argument
for runMultiUMAP.

For the generic, further arguments to pass to specific methods.

For the ANY method, further arguments to pass to umap.

For the SummarizedExperiment and SingleCellExperiment methods, and for
runMultiUMAP, further arguments to pass to the ANY method.

Character vector specifying the type of distance to use for each matrix in x. This
is recycled to the same number of matrices supplied in x.

Alias to assay. type.

A character or integer vector of assays to extract and transpose for use in the
UMAP. For the SingleCellExperiment, this argument can be missing, in which
case no assays are used.

A character or integer vector of reducedDims to extract for use in the UMAP.
This argument can be missing, in which case no assays are used.

A character or integer vector of altExps to extract and transpose for use in the
UMAP. This argument can be missing, in which case no alternative experiments
are used.

altexp_exprs_values

Alias to altexp.assay. type.

altexp.assay.type

name

Details

A character or integer vector specifying the assay to extract from alternative
experiments, when altexp is specified. This is recycled to the same length as
altexp.

String specifying the name of the reducedDims in which to store the UMAP.

These functions serve as convenience wrappers around umap for multi-modal analysis. The idea is
that each input matrix in x corresponds to data for a different mode. A typical example would consist
of the PC coordinates generated from gene expression counts, plus the log-abundance matrix for
ADT counts from CITE-seq experiments; one might also include matrices of transformed intensities
from indexed FACS, to name some more possibilities.

Roughly speaking,

the idea is to identify nearest neighbors within each mode to construct the sim-

plicial sets. Integration of multiple modes is performed by intersecting the sets to obtain a single

66 scater-pkg

graph, which is used in the rest of the UMAP algorithm. By performing an intersection, we focus
on relationships between cells that are consistently neighboring across all the modes, thus providing
greater resolution of differences at any mode. The neighbor search within each mode also avoids
difficulties with quantitative comparisons of distances between modes.

The most obvious use of this function is to generate a low-dimensional embedding for visualization.
However, users can also set n_components to a higher value (e.g., 10-20) to retain more information
for downstream steps like clustering. This Do, however, remember to set the seed appropriately.

By default, all modes use the distance metric of metric to construct the simplicial sets within each
mode. However, it is possible to vary this by supplying a vector of metrics, e.g., "euclidean” for
the first matrix, "manhattan” for the second. For the SingleCellExperiment method, matrices are
extracted in the order of assays, reduced dimensions and alternative experiments, so any variation
in metrics is also assumed to follow this order.

Value

For calculateMultiUMAP, a numeric matrix containing the low-dimensional UMAP embedding.

For runMultiUMAP, x is returned with a MultiUMAP field in its reducedDims.

Author(s)

Aaron Lun

See Also

runUMAP, for the more straightforward application of UMAP.

Examples

Mocking up a gene expression + ADT dataset:
exprs_sce <- mockSCE()

exprs_sce <- logNormCounts(exprs_sce)
exprs_sce <- runPCA(exprs_sce)

adt_sce <- mockSCE(ngenes=20)
adt_sce <- logNormCounts(adt_sce)
altExp(exprs_sce, "ADT") <- adt_sce

Running a multimodal analysis using PCs for expression

and log-counts for the ADTs:

exprs_sce <- runMultiUMAP(exprs_sce, dimred="PCA", altexp="ADT")
plotReducedDim(exprs_sce, "MultiUMAP")

scater-pkg The scater package

Description

Provides functions for convenient visualization of single-cell data, mostly via ggplot2. It also used
to provide utilities for data transformation and quality control, but these have largely been moved
to the scuttle package.

scater-plot-args 67

Author(s)
Davis McCarthy, Aaron Lun

scater-plot-args General visualization parameters

Description

scater functions that plot points share a number of visualization parameters, which are described
on this page.

Aesthetic parameters

add_legend: Logical scalar, specifying whether a legend should be shown. Defaults to TRUE.
theme_size: Integer scalar, specifying the font size. Defaults to 10.

point_alpha: Numeric scalar in [0, 1], specifying the transparency. Defaults to 0.6.
point_size: Numeric scalar, specifying the size of the points. Defaults to NULL.

point_shape: Aninteger, or a string specifying the shape of the points. Details see vignette("ggplot2-specs”).
Defaults to 19.

jitter_type: String to define how points are to be jittered in a violin plot. This is either with
random jitter on the x-axis ("jitter"”) or in a “beeswarm” style (if "swarm”, default). The
latter usually looks more attractive, but for datasets with a large number of cells, or for dense
plots, the jitter option may work better.

Distributional calculations

show_median: Logical, should the median of the distribution be shown for violin plots? Defaults
to FALSE.

show_violin: Logical, should the outline of a violin plot be shown? Defaults to TRUE.
show_smooth: Logical, should a smoother be fitted to a scatter plot? Defaults to FALSE.

show_se: Logical, should standard errors for the fitted line be shown on a scatter plot when show_smooth=TRUE?
Defaults to TRUE.

show_boxplot: Logical, should a box plot be shown? Defaults to FALSE.

Miscellaneous fields

Addititional fields can be added to the data.frame passed to ggplot by setting the other_fields
argument. This allows users to easily incorporate additional metadata for use in further ggplot
operations.

The other_fields argument should be character vector where each string is passed to retrieveCellInfo

(for cell-based plots) or retrieveFeatureInfo (for feature-based plots). Alternatively, other_fields

can be a named list where each element is of any type accepted by retrieveCellInfo or retrieveFeatureInfo.
This includes Asls-wrapped vectors, data.frames or DataFrames.

Each additional column of the output data.frame will be named according to the name returned
by retrieveCellInfo or retrieveFeatureInfo. If these clash with inbuilt names (e.g., X, Y,
colour_by), a warning will be raised and the additional column will not be added to avoid over-
writing an existing column.

68 SCESet

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

SCESet The "Single Cell Expression Set" (SCESet) class

Description

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the
basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values.

Methods that operate on SCESet objects constitute the basic scater workflow.

Slots

logExprsOffset: Scalar of class "numeric”, providing an offset applied to expression data in the
‘exprs‘ slot when undergoing log2-transformation to avoid trying to take logs of zero.

lowerDetectionLimit: Scalar of class "numeric”, giving the lower limit for an expression value
to be classified as "expressed".

cellPairwiseDistances: Matrix of class "numeric”, containing pairwise distances between cells.

featurePairwiseDistances: Matrix of class "numeric”, containing pairwise distances between
features.

reducedDimension: Matrix of class "numeric”, containing reduced-dimension coordinates for
cells (generated, for example, by PCA).

bootstraps: Array of class "numeric” that can contain bootstrap estimates of the expression or
count values.

sc3: List containing results from consensus clustering from the SC3 package.

featureControlInfo: Data frame of class "AnnotatedDataFrame” that can contain informa-
tion/metadata about sets of control features defined for the SCESet object. bootstrap estimates
of the expression or count values.

References

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet
class, which provided the inspiration and template for SCESet.

updateSCESet 69

updateSCESet Convert an SCESet object to a SingleCellExperiment object

Description
Convert an SCESet object produced with an older version of the package to a SingleCellExperiment
object compatible with the current version.

Usage
updateSCESet (object)

toSingleCellExperiment (object)

Arguments

object an SCESet object to be updated

Value

a SingleCellExperiment object

Examples

Not run:
updateSCESet (example_sceset)

End(Not run)
Not run:
toSingleCellExperiment(example_sceset)

End(Not run)

Index

* internal
reexports, 59

addPerCellQC, 59

addPerCellQC (reexports), 59
addPerFeatureQC, 59

addPerFeatureQC (reexports), 59

aes, 26

aggregateAcrossCells, 59
aggregateAcrossCells (reexports), 59
aggregateAcrossFeatures, 59
aggregateAcrossFeatures (reexports), 59
altExp, 7, 10, 13,17, 21

altExps, 60, 65

annotateBMFeatures, 3

Asls, 30, 33, 45, 49, 53, 55, 60, 61, 63, 67
assay, 60, 62

BiocNeighborParam, 15, 19

BiocParallelParam, 12, 15, 19, 24, 28, 52, 63

BiocSingularParam, 12, 63

bootstraps, 4

bootstraps,SingleCellExperiment-method
(bootstraps), 4

bootstraps<- (bootstraps), 4

bootstraps<—,SingleCellExperiment,array—metho%

(bootstraps), 4
brewer.pal, 33, 41,43
bsparam, 12

calculateAverage, 59

calculateAverage (reexports), 59

calculateCPM, 59

calculateCPM (reexports), 59

calculateDiffusionMap (defunct), 21

calculateDiffusionMap, ANY-method
(defunct), 21

calculateFPKM, 59

calculateFPKM (reexports), 59

calculateMDS, 5

calculateMDS,ANY-method (calculateMDS),
5

calculateMDS,SingleCellExperiment-method
(calculateMDS), 5

70

calculateMDS, SummarizedExperiment-method
(calculateMDS), 5

calculateMultiUMAP (runMultiUMAP), 64

calculateMultiUMAP,ANY-method
(runMultiUMAP), 64

calculateMultiUMAP,SingleCellExperiment-method
(runMultiUMAP), 64

calculateMultiUMAP, SummarizedExperiment-method
(runMultiUMAP), 64

calculateNMF, 8

calculateNMF,ANY-method (calculateNMF),
8

calculateNMF,SingleCellExperiment-method
(calculateNMF), 8

calculateNMF, SummarizedExperiment-method
(calculateNMF), 8

calculatePCA, 11

calculatePCA,ANY-method (calculatePCA),
11

calculatePCA,SingleCellExperiment-method
(calculatePCA), 11

calculatePCA, SummarizedExperiment-method
(calculatePCA), 11

calculateQCMetrics (defunct), 21

alculateTPM, 59

calculateTPM (reexports), 59

calculateTSNE, 14

calculateTSNE,ANY-method
(calculateTSNE), 14

calculateTSNE, SingleCellExperiment-method
(calculateTSNE), 14

calculateTSNE, SummarizedExperiment-method
(calculateTSNE), 14

calculateUMAP, 18

calculateUMAP,ANY-method
(calculateUMAP), 18

calculateUMAP,SingleCellExperiment-method
(calculateUMAP), 18

calculateUMAP, SummarizedExperiment-method
(calculateUMAP), 18

centreSizeFactors (defunct), 21

cmdscale, 6, 7

colData, 33, 40, 60

INDEX

computelLibraryFactors, 59
computelLibraryFactors (reexports), 59
computeMedianFactors, 59
computeMedianFactors (reexports), 59
correctGroupSummary, 34, 41

DataFrame, 3, 24, 60, 61, 67
defunct, 21
DelayedArray, 52
DelayedMatrix, 28
densne, 15, 16, 19

dist,7

exprs (norm_exprs), 28

exprs,SingleCellExperiment-method,
(norm_exprs), 28

exprs<-,SingleCellExperiment, ANY-method
(norm_exprs), 28

facet_wrap, 38, 55

findKNN, 15, 19

fitsne, 15

fpkm (norm_exprs), 28

fpkm,SingleCellExperiment-method
(norm_exprs), 28

fpkm<- (norm_exprs), 28

fpkm<-,SingleCellExperiment, ANY-method
(norm_exprs), 28

geom_boxplot, 52

geom_hex, 31, 38, 50

getBM, 3

getBMFeatureAnnos (annotateBMFeatures),
3

getExplanatoryPCs, 23, 25, 35

getVarianceExplained, 23, 24, 36

getVarianceExplained, ANY-method
(getVarianceExplained), 24

71

makePerFeatureDF, 27, 59, 62
makePerFeatureDF (reexports), 59
medianSizeFactors, 59
medianSizeFactors (reexports), 59
mockSCE, 59

mockSCE (reexports), 59
MulticoreParam, 15, 19

multiplot (defunct), 21

nexprs, 27

nexprs,ANY-method (nexprs), 27

nexprs, SummarizedExperiment-method
(nexprs), 27

nmf, 9, 10

norm_exprs, 28

norm_exprs,SingleCellExperiment-method
(norm_exprs), 28

norm_exprs<- (norm_exprs), 28

norm_exprs<-,SingleCellExperiment, ANY-method
(norm_exprs), 28

normalize,SingleCellExperiment-method
(defunct), 21

normalize_input, 15

normalizeCounts, 59

normalizeCounts (reexports), 59

numDetectedAcrossCells, 28, 59

numDetectedAcrossCells (reexports), 59

numDetectedAcrossFeatures, 28, 59

numDetectedAcrossFeatures (reexports),
59

perCellQCMetrics, 22, 59
perCellQCMetrics (reexports), 59
perFeatureQCMetrics, 22, 59
perFeatureQCMetrics (reexports), 59
pheatmap, 41, 43, 44
plotColData, 30, 60, 68

getVarianceExplained,SummarizedExperiment—metBPgtDiffusionMap(Reduced dimension

(getVarianceExplained), 24
ggcells, 25
ggfeatures (ggcells), 25
gegplot, 25, 26, 31, 34, 46, 54, 55, 58, 67

isOutlier, 59, 63
isOutlier (reexports), 59

librarySizeFactors, 59
librarySizeFactors (reexports), 59
logNormCounts, 22, 59
logNormCounts (reexports), 59

makePerCellDF, 27, 59, 60
makePerCellDF (reexports), 59

plots), 57
plotDots, 32
plotExplanatoryPCs, 23, 34
plotExplanatoryVariables, 25, 35
plotExpression, 34, 36, 60, 68
plotGroupedHeatmap, 40
plotHeatmap, 34, 41, 42
plotHighestExprs, 45
plotMDS, 7
plotMDS (Reduced dimension plots), 57
plotNMF, 10
plotNMF (Reduced dimension plots), 57
plotPCA, 14, 49
plotPCA (Reduced dimension plots), 57

72

plotPCA,SingleCellExperiment-method
(Reduced dimension plots), 57

plotPCASCE (Reduced dimension plots), 57

plotPlatePosition, 46, 60, 68

plotReducedDim, 48, 58, 60, 68

plotRLE, 51

plotRLE,SingleCellExperiment-method
(plotRLE), 51

plotRowData, 53, 62, 68

plotScater, 54

plotTSNE, 17

plotTSNE (Reduced dimension plots), 57

plotUMAP, 21

plotUMAP (Reduced dimension plots), 57

projectReducedDim, 56

projectReducedDim,matrix-method
(projectReducedDim), 56

INDEX

scater-pkg, 66

scater-plot-args, 67

SCESet, 68, 69

SCESet-class (SCESet), 68

set.seed, 9, 12, 16, 20

SingleCellExperiment, 3-11, 13, 15-17.
19-21, 23, 25, 26, 28-30, 33, 40, 43,
55-57,59-61, 63, 65, 69

stand_exprs (norm_exprs), 28

stand_exprs,SingleCellExperiment-method,
(norm_exprs), 28

stand_exprs<- (norm_exprs), 28

stand_exprs<-,SingleCellExperiment, ANY-method
(norm_exprs), 28

sumCountsAcrossCells, 59

sumCountsAcrossCells (reexports), 59

sumCountsAcrossFeatures, 59

projectReducedDim, SummarizedExperiment-methodsumCountsAcrossFeatures (reexports), 59

(projectReducedDim), 56

quickPerCellQC, 59
quickPerCellQC (reexports), 59

rasterise, 50

readSparseCounts, 59

readSparseCounts (reexports), 59

Reduced dimension plots, 57

reducedDim, 6, 7, 9, 10, 13, 16, 17, 20

reducedDims, 6, 7,9, 10, 12, 13, 16, 17, 20,
21,58, 65, 66

reexports, 59

retrieveCellInfo, 30, 31, 33,37, 38, 40,
43-45, 47,49, 50, 52, 55, 59, 63, 67

retrieveFeatureInfo, 43, 45, 53, 54, 61, 67

rowData, 3, 61

Rtsne, 15-17

Rtsne_neighbors, 16

runColDataPCA, 62

runDiffusionMap, 58

runDiffusionMap (defunct), 21

runMDS, 58

runMDS (calculateMDS), 5

runMul tiUMAP, 64

runNMF, 58

runNMF (calculateNMF), 8

runPCA, 14, 23, 58, 64

runPCA (calculatePCA), 11

runPCA,SingleCellExperiment-method
(calculatePCA), 11

runTSNE, 58

runTSNE (calculateTSNE), 14

runUMAP, 58, 66

runUMAP (calculateUMAP), 18

SummarizedExperiment, 5,7, 8, 10, 11, 13,
15,17,19,21, 24, 28, 56, 57, 65

toSingleCellExperiment (updateSCESet),
69

umap, 19-21, 65
uniquifyFeatureNames, 59
uniquifyFeatureNames (reexports), 59
updateSCESet, 69

useMart, 3

viridis, 33,41, 43

	annotateBMFeatures
	bootstraps
	calculateMDS
	calculateNMF
	calculatePCA
	calculateTSNE
	calculateUMAP
	defunct
	getExplanatoryPCs
	getVarianceExplained
	ggcells
	nexprs
	norm_exprs
	plotColData
	plotDots
	plotExplanatoryPCs
	plotExplanatoryVariables
	plotExpression
	plotGroupedHeatmap
	plotHeatmap
	plotHighestExprs
	plotPlatePosition
	plotReducedDim
	plotRLE
	plotRowData
	plotScater
	projectReducedDim
	Reduced dimension plots
	reexports
	retrieveCellInfo
	retrieveFeatureInfo
	runColDataPCA
	runMultiUMAP
	scater-pkg
	scater-plot-args
	SCESet
	updateSCESet
	Index

