Package ‘scBubbletree’

January 20, 2026
Type Package
Title Quantitative visual exploration of scRNA-seq data
Version 1.12.0

Description scBubbletree is a quantitative method for the visual
exploration of scRNA-seq data, preserving key biological
properties such as local and global cell distances and cell
density distributions across samples. It effectively resolves
overplotting and enables the visualization of diverse cell
attributes from multiomic single-cell experiments. Additionally,
scBubbletree is user-friendly and integrates seamlessly with
popular scRNA-seq analysis tools, facilitating comprehensive
and intuitive data interpretation.

License GPL-3 + file LICENSE
Depends R (>=4.2.0)

Imports reshape2, BiocParallel, ape, scales, Seurat, ggplot2, ggtree,
patchwork, proxy, methods, stats, base, utils, dplyr

Suggests BiocStyle, knitr, testthat, cluster, SingleCellExperiment
Encoding UTF-8
NeedsCompilation no

biocViews Visualization,Clustering, SingleCell, Transcriptomics,RNASeq
BugReports https://github.com/snaketron/scBubbletree/issues

URL https://github.com/snaketron/scBubbletree
SystemRequirements Python (>= 3.6), leidenalg (>= 0.8.2)
RoxygenNote 6.1.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/scBubbletree
git_branch RELEASE_3_22

git_last_commit 46c4478

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Simo Kitanovski [aut, cre]

Maintainer Simo Kitanovski <simokitanovski@gmail.com>

1

https://github.com/snaketron/scBubbletree/issues
https://github.com/snaketron/scBubbletree

2 scBubbletree-package

Contents
scBubbletree-package L. L 2
compare_bubbletrees L. 3
d_500 . .. e 4
d_cCl . . e 5
get_bubbletree_dummy 6
get_bubbletree_graph 8
get_bubbletree_kmeans 11
get_cat_tiles L 13
Get_GINT e e 15
get_gini_ K L. 16
et K L e e 18
get_num_cell_tiles L 19
get_ num_tiles e e 21
get_num_violins L. e 22
BELLT o v e e e 24

Index 26

scBubbletree-package The R package scBubbletree

Description

Method for quantitative visualization of single cell RNA-seq data

Details

This

package contains functions for clustering, hierarchical grouping of clusters and visualization

of scRNA-seq data.

Author(s)

Authors and maintainers:

See Also

Simo Kitanovski <simokitanovski@uni-due.de> (ORCID)

Useful links:

https://github.com/snaketron/scBubbletree

Report bugs at https://github.com/snaketron/scBubbletree/issues

https://orcid.org/0000-0003-2909-5376
https://github.com/snaketron/scBubbletree
https://github.com/snaketron/scBubbletree/issues

compare_bubbletrees 3

compare_bubbletrees Comparison of two bubbletrees generated from the same scRNA-seq
data

Description
compare_bubbletrees takes as its main input two bubbletrees generated from the same input data
but potentially with different input parameters (e.g. clustering method or resolutions).
It then does the following two operations:

1. computes the Jaccard distance (JD) and the intersection between paris of clusters from the two
bubbletrees. This is visualized as a heatmap.

2. it visualizes the two bubbletrees together with the heatmap.

Usage

compare_bubbletrees(btd_1,
btd_2,
tile_bw = FALSE,
tile_text_size = 3,
ratio_heatmap = 0.5)

Arguments
btd_1 bubbletree object
btd_2 bubbletree object

tile_text_size integer, size of tile labels (default = 3)
tile_bw logical, tile grayscale (tile_bw = TRUE) vs. color (tile_bw = FALSE, default)

ratio_heatmap nummeric, probability (default = 0.5) that dictates the relative width and height
of the heatmap and the bubbletrees

Details
compare_bubbletrees takes as its main input two bubbletrees generated from the same input data
but potentially with different input parameters (e.g. clustering method or resolutions).
It then does the following two operations:

1. computes the Jaccard distance and the intersection between paris of clusters from the two bub-
bletrees. This is visualized as a heatmap.

2. it visualizes the two bubbletrees together with the heatmap.

Value
comparison ggplot2 objects assembled by R-package patchwork
m data.frame object with JD and intersection for each pair of clusters from the two
bubbletrees
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

4 d_500

See Also

get_k, get_bubbletree_dummy, get_bubbletree_graph, get_bubbletree_kmeans, get_gini, get_gini_k,
d_500, get_num_tiles, get_num_violins, get_cat_tiles

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A

btd_1 <- get_bubbletree_graph(x = A,
r=1,
n_start = 20,

iter_max = 100,

algorithm = "original”,

knn_k = 50,

hclust_method = "average”,
hclust_distance = "euclidean”,
cores =1,

round_digits = 2,
show_simple_count = FALSE)

btd_2 <- get_bubbletree_kmeans(x = A,
k =8,
cores = 1,

round_digits = 1,
show_simple_count = FALSE,

kmeans_algorithm = "MacQueen”,
hclust_distance = "euclidean”,
hclust_method = "average")

btd_comparison <- compare_bubbletrees(btd_1 = btd_1,
btd_2 = btd_2,
tile_bw = FALSE,
tile_text_size = 3,
ratio_heatmap = 0.5)

plot
btd_comparison$tree_comparison

data.frame of heatmap data
btd_comparison$m

d_500 Dataset: 500 PBMCs

Description

d_500 is a list with 3 elements:

1. A = numeric matrix 400215 with n=500 rows for PBMCs and f=15 principal components.

d_ccl 5

2. f = character vector f of length 500. Each element in f represents the predicted cell type of a
specific cell.

3. fs = numeric matrix containing normalized gene expressions of 12 marker genes in 500 cells.

Usage

data("d_500", package = "scBubbletree")

Format

Format of d_500: list

Details

This data is a sample drawn from a larger dataset of 2,700 PBMCs. The original dataset was
processed as described in vignette (accessed 23, Sep, 2022):

https://satijalab.org/seurat/articles/multimodal_reference_mapping.html

See R script inst/script/get_d_500.R to see how this dataset was created.

Source

https://satijalab.org/seurat/articles/multimodal_reference_mapping.html
Examples
data("d_500", package = "scBubbletree")

A <- d_500%$A
base: :dim(A)

f <- d_500%f
base::table(f)

fs <- d_500%fs
base: :dim(fs)

d_ccl Dataset: scRNA-seq data of 3,918 cells from 5 adenocarcinoma cell
lines

Description

d_ccl is a list with 3 elements:
1. A = numeric matrix with n=3,918 rows for cells and f=15 principal components
2. m = data.frame meta data

3. e = numeric matrix containing normalized gene expressions of 5 marker genes

Usage

data("d_ccl”, package = "scBubbletree")

6 get_bubbletree_dummy

Format

Format of d_ccl: list

Details

d_ccl is a scRNA-seq dataset containing a mixture of 3,918 cells from five human lung adenocarci-
noma cell lines (HCC827, H1975, A549, H838 and H2228). The dataset is available here:

https://github.com/LuyiTian/sc_mixology/blob/master/data/ sincell_with_class_5cl.RData

The library has been prepared with 10x Chromium platform and sequenced with Illumina NextSeq
500 platform. Raw data has been processed with Cellranger. The tool demuxlet has been used to
predict the identity of each cell based on known genetic differences between the different cell lines.

See R script inst/script/get_d_ccl.R to see how this dataset was created.

Source

https://github.com/LuyiTian/sc_mixology/blob/master/data/ sincell_with_class_5cl.RData

References
Tian, Luyi, et al. "Benchmarking single cell RNA-sequencing analysis pipelines using mixture
control experiments." Nature methods 16.6 (2019): 479-487

Examples

data("d_ccl”, package = "scBubbletree")

A <- d_ccl$A
base::dim(A)

m <- d_ccl$m
utils::head(m)

e <- d_cclse
base::dim(e)

get_bubbletree_dummy Build bubbletree from matrix A of low-dimensional projections and
vector cs of externally generated cluster IDs

Description

get_bubbletree_dummy takes two main inputs:

1. numeric matrix A”*/, which represents a low-dimensional projection (obtained e.g. by PCA)
of the original high-dimensional scRNA-seq data, with n rows as cells and f columns as low-
dimension features.

2. vector c¢s of cluster IDs of each cell

The function get_bubbletree_dummy performs one main operation. It organizes the bubbles (de-
fined by cs) in a hierarchical dendrogram (bubbletree) which represents the hierarchical relation-
ships between the clusters (bubbles).

get_bubbletree_dummy 7

Usage

get_bubbletree_dummy(x,

Arguments

X

cs
B
N_eff

hclust_distance

hclust_method

cores

round_digits

cs,

B = 200,

N_eff = 100,

hclust_distance = "euclidean”,
hclust_method = "average”,
cores = 1,

round_digits = 2,
show_simple_count = FALSE,
verbose = TRUE)

numeric matrix (A™*f with n cells, and f low-dimensional projections of the
original single cell RNA-seq dataset)

vector, cluster IDs
integer, number of bootstrap iterations to perform in order to generate bubbletree

integer, number of cells to draw randomly from each cluster when computing
inter-cluster distances

distance measure to be used: euclidean (default) or manhattan, see documenta-
tion of stats: :dist

agglomeration method to be used, default = average. See documentation of
stats::hclust

integer, number of PC cores for parallel execution

integer, number of decimal places to keep when showing the relative frequency
of cells in each bubble

show_simple_count

verbose

Details

logical, if show_simple_count=T, cell counts in each bubble will be divided by
1,000 to improve readability. This is only useful for samples that are composed
of millions of cells.

logical, progress messages

This function is similar to get_bubbletree_kmeans and get_bubbletree_graph but skips the
clustering step. See the documentation of the respective functions.

Value

A

k

km

ph
ph_data

pair_dist

input X matrix

number of clusters

NULL

boot_ph: bootstrap dendrograms H}; main_ph: bubbletree H

two phlogenies: ph_c = phylogenity constructed from bubble centroids (com-
puted from A™*/); ph_p = main_ph = phylogeny constructed from intercell
distances

inter-cluster distances used to generate the dendrograms

8 get_bubbletree_graph

cluster cluster assignments of each cell

input_par list of all input parameters

tree ggtree bubbletree object

tree_simple simplified ggtree bubbletree object

tree_meta meta-data associated with the bubbletree
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also
get_k, get_r, get_bubbletree_kmeans, get_bubbletree_graph, get_bubbletree_comparison, get_gini,

get_gini_k, get_num_tiles, get_num_violins, get_cat_tiles, d_500

Examples

input data

data("d_500", package = "scBubbletree")

A <- d_500%A

cs <- base::sample(x = LETTERS[1:5], size = nrow(A), replace = TRUE)

db <- get_bubbletree_dummy(x = A,

cs = cs,

B = 200,

N_eff = 100,

hclust_distance = "euclidean”,
hclust_method = "average",
cores = 1)

get_bubbletree_graph Louvain clustering and hierarchical grouping of k' clusters (bubbles)

Description

get_bubbletree_graph has two main inputs:

1. numeric matrix A”*/, which represents a low-dimensional projection (obtained e.g. by PCA)
of the original high-dimensional scRNA-seq data, with n rows as cells and f columns as low-
dimension features.

2. clustering resolution r

The function get_bubbletree_graph performs two main operations. First, it performs Louvain
clustering to identify groups (bubbles) of transcriptionally similar cells; second, it organizes the
bubbles in a hierarchical dendrogram (bubbletree) which adequatly represents inter-cluster relation-
ships.

get_bubbletree_graph 9

Usage
get_bubbletree_graph(x,
r,
B = 200,
N_eff = 100,

n_start = 20,
iter_max = 100,

algorithm = "original”,

knn_k = 20,

hclust_method = "average”,
hclust_distance = "euclidean”,
cores = 1,

round_digits = 2,
show_simple_count = FALSE,
verbose = TRUE)

Arguments

X numeric matrix (A"*f with n cells, and f low-dimensional projections of the
original single cell RNA-seq dataset)

r number, clustering resolution

B integer, number of bootstrap iterations to perform in order to generate bubble-
tree. If B = 200 (default), cluster centroids are used to compute inter-cluster
distances and N, s is ignored, i.e. all cells are used to compute centroids.

N_eff integer, number of cells to draw randomly from each cluster when computing

inter-cluster distances.
n_start, iter_max

parameters for Louvain clustering, see documentation of function FindClusters,
R-package Seurat

algorithm character, four clustering algorithms: ’original’, 'LMR’, ’SLM’ and ’Leiden’,
see documentation of function FindClusters, R-package Seurat

knn_k integer, defines k for the k-nearest neighbor algorithm, see documentation of
function FindClusters, R-package Seurat

hclust_method the agglomeration method to be used (default = average). See documentation of
stats::hclust

hclust_distance
distance measure to be used: euclidean (default) or manhattan, see documenta-
tion of stats::dist

cores integer, number of PC cores for parallel execution

round_digits integer, number of decimal places to keep when showing the relative frequency
of cells in each bubble

show_simple_count
logical, if show_simple_count=T, cell counts in each bubble will be divided by

1,000 to improve readability. This is only useful for samples that are composed
of millions of cells.

verbose logical, progress messages

10 get_bubbletree_graph

Details

For Louvain clustering get_bubbletree_graph uses the function FindClusters implemented in
R-package Seurat. For additional information on the clustering procedure see the documentation of
FindClusters. To organize the resulting clusters in a hierarchical dendrogram, then the following
steps are performed:

1. In bootrap iteration b from 1 : B

2. draw up to N,y number of cells at random from each cluster without replacement

3. compute distances (in space A”*/) between all pairs of cells in cluster i and cluster j

4. compute mean distance between cluster ¢ and 7 and populate inter-cluster distance matrix D;f xk

5. perform hierarchical clustering with user-specified agglomeration method based on Dl’ka to
generate dendrogram Hj,

6. quantify branch robustness in H by counting how many times each branch is found among
bootrap dendrograms Hj

Value
A input X matrix
k number of clusters
r clustering resolution
ph boot_ph: bootstrap dendrograms H}; main_ph: bubbletree H
ph_data two phlogenies: ph_c = phylogenity constructed from bubble centroids (com-
puted from A™*/); ph_p = main_ph = phylogeny constructed from intercell
distances
pair_dist inter-cluster distances used to generate the dendrograms
cluster cluster assignments of each cell
input_par list of all input parameters
tree ggtree bubbletree object
tree_simple simplified ggtree bubbletree object
tree_meta meta-data associated with the bubbletree
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_bubbletree_dummy, get_bubbletree_kmeans, get_bubbletree_comparison, get_gini, get_gini_k,
d_500, get_num_tiles, get_num_violins, get_cat_tiles

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A

b <- get_bubbletree_graph(x = A,
r=1,
B = 200,

get_bubbletree_kmeans

b$tree

11

N_eff = 100,

n_start = 20,

iter_max = 100,

algorithm = "original”,

knn_k = 20,

hclust_method = "average”,
hclust_distance = "euclidean”,
cores = 1,

round_digits = 2,
show_simple_count = FALSE)

get_bubbletree_kmeans k-means clustering and hierarchical grouping of k clusters (bubbles)

Description

get_bubble_kmeans takes two main inputs:

1. numeric matrix A"/, which represents a low-dimensional projection (obtained e.g. by PCA)
of the original high-dimensional scRNA-seq data, with n rows as cells and f columns as low-

dimension features.

2. number k of clusters

The function get_bubble_kmeans performs two main operations. First, it performs k-means clus-
tering to identify groups (bubbles) of transcriptionally similar cells. Second, it organizes the bubbles
in a hierarchical dendrogram (bubbletree) which adequatly represents inter-cluster relationships.

Usage

get_bubbletree_kmeans(x,

Arguments

X

N_eff

K,
B = 200,
N_eff = 100,

n_start = 1000,
iter_max = 300,

kmeans_algorithm = "MacQueen”,
hclust_distance = "euclidean”,
hclust_method = "average"”,
cores = 1,

round_digits = 2,
show_simple_count = FALSE,
verbose = TRUE)

numeric matrix (A™*/ with n cells, and f low-dimensional projections of the
original single cell RNA-seq dataset)

integer, number of clusters
integer, number of bootstrap iterations to perform in order to generate bubbletree

integer, number of cells to draw randomly from each cluster when computing
inter-cluster distances

12 get_bubbletree_kmeans

n_start, iter_max, kmeans_algorithm
parameters for k-means clustering, see documentation of function k-means, R-
package stats

hclust_distance
distance measure to be used: euclidean (default) or manhattan, see documenta-
tion of stats: :dist

hclust_method the agglomeration method to be used, default = average. See documentation of
stats::hclust

cores integer, number of PC cores for parallel execution

round_digits integer, number of decimal places to keep when showing the relative frequency
of cells in each bubble
show_simple_count

logical, if show_simple_count=T, cell counts in each bubble will be divided by
1,000 to improve readability. This is only useful for samples that are composed
of millions of cells.

verbose logical, progress messages

Details

For k-means clustering get_bubble_kmeans uses the function kmeans implemented in R-package
stats (version 4.2.0). For additional information on the clustering procedure see the documen-
tation of kmeans. To organize the resulting clusters in a hierarchical dendrogram these steps are
performed:

1. In bootrap iteration b from 1 : B

2. draw up to Ny number of cells at random from each cluster without replacement

3. compute distances (in space A™*7) between pairs of cells in cluster 7 and cluster j

4. compute mean distance between cluster ¢ and j and populate inter-cluster distance matrix Df xk

5. perform hierarchical clustering with user-specified agglomeration method based on Dka to
generate dendrogram H;,

6. quantify branch robustness in H by counting how many times each branch is found among the
bootrap dendrograms H,

Value

A input matrix x

k number of clusters

km k-means clustering results identical to those generated by function k-means from
R-package stats

ph boot_ph: bootstrap dendrograms H}; main_ph: bubbletree H

ph_data two phlogenies: ph_c = phylogenity constructed from bubble centroids (com-
puted from A™*f); ph_p = main_ph = phylogeny constructed from intercell
distances

pair_dist inter-cluster distances used to generate the dendrograms

cluster cluster assignments of each cell

input_par list of all input parameters

tree ggtree bubbletree object

tree_simple simplified ggtree bubbletree object

tree_meta meta-data associated with the bubbletree

get_cat_tiles

Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_bubbletree_dummy, get_bubbletree_graph, get_gini, get_gini_k, d_500, get_num_tiles,

get_num_violins, get_cat_tiles, get_bubbletree_comparison

Examples

input data
data("d_500", package = "scBubbletree")

A <- d_500%A

b <- get_bubbletree_kmeans(x = A,
k =8,
B = 200,
N_eff = 100,
cores =1,

round_digits = 1,
show_simple_count = FALSE,

kmeans_algorithm = "MacQueen”,
hclust_distance = "euclidean”,
hclust_method = "average")
b$tree
get_cat_tiles Visualization of categorical cell features using tile plots
Description

get_cat_tiles creates tile plot to visualize the relative frequency of categorical cell features

between and within the bubbles of a bubbletree

Usage

get_cat_tiles(btd,
f’
integrate_vertical,
round_digits = 2,
tile_text_size = 3,
tile_bw = FALSE,
X_axis_name = "Feature”,
rotate_x_axis_labels = TRUE)

Arguments

btd bubbletree object

f character vector, categorical cell features

14 get_cat_tiles

integrate_vertical
logical, if integrate_vertical=TRUE: relative frequency of the features is shown
in each bubble, if integrate_vertical=FALSE: relative frequencies of the features
is shown within each bubble

round_digits integer, number of decimal places to keep when showing the relative frequency
of cells in each bubble

tile_text_size integer, size of tile labels

Xx_axis_name character, x-axis title
rotate_x_axis_labels

logical, should the x-axis labels be shown horizontally (rotate_x_axis_labels =
FALSE) or vertically (rotate_x_axis_labels = TRUE)

tile_bw logical, tile grayscale (tile_bw = TRUE) vs. color (tile_bw = FALSE, default)

Details

get_cat_tiles uses two main inputs:
1. bubbletree object
2. character vector of categorical cell features.

The order of the cells used to generat the bubbletree (input 1.) should correspond to the order of
cells in the vector of categorical cell features (input 2.)

This function computes:
1. with integrate_vertical=T: relative frequencies of each feature across the different bubbles

2. with integrate_vertical\=F: within-bubble relative frequencies (composition) of different

features
Value

plot ggplot2, tile plot

table data.frame, raw data used to generate the plot
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_r get_bubbletree_dummy, get_bubbletree_kmeans, get_bubbletree_graph, get_gini, get_gini_k,
get_num_tile, get_num_violins, d_500

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A
f <- d_500%$f

b <- get_bubbletree_graph(x = A,
r =20.8,
N_eff = 100)

get_gini 15

g_v <- get_cat_tiles(btd = b,
f=f,
integrate_vertical = TRUE,
round_digits = 2,
tile_text_size = 3,
X_axis_name = "Feature”,
rotate_x_axis_labels = TRUE)

g_h <- get_cat_tiles(btd = b,
f=f,
integrate_vertical = FALSE,
round_digits = 2,
tile_text_size = 3,
X_axis_name = "Feature”,
rotate_x_axis_labels = TRUE)

b$tree|g_v$plot|g_h$plot

get_gini Gini impurity index computed for a clustering solution and a vector of
categorical cell feature labels

Description

How well is a set of categorical feature labels (e.g. cell type predictions) partitioned accross the
different clusters of a clustering solution? We can assess this using the Gini impurity index (see
details below).

Inputs are two equal-sized vectors:

1) clusters IDs

2) labels

Output:

1) cluster-specific purity -> Gini impurity (GI) index

2) clustering solution impurity -> Weighted Gini impurity (WGI) index

Usage

get_gini(labels, clusters)

Arguments

labels character or numeric vector of labels

clusters character or numeric vector of cluster IDs

16 get_gini_k

Details

To quantify the purity of a cluster (or bubble) ¢ with n; number of cells, each of which carries one
of L possible labels (e.g. cell type), we computed the Gini impurity index:

GIL =Yy mij(1 - mi5),

with 7;; as the relative frequency of label j in cluster ¢. In homogeneous (‘pure‘) clusters most cells
carry a distinct label. Hence, the 7’s are close to either 1 or 0, and GI takes on a small value close to
zero. In ‘impure’ clusters cells carry a mixture of different labels. In this case most 7 are far from
either 1 or 0, and GI diverges from 0 and approaches 1. If the relative frequencies of the different

labels in cluster ¢ are equal to the (background) relative frequencies of the labels in the sample, then
cluster 7 is completely ‘impure’.

To compute the overall Gini impurity of a bubbletree, which represents a clustering solution with &
bubbles, we estimated the weighted Gini impurity (WGI) by computing the weighted (by the cluster
size) average of the Gls:

WGI =Y ¥ GLni/n,

with n; as the number of cells in cluster 2 and n = Zi n;.

Value

gi Gini impurity of each bubble

wgi Weighted Gini impurity index of the bubbletree
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also
get_k, get_r, get_bubbletree_kmeans, get_bubbletree_dummy, get_bubbletree_graph, get_gini_k,
d_500

Examples

get_gini(labels = base::sample(x = LETTERS[1:4], size = 100, replace = TRUE),
clusters = base::sample(x = letters[1:4], size = 100, replace = TRUE))

get_gini_k Gini impurity index computed for a list of clustering solutions obtained
by functions get_k or get_r and a vector of categorical cell feature
labels
Description

Given The Gini impurity (GI) index allows us to quantitatively evaluate how well a set of labels
(categorical features) are split across a set of bubbles. We have a completely perfect split (GI = 0)
when each bubble is ’pure’, i.e. each bubble contains labels coming from distinct a class. In contrast
to this, we have completely imperfect split (GI = 1) when the relative frequency distribution of the
labels in each bubble is identical to the background relative frequency distribution of the labels.

Cell type predictions are a type of categorical features that are often used to evaluate the goodness
of the clustering. get_gini_k takes as input: 1) a vector of labels for each cell (e.g. cell types) and

get_gini_k 17

2) object returned by function get_k or get_r. Then it computes for each k or r the cluster purity
and weightred gini impurity of each clustering solution mean GI, which is another way of finding
an optimal clustering resolution.

Usage
get_gini_k(labels, obj)

Arguments

labels character/factor vector of labels

obj object returned by functions get_k or get_r
Details

To quantify the purity of a cluster (or bubble) ¢ with n; number of cells, each of which carries one
of L possible labels (e.g. cell type), we computed the Gini impurity index:

GI = Y mi(1 = my5),

with 7;; as the relative frequency of label j in cluster ¢. In homogeneous (‘pure‘) clusters most cells
carry a distinct label. Hence, the 7’s are close to either 1 or 0, and GI takes on a small value close to
zero. In ‘impure’ clusters cells carry a mixture of different labels. In this case most 7 are far from
either 1 or 0, and GI diverges from 0 and approaches 1. If the relative frequencies of the different

labels in cluster ¢ are equal to the (background) relative frequencies of the labels in the sample, then
cluster 7 is completely ‘impure’.

To compute the overall Gini impurity of a bubbletree, which represents a clustering solution with &
bubbles, we estimated the weighted Gini impurity (WGI) by computing the weighted (by the cluster
size) average of the GIs:

WGI =Y ¥ GLni/n,

with n; as the number of cells in cluster i and n =), n;.

Value
gi_summary GI for each bubble of a clustering solution with clustering resolution k or r
wgi_summary WGI for each clustering solution with clustering resolution k or r
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_r, get_gini, get_bubbletree_kmeans, get_bubbletree_graph, get_bubbletree_dummy, d_500,
get_num_tiles, get_num_violins, get_cat_tiles

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A
f <- d_500%$f

18 get k

b_k <- get_k(x = A,

ks = 1:5,

B_gap = 5,

n_start = 100,

iter_max = 200,
kmeans_algorithm = "MacQueen”,
cores = 1)

b_r <- get_r(x = A,
rs = c(0.1, 0.5, 1),

B_gap = 5,
n_start = 20,
iter_max = 100,
algorithm = "original”,
cores = 1)

get_gini_k(labels = f, obj = b_k)

get_gini_k(labels = f, obj = b_r)

get_k Finding optimal number k of clusters

Description

To perform k-means clustering we must specify a number k of clusters. Data-driven metrics, such
as the Gap statistic or the within-cluster sum of squares (WCSS), can be used to infer appropriate &k
from the data. get_k computes the Gap statistic and WCSS for a number of clusters ks.

Usage
get_k(x,
ks,
B_gap = 20,
n_start = 1000,
iter_max = 300,
kmeans_algorithm = "MacQueen”,
cores = 1,
verbose = TRUE)
Arguments
X numeric matrix A"/ with n cells, and f low-dimensional projections
ks integer vector, k values to consider
B_gap integer, number of Monte Carlo ("bootstrap") samples taken when computing

the Gap statistic (see documentation of function clusGap, R-package cluster)
n_start, iter_max, kmeans_algorithm

parameters for k-means clustering, see documentation of function kmeans, R-

package stats

cores integer, number of PC cores for parallel execution

verbose logical, progress messages

get_num_cell_tiles 19

Details

To compute the Gap statistic get_k adapts the algorithm of function clustGap from R-package
cluster (version 2.1.3). For k-means clustering get_k uses the function kmeans implemented in
R-package stats (version 4.2.0). For additional information see the respective documentations.

Value

boot_obj The results: k-means clustering solutions, the Gap statistic and WCSS
gap_stats_summary, wcss_stats_summary
main results; Gap statistic and WCSS estimates. Means, standard errors and
95% confidence intervals are provided for each k
gap_stats, wcss_stats

intermediate results; Gap statistic and WCSS estimates for each & and bootstrap
iteration b

Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_r, get_bubbletree_dummy, get_bubbletree_graph, get_bubbletree_kmeans, get_gini, get_gini_k,
d_500, get_num_tiles, get_num_violins, get_cat_tiles

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A

b <- get_k(x = A,
ks = 1:5,
B_gap = 10,
n_start = 100,
iter_max = 200,
kmeans_algorithm = "MacQueen”,
cores = 1,
verbose = TRUE)

b$gap_stats_summary

get_num_cell_tiles Visualization of numeric features of individual cells using tile plots

Description

get_num_cell_tiles creates one heatmap from the cells in each bubble. The heatmap visualizes
a gradient of the sorted (from high to low) values of a numeric feature (e.g. expression of a certain
gene) among the cells of that bubble.

20 get_num_cell_tiles

Usage
get_num_cell_tiles(btd,
.F7
tile_bw = FALSE,
X_axis_name = "cells”,
feature_name = "Feature”,

rotate_x_axis_labels = TRUE)

Arguments
btd bubbletree object
f numeric vector, numeric cell feature
X_axis_name character, x-axis title

feature_name character, color legend title
rotate_x_axis_labels

logical, should the x-axis labels be shown horizontally (rotate_x_axis_labels
= FALSE) or vertically (rotate_x_axis_labels = TRUE)

tile_bw logical, tile grayscale (tile_bw = TRUE) vs. color (tile_bw = FALSE, default)

Details

get_num_cell_tiles uses two main inputs:
1. bubbletree object
2. numeric vector of a numeric cell feature.

The order of the cells used to generate the bubbletree (input 1.) should correspond to the order of
cell features in input vector f (input 2.)

This function does the following procedure for each bubble: 1. sort and rank the cells in each
bubble: rank = 1 for the cell with the highest f value, rank = n for the bubble with the lowest
value 2. draw a heatmap with x=rank, y=bubble, tile-color=f

Value

plot ggplot2, tile plot

table data.frame, raw data used to generate the plot
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_r get_bubbletree_dummy, get_bubbletree_kmeans, get_bubbletree_graph, get_gini, get_gini_k,
get_cat_tile, get_num_tiles, get_num_violins, d_500, d_ccl

Examples

input data

data("d_500", package = "scBubbletree")
A <- d_500%A

f <- as.vector(d_500$fs[,1]1)

get_num_tiles 21

b <- get_bubbletree_kmeans(x = A, k = 8)
g <- get_num_cell_tiles(btd = b, f = f)

b$tree|g$plot

get_num_tiles Visualization of numeric cell features using tile plots

Description

get_num_tiles creates tile plot to visualize a summary (e.g. mean, median or sum) of a numeric
cell feature (e.g. gene expression of a specific gene) in each bubble of a bubbletree

Usage

get_num_tiles(btd,
fs,
summary_function,
round_digits = 2,
tile_text_size = 3,
tile_bw = FALSE,
X_axis_name = "Feature",
rotate_x_axis_labels = TRUE)

Arguments
btd bubbletree object
fs numeric vector or matrix, numeric cell features

summary_function

non

character, "mean", "median" or "sum
allowed

non non

, "pct nonzero", "pct zero", summaries are

round_digits integer, number of decimal places to keep when showing the relative frequency
of cells in each bubble

tile_text_size integer, size of tile labels

X_axis_name character, x-axis title
rotate_x_axis_labels

logical, should the x-axis labels be shown horizontally (rotate_x_axis_labels
= FALSE) or vertically (rotate_x_axis_labels = TRUE)

tile_bw logical, tile grayscale (tile_bw = TRUE) vs. color (tile_bw = FALSE, default)

Details

get_num_tiles uses two main inputs:
1. bubbletree object
2. numeric vector or matrix of numeric cell features.

The order of the cells used to generat the bubbletree (input 1.) should correspond to the order of
cells in the vector/matrix of numeric cell features (input 2.)

22 get_num_violins

This function computes summaries of numeric cell feature in each bubble: 1. mean = mean of
feature 2. median = median of feature 3. sum = sum of feature 4. pct nonzero = sum of cells with
feature > 0 5. pct zero = sum of cells with feature = 0

Important note: NA and NULL values are omitted.

Value

plot ggplot2, tile plot

table data.frame, raw data used to generate the plot
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_r get_bubbletree_dummy, get_bubbletree_kmeans, get_bubbletree_graph, get_gini, get_gini_k,
get_cat_tile, get_num_violins, d_500, d_ccl

Examples

input data

data("d_500", package = "scBubbletree")
A <- d_500%A

fs <- d_500%fs

b <- get_bubbletree_kmeans(x = A, k = 8)

g <- get_num_tiles(btd = b,
fs = fs,
summary_function = "mean”,
round_digits = 2,
tile_text_size = 3,
tile_bw = TRUE,
X_axis_name = "Gene expression”,
rotate_x_axis_labels = TRUE)

b$tree|g$plot

get_num_violins Visualization of numeric cell features using violin plots

Description

get_num_violins creates violin plot to visualize the distribution of of numeric cell features (e.g.
gene expressions) in each bubble of a bubbletree

Usage
get_num_violins(btd,
fs,
X_axis_name = "Feature distribution”,

rotate_x_axis_labels = TRUE)

get_num_violins 23

Arguments
btd bubbletree object
fs numeric vector or matrix, numeric cell features
X_axis_name character, x-axis title

rotate_x_axis_labels

logical, should the x-axis labels be shown horizontally (rotate_x_axis_labels
= FALSE) or vertically (rotate_x_axis_labels = TRUE)

Details

get_num_violins uses two main inputs:
1. bubbletree object
2. numeric vector or matrix of numeric cell features.

The order of the cells used to generat the bubbletree (input 1.) should correspond to the order of
cells in the vector/matrix of numeric cell features (input 2.)

This function visualizes densities of numeric cell feature in the different bubble.

Value

plot ggplot2, violin plot

table data.frame, raw data used to generate the plot
Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_r get_bubbletree_dummy, get_bubbletree_kmeans, get_bubbletree_graph, get_gini, get_gini_k,
get_cat_tile, get_num_tiles, d_500

Examples

input data

data("d_500", package = "scBubbletree")
A <- d_500%$A

fs <- d_500%fs

b <- get_bubbletree_graph(x = A, r = 0.8)
g <- get_num_violins(btd = b,
fs = fs,

X_axis_name = "Feature distribution”,
rotate_x_axis_labels = TRUE)

b$tree|g$plot

24 get r

get_r Finding optimal clustering resulution v and number of communities k'

Description

To perform Louvain clustering we must specify a clustering resulution r. Data-driven metrics, such
as the Gap statistic or the within-cluster sum of squares (WCSS) can be used to infer appropriate r
from the data. get_r computes the Gap statistic and WCSS for a vector of clustering resolutions rs.

Usage
get_r(x,
rs,
B_gap = 20,
n_start = 20,
iter_max = 100,
algorithm = "original”,
knn_k = 20,
cores = 1,
verbose = TRUE)
Arguments
X numeric matrix A™*/ with n cells, and f low-dimensional projections
rs number vector, r values to consider
B_gap integer, number of Monte Carlo ("bootstrap") samples taken when computing

the Gap statistic (see documentation of function clusGap, R-package cluster)
n_start, iter_max

parameters for Louvain clustering, see documentation of function FindClusters,
R-package Seurat

algorithm character, four clustering algorithms: ’original’, 'LMR’, ’SLM’ and ’Leiden’,
see documentation of function FindClusters, R-package Seurat
knn_k integer, defines k for the k-nearest neighbor algorithm, see documentation of
function FindClusters, R-package Seurat
cores integer, number of PC cores for parallel execution
verbose logical, progress messages
Details

To compute the Gap statistic get_r adapts the algorithm of function clustGap from R-package
cluster (version 2.1.3). For Louvain clustering get_r uses the function FindClusters imple-
mented in the R-package Seurat. For additional information see the respective documentations.

Value

boot_obj The results: k-means clustering solutions, the Gap statistic and WCSS
gap_stats_summary, wcss_stats_summary
main results; Gap statistic and WCSS estimates. Means, standard errors and
95% confidence intervals are provided for each r and %’

get r 25

gap_stats, wcss_stats
intermediate results; Gap statistic and WCSS estimates for each r and ¥’ and
bootstrap iteration b

Author(s)

Simo Kitanovski <simo.kitanovski@uni-due.de>

See Also

get_k, get_bubbletree_dummy, get_bubbletree_graph, get_bubbletree_kmeans, get_gini, get_gini_k,
d_500, get_num_tiles, get_num_violins, get_cat_tiles, d_ccl

Examples

input data
data("d_500", package = "scBubbletree")
A <- d_500%A

b <- get_r(x = A,
rs = c(0.1, 0.5, 1),

B_gap = 10,

n_start = 20,

iter_max = 100,
algorithm = "original”,
cores = 1,

verbose = TRUE)

b$gap_stats_summary

Index

x datasets
d_500, 4
d_ccl, 5

compare_bubbletrees, 3

get_bubbletree_dummy, 6
get_bubbletree_graph, 8
get_bubbletree_kmeans, 11
get_cat_tiles, 13
get_gini, 15
get_gini_k, 16

get_k, 18
get_num_cell_tiles, 19
get_num_tiles, 21
get_num_violins, 22
get_r,24

scBubbletree (scBubbletree-package), 2
scBubbletree-package, 2

26

	scBubbletree-package
	compare_bubbletrees
	d_500
	d_ccl
	get_bubbletree_dummy
	get_bubbletree_graph
	get_bubbletree_kmeans
	get_cat_tiles
	get_gini
	get_gini_k
	get_k
	get_num_cell_tiles
	get_num_tiles
	get_num_violins
	get_r
	Index

